WO1990001141A1 - Appareil pour determiner de maniere optique et sans contact les dimensions geometriques d'un objet, suivant la methode de projection des ombres - Google Patents

Appareil pour determiner de maniere optique et sans contact les dimensions geometriques d'un objet, suivant la methode de projection des ombres Download PDF

Info

Publication number
WO1990001141A1
WO1990001141A1 PCT/DE1989/000471 DE8900471W WO9001141A1 WO 1990001141 A1 WO1990001141 A1 WO 1990001141A1 DE 8900471 W DE8900471 W DE 8900471W WO 9001141 A1 WO9001141 A1 WO 9001141A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
light
sensor
prism
line
Prior art date
Application number
PCT/DE1989/000471
Other languages
German (de)
English (en)
Inventor
Gebhard Birkle
Original Assignee
Gebhard Birkle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebhard Birkle filed Critical Gebhard Birkle
Publication of WO1990001141A1 publication Critical patent/WO1990001141A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means

Definitions

  • the invention relates to a device for the contactless optical determination of geometric dimensions of an object according to the preamble of claim 1.
  • laser devices for determining the dimensions of objects which work according to the principle of the shadow casting method through the measurement object.
  • the measurement to be determined is derived from the shadow edges which form transitions from light to dark.
  • Such devices have a scanning mechanism that is either a rotating or oscillating mirror element.
  • Such devices achieve a higher accuracy compared to the usual measuring camera, but they are very sensitive and prone to failure due to the moving scanning mechanism.
  • the invention is therefore based on the object to provide a device of the type mentioned, which has a wear-free deflection mechanism, d is not affected by pivoting movements about any axis and allows any position or installation positions, and particularly in relation to the diameter to be measured of the object is minimized.
  • the invention has the salient advantage that it has no light deflecting mechanisms that swing or rotate about an axis, but that the deflecting mechanism is wear-free. A swiveling movement of the device u any axes remains without influence on the deflection mechanism, which is why the invention can be set up or installed as desired.
  • the invention can advantageously be provided in multiple applications in measuring devices to detect different dimensions of an object as it passes through the measuring device.
  • the invention can most advantageously be used as an adjustable measuring tool, e.g. with a robot control.
  • the device due to the inventive radiation doubling in the measuring range and reassembling can be made extremely small compared to the object to be measured; the entrance width or exit width of the two optics, preferably mirror and or roof prisms, is only half or only slightly more than the width of the object or is equal to the width of the same.
  • the sensor can advantageously be a CCD sensor (charged-coupled device), specifically a line or matrix sensor.
  • the invention has a high measuring or sampling frequency, e.g. 2 kHz, which is approximately 10 times higher than in known devices, the sampling frequency of which is typically 200 Hz, in particular also through the use of the CCD sensor.
  • a blanking movement transverse to the measuring line is possible with the invention, for example a swiveling movement by ⁇ 5 angular degrees.
  • the invention advantageously has two classes of measuring accuracy, depending on whether or not the line sensor is controlled by a deflecting mirror that vibrates in the line.
  • the design only with a fixed line sensor without an oscillating deflection mirror enables a simple and robust embodiment of the device according to the invention, the accuracy of which is sufficient for many applications.
  • FIG. 1 shows a schematic view of a device in plan view of the plane in which the light source, the mirror prisms, the measuring window and the receiving unit are located, which consists of an oscillating element, a reflecting mirror attached to it and a line sensor,
  • FIG. 2 shows a side view of FIG. 1 rotated by 90 ° to demonstrate the narrowness of the device
  • Figure 3 is a view of a device with additional fixed imaging optics and CCD line sensor or matrix as a camera to indicate the position of the object or for measurement offset by 90 ° or for determining the center of the object
  • Figure 5b shows the offset of the H / D transitions by the distance X1
  • Exposure transition from element 22 9 to 22 8 signals the marking for the correction variable X1 for refined measurement determination
  • FIG. 5c after a further offset by the distance X2 when the exposure transition from element 22 4 to 22 is signaled, the correction variable X2
  • Figure 7 the measurement signal of a CCD sensor with the photosensitive Elements P (O) to P (N) in the row and Z a possible comparator threshold in analogy to the light intensity over the light bandwidth.
  • the invention has a laser light source 2, which consists, for example, of a laser diode 3 and an expansion lens 5, which expands the laser light into a light band of the width H of parallel beams.
  • the light band falls on a first mirror prism 8 with at least the entrance width H, which is able to deflect the light band and to double in the direction of its width, for example.
  • the mirror prism 8 consists of a roof prism 9, the light-receiving entry surface is the same or wider than the width H de light band.
  • the roof prism 9 has a flat roof slope 10, which is designed as a semi-transparent mirror surface with 50% reflection.
  • the roof slope 12 is designed as a full, flat mirror surface and the optical entry axis coincides with that of the roof edge prism 9.
  • the optical conditions are such that the width H of the original light band from two roof prisms 9, 11 is doubled in a line next to each other to the width 2H, with a gap S between the two, so that the optical exit axes of the roof prisms 9, 11th run parallel to each other.
  • An object 7 is arranged in the direction of the normal to the adjacent exit faces of the roof prisms 9, 11.
  • the smallest determinable dimension of the object is determined by the distance between the inner boundary rays s1 / s2 or the gap S, the largest by the distance of the outer boundary rays a ⁇ / a2.
  • the mirror prism 8 ' consists of the two roof prisms 9' and 11 ', whereby the roof prism 11' has a sloping roof with a mirror surface with 100% reflection, since the roof prism 9 'has a roof slope with a mirror surface with 50% reflection, the roof prism sets at the same time 9 'the light strips 2H together again to light strip H'.
  • the object 7 between the two mirror prisms 8 thus produces shadowing with the boundary rays 11 and i2 in the direction of the optical entrance surfaces of the mirror prism.
  • An opto-electrical receiver unit 13 connects to the mirror prism in the direction of its optical exit axis.
  • the opto-electrical receiving unit 13 consists e.g. from a piezo oscillator 14, on the oscillating part of which a deflection mirror 15 with an obliquely standing mirror surface is arranged, which deflects the light onto a fixed sensor 1, which is preferably a CCD line sensor with light-sensitive elements in a line 17.
  • the arrangement described is preferably housed in a housing 1, which is of elongated flat design and has at one end two opposing legs 5, 5 ', which include between them an outwardly open measuring window 6, which is centered in the direction of the longitudinal axis of the device 1 extends, which is also the axis of symmetry of the device.
  • a mirror prism 8, 8 is arranged such that the optical exit or entry surface face each other plane-parallel, between which the object 7 to be measured can be placed.
  • the laser light source 2 and the receiving unit 13 are for the purpose small design parallel to each other in front of or behind the respective mirror prism 8, 8 '.
  • FIG. 3 shows a device which additionally has a fixed receiving unit 1, consisting of imaging optics 20 and a line sensor 21, for example a CCD line sensor or CCD matrix as a camera for specifying the position of the object or also for measuring by 90 ° or to determine the center or position of the object.
  • a fixed receiving unit 1 consisting of imaging optics 20 and a line sensor 21, for example a CCD line sensor or CCD matrix as a camera for specifying the position of the object or also for measuring by 90 ° or to determine the center or position of the object.
  • deflecting mirror 15 which can be equated with the presence of only the line sensor 16.
  • the mirror prisms 8, 8 ' guide the light band H of the light source 2 widened through the measuring window 6. If there is no object in this, 50% of the output light power is directed to the line sensor 16. To simplify matters, a constant intensity curve is initially assumed over the light bandwidth H.
  • the effective light bandwidth H for the measurement corresponds to the effective entrance width of the entrance window of the mirror prism 8.
  • the sensor 16 delivers a signal as shown in FIG. 4a.
  • the row of light-emitting diode elements Po to PN provides a constant measuring voltage U2. '
  • An object; 7 in the measuring window 6 causes shadowing with the light beam limit M and ⁇ ' 2, which are also directed to the sensor 16.
  • the mirror prism 8 ' reduces the distance between the limits by an amount of H.
  • Measurement voltage U corresponds to approximately 25% of the output light intensity.
  • the measurement voltage curve then speaks Figure 4b. Object dimensions larger (H + S) and smaller (2H + S) cause this course of the measurement signal.
  • Object dimensions greater than S and smaller cause measurement signals according to FIG. 4c.
  • the overlapping, partially shaded parts of the light band a1-a2 in FIG. 1 cause the measurement voltage U2 (light intensity approx. 50 of the output intensity).
  • U1 and U control the detection of the measurement range to be used. 8th
  • the measurement resolution of the invention is limited on the functional basis described above by the geometric resolution of the diode row. Therefore, the light-dark transitions with the oscillating mirror 15 on the line 17 of the line sensor 16 are shifted by means of the piezo oscillator 14 as a length translator for finer measurement.
  • the logical interconnection of the CCD operation of the line sensor 16 and the mirror adjustment of the deflecting mirror 15 enable the high-resolution dimensional accuracy of the invention.
  • Figure 5b After the H / D transitions have been offset by the distance X1 in the direction of the arrow, element 22 9 is fully illuminated. The exposure transition from element 22 9 to 22 8 signals the marking for the correction variable X1 for refined measurement.
  • Different variants of the described refinement are possible, but all contain the determination of 2 correction values.
  • FIG. 7 shows the technically feasible measurement signal Y in U (V) of the CCD sensor, plotted over the light-sensitive elements P 0 to P N.
  • the comparator threshold Z shown corresponds to a light intensity curve above the dimension H of the light band.
  • the comparator function simply binarizes the primary signal.
  • this device does not have an oscillating deflecting mirror, but the emerging light band from the second mirror prism is applied directly to an electronic line sensor, for example a CCD sensor.
  • an electronic line sensor for example a CCD sensor.
  • the incident light band within the first optics may be sensible to pull the incident light band within the first optics to three or multiple times its * original width and to reassemble it to the original width within the second optics.
  • the invention provides a laser measuring scanner which in particular has a high degree of adaptation flexibility in the combination of the device with the manufacturing process, for example as an deliverable measuring tool in a robot street of the automotive industry, e.g. B. for measuring the diameter of shafts, or in the tool industry, where the diameter of workpieces must be determined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention se rapporte à un appareil permettant d'effectuer des déterminations optiques, sans contact, des dimensions géométriques d'un objet (7), suivant la méthode de projection des ombres, ledit objet se trouvant dans la trajectoire d'un faisceau de rayons lumineux parallèles, au moyen d'une source lumineuse laser (2) et d'un capteur optico-électrique (16) pour la réception du faisceau lumineux et la production d'un signal électrique de mesure, et de deux prismes à miroir (8, 8'), symétriques, situés à distance, l'un en face de l'autre, délimitant entre eux une zone de mesure (6), dans laquelle l'objet (7) peut être positionné, le premier prisme à miroir (8) voisin de la source lumineuse (2) déviant la lumière (a1, a2, i1, i2, s1, s2) et la renvoyant sur le second prisme à miroir (8') qui, de la même façon, renvoie la lumière et la dirige sur le capteur (16). Le premier prisme à miroir (8) disperse la largeur du faisceau lumineux et le renvoie sur le second prisme à miroir (8') qui recompose le faisceau lumineux dispersé à sa largeur initiale. Suivant la décomposition de l'ombre du second prisme à miroir (8'), les arêtes d'ombre de l'objet (7) produisent une tension électrique déterminée du capteur (16), laquelle constitue une mesure pour le dimensionnement (d) de l'objet (7). Le capteur est de préférence un capteur à lignes (capteur à lignes CCD).
PCT/DE1989/000471 1988-07-21 1989-07-17 Appareil pour determiner de maniere optique et sans contact les dimensions geometriques d'un objet, suivant la methode de projection des ombres WO1990001141A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19883824820 DE3824820A1 (de) 1988-07-21 1988-07-21 Geraet zum beruehrungslosen optischen bestimmen von geometrischen abmessungen eines objektes
DEP3824820.4 1988-07-21

Publications (1)

Publication Number Publication Date
WO1990001141A1 true WO1990001141A1 (fr) 1990-02-08

Family

ID=6359249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1989/000471 WO1990001141A1 (fr) 1988-07-21 1989-07-17 Appareil pour determiner de maniere optique et sans contact les dimensions geometriques d'un objet, suivant la methode de projection des ombres

Country Status (3)

Country Link
EP (1) EP0425544A1 (fr)
DE (1) DE3824820A1 (fr)
WO (1) WO1990001141A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2259568A (en) * 1991-09-07 1993-03-17 Emhart Inc Monitoring fluid dispensing nozzle
WO2017067823A1 (fr) * 2015-10-19 2017-04-27 Sms Group Gmbh Procédé et système de mesure pour la mesure d'un objet déplaçable

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4115793C2 (de) * 1991-05-10 1993-09-30 Rheinmetall Jenoptik Optical M Anordnung zur hochgenauen videogrammetrischen Meßwerterfassung
DE4308082A1 (de) * 1993-03-13 1994-09-15 Gerhard Dr Kleemann Verfahren und Einrichtung zur optischen Messung von Objekten in einer Ebene
DE4324381A1 (de) * 1993-07-21 1995-01-26 Jenoptik Jena Gmbh Optischer Positionsgeber
KR970000175B1 (ko) * 1993-09-02 1997-01-06 한국원자력연구소 크레인 무진동 조업용 진동각 측정장치
DE4343549A1 (de) * 1993-12-20 1995-06-22 Agie Ag Ind Elektronik Optische Meßvorrichtung
CZ2010423A3 (cs) * 2010-05-28 2010-08-18 Perner@Petr Metoda, zpusob a zarízení ke kontinuálnímu zjištování tlouštky a/nebo homogenity lineárního útvaru, zejména textilního vlákna
US9958258B2 (en) 2014-03-19 2018-05-01 Aeroel S.R.L. Portable device for the contactless measurement of objects
DE102016106772A1 (de) 2016-04-13 2017-10-19 Kmw-Engineering Gmbh Verfahren und Vorrichtung zum Identifizieren und/oder Sortieren von Glasplatten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2216556A2 (fr) * 1973-02-02 1974-08-30 Cem Comp Electro Mec
FR2217667A1 (fr) * 1973-02-14 1974-09-06 Verkstadsteknik Ab
GB2129932A (en) * 1982-11-11 1984-05-23 Richter Bruno Dipl Ing Fa Position and/or dimensions of objects

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2140939A1 (de) * 1971-08-16 1973-03-01 Kabel Metallwerke Ghh Verfahren zur bestimmung des durchmessers bzw. der hoehe oder breite eines langgestreckten koerpers
SE376968B (fr) * 1973-10-12 1975-06-16 Aga Ab
CH645462A5 (de) * 1980-03-25 1984-09-28 Zumbach Electronic Ag Verfahren und vorrichtung zur beruehrungslosen messung einer dimension mindestens eines objekts.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2216556A2 (fr) * 1973-02-02 1974-08-30 Cem Comp Electro Mec
FR2217667A1 (fr) * 1973-02-14 1974-09-06 Verkstadsteknik Ab
GB2129932A (en) * 1982-11-11 1984-05-23 Richter Bruno Dipl Ing Fa Position and/or dimensions of objects

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 6, Nr. 198 (P-147)(1076), 7. Oktober 1982; & JP-A-57 108 710 (Tokyo Shibaura) 6. Juli 1982 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 120 (P-358)(1843), 24. Mai 1985; & JP-A-60 006 808 (Mitsutoyo Seisakusho K.K.) 14. Januar 1985 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 144 (P-365)(1867), 19. Juni 1985; & JP-A-60 022 610 (Matsushita Denki Sangyo K.K.) 5. Februar 1985 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2259568A (en) * 1991-09-07 1993-03-17 Emhart Inc Monitoring fluid dispensing nozzle
WO2017067823A1 (fr) * 2015-10-19 2017-04-27 Sms Group Gmbh Procédé et système de mesure pour la mesure d'un objet déplaçable
CN108136460A (zh) * 2015-10-19 2018-06-08 Sms集团有限公司 用于测量可运动的物体的方法和测量系统
CN108136460B (zh) * 2015-10-19 2021-01-29 Sms集团有限公司 用于测量可运动的物体的方法和测量系统
US11169172B2 (en) 2015-10-19 2021-11-09 Sms Group Gmbh Method and measuring system for measuring a movable object

Also Published As

Publication number Publication date
DE3824820C2 (fr) 1992-12-17
EP0425544A1 (fr) 1991-05-08
DE3824820A1 (de) 1990-01-25

Similar Documents

Publication Publication Date Title
EP1882153B1 (fr) Dispositif et procede pour mesurer des surfaces
EP1096432B1 (fr) Dispositif pour compter et/ou trier des pièces de monnaie
DE69728401T2 (de) Winkeldetektionsverfahren und -vorrichtung für biegemaschine
DE19510148A1 (de) Symbollesevorrichtung mit Fixfokus-Suchstrahl
DE3719422C2 (fr)
DE1623456A1 (de) Verfahren und Vorrichtung zur kontaktlosen Abstandsmessung
EP0846249A1 (fr) Procede et dispositif pour mesurer deux surfaces opposees d'un corps
EP0242436A2 (fr) Dispositif pour la mesure de petites longueurs
WO1990001141A1 (fr) Appareil pour determiner de maniere optique et sans contact les dimensions geometriques d'un objet, suivant la methode de projection des ombres
EP1513094B1 (fr) Dispositif de balayage
DE102006019840A1 (de) Zeilenkamera für spektrale Bilderfassung
DE102009015204A1 (de) Optischer Sensor
DE202006017268U1 (de) Barcodelesegerät
DE2511350A1 (de) Vorrichtung zum messen der verschiebung eines ersten elementes bezueglich eines zweiten
DE69725031T2 (de) Abtaster
EP0230892A2 (fr) Dispositif optique de balayage par une roue à miroir
DE2536923A1 (de) Optische steuer- oder ueberwachungsvorrichtung
EP2147729B1 (fr) Dispositif de déformation
DE2534082A1 (de) Automatische fokussier-steuervorrichtung
WO1992007234A1 (fr) Procede et dispositif de mesure optique des contours d'un objet opaque a la lumiere
DE19518714A1 (de) Geber mit diffraktiven optischen Abbildungselementen
DE10009493A1 (de) Scanner
DE2237138C3 (de) Winkelmesser
EP0022237A1 (fr) Dispositif pour la mesure du profil d'un objet moulé
DE10236218A1 (de) Verfahren zur Messung der Überdeckung von kontrastarmen Strukturmerkmalen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989908153

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989908153

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989908153

Country of ref document: EP