WO1989004324A1 - Phosphoryled derivatives of cardiodilatine/anf peptides - Google Patents

Phosphoryled derivatives of cardiodilatine/anf peptides Download PDF

Info

Publication number
WO1989004324A1
WO1989004324A1 PCT/EP1988/001000 EP8801000W WO8904324A1 WO 1989004324 A1 WO1989004324 A1 WO 1989004324A1 EP 8801000 W EP8801000 W EP 8801000W WO 8904324 A1 WO8904324 A1 WO 8904324A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound according
hypertension
syndrome
hanap
gamma
Prior art date
Application number
PCT/EP1988/001000
Other languages
English (en)
French (fr)
Inventor
Wolf-Georg Forssmann
Michael Gagelmann
Dieter Hock
Original Assignee
Bissendorf Peptide Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bissendorf Peptide Gmbh filed Critical Bissendorf Peptide Gmbh
Priority to DE8888909758T priority Critical patent/DE3878254D1/de
Priority to AT88909758T priority patent/ATE85346T1/de
Publication of WO1989004324A1 publication Critical patent/WO1989004324A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/10Antioedematous agents; Diuretics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the invention relates to derivatives of the precursor peptide of the cardiodilatin / atrial-natriuretic factor pre-pro-gamma-hANaP (CDD-ANF) or fragments thereof, which have at least the amino acid sequence of the alpha-hANaP. Furthermore, the invention relates to a process for the preparation of the derivatives mentioned and their use.
  • Cardiodilatin, alpha-hANaP and other natriuretically / diuretically active peptides are derived from a common precursor peptide, the pre-pro-gam a-hANaP, which comprises 151 amino acids.
  • Positions 1-25 of the amino acid sequence are regarded as signal peptides, while positions 25-151 represent the gamma hANaP, which is identical to the alpha hANaP in the region of the C-terminal end (positions 124-151), among others ( Oikawa, S. et al., "Nature” 109 (1984), 724-726; Nakayama, K. et al., "Nature” 310 (1984), 699-701). However, the numbering of the amino acid positions used in the following does not take the signal peptide into account. Thus, an amino acid sequence from position 1-126 applies to gamma-hANaP and from 99-126 for alpha-hANaP (CDD-28).
  • peptide fragments of gamma-hANaP are described, namely fragments with amino acids 39-126 (CDD-88) and amino acids 95-126 (CDD-32).
  • CDD-88 amino acids 39-126
  • CDD-32 amino acids 95-126
  • the atrial peptides are said to have blood pressure regulating effects through stimulation of natriuresis, diuresis and relaxation of the smooth muscles.
  • DE-OS 34 43 257 describes Alpha-hANaP as a means of treating various diseases such as heart failure, oliguric kidney failure, blood pressure disregulation and ascetics.
  • Peptides especially * the body's own, are broken down in vivo by enzymatic reactions. It is therefore difficult to administer the corresponding therapeutically effective dosage over a long period of time, in particular because a higher dosage that compensates for the breakdown of the peptide is reflected in the body due to the high physiological effectiveness of the body's own substances prohibits in most cases. It is therefore desirable to provide a form of the biologically active peptide in which it has as little biological activity as possible, but is converted into the physiologically active form by the body's own, harmless modification reactions.
  • X is a phosphate group or a thiophosphate group and R 'is either an -NH group or a peptide fragment from the amino acid sequence of the gamma-hANaP.
  • the compound of the formula I according to the invention can be obtained in a particularly elegant manner by enzymatic phosphorylation of the corresponding starting compound of the formula II
  • the enzyme is c-AMP-dependent protein kinase or its catalytic one Subunit and as nucleotide adenosine 5'-triphosphate
  • Radioactively labeled nucleotides can also be used. Usually 32P or, in the case of (gamma-thio) nucleotides, 35S having Nucleoti.de are used. This gives the corresponding radiolabelled peptides that have at least the amino acid sequence of alpha-hANaP
  • the peptide fragment R comprises the amino acids 1-98 (gamma-hANaP), 39-98 (CDD-88) and 95-98 (CDD-32), also referred to as urodilatin.
  • natriuretic peptides derived from pre-pro-gamma-hANaP is possible with the corresponding radio-labeled phosphorylated peptides.
  • those peptides are directly detected which have at least the alpha-hANaP (CDD-28) sequence.
  • the analytical recording of the physiologically active peptides of pre-pro-gamma-hANaP is of diagnostic interest in order to differentiate certain clinical pictures based on average values of different concentrations in body fluids, for example in blood serum and urine.
  • a peptide of the formula II present in the body fluid can be reacted with c-AMP-dependent protein kinase or its catalytic subunit in the presence of radioactive
  • Nucleot d such as, for example, [Gamma-32P] ATP or 35S or 32P-labeled adenosm. -5 '- (Gamma-thi.o) tri.phosphate.
  • the sample consisting of body fluids or tissue homogenates is preferably prepared in a suitable manner, for example by pressing it through a non-polar matrix in the former case.
  • the samples are then phosphorylated with the corresponding nucleotide in the presence of an enzyme, such as c-AMP-dependent protein kinase.
  • an enzyme such as c-AMP-dependent protein kinase.
  • the marked fragment or pre-pro-gamma-hANaP itself is determined using known methods such as PAGE electrophoresis, urea gel electrophoresis with subsequent autoradiography or scintillation measurement, thin-layer chromatography, high-voltage electrophoresis, isoelectric focusing or HPLC (high Performance Liquid Chromatography) directly detected.
  • HPLC high Performance Liquid Chromatography
  • the limit of detection can be increased either by adding larger amounts of the enzyme, such as c-AMP-dependent protein kinase or its catalytic subunit, or by extending the incubation period and by using nucleotides with higher specific radioactivity.
  • the enzyme such as c-AMP-dependent protein kinase or its catalytic subunit
  • nucleotides with higher specific radioactivity There is a significant one time-dependent loss of peptide material such as alpha-hANaP / CDD-28 due to adsorption of the material on glass surfaces, which is greatly reduced by using polyethylene reaction vessels.
  • the phosphorylation dependent on c-AMP can change the biological activity of peptide material. If substances are additionally detected by means of a bioassay, the use of [Ga-32P] ATP alone as a cosubstrate without appropriate unlabelled ATP may be recommended.
  • the use of the compound of the formula I leads to the qualitative and / or quantitative detection of alpha-hANaP (CDD-28), CDD-32, CDD-88 and gamma-hANaP as well as pre- pro-gamma hANaP.
  • Derivatives of the compound of formula I according to the invention can be used as medicaments because of their physiological action.
  • the compounds according to formula I can be used to store the actual active substance according to formula II as a kind of depot form.
  • the compounds of the formula I are successively converted into the active form as a result of the action of hydrolases, in particular dephosphorylating enzymes (phosphatases).
  • the compound according to formula I is particularly suitable for the following areas of application: differentiated vasodilation of certain vascular beds, diagnostics and Therapy of hypertension, use as a substitution in patients to whom artificial hearts have been implanted, synchronous regulation of blood volume and blood electrolytes, skin diseases, in particular with disorders of sweat secretion, cardiovascular shock, diseases of the kidneys and adrenal cortex, diseases of the gastrointestinal tract, in particular for motility disorders or constipation, therapy of brain edema and glaucoma, therapy of spastic coronaropathies such as angina pectoris, for the treatment of acute renal insufficiency, nephrotic and nephritic syndrome, terminal renal failure, acute heart failure, ascites, generalized edema, pulmonary edema, cerebral edema primary and secondary lymphedema, hydrothorax, glaucoma, vena cava stenosis, hypo
  • the compound according to formula I can also be used as a diuretic for the treatment of multiple diseases such as gout, combined with hypertension / cardiac insufficiency and diabetes with hypertension / cardiac insufficiency or as a diuretic in combination with cephalosporins, aminoglycosides or anticoagulants. Furthermore, this compound is suitable for the prophylaxis of acute kidney failure after kidney transplantation and treatment with nephrotoxic substances such as cyclosporin, cisplatin and ifosfamide and for the prophylaxis of acute kidney failure, postperatively or after hypertensive crises and after administration of contrast agents in Pa ⁇ patients with impaired kidney function.
  • the compound according to the invention can also be used as a diagnostic for differential diagnosis of endothelial changes.
  • the invention therefore also relates to medicaments for use in the above-mentioned diagnostic and therapeutic methods which contain the phosphorylated compound according to formula I.
  • the medicaments can be in the usual forms of use for intravenous, oral or parenteral administration, such as e.g. as tablets, suppositories, dragees, solutions, sprays or preparations for inhalation, etc., and microencapsulation, optionally together with conventional, pharmacologically acceptable carriers and / or diluents.
  • the medicament according to the invention can also be formulated in such a way that the active substance is released slowly.
  • the amount of the active ingredient is preferably 50 ng to 50 ⁇ g per dose unit.
  • a method for speci ⁇ fic determination of the compound of formula I is made available, in which one works according to the principle of immunoassay and an antibody which is against this connection is used. It was found that by using antibodies against the compound of formula I, cardiodilatin can also be detected in body fluids in a very specific and very precise manner. This method can preferably be used for the specific determination of cardiodilatin for the diagnosis of neurological Diseases by specifically detecting cardiodilatin or its fragments in the cerebrospinal fluid.
  • the use of the medicament according to the invention which contains the compound of the formula I as an active substance, is indicated on account of its favorable spectrum of action and its low toxicity for the treatment of diseases which are associated with a disturbance in the electrolyte and water balance, for example preterminal and terminal renal insufficiency, disorders of the renin-angiotensin-aldosterone system, disorders of vasopressin secretion, with fluid sequestration (.
  • “Third Space” problems such as ascites, glaucoma, cerebral edema, hydrothorax) and other diseases with increased extravascular Volume accumulation such as lymphedema, EPH gestosis, vena cava stenosis, diseases with hypoproteinemia such as kidney diseases, enteropathies and liver diseases.
  • the medicament according to the invention can be used to treat all diseases which are associated with increased vasoconstriction.
  • the medicament containing the compound according to the invention can be used for the treatment of vascular spasms such as Raynaud's disease, spasms of the muscular distribution arteries and hearing loss.
  • the compound of the formula I can also be used for other vascular diseases, for example for the treatment of coronary arteries Heart disease, ancrina abdo inalis, vasomotor headache, arteria basilaris migraine with "circulatory disorders in the Vertebralis-Basilaris-Stro bahn The, Bing-Horton syndrome.
  • the medicament according to the invention containing the compound of formula I is indicated for malignant hypertension, pregnancy hypertension, headache for hypertension, hypertension in combination with other diseases , for example gout and diabetes.
  • the medicament according to the invention shows antagonistic properties against sodium-retentive, water-retentive and vasoconstrictive hormones. This enables the use of the medicament according to the invention for the treatment of primary and secondary hyperaldosterone, renovascular hypertension, renin-secreting tumors, pheochromocytoma, Bartter syndrome and Schwartz-Bartter syndrome.
  • the medicament according to the invention containing the compound of the formula I can furthermore be used for the treatment of heart failure, for heart transplantations and artificial heart, for support in ⁇ EEP "ventilation (positive end expiratory pressure), during bypass operations and operations on Open heart: When ventilating with positive end-expiratory pressure, the expiration takes place against excess pressure.
  • the medicament according to the invention can be used for the prophylaxis of acute kidney failure, for example after kidney transplants, postoperatively and for improving the function of transplant kidneys by prior treatment with the medicament according to the invention.
  • the compound of formula I containing erfindungs ⁇ claimed preparation also be used for diagnostic purposes ⁇ IG. Since the vasodilatation is independent of the endothelium, a comparison with the vasodilatation by an endothelium-dependent vasodilator allows a statement about the condition of the endothelium.
  • the use of the medicament according to the invention is also indicated in gastrointestinal indications such as changes in pancreatic secretion and associated utilization disorders, malnutrition, exocrine pancreatic insufficiency, regulation of the motility of the intestine and the bladder (micturition and defecation disorders).
  • the medicament according to the invention can be used for the treatment of anhidrosis.
  • the agent according to the invention can also be used in psychiatry for the treatment of cardiovascular side effects in the therapy of psychiatric disorders and agitation with catecholamine release.
  • the compound of formula I can be used for the production of medicaments such as solutions for injection or infusion, as a nasal spray, eye drops or as a slow-release form for the above-mentioned indications.
  • peptides containing thiophosphate groups can be used in a particularly advantageous manner as a depot form, since these derivatives are only transformed extremely slowly into the corresponding physiologically active equivalents.
  • Figure 1 shows an elution pattern of phosphorylated alpha-hANaP (CDD-28) and CDD-88.
  • Figure 2 shows an elution pattern of phosphorylated atrial raw beef extract. Aliquots of CDD-28 and CDD-88, which had been phosphorylated with the catalytic subunit of the c-AMP-dependent protein kinase, were reversed-phase HPLC (TSLC-ODS-120T) (300 x 7 , 8 mm ID) separately.
  • TSLC-ODS-120T reversed-phase HPLC
  • the eluents used were a) 0.01 M hydrochloric acid, b) 0.01 M hydrochloric acid in 80% aqueous acetonitrile.
  • the flow rate was 1.5 ml / min.
  • the solvent gradient is indicated by the oblique, solid line.
  • the optical density (-) was measured at 210 nm (absorption range 0.1). For the measurement of radioactivity (• - •), 0.5 ml of each of the collected fractions was removed and counted.
  • Figure 3 shows the separation of 2 ⁇ g of unphosphorylated alpha-hANaP (CDD-28), CDD-32 (urodilatin) and phosphorylated alpha-hANaP.
  • the samples were mixed and separated by RP-HPLC (reverse phase HPLC).
  • the eluent consisted of a linear gradient of acetonitrile / 0.01% HC1 as buffer B and 0.01% HC1 as buffer A.
  • the initial concentration of buffer B was 20%; the column was developed with the continuous addition of buffer B (0.5% / min) at a flow rate of 0.7 ml / min.
  • the absorption at 230 nm was measured as a signal.
  • the separation carried out under these conditions first leads to the elution of non-phosphorylated alpha-hANaP, followed by phosphorylated alpha-hANaP and finally to the elution of CDD-32 (urodilatin).
  • Figure 4 shows the effect of c-AMP-dependent phosphorylated () and non-phosphorylated ()
  • the solid line shows the typical relaxation behavior with non-phosphorylated CDD-28.
  • the dashed line demonstrates the behavior after application of phosphorylated CDD-28. Under these conditions, only a slight relaxation is detectable.
  • Figure 5 is a summary of a number of experiments with phosphorylated CDD-28 and CDD-88, as well as unphosphorylated CDD-28 and CDD-88. In both cases the concentration was 0.3 to 0.6 x 10 -9- M. In the illustration the relative rate is the
  • Figure 6 shows the reaction of rabbit aorta muscle strips to the gradual addition of non-phosphorylated, phosphorylated and then again non-phosphorylated alpha-hANaP (CDD-28).
  • the compounds were in each case added in such a way that they were present in the test bath in a final concentration of 0.3 ⁇ 10 ⁇ 9 M.
  • Precontracted aorta muscle strips relax to a certain degree when non-phosphorylated alpha-hANaP is added.
  • the addition of phosphorylated alpha-hANaP (CDD ⁇ ⁇ ) shows almost no effect.
  • the relaxation of the muscle continues only after the addition of further non-phosphorylated alpha-hANaP.
  • Figure 7 shows the relative relaxation capacity of phosphorylated and non-phosphorylated CDD-32 (ANF / CDD-95-126, urodilatin). It is clear that the phosphorylated CDD-32 has a correspondingly lower relaxation capacity than the non-phosphorylated form. For comparison, the corresponding ratio for the alpha-hANaP pair is also given in FIG. It can be seen from this that the phosphorylated compounds in each case have correspondingly lower activities than the non-phosphorylated parent compounds.
  • Reaction batch for phosphorylation 100 ⁇ l reaction batch contain 50 mM MOPS buffer (N-morpholino-3-propanesulfonic acid), pH 6.8, 10 mM magnesium acetate, approx. 12.7 ⁇ g catalytic subunit c-AMP-dependent Pro ⁇ protein kinase (EC 2.7.1.37) from bovine heart (10 ⁇ l), serum or urine sample.
  • the phosphorylation reaction is started by adding 2 mM ATP and [Gamma- 32 P] ATP (10 ⁇ Ci / 20 nmol ATP) in 10 ⁇ l by mixing. Incubation takes place at 30 ⁇ C for 5 minutes.
  • the concentration of catalytic subunit can also be chosen so that complete phosphorylation takes place within 5 to 40 minutes.
  • the phosphorylation reaction is terminated by shock freezing in liquid nitrogen.
  • the phosphorylated reaction mixture is separated by HPLC via a TSK-ODS-120T column
  • Toyo Soda 300 x 7.8 mm ID
  • a linear acetonitrile gradient (0 to 80%) in 0.01 N HC1 is used for the elution.
  • the absorption is measured at 210 nm.
  • the fraction volume collected is 1.5 ml.
  • the incorporation of 32P is measured in 0.5 ml aliquots together with 2 ml of water in a scintillation counter (1 min.).
  • CDD-28 Synthetically produced cardiodilatin-28 (CDD-28, Bissendorf Peptides Co.) and -32 (Bachern) as well as CDD-88 from bovine atria for the phosphorylation were used as reference peptides (Hock, D. et al, J. Chromatographv 397 (1987 ), 347-353).
  • a further purification of the phosphorylated peptides by reverse phase HPLC can be carried out as follows: the reaction mixture present after the phosphorylation is applied to an RP column (micropore, C 18 , 4.6 x 30 mm; Applied Biosystems) .
  • An apparatus suitable for analytical HPLC, as supplied by Applied Biosystems, can be used as the apparatus.
  • the apparatus is equipped with two pumps, a 1400 A solvent supply system, a Spectroflow 491 Dynamic Mixer / Injector (0.2 ml sample loop) and a 1783 Absorbents Detector Collector.
  • the column is first equilibrated with buffer A containing 0.1% TFA (trifluoroacetic acid) and then developed with increasing concentration of acetonitrile (buffer B 70% acetonitrile / 0.09% TFA).
  • the flow rate is 1 ml / min and the absorption is measured at 220 nm.
  • the chromatography takes place at room temperature. Phosphorylated and unphosphorylated peptides elute under isocratic conditions as a uniform peak at 24% acetonitrile concentration.
  • the fraction containing the phosphorylated peptides is collected, freeze-dried and stored at -70 ° C.
  • the separation of the phosphorylated peptides beispielswei ⁇ se alpha-hANaP is by means of a shear Kationenaustau ⁇ column (4 x 50 mm) with v an HPLC apparatus LKB which ler with two pumps, a 2152 Control ⁇ , a 2151 Variable Wavelength Monitor and a Reodyne Injector (1 ml sample loop).
  • the column is developed with a linear gradient with sodium chloride in 10 mM disodium hydrogen phosphate (pH 5) at a flow rate of 0.7 ml / min. The absorption is measured at 230 nm.
  • the chromatography is carried out at room temperature. The initial concentration of sodium chloride is 100 M.
  • the fractions containing the phosphorylated alpha-hANaP are determined by measuring the radioactivity contained.
  • the corresponding fractions are collected, freeze-dried and stored at -70 ° C.
  • the salt can be freed from the sample by means of a further reverse phase HPLC.
  • New Zealand rabbit aortae were prepared. The
  • Muscle tension was measured on muscle strips in an organ bath containing physiological saline. The strips were pre-contracted with a solution of 10 M norepinephrine, then when complete
  • Alpha-hANaP was phosphorylated according to Example 1 in the presence of ATP and the catalytic subunit according to Example 1.
  • non-phosphorylated alpha-hANaP was incubated under the same conditions, but without the presence of ATP.
  • Phosphorylated and non-phosphorylated alpha-hANaP were added to the precontracted rabbit aorta muscle strips so that they were at a final concentration of 0.3 x 10 ⁇ 9 M. Under the influence of the non-phosphorylated peptides, the aorta muscle strip partially relaxes, while phosphorylated alpha-hANaP only has a negligible effect.
  • CDD-32 (urodilatin) is phosphorylated according to Example 1 and examined for biological activity analogously to Example 5.
  • Urodilatin in a non-phosphorylated state shows a dose-dependent relaxation activity with a stronger relaxing effect at higher concentrations.
  • Administration of phosphorylated urodilatin in appropriate concentrations results in a significantly lower relaxation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Endocrinology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Neurosurgery (AREA)
  • Reproductive Health (AREA)
  • Urology & Nephrology (AREA)
  • Neurology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

Phosphσrylierte Derivate von Cardiodilatin/ANF-Pβptiden
Die Erfindung betrifft Derivate des Precursor-Peptides des Cardiodilatin/atrialen-natriuretischen Faktors pre- pro-Gamma-hANaP (CDD-ANF) oder Fragmente desselben, die zumindest die Aminosäuresequenz des Alpha-hANaP aufwei¬ sen. Des weiteren betrifft die Erfindung ein Verfahren zur Herstellung der genannten Derivate sowie ihre Ver¬ wendung.
Cardiodilatin, Alpha-hANaP und weitere natriuretisch/ diuretisch wirksame Peptide stammen aus einem gemeinsa¬ men Precursor-Peptid, dem pre-pro-Gam a-hANaP ab, wel¬ ches 151 Aminosäuren umfaßt.
| ■ Gamma-hANaP 1
25 64 120 124 151
Signal- Alpha-hANaP Peptid (CDD-28)
Die Positionen 1-25 der Aminosäuresequenz werden als Signal-Peptid angesehen, während die Positionen 25-151 das Gamma-hANaP darstellen, welches unter anderem im Bereich des C-terminalen Endes (Positionen 124-151) mit dem Alpha-hANaP identisch ist (Oikawa, S. et al., "Na- ture" 109 (1984), 724-726; Nakayama, K. et al., "Natu- re" 310 (1984) , 699-701) . Die Numerierung der Aminosäu- repositionen, die im folgenden verwendet wird, berück¬ sichtigt das Signal-Peptid jedoch nicht. Somit gilt für Gamma-hANaP eine Aminosäuresequenz von Position 1-126 und für Alpha-hANaP von 99-126 (CDD-28) . Es sind weitere Peptidfragmente des Gamma-hANaP be¬ schrieben, nämlich Fragmente mit den Aminosäuren 39-126 (CDD-88) und Aminosäuren 95-126 (CDD-32) . Letzteres besitzt an N-Terminus 4 Aminosäuren mehr als CDD-28 und wird auch als Urodilatin bezeichnet. Den atrialen Pep¬ tiden werden blutdruckregulierende Wirkungen durch Sti¬ mulation von Natriurese, Diurese und Relaxation der glatten Muskulatur zugeschrieben. Die DE-OS 34 43 257 beschreibt Alpha-hANaP als Mittel zur Behandlung ver¬ schiedener Krankheiten wie Herzinsuffizienz, oliguri- schem Nier nversagen, Blutdruckdisregulation und Aszi- tes.
Peptide, insbesondere* körpereigene, werden in vivo durch enzymatische Reaktionen abgebaut. Es ist deshalb nur schwer möglich, über einen langen Zeitraum die ent¬ sprechende therapeutisch wirksame Dosierung zu verab- reichen, insbesondere, weil sich eine den Abbau des Peptids kompensierende, höhere Dosierung wegen der ho¬ hen physiologischen Wirksamkeit der körpereigenen Bo¬ tenstoffe in den meisten Fällen verbietet. Wünschens¬ wert ist also die Bereitstellung einer Form des biolo- gisch aktiven Peptides, in welcher es möglichst geringe biologische Aktivität aufweist, aber durch körpereige¬ ne, unbedenkliche Modifizierungsreaktionen in die phy¬ siologisch aktive Form überführt wird.
Wegen der Bedeutung des Cardiodilatins bzw. atrialen- natriuretisehen Faktors ist es wichtig, ein Verfahren zur sicheren analytischen Erfassung der aktuellen Kon¬ zentration der entsprechenden physiologisch wirksamen Verbindung zur Verfügung zu haben, um die wirksamen Peptide und/oder Peptidfragmente qualitativ und quanti¬ tativ zu erfassen. Ein bekanntes biochemisches Prinzip der Modulation der Wirkung von Biomolekülen, wie Enzymen und Rezeptoren, beruht auf Phosphorylierungs- und Dephosphorylierungs- reaktionen.
Rittenhouse, J. et al., J. Biol. Che . 261 (1986), 7607- 7610, beschreibt die Phosphorylierung von synthetischen Peptiden mit der Aminosäuresequenz Arg -Tyr des Alpha-hANaP mittels c-AMP-abhängiger Proteinkinase, die als Erkennungssequenz Arg-Arg-X-Ser erfordert. Es wird dort ebenfalls beschrieben, daß das synthetische Peptid eine Michaeliskonstante von K = 0.5 μM aufweist. Das
104 an Ser in vitro phosphorylierte synthetische Peptid besitzt eine physiologische Aktivität, die sich in der Stimulierung des Na/K/Cl-Cotransportes in kultivierten vasculären Zellen der glatten Muskulatur äußert. Bloch, K.D. et al.,. J. Biol. Chem. 62 (1987), 9956-9961, be- schreibt hingegen Versuche, wobei, in vivo in Primär¬ kulturen von Cardiozyten neugeborener Ratten, ein Se- rinrest in einem. durch Trypsinabbau erhaltenen Fragment (Positionen 26-67 des Gamma-hANaP) des pro-ANF (Gamma- hANaP) phosphoryliert wird. Diese Befunde sprechen also dafür, daß Gamma-hANaP nicht in dem Bereich phosphory¬ liert wird, welcher als Alpha-hANaP abgespalten wird. Damit kommt den synthetischen phosphorylierten Peptiden Arg101-Tyr126 bzw. Gly96-Tyr126 (Rittenhouse et al.) keine natürliche physiologische Bedeutung zu.
Die der Erfindung zugrunde liegende Aufgabe besteht darin, chemische Verbindungen bereitzustellen, die eine einfache qualitative und quantitative Bestimmung von Peptiden, die die Sequenz des wirksamen Prinzips des Gamma-hANaP, nämlich das Alpha-hANaP (Positionen 98-126) enthalten, erlauben. Des weiteren liegt der Erfindung die Aufgabe zugrunde, chemische Verbindungen bereitzu¬ stellen, aus denen durch die körpereigene Modifikation ein Wirkstoff entsteht, wobei die Stammverbindung selbst keine oder nur geringere physiologische Akti- vität aufweist. Des weiteren besteht eine Aufgabe der Erfindung darin, ein Verfahren bereitzustellen, mit dessen Hilfe die Anwesenheit von natriuretischen-atria- len Peptiden qualitativ und quantitativ erfaßt werden kann.
Die der Erfindung zugrunde liegenden Aufgaben werden gelöst durch eine Verbindung mit der Formel I
Figure imgf000006_0001
wobei X eine Phosphatgruppe oder eine Thiophosphatgrup- pe und R' entweder eine -NH- Gruppe oder ein Peptidfrag- ent aus der Aminosäuresequenz des Gamma-hANaP ist.
Die erfindungsgemäße Verbindung der Formel I kann in besonders eleganter Weise durch enzymatische Phospho- rylierung der entsprechenden Ausgangsverbindung der Formel II
Figure imgf000006_0002
mit den entsprechenden Nucleotiden erreicht werden. Gemäß einer bevorzugten Ausführungsform wird als Enzym c-AMP-abhängige Proteinkinase oder deren katalytische Untereinheit und als Nucleotid Adenosin-5'-triphosphat
(ATP) bzw. Adenosin-5'-(Gamma-thio)triphosphat mit der Verbindung der Formel II in an sich bekannter Weise umgesetzt. Es können auch radioaktiv markierte Nuσleo- tide eingesetzt werden. Dabei werden üblicherweise 32P oder, im Falle der Verwendung von (Gamma-thio)-Nucleo- tiden, 35S aufweisende Nucleoti.de eingesetzt. So erhalt man die entsprechenden radioaktiv markierten Peptide, die mindestens die Aminosäuresequenz des Alpha-hANaP
(CDD-28) enthalten.
Es ist natürlich auch möglich, mittels der dem Fachmann bekannten Merrifield-Synthese durch Verwendung entspre¬ chender phosphorylierter Bausteine, zum Beispiel von phosphoryliertem Serin, sei es in radioaktiv markierter oder nicht markierter Form, die erfindungsgemäßen Ver¬ bindungen herzustellen.
Gemäß einer bevorzugten Ausführungsform umfaßt das Pep- tidfragment R die Aminosäuren 1-98 (Gamma-hANaP) , 39-98 (CDD-88) und 95-98 (CDD-32) , auch als Urodilatin be¬ zeichnet.
Ein analytisches Verfahren zur qualitativen und/oder quantitativen Bestimmung natriuretischer Peptide, die von pre-pro-Gamma-hANaP abgeleitet sind, ist mit den entsprechenden radioaktiv markierten phosphorylierten Peptiden möglich. Gemäß der Erfindung werden solche Peptide direkt erfaßt, die mindestens die Alpha-hANaP (CDD-28) -Sequenz besitzen. Die analytische Erfassung der physiologisch wirksamen Peptide des pre-pro-Gamma- hANaP ist von diagnostischem Interesse, um aufgrund von Durchschnittswerten abweichender Konzentrationen in Körperflüssigkeiten, zum Beispiel im Blutserum und Urin, bestimmte Krankheitsbilder zu differenzieren. Zu diesem Zweck kann zum Beispiel ein in der Körperflüs¬ sigkeit vorhandenes Peptid der Formel II umgesetzt wer- den mit c-AMP-abhängiger Proteinkinase oder deren kata- lytischer Untereinheit in Gegenwart von radioaktivem
Nucleot d, wie beispielsweise [Gamma- 32P]ATP oder 35S- bzw. 32P-markiertem Adenosm. -5'-(Gamma-thi.o)tri.phosphat.
In dieser Ausführungsform werden alle physiologisch wirksamen Fragmente des pre-pro-Gamma-hANaP markiert, die zumindest die CDD-28-Sequenz aufweisen. Zur Durch¬ führung des Analyseverfahrens wird vorzugsweise die Probe bestehend aus Körperflüssigkeiten oder Gewebeho- mogenaten in geeigneter Weise vorbereitet, indem sie beispielsweise im ersteren Fall durch eine unpolare Matrix gedrückt werden.
Danach werden die Proben mit dem entsprechenden Nucleo¬ tid in Gegenwart eines Enzyms, wie c-AMP-abhängiger Proteinkinase, phosphoryliert. Das markierte Fragment oder pre-pro-Gamma-hANaP selbst wird mittels bekannter Methoden wie PAGE-Elektrophorese, Harnstoffgel-Elektro- phorese mit anschließender Autoradiographie bzw. Szin- tillationsmessung, Dünnschichtchromatographie, Hoch- spannungs-Elektrophorese, isoelektrische Fokussierung oder auch HPLC (High Performance Liquid Chromatography) direkt nachgewiesen. Grundsätzlich ist es jedoch auch möglich, die mit Hilfe der markierten phosphorylierten Peptide isolierten Fraktionen durch andere biochemische oder immunologische Methoden (monoklonale Antikörper) näher zu charakterisieren.
Die Nachweisgrenze läßt sich entweder durch Zusatz grö¬ ßerer Mengen des Enzyms, wie c-AMP-abhängiger Protein¬ kinase oder deren katalytischer Untereinheit, bzw. durch Verlängerung der Inkubationsdauer sowie durch Verwendung von Nucleotiden mit höherer spezifischer Radioaktivität erhöhen. Es besteht ein erheblicher zeitabhängiger Verlust von Peptidmaterial wie zum Bei¬ spiel Alpha-hANaP/CDD-28 durch Adsorption des Materials an Glasoberflächen, der durch Verwendung von Polyethy- lenreaktionsgefäßen stark vermindert wird. Die von c-AMP abhängige Phosphorylierung kann die biologische Aktivi¬ tät von Peptidmaterial verändern. Bei zusätzlichem Nach¬ weis von Substanzen durch einen Bioassay empfiehlt sich daher unter Umständen die alleinige Verwendung von [Ga - ma- 32P]ATP als Kosubstrat ohne entsprechendes nicht markiertes ATP.
Die Verwendung der Verbindung der Formel I führt in einer bevorzugten Ausführungsform der Erfindung zur qualitativen und/oder quantitativen Erfassung von Al¬ pha-hANaP (CDD-28), CDD-32, CDD-88 und Gamma-hANaP so¬ wie auch pre-pro-Gamma-hANaP.
Derivate der erfindungsgemäßen Verbindung der Formel I können wegen ihrer physiologischen Wirkung als Arznei¬ mittel eingesetzt werden. In den Fällen, in denen die Verbindungen gemäß Formel I einen geringeren physiolo¬ gischen Effekt aufweisen als die korrespondierenden eigentlichen Wirkstoffe, können die erfindungsgemäßen Verbindungen dazu benutzt werden, den eigentlichen Wirk¬ stoff nach Formel II als eine Art Depotform zu spei¬ chern. In vivo werden sukzessive die Verbindungen der Formel I infolge der Einwirkung von Hydrolasen, inbe- sondere dephosphorylierender Enzyme (Phosphatasen) , in die aktive Form überführt.
Diese biologischen Wirkungen zeigen, daß das phosphory- lierte Peptid gemäß Formel I eine große klinische, diagnostische und therapeutische Bedeutung besitzt. Insbesondere eignet sich die Verbindung gemäß Formel I für die folgenden Anwendungsbereiche: differenzierte Vasodilation bestimmter Gefäßbetten, Diagnostik und Therapie der Hypertonie, Anwendung als Substitution bei Patienten, denen künstliche Herzen implantiert wurden, synchrone Regulation des Blutvolumens und der Blutelek- trolyte, Hauterkrankungen, insbesondere mit Störungen der Schweißsekretion, cardiovaskulärer Schock, Erkran¬ kungen der Nieren und Nebennierenrinde, Erkrankungen des Gastrointestinaltraktes, insbesondere bei Motili- tätsstörungen bzw. Obstipation, Therapie von Hirnödemen und des Glaukoms, Therapie spastischer Coronaropathien wie Angina pektoris, zur Behandlung von akuter Nieren¬ insuffizienz, nephrotischem und nephritischem Syndrom, terminaler Niereninsuffizienz, akuter Herzinsuffizienz, Ascites, generalisierten Ödemen, Lungenödem, Hirnödem, primären und sekundären Lymphödemen, Hydrothorax, Glau¬ kom, Vena-cava-Stenose, Hypoproteinämie, Hörsturz, es¬ sentieller und renaler Hypertonie, maligner Hypertonie, EPH-Gestose wie Schwangerschaftshypertonie, Schwanger- schafts-Nephrose, zerebralem Natriumspeichersyndrom, Gefäßspasmen wie Morbus Raynaud, Angina abdominalis, Koronarspasmen, .koronarer Herzkrankheit, vasomotori¬ schen Kopfschmerzen, Kopfschmerzen bei Hypertonie, Bing-Horton-Syndrom Migräne, Durchblutungsstörungen im Vertebralis-Basilaris-Strombahngebiet, Störungen des Renin-Angiotensin-Systems, primärem und sekundärem Hy- peraldosteronismus, reninsezernierenden Tumoren, Phäo- chromozytom, Bartters Syndrom, Schwartz-Bartter-Syn- drom, Pankreasinsuffizienz, primärer Schweißdrüseninsuf- fizienz wie Anhidrosis, Miktions- und Defäkationsstörun- gen, Hypophysenvorderlappendysregulation, cardio-vasku- lären Nebenwirkunge bei der Therapie psychiatrischer Erkrankungen sowie Agitation mit Catecholaminerhöhung, zur unterstützenden Behandlung bei Herztransplantatio¬ nen, "PEEP-Beatmung" (einer mechanischen Beatmung mit positivem endexpiratorischem Druck) sowie Bypass-Opera- tionen und zur Behandlung von Komplikationen nach Ein¬ pflanzung eines künstlichen Herzens. Die Verbindung gemäß Formel I kann ebenfalls eingesetzt werden als Diuretiku zur Behandlung von multiplen Er¬ krankungen wie Gicht, kombiniert mit Hypertonus/HerzIn¬ suffizienz sowie Diabetes mit Hypertonus/Herzinsuffizi- enz oder als Diuretikum in Kombination mit Cephalospori- nen, Aminoglykosiden oder Antikoagulantien. Des weite¬ ren eignet sich diese Verbindung zur Prophylaxe von akutem Nierenversagen nach Nierentransplantationen und Behandlung mit nephrotoxischen Substanzen wie Cyclospo- rin, Cisplatin und Ifosfamid und zur Prophylaxe des akuten Nierenversagens, postόperativ oder nach hyperto- nen Krisen und nach Gabe von Kontrastmitteln bei Pa¬ tienten mit eingeschränkter Nierenfunktion. Auch als Diagnostikum zur Differentialdiagnose von Endothel-Ver- änderungen ist die erfindungsgemäße Verbindung einsetz¬ bar.
Gegenstand der Erfindung sind deshalb auch Arzneimittel zur Verwendung bei den oben angegebenen Diagnose- und Therapieverfahren, welche die phosphorylierte Verbin¬ dung gemäß Formel I enthalten. Die Arzneimittel können in den üblichen Anwendungsformen zur intravenösen, oralen oder parenteralen Applikation vorliegen, wie z.B. als Tabletten, Suppositorien, Dragees, Lösungen, Sprays oder Zubereitungen zur Inhalation usw., sowie Mikroverkapselung, gegebenenfalls zusammen mit übli¬ chen, pharmakologisch verträglichen Träger- und/oder Verdünnungsmitteln. Das erfindungsgemäße Medikament kann auch so formuliert werden, daß der Wirkstoff lang¬ sam freigesetzt wird. Vorzugsweise beträgt die Menge des Wirkstoffes 50 ng bis 50 μg pro Dosiseinheit.
Weiterhin wird erfindungsgemäß ein Verfahren zur spezi¬ fischen Bestimmung der Verbindung gemäß Formel I zur Verfügung gestellt, bei dem man nach dem Prinzip des Im unoassays arbeitet und einen Antikörper, der gegen diese Verbindung gerichtet ist, verwendet. Es wurde festgestellt, daß durch Verwendung von"Antikörpern ge- gen die Verbindung gemäß Formel I auch Cardiodilatin in Körperflüssigkeiten sehr spezifisch und sehr genau nachgewiesen werden kann. Bevorzugt kann dieses Verfah¬ ren zur spezifischen Bestimmung von Cardiodilatin ver¬ wendet werden zur Diagnose von neurologischen Erkran- kungen, indem im Liquor cerebrospinalis Cardiodilatin oder dessen Fragmente spezifisch nachgewiesen werden.
Die Verwendung des erfindungsgemäßen Arzneimittels, welches als wirksame Substanz die Verbindung der For- mel I enthält, ist aufgrund seines günstigen Wirkungs¬ spektrums und seiner geringen Toxizität zur Behandlung von Erkrankungen angezeigt, die mit einer Störung des Elektrolyt- und Wasserhaushaltes einhergehen, wie zum Beispiel präterminale und terminale Niereninsuffizienz, Störungen des Renin-Angiotensin-Aldosteron-Systems, Störungen der Vasopressin-Sekretion, bei Flüssigkeits¬ sequestration (."Third Space"-Probleme wie Ascites, Glaukom, Hirnödem, Hydrothorax) sowie anderen Erkran¬ kungen mit erhöhter extravasaler Volumenansammlung wie Lymphödem, EPH-Gestose, Vena-cava-Stenose, Erkrankungen mit Hypoproteinämie wie Nierenerkrankungen, Enteropa- thien und Lebererkrankugen.
Das erfindungsgemäße Arzneimittel kann aufgrund seiner vasodilatatorischen Eigenschaften zur Behandlung aller Erkrankungen verwendet werden, die mit einer erhöhten Vasokonstriktion einhergehen. So kann das die erfin¬ dungsgemäße Verbindung enthaltende Arzneimittel einge¬ setzt werden zur Behandlung von Gefäßspasmen wie zum Beispiel Morbus Raynaud, Spasmen der muskulären Vertei¬ lerarterien und Hörsturz. Auch für weitere Gefäßerkran¬ kungen kann die Verbindung der Formel I eingesetzt wer¬ den, wie zum Beispiel für die Behandlung von koronarer Herzkrankheit, Ancrina abdo inalis, vasomotorischen Kopf¬ schmerzen, Arteria basilaris Migräne mit" Durchblutungs- Störungen im Vertebralis-Basilaris-Stro bahngebiet, Bing-Horton-Syndrom.
Aufgrund seiner blutdrucksenkenden Eigenschaften, die vor allem bei primär erhöhtem Blutdruck wirksam werden, ist das die Verbindung der Formel I enthaltende erfin¬ dungsgemäße Arzneimittel indiziert bei maligner Hyper¬ tonie, Schwangerschaftshypertonie, Kopfschmerz bei Hy¬ pertonie, Hypertonie in Kombination mit anderen Erkran¬ kungen, zum Beispiel Gicht und Diabetes.
Das erfindungsgemäße Arzneimittel zeigt antagonistische Eigenschaften gegen natriumretinierende, wasserretinie- rende und vasokonstriktorische Hormone. Dies ermöglicht die Verwendung des erfindungsgemäßen Arzneimittels zur Behandlung von primärem und sekundärem Hyperaldostero- nismus, renovaskulärer Hypertonie, reninsezernierenden Tumoren, Phäochromozytom, Bartter-Syndrom und Schwartz- Bartter-Syndro .
Das die Verbindung der Formel I enthaltende erfindungs¬ gemäße Arzneimittel kann weiterhin verwendet werden zur Behandlung der Herzinsuffizienz, bei Herztransplantatio¬ nen und künstlichem Herzen, zur Unterstützung bei ιι EEP"-Beatmung (positive end expiratory pressure) , während Bypass-Operationen und Operationen am offenen Herzen. Bei der Beatmung mit positiv-endexpiratorischem Druck erfolgt die Expiration gegen einen Überdruck.
Das erfindungsgemäße Arzneimittel kann zur Prophylaxe von akutem Nierenversagen, zum Beispiel nach Nieren¬ transplantationen, postoperativ und zur Funktionsver¬ besserung bei Transplantatnieren durch vorherige Be¬ handlung mit dem erfindungsgemäßen Arzneimittel verwen¬ det werden. Das die Verbindung der Formel I enthaltende erfindungs¬ gemäße Arzneimittel kann ebenfalls zü~ diagnostischen Zwecken verwendet werden. Da die Vasodilatation endo- thel-unabhängig ist, läßt ein Vergleich mit der Vaso¬ dilatation durch einen endothel-abhängigen Vasodilata- tor eine Aussage über den Zustand des Endothels zu.
Die Verwendung des erfindungsgemäßen Arzneimittels ist auch bei gastrointestinalen Indikationen wie Verände¬ rung der Pankreassekretion und damit verbundenen Ver¬ wertungsstörungen, Mangelernährungen, exokriner Pankre- asinsuffizienz, Regulation der Motilität des Darmes und der Blase (Miktions- und Defäkationsstörungen) ange¬ zeigt.
In der Dermatologie kann das erfindungsgemäße Arznei¬ mittel zur_Behandlung von Anhidrosis verwendet werden. Auch in der Psychiatrie kann das erfindungsgemäße Mit¬ tel zur Behandlung von cardiovaskulären Nebenwirkungen bei der Therapie psychiatrischer Erkrankungen sowie Agitation mit Catecholaminausschüttung Verwendung fin¬ den.
Die Effekte werden bereits bei Konzentrationen im nano- molaren Bereich beobachtet. Aufgrund der geringen Toxi- zität und guten Verträglichkeit können aber auch höhere Konzentrationen injiziert oder infundiert werden.
Die Verbindung der Formel I kann zur Herstellung von Arzneimitteln wie Injektions- oder Infusionslösungen, als Nasenspray, Augentropfen oder als Slow-Release-Form bei den oben genannten Indikationen verwendet werden.
Die Prüfung der akuten Toxikologie am Tier hat gezeigt, daß in einem Dosisbereich bis zu 400 μg/kg Körperge¬ wicht keine toxischen Reaktionen erfolgen, die mit üblichen Kontrollparametern (Biochemie) erfaßbar sind. Ein LD5_-Wert ist aufgrund der geringen Toxizität der Substanz nicht bestimmbar. Es wurden keine ernsten Ne¬ benwirkungen am Herzkreislaufsystem, im Bronchialsy¬ stem, der Leber- und Nierenfunktion, an den Keimdrüsen und dem Zentralen Nervensystem gefunden.
Die pharmakologische Wirksamkeit bei der Behandlung der oben genannten Erkrankungen ergibt sich aus der beob¬ achteten natriuretischen Wirkung, die bei intravenöser Applikation zu einem Anstieg der Diurese und Natriumex- kretion führt. Weiterhin wurde beobachtet, daß die Ver- bindung der Formel I in der Lage ist, den vasokonstrik- torischen Effekt von Noradrenalin aufzuheben.
Weiterhin wurde beobachtet, daß die Substanz die gefä߬ kontrahierende Wirkung von Angiotensin hemmt. Von be- sonderem Interesse sind Fälle von schwerer Herzinsuffi¬ zienz mit generalisierter Oedematose, die auf konven¬ tionelle Therapie nicht ansprechen. Von erheblicher Bedeutung ist auch die Einwirkung der Substanz auf die BlutdruckregelSysteme und die Vasopressinregelsysteme, so daß auch Funktionsstörungen des Hypophysenhinterlap- pens und hierdurch bedingte psychotrope Effekte indi¬ ziert sind. Es ist nicht auszuschließen, daß die inten¬ sivere klinische Untersuchung dieser Substanz weitere interessante Indikationen ergibt.
In einer bevorzugten Ausgestaltung der Erfindung können Thiophosphatgruppen aufweisende Peptide in besonders vorteilhafter Weise als Depotform eingesetzt werden, da diese Derivate nur äußerst langsam in die entsprechen¬ den physiologisch wirksamen Äquivalente transformiert werden. Die Abbildung 1 zeigt ein Elutionsmuster von phosphory¬ liertem Alpha-hANaP (CDD-28) und CDD-88. Die Abbildung 2 zeigt ein Elutionsmuster von phosphoryliertem atria- len Rinderrohextrakt. Dabei wurden Aliquots von CDD-28 und CDD-88, die mit der katalytischen Untereinheit der c-AMP-abhängigen Proteinkinase phosphoryliert worden waren, mittels Umkehrphasen-HPLC (reversed phase HPLC) an einer TSK-ODS-120T-Säule (300 x 7,8 mm ID) getrennt. Als Elutionsmittel dienten a) 0,01 M Salzsäure, b) 0,01 M Salzsäure in 80%-igem wäßrigen Acetonitril. Die Flie߬ geschwindigkeit betrug 1,5 ml/min. Der Lösungsmittel¬ gradient wird durch die schräg verlaufende, durchgezo- gene Linie bezeichnet. Die optische Dichte (—) wurde bei 210 nm gemessen (Absorptionsbereich 0,1). Für die Messung der Radioaktivität (•—•) wurden 0,5 ml von jeder der gesammelten Fraktionen entnommen und gezählt.
Die Abbildung 3 zeigt die Trennung von jeweils 2 μg unphosphoryliertem Alpha-hANaP (CDD-28) , CDD-32 (Urodi- latin) sowie phosphoryliertem Alpha-hANaP. Die Proben wurden gemischt und mittels RP-HPLC (Umkehrphasen-HPLC) getrennt. Das Elutionsmittel bestand aus einem linearen Gradienten aus Acetonitril/0,01% HC1 als Puffer B und 0,01% HC1 als Puffer A. Die Anfangskonzentration an Puffer B betrug 20%; die Säule wurde unter kontinuier¬ licher Zugabe von Puffer B (0,5%/min) mit einer Flie߬ geschwindigkeit von 0,7 ml/min entwickelt. Als Signal wurde die Absorption bei 230 nm gemessen. Die unter diesen Bedingungen durchgeführte Trennung führt zu¬ nächst zur Elution von nicht phosphoryliertem Alpha- hANaP, gefolgt von phosphoryliertem Alpha-hANaP und schließlich zur Elution von CDD-32 (Urodilatin) .
Die Abbildung 4 zeigt die Wirkung von c-AMP-abhängig phosphoryliertem ( ) und nicht phosphoryliertem ( )
CDD-28 auf die glatte Gefäßmuskulatur. Muskelstreifen von Kaninchenaorta wurden zunächst mit einer Lösung von
Norepmephπn (10 -7 M) kontrahiert. Nachdem sich kon¬ stante Bedingungen eingestellt hatten, wurden die Pep¬ tide hinzugefügt (Position des Pfeils) . Die Endkonzen- tration belief sich auf 0,3 bis 0,6 x 10 —9 M. Die durch¬ gezogene Linie zeigt das typische Relaxationsverhalten mit nicht phosphoryliertem CDD-28. Die gestrichelte Linie dagegen demonstriert das Verhalten nach Applika¬ tion von phosphoryliertem CDD-28. Unter diesen Bedin- gungen ist nur eine geringfügige Relaxation nachweis¬ bar.
Die Abbildung 5 ist die Zusammenfassung einer Anzahl von Experimenten mit phosphoryliertem CDD-28 und CDD-88, sowie unphosphoryliertem CDD-28 und CDD-88. In beiden Fällen betrug die Konzentration 0,3 bis 0,6 x 10 —9- M. In der Darstellung ist die relative Rate der
Erschlaffung sowie der Standardfehler für nicht phos- phorylierte (offene Rechtecke) sowie phosphorylierte (getönte Rechtecke) CDD-28- bzw. CDD-88-Peptide gezeigt
(die Zahlen über den Rechtecken entsprechen der Anzahl der durchgeführten Versuche) .
Die Abbildung 6 zeigt die Reaktion von Kaninchenaorta- Muskelstreifen auf die schrittweise Zugabe von nicht phosphoryliertem, phosphoryliertem und danach wieder nicht phosphoryliertem Alpha-hANaP (CDD-28) . Die Verbin¬ dungen wurden jeweils so zugegeben, daß sie im Unter- suchungsbad in einer Endkonzentration von 0,3 x 10 —9 M vorlagen. Vorkontrahierte Aorta-Muskelstreifen relaxie¬ ren bei Zugabe von nicht phosphoryliertem Alpha-hANaP zu einem gewissen Grad. Die Zugabe von phosphoryliertem Alpha-hANaP (CDD ~ ©) zeigt jedoch so gut wie keine Wirkung. Erst nach Zugabe von weiterem nicht phosphory¬ liertem Alpha-hANaP schreitet die Relaxation des Mus¬ kels weiter fort. Die Abbildung 7 zeigt das relative Relaxationsvermögen von phosphoryliertem und nicht phosphoryliertem CDD-32 (ANF/CDD-95-126, Urodilatin) . Es wird deutlich, daß das phosphorylierte CDD-32 bei entsprechender Konzentration deutlich geringeres Relaxationsvermögen besitzt als die nicht phosphorylierte Form. Zum Vergleich wird in Figur 7 auch das entsprechende Verhältnis für das Alpha-hANaP- Paar angegeben. Daraus wird ersichtlich, daß jeweils die phosphorylierten Verbindungen einander entsprechend geringere Aktivitäten als die nicht phosphorylierten Stammverbindungen aufweisen.
Die Erfindung wird anhand der folgenden Beispiele näher erläutert:
B e i s p i e l 1
Vorreinigung von Urin- und Serumproben (je 2 ml) über SEP-PAK Kapseln (C18-Cartrige, Waters Assoc, Millipo- re) . Nach Aktivierung der Kapseln (2 ml Triäthylamin- Methanol, 20:80) erfolgt die Auftragung von 2 ml Pro¬ benvolumen und Elution mit 2 ml Aktivierungslösung.
Reaktionsansatz zur Phosphorylierung: 100 μl Reaktions¬ ansatz enthalten 50 mM MOPS-Puffer (N-Morpholino-3-Pro- pansulfonsäure) , pH 6,8, 10 mM Magnesiumacetat, ca. 12,7 μg katalytische Untereinheit c-AMP-abhängige Pro¬ teinkinase (EC 2.7.1.37) aus Rinderherz (10 μl) , Serum¬ bzw. Urinprobe. Die Phosphorylierungsreaktion wird durch Zusatz von 2 mM ATP und [Gamma-32P]ATP (10 μCi/20 nMol ATP) in 10 μl durch Mischen gestartet. Die Inkubation erfolgt bei 30αC 5 Minuten lang. Die Konzentration an katalytischer Untereinheit kann auch so gewählt werden, daß innerhalb von 5 bis 40 Minuten die vollständige Phosphorylierung stattfindet. Die Phosphorylierungsreaktion wird durch Schockgefrie¬ ren in flüssigem Stickstoff beendet.
Die Auftrennung des phosphorylierten Reaktionsansatzes erfolgt durch HPLC über eine TSK-ODS-120T Säule der
Firma Toyo Soda (300 x 7,8 mm ID) . Zur Elution wird ein linearer Acetonitrilgradient (0 bis 80%) in 0,01 N HC1 verwendet. Die Absorption wird bei 210 nm gemessen. Das gesammelte Fraktionsvolumen beträgt 1,5 ml. Der Einbau von 32P wi.rd i.n 0,5 ml Aliquots zusammen mit 2 ml Was¬ ser im Szintillationszähler gemessen (1 Min.).
Als Referenzpeptide wurden synthetisch hergestelltes Cardiodilatin-28 (CDD-28, Bissendorf Peptides Co.) und -32 (Bachern) sowie CDD-88 aus Rinderherzvorhöfen für die Phosphorylierung verwendet (Hock, D. et al, J. Chro- matographv 397 (1987), 347-353).
B e i s p i e l 2
Eine weitere Reinigung der phosphorylierten Peptide durch Umkehrphasen-HPLC kann wie folgt durchgeführt werden: Die nach der Phosphorylierung vorliegende Re¬ aktionsmischung wird auf eine RP-Säule aufgetragen (Mi¬ cropore, C18, 4,6 x 30 mm; Firma Applied Biosystems). Als Apparatur kann eine für die analytische HPLC geeig¬ nete Apparatur, wie sie von Applied Biosystems gelie¬ fert wird, verwendet werden. Die Apparatur ist ausge¬ stattet mit zwei Pumpen, einem 1400 A-Lösungsmittelzu- führungssyste , einem Spectroflow 491 Dynamic Mixer/In- jector (0,2 ml Probenschleife) und einem 1783 Absor- bents Detector Collector. Die Säule wird zunächst mit Puffer A, der 0,1%-ige TFA (Trifluoressigsäure) ent¬ hält, äquilibriert und danach mit steigender Konzentra¬ tion an Acetonitril (Puffer B 70% Acetonitril/0,09% TFA) entwickelt. Die Fließgeschwindigkeit beträgt 1 ml/min und die Absorption wird bei 220 nm gemessen. Die Chromatographie findet bei Raumtemperatur statt. Phosphorylierte und unphosphorylierte Peptide eluieren unter isokratischen Bedingungen als einheitlicher Peak bei 24% Acetonitril-Konzentration. Die die phosphory¬ lierten Peptide enthaltende Fraktion wird gesammelt, gefriergetrocknet und bei -70"C gelagert.
B e i s p i e l 3
Reinigung der phosphorylierten Peptide mittels Kationen- austauscher-HPLC
Die Trennung der phosphorylierten Peptide, beispielswei¬ se Alpha-hANaP, geschieht mittels einer Kationenaustau¬ schersäule (4 x 50 mm) mit veiner HPLC-Apparatur der Firma LKB, welche mit zwei Pumpen, einem 2152 Control¬ ler, einem 2151 Variable Wavelength Monitor und einem Reodyne Injector (1 ml Probenschleife) ausgestattet ist. Die Säule wird mit einem linearen Gradienten mit Natriumchlorid in 10 mM Dinatriumhydrogenphosphat (pH 5) mit einer Fließgeschwindigkeit von 0,7 ml/min entwickelt. Die Absorption wird bei 230 nm gemessen. Die Chromatographie wird bei Raumtemperatur durchge¬ führt. Die Anfangskonzentration an Natriumchlorid be¬ trägt 100 M. Die das phosphorylierte Alpha-hANaP ent¬ haltenden Fraktionen werden durch Messung der enthal¬ tenden Radioaktivität bestimmt. Die entsprechenden Frak¬ tionen werden gesammelt, gefriergetrocknet und bei -70°C gelagert. Die Probe kann mittels einer weiteren Umkehr¬ phasen-HPLC vom Salz befreit werden. B e i s p i e l 4
Bioaktivitätstests
Aortae von Neuseeland-Kaninchen wurden präpariert. Die
MuskelSpannung wurde an Muskelstreifen in einem Organ¬ bad, enthaltend physiologische Kochsalzlösung, gemes¬ sen. Die Streifen wurden vorkontrahiert mit einer Lö- —6 sung von 10 M Norepinephrin, danach bei vollständiger
Relaxation. Für den Assay wurde eine weitere Kontrak- -7 tion mit 10 M Norepinephrin ausgelöst. Nachdem kon¬ stante Kontraktionsbedingungen erreicht waren, wurden die Peptide appliziert.
B e i s p i e l 5
Effekte des phosphorylierten Alpha-hANaP auf Muskelre¬ laxation
Alpha-hANaP wurde gemäß Beispiel 1 in Anwesenheit von ATP und der katalytischen Untereinheit gemäß Beispiel 1 phosphoryliert. Zur Kontrolle wurde nicht phosphorylier- tes Alpha-hANaP unter gleichen Bedingungen inkubiert, jedoch ohne Anwesenheit von ATP. Phosphoryliertes und nicht phosphoryliertes Alpha-hANaP wurde zu den vorkon¬ trahierten Kaninchenaorta-Muskelstreifen gegeben, so daß sie in einer Endkonzentration von 0,3 x 10~9 M vor¬ lagen. Unter dem Einfluß der nicht phosphorylierten Peptide relaxiert der Aorta-Muskelstreifen teilweise, während phosphoryliertes Alpha-hANaP nur einen vernach¬ lässigbaren Effekt bewirkt. Schrittweise Zugabe von nicht phosphoryliertem, phosphoryliertem und wiederum nicht phosphoryliertem Alpha-hANaP läßt deutlich erken¬ nen, daß lediglich nicht phosphoryliertes Alpha-hANaP eine signifikante relaxierende Wirkung im Vergleich zum phosphorylierten Peptid ausübt. Kehrt man die Zugabe der Peptide um, zunächst phosporyliertes, dann nicht phosphoryliertes und wieder phosphoryliertes Alpha- hANaP, so ergibt sich der entsprechend umgekehrte Re¬ laxationseffekt.
B e i s p i e l 6
CDD-32 (Urodilatin) wird gemäß Beispiel 1 phosphory¬ liert und auf biologische Aktivität untersucht analog Beispiel 5. Urodilatin in nicht phosphoryliertem Zu¬ stand zeigt eine dosisabhängige Relaxationsaktivität mit einer stärkeren relaxierenden Wirkung bei höheren Konzentrationen. Verabreichung von phosphoryliertem Urodilatin in entsprechenden Konzentrationen bewirkt eine deutlich geringere Relaxation.

Claims

P a t e n t a n s p r ü c h e
ι . Verbindung der Formel
Figure imgf000023_0001
(I)
wobei X eine Phosphatgruppe oder eine Thiophosphatgrup- pe und R entweder eine -NH, Gruppe oder ein Peptidfrag- ment aus der Aminosäuresequenz des Gamma-hANaP ist.
2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß das Peptidfragment R die Aminosäuren 1-98, 39-98 oder
95-98 des Gamma-hANaP umfaßt.
3. Verbindung nach Anspruch 1 oder 2, dadurch gekennzeich- net, daß die Phosphatgruppe das Isotop 32P enthält.
4. Verbindung nach Anspruch 1 oder 2, dadurch gekennzeich- net, daß die Thiophosphatgruppe die Isotope P, S oder beide radioaktive Isotope- enthält.
5. Verfahren zur Herstellung der Verbindung gemäß Anspruch 1, wobei man die Verbindung mit der Formel
R-Ser^Ieu-Arg-A^-Ser-Ser-Cys-I^e-Gly-Gly-Arg-Met-Asp-Arg
Figure imgf000023_0002
Ile-Gly-Ma-_ln-Ser-Gly-I_3UH31y-Cys-Asn-Ser-_^e-Arg-Tyr-σ_OH
(II) und R die in den Ansprüchen 1 und 2 genannten Bedeutun- 5 gen hat, enzymatisch in Gegenwart von Nucleotiden oder (Gamma-thio)Nucleotiden umsetzt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Enzym c-AMP abhängige Proteinkinase oder deren ka-
10 talytische Untereinheit ist und das Nucleotid ATP oder (Gamma-Thio)ATP ist.
7. Verfahren nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß ATP mit 32P oder (Gamma-Thio)ATP
15 mit 32P und/oder 35S markiert sind.
8. Verfahren zur Herstellung der Verbindung nach Anspruch 1 oder 2 durch chemische Totalsynthese gemäß der Merri- field Methode.
20
9. Arzneimittel enthaltend eine pharmazeutisch wirksame Dosis der Verbindung nach Anspruch 1 oder 2 sowie gege¬ benenfalls einen pharmazeutisch unbedenklichen Träger.
2510. Arzneimittel nach Anspruch 9, wobei X die (Gamma-Thio)- ATP-Gruppe ist und für eine langsame Freisetzung des mindestens die Aminosäuresequenz des CDD-28 enthalten¬ den, biologisch aktiven Fragmentes sorgt.
3011. Arzneimittel nach Anspruch 9 oder 10 zur Diagnose'und Therapie von Hypertonie, Gefäß- und Herzkrankheiten, Hauterkrankungen mit Störungen der Schweißsekretion, des cardiovaskulären Schocks, von Erkrankungen der Nie¬ ren und -Nebennierenrinde, Erkrankungen des Gastroin- testinaltraktes, insbesondere Motilitätsstörungen, des Hirnödems, des Glaukoms, spastischer Coronaropathien sowie von neurologischen Erkrankungen.
12. Arzneimittel nach Anspruch 9 oder 10 zur Behandlung von akuter Niereninsuffizienz, nephrotischem und nephriti-
5 schem Syndrom, terminaler Niereninsuffizienz, akuter Herzinsuffizienz, Ascites, generalisierten Ödemen, Lun¬ genödem, Hirnödem, primären und sekundären Lymphödemen, Hydrothorax, Glaukom, Vena-cava-Stenose, Hypoprotein- ämie, Hörsturz, essentieller und renaler Hypertonie, ° maligner Hypertonie, EPH-Gestose wie Schwangerschafts- hypertonie, Schwangerschafts-Nephrose, zerebralem Na- triumspeichersyndrom, Gefäßspasmen wie Morbus Raynaud, Angina abdominalis, Koronarspasmen, koronarer Herzkrank¬ heit, vasomotorischen Kopfschmerzen, Kopfschmerzen bei Hypertonie, Bing-Horton-Syndrom Migräne, Durchblutungs¬ störungen im Vertebralis-Basilaris-Strombahngebiet, Störungen des Renin-Angiotensin-Syste s, primärem und sekundärem Hyperaldosteronismus, reninsezernierenden Tumoren, Phäochromozytom, Bartters Syndrom, Schwartz- Bartter-Syndrom, Pankreasinsuffizienz, primärer Schwei߬ drüseninsuffizienz wie Anhidrosis, Miktions- und Defä- kationsstörungen, Hypophysenvorderlappendysregulation, cardio-vaskulären Nebenwirkungen bei der Therapie psy¬ chiatrischer Erkrankungen sowie Agitation mit Catechol- aminerhöhung.
13. Arzneimittel nach Anspruch 9 oder 10 zur unterstützen¬ den Behandlung bei Herztransplantationen, "PEEP-Beat- ung" (einer mechanischen Beatmung mit positivem end- expiratorischem Druck) sowie Bypass-Operationen.
14. Arzneimittel nach Anspruch 9 oder 10 zur Behandlung von Komplikationen nach Einpflanzung eines künstlichen Her¬ zens.
15. Arzneimittel nach Anspruch 9 oder 10 als Diuretikum zur Behandlung von multiplen Erkrankungen wie Gicht, kombi¬ niert mit Hypertonus/Herzinsuffizienz sowie Diabetes mit Hypertonus/Herzinsuffizienz.
16. Arzneimittel nach Anspruch 9 oder 10 als Diuretikum in Kombination mit Cephalosporinen, Aminoglykosiden oder
5 Antikoagulantien.
17. Arzneimittel nach Anspruch 9 oder 10 zur Prophylaxe von akutem Nierenversagen nach Nierentransplantationen und Behandlung mit nephrotoxischen Substanzen wie Cyclospo-
10 rin, Cisplatin und/oder Ifosfamid.
18. Arzneimittel nach Anspruch 9 oder 10 zur Prophylaxe des akuten Nierenversagens, postoperativ oder nach hyperto- nen Krisen sowie nach Gabe von Kontrastmitteln bei Pa-
15 tienten mit eingeschränkter Nierenfunktion.
19. Arzneimittel nach Anspruch 9 oder 10 als Diagnostikum zur Differentialdiagnose von Endothel-Veränderungen.
2020. Arzneimittel nach Anspruch 9 oder 10, dadurch gekenn¬ zeichnet, daß es 10 ng bis 50 μg der Verbindung gemäß Anspruch 1 oder 2 pro Dosiseinheit enthält.
21. Arzneimittel nach Anspruch 9 oder 10 mit vasodilatori- 25 scher Wirkung, dadurch gekennzeichnet, daß es die Ver¬ bindung gemäß Anspruch 1 oder 2 als Wirkstoff enthält.
22. Verwendung der Verbindung nach einem der Ansprüche 1 oder 2 zur Herstellung von Arzneimitteln wie Injek- 0 tions- oder Infusionslösungen zur Behandlung von akuter Niereninsuffizienz, nephrotischem und nephritischem Syndrom, terminaler Niereninsuffizienz, akuter Herzin¬ suffizienz, Ascites, generalisierten Ödemen, Lungen¬ ödem, Hirnödem, primären und sekundären Lymphödemen, Hydrothorax, Glaukom, Vena-σava-Stenose, Hypoprotein- ämie, Hörsturz, essentieller und renaler Hypertonie, maligner Hypertonie, EPH-Gestose wie Schwangerschafts- hypertonie. Schwangerschafts-Nephrose, zerebralem Na- triumspeichersyndrom, Gefäßspasmen wie Morbus Raynaud, Angina abdominalis, Koronarspasmen, koronarer Herzkrank¬ heit, vasomotorischen Kopfschmerzen, Kopfschmerzen bei Hypertonie, Bing-Horton-Syndrom Migräne, Durchblutungs¬ störungen im Vertebralis-Basilaris-Strombahngebiet, Störungen des Renin-Angiotensin-Systems, primärem und sekundärem Hyperaldosteronismus, reninsezernierenden Tumoren, Phäochromozytom, Bartters Syndrom, Schwartz- Bartter-Syndrom, Pankreasinsuffizienz, primärer Schwei߬ drüseninsuffizienz wie Anhidrosis, Miktions- und Defä- kationsStörungen, Hypophysenvorderlappendysregulation, cardio-vaskulären Nebenwirkungen.bei der Therapie psy¬ chiatrischer Erkrankungen sowie Agitation mit Cate- cholaminerhöhung.
23. Verwendung der Verbindung nach einem der Ansprüche 1 oder 2 zur Herstellung von Arzneimitteln wie Injek- tions- oder Infusionslösungen zur unterstützenden Be¬ handlung bei Herztransplantationen, "PEEP-Beatmung" (einer mechanischen Beatmung mit positivem endexpirato¬ rischem Druck) sowie Bypass-Operationen.
24. Verwendung der Verbindung nach einem der Ansprüche 1 oder 2 zur Herstellung von Arzneimitteln wie Injek- tions- oder Infusionslösungen zur Behandlung von Kom¬ plikationen nach Einpflanzung eines künstlichen Her- zens.
25. Verwendung der Verbindung nach einem der Ansprüche 1 oder 2 zur Herstellung eines Diuretiku s zur Behandlung von multiplen Erkrankungen wie Gicht, kombiniert mit Hypertonus/Herzinsuffizienz sowie Diabetes mit Hyper- tonus/ Herzinsuffizienz.
26. Verwendung der Verbindung nach einem der Ansprüche 1 oder 2 zur Herstellung eines Diuretikums in Kombination
5 mit Cephalosporinen, Aminoglykosiden oder Antikoagulan- tien.
27. Verwendung der Verbindung nach einem der Ansprüche 1 oder 2 zur Herstellung von Arzneimitteln wie Injek-
10 tions- oder Infusionslösungen zur Prophylaxe von akutem Nierenversagen nach Nierentransplantationen und Behand¬ lung mit nephrotoxischen Substanzen wie Cyclosporin, Cisplatin und/oder Ifosfamid.
1528. Verwendung der Verbindung nach einem der Ansprüche 1 oder 2 zur Herstellung von Arzneimitteln wie Injek- tions- oder Infusionslösungen zur Prophylaxe des akuten Nierenversagens, postoperativ oder nach hypertonen Kri¬ sen sowie nach Gabe' von Kontrastmitteln bei Patienten
20 mit eingeschränkter Nierenfunktion.
29. Verwendung der Verbindung gemäß einem der Ansprüche 1 bis 4 in einem Verfahren zur qualitativen und/oder quantitativen Messung des Gehaltes an pre-pro-Gamma- 5 hANaP und/ oder zumindest das Fragment CDD-28, CDD-32 und/oder CDD-88 enthaltenden Fragmenten des pre-pro- Gamma-hANaP in Körperflüssigkeiten wie Serum, Urin und Gewebehomogenaten.
0 30. Verwendung der Verbindung nach einem der Ansprüche 1 bis 4 zur Herstellung eines Diagnostikums zur Diffe- rential'diagnose von Endothel-Veränderungen.
31. Verfahren zur spezifischen Bestimmung der Verbindung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß man nach dem Prinzip des Immunoassays arbeitet und ei¬ nen Antikörper, der gegen die entsprechende Verbindung gerichtet ist, verwendet.
PCT/EP1988/001000 1987-11-07 1988-11-04 Phosphoryled derivatives of cardiodilatine/anf peptides WO1989004324A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE8888909758T DE3878254D1 (de) 1987-11-07 1988-11-04 Phosphorylierte derivate von cardiodilatin/anf-peptiden.
AT88909758T ATE85346T1 (de) 1987-11-07 1988-11-04 Phosphorylierte derivate von cardiodilatin/anfpeptiden.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3737917.8 1987-11-07
DE19873737917 DE3737917A1 (de) 1987-11-07 1987-11-07 Phosphorylierte derivate von cardiodilatin/anf-peptiden

Publications (1)

Publication Number Publication Date
WO1989004324A1 true WO1989004324A1 (en) 1989-05-18

Family

ID=6340060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1988/001000 WO1989004324A1 (en) 1987-11-07 1988-11-04 Phosphoryled derivatives of cardiodilatine/anf peptides

Country Status (6)

Country Link
EP (1) EP0386076B1 (de)
JP (1) JP2727098B2 (de)
AT (1) ATE85346T1 (de)
AU (1) AU2789089A (de)
DE (2) DE3737917A1 (de)
WO (1) WO1989004324A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028952A1 (de) * 1992-12-09 1995-11-02 Haemopep Pharma Gmbh Verwendung der brain natriuretic peptide (bnp), phosphoryliertes urodilatin, phosphoryliertes cdd/anp sowie deren kombinationen
US8852556B2 (en) 2008-10-21 2014-10-07 Janssen Research & Development LLC Animal model for evaluating vasomotor response in vivo

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19850964C2 (de) * 1998-09-28 2003-03-27 Mueller Weingarten Maschf Einrichtung zum Transport von Werkstücken

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508712A (en) * 1984-01-10 1985-04-02 Washington University Atrial peptide
DE3443257A1 (de) * 1984-11-28 1986-05-28 Bissendorf Peptide GmbH, 3002 Wedemark Mittel enthaltend vollsynthetisches alpha-humanes atriales natriuretisches peptid (alpha-hanap)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508712A (en) * 1984-01-10 1985-04-02 Washington University Atrial peptide
DE3443257A1 (de) * 1984-11-28 1986-05-28 Bissendorf Peptide GmbH, 3002 Wedemark Mittel enthaltend vollsynthetisches alpha-humanes atriales natriuretisches peptid (alpha-hanap)
EP0182984A2 (de) * 1984-11-28 1986-06-04 Pharma Bissendorf Peptide Gmbh Verwendung von vollsynthetischem alpha-hANap

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Vol. 105, Nr. 10, 10 March 1986, (Columbus, Ohio, US), RITTENHOUSE JUDITH et al., "Phosphorylation of Atrialanatriuretic Peptides by Cyclic AMP-dependent Protein Kinase", page 138, Abstract 73295w; & J. BIOL. CHEM., 1986, 261(17), 7607-1. *
CHEMICAL ABSTRACTS, Vol. 107, Nr. 15, 12 October 1987, (Columbus, Ohio, US), BLOCH KENNETH D. et al., "Proatrial Natriuretic Factor is Phosphorylated by Rat Cardiocytes in Culture", page 151, Abstract 127948y; & J. BIOL. CHEM., 1987, 262(21), 9956-6. *
CHEMICAL ABSTRACTS, Vol. 108, Nr. 17, 25 April 1988, (Columbus, Ohio, US), RITTENHOUSE JUDITH et al., "Phosphorylation in Situ of Atrial Natriuretic Peptide Prohormone at the Cyclic AMP-dependent Site", page 156, Abstract 144184j; & J. BIOL. CHEM., 1988, 263(8), 3778-8. *
CHEMICAL ABSTRACTS, Vol. 108, Nr. 7, 15 February 1988, (Columbus, Ohio, US), OLINS GILLIAN M. et al., "Phosphorylation of High- and Low-molecular-mass Atrial Natriuretic Peptide Analogs by Cyclic AMP-dependent Protein Kinase", page 148, Abstract 49972f; & FEBS LETT., 1987, 224(2), 325-3. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028952A1 (de) * 1992-12-09 1995-11-02 Haemopep Pharma Gmbh Verwendung der brain natriuretic peptide (bnp), phosphoryliertes urodilatin, phosphoryliertes cdd/anp sowie deren kombinationen
US8852556B2 (en) 2008-10-21 2014-10-07 Janssen Research & Development LLC Animal model for evaluating vasomotor response in vivo

Also Published As

Publication number Publication date
DE3878254D1 (de) 1993-03-18
JPH03500776A (ja) 1991-02-21
EP0386076A1 (de) 1990-09-12
JP2727098B2 (ja) 1998-03-11
ATE85346T1 (de) 1993-02-15
EP0386076B1 (de) 1993-02-03
DE3737917A1 (de) 1989-05-18
AU2789089A (en) 1989-06-01

Similar Documents

Publication Publication Date Title
DE69232636T2 (de) CNP-Analoge Peptide und ihre Verwendung
DE3346953C2 (de)
EP0158986B1 (de) Neue Polypeptide mit blutgerinnungshemmender Wirkung, Verfahren zu deren Herstellung bzw. Gewinnung, deren Verwendung und diese enthaltende Mittel
DE3855970T2 (de) Verwendung von Amylin oder CGRP zur Behandlung des Diabetes mellitus
DE3852086T2 (de) Therapeutische Peptide.
DE69533940T2 (de) Therapeutische zusammensetzungen von venösdilatoren und arterielldilatoren
DE69736712T2 (de) Verfahren zur milderung von neuropatischen schmerz mit prosaposin verwandten peptiden
DE69130289T2 (de) Therapeutische verwendung von actin-bindenden verbindungen
DE68928667T2 (de) Peptide als arzneimittel
DE3878231T2 (de) Neues cadiodilatin-fragment, prozess zu dessen herstellung und dessen anwendung.
DE112011102396T5 (de) Pharmazeutische Kombinationszusammensetzung und Verfahren zur Behandlung von Diabetes und metabolischen Störungen
DE69830842T9 (de) Peptide als kalium kanalaktivatoren
EP0365044A2 (de) Pharmazeutische Verwendung von (NVA)2-Cyclosporin
EP2523968B1 (de) Zyklische peptide zur regulierung von vektoriellen ionenkanalen
DE69330483T2 (de) Hepatom-behandlung mit somatostatin-analogen
US5461142A (en) Phosphorylated derivatives of cardiodilatin/ANF peptides
EP0386076B1 (de) Phosphorylierte derivate von cardiodilatin/anf-peptiden
EP1303294B1 (de) Verfahren zur behandlung von instabiler angina pectoris
DE69014569T2 (de) Methode zum Behandeln schlechter Herzfunktion.
DE69710996T2 (de) Liposomale Zusammensetzung mit dem menschlichen Calcitonin Gene-Related Peptide und deren Herstellung
Eldrup et al. Plasma dihydroxyphenylalanine (DOPA) is independent of sympathetic activity in humans
DE3443257A1 (de) Mittel enthaltend vollsynthetisches alpha-humanes atriales natriuretisches peptid (alpha-hanap)
EP1023445B1 (de) Cadherin derived growth factor und seine verwendung
DE69417872T2 (de) Inhibitor peptid spezifisch für cathepsin-l
DE3787371T2 (de) Biologisch aktives mittel.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988909758

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988909758

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988909758

Country of ref document: EP