WO1989002052A1 - Gas turbine combustor - Google Patents

Gas turbine combustor Download PDF

Info

Publication number
WO1989002052A1
WO1989002052A1 PCT/JP1988/000870 JP8800870W WO8902052A1 WO 1989002052 A1 WO1989002052 A1 WO 1989002052A1 JP 8800870 W JP8800870 W JP 8800870W WO 8902052 A1 WO8902052 A1 WO 8902052A1
Authority
WO
WIPO (PCT)
Prior art keywords
premixed
main
nozzle
air
auxiliary
Prior art date
Application number
PCT/JP1988/000870
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Iwai
Shigeru Azuhata
Kenichi Sohma
Kiyoshi Narato
Hironobu Kobayashi
Tooru Inada
Tadayoshi Murakami
Norio Arashi
Yoji Ishibashi
Michio Kuroda
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to DE3854666T priority Critical patent/DE3854666T2/en
Priority to EP88907798A priority patent/EP0335978B1/en
Publication of WO1989002052A1 publication Critical patent/WO1989002052A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/26Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid with provision for a retention flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices

Definitions

  • the present invention relates to a gas turbine combustor, and more particularly to a premixed combustion type gas turbine combustor in which fuel and air are mixed in advance and burned.
  • N0X Nitrogen oxides (N0X) generated during the combustion of fuel are generated by oxidizing nitrogen in the combustion air in a high-temperature atmosphere and producing NO. x makes up the majority.
  • the production of thermal N ⁇ x has a large temperature dependence, and the production increases as the flame temperature increases, and especially when the temperature exceeds 150 ° C, the production may increase rapidly.
  • the flame temperature changes depending on the mixture ratio of fuel and air, and becomes the highest when the fuel is burned near the stoichiometric amount of air where there is no excess or shortage to completely burn the fuel. In order to suppress the amount of NOx generated, it is necessary to lower the flame temperature.
  • a combustion device that uses a premixed flame in which an excess amount of air and fuel is mixed in advance with a theoretical amount of air and then injected into a combustor.
  • Premixed flames with a high air-to-air ratio can prevent the formation of locally high-temperature regions, which can reduce NOx emissions.
  • premixed flames have an air-to-air ratio of 1 It is most stable in the vicinity, and tends to blow out when the ejection speed is high, and at low ejection speed, the flame easily enters the nozzle and flashes back.
  • N 0 X The emission of N 0 X can be reduced.
  • reducing the flow rate of the fuel used for the diffusion flame and increasing the fuel flow rate of the premixed flame can reduce NOx, but increasing the premixed rate makes the flame unstable, so NOX emissions There is a limit to reducing the volume.
  • a problem when the gas turbine combustion system is completely premixed combustion is that a large amount of combustion air flows compared to the fuel flow rate during low-load operation, so the fuel becomes lean and ignites.
  • the flow rate of the premixed gas further increased in order to increase the supply material and the air flow rate, and there was a problem that the premixed flame was likely to blow and disappear. Disclosure of the invention
  • An object of the present invention is to provide a gas turbine combustor and a combustion method capable of stably burning a lean premixed air having an air ratio greater than 1 from a low load to a high load on a gas turbine. It is in.
  • a cylindrical main nozzle, an auxiliary nozzle formed on an outer peripheral portion of the main nozzle, a main premix air supply means for supplying a premix air to the main nozzle, and the main premix to the auxiliary nozzle This is achieved by a gas Durbin combustor characterized by comprising auxiliary premixed gas supply means for supplying a premixed gas having an air ratio smaller than that of air. Furthermore, a premixed combustion method for a gas turbine combustor, characterized in that premixed gas ejected from an opening of a cylindrical main nozzle is burned by a premixed flame formed on an outer periphery of the opening of the raw nozzle. Is also achieved.
  • the main flame which burns at high speed can be maintained by forming a stable auxiliary flame constantly at the base of the high air ratio combustion flame.
  • the gas turbine combustion system can be completely premixed combustion, and if the air ratio of the fuel-air mixture gas for the main flame is set from 1.0 to the high air ratio side to perform lean combustion, the gas turbine It has the effect of reducing the environmental pollutants NOx and CO generated from the combustor.
  • FIG. 1 is a partial cross-sectional view of a gas turbine combustor embodying the present invention
  • FIG. 2 is a cross-sectional view taken along the line ⁇ — ⁇ in FIG. 1
  • FIG. 3 is a detailed cross-sectional view of a nozzle portion in FIG.
  • Fig. 4 is a graph showing the relationship between the turbine load and the opening of each valve shown in Fig. 1, and Figs. 5 (a) and (b) show changes in the air ratio of the premixed gas.
  • Ete graph showing the relationship between the generated amount of the burned Kino NO x generation amount and the H 2, CO, FIG.
  • FIG. 6 (a) and (b) the air ratio obtained by using the combustor of the present invention 3.6 7 is a graph showing the composition of the exhaust gas in the radial direction of the flame nozzle, and FIG. 8 is a graph showing another embodiment of the gas turbine combustor of the present invention.
  • Fig. 9 is a simplified cross-sectional view along the line E-K in Fig. 8, and
  • Fig. 10 is a characteristic diagram showing the relationship between load fluctuation and fuel supply system in the gas turbine combustor in Fig. 8. It is.
  • FIG. 1 is a cross-sectional view of a gas turbine combustor embodying the present invention.
  • An inner cylinder 20 is arranged concentrically inside the cylindrical outer cylinder 10, and a rectangular space formed between the outer cylinder 10 and the inner cylinder 20 is discharged from a compressor (not shown).
  • An air passage 12 is formed to guide air to the head of the inner cylinder.
  • double end walls 11 and 12 are provided at the head of the inner cylinder 20 .
  • Auxiliary nozzles 15 are open so that they surround the surroundings.
  • the main nozzle 14 is formed at the right end of a cylindrical premix cylinder 16 extending through the end wall 12 to the outer end wall 12 side, and the left end of the premix cylinder 16 is formed at the end wall 1 Air is taken in from the air chamber 17 formed on the left side of 2.
  • a fuel supply pipe 18 is inserted into each premixing cylinder 16, and an end of the fuel supply pipe 18 is provided. When fuel flows out of the cylinder 16, it mixes with air to generate a premixed gas.
  • the auxiliary nozzle 15 communicates with an auxiliary premixing chamber 30 formed between the end walls 11 and 12, and the chamber 30 is provided with a uniform premixing chamber from a bench lily mixer 31. An air-fuel mixture is supplied.
  • the fuel adjusted to atmospheric pressure is sucked into Generates a premixed gas.
  • the fuel supply pipes 18 are communicated with the main fuel regulating valve 60 via stop valves 50 provided on the respective pipes.
  • the valves 50 and 60 are controlled by a command from the controller 70.
  • the controller 70 receives the gas turbine load and rotation speed signals.
  • the stop valve 50 is fully opened when an open signal is given from the controller 70, and is kept fully closed otherwise. Although only four stop valves are shown in FIG. 1, they are provided in all fuel supply pipes 19, and in this embodiment there are 19 stop valves, and FIG. As shown, as the load on the turbine increases, the number of open stop valves increases. On the other hand, the opening of the regulating valve 60 increases almost in proportion to the turbine load. The regulating valve 40 maintains an almost constant opening (about 10%) regardless of the turbine load. Thus, the premixed gas introduced into the auxiliary premixing chamber 30 becomes a uniform premixed gas in the mixer 31 and has an air ratio in the range of 0.8 to 1.2. The air adjusting valve 40 is adjusted so that the air blowing rate is set to a certain value and the ejection speed from the auxiliary nozzle 15 is almost the same as the combustion speed.
  • the auxiliary flame air regulating valve 40 When operating the gas turbine, first, the auxiliary flame air regulating valve 40 is opened, and the auxiliary premixed gas is generated by the mixer 31. Next, a premixed gas ejected from the auxiliary nozzle 15 is ignited by an ignition plug (not shown).
  • the air ratio of the auxiliary premixed gas is set to around 1, that is, 0.8 to 1.2, and the injection speed is 0.4 m, which is almost the same as the combustion speed, so ignition is reliable and stable after ignition Burn.
  • the stop valves 50 are sequentially opened, the number of flames formed in the main nozzles 14 also increases, and at the rated load, flames are formed in all the main nozzles 14.
  • the turbine rotation speed is constant from 0% to 100% load, so the air supplied to the combustor is Almost constant. Therefore, the amount of air flowing into the premix cylinder 16 from the air chamber 17 is substantially constant.
  • the number of open stop valves 50 changes according to the amount of fuel.
  • the amount of fuel supplied to the premix cylinder is substantially constant, and the air ratio of the air-fuel mixture generated in the premix cylinder 16 does not change significantly. Therefore, in this embodiment, the air ratio is from 1.2 to 2. 5 is set.
  • the premixed air of the auxiliary nozzle 15 is set to a range in which the air ratio is close to 1 and the flame holding property is good, the premixed air from the main nozzle 14 is 20 mZ s or more.
  • the premixed air from the main nozzle 14 is 20 mZ s or more.
  • the main nozzle 14 constantly blows air at a high speed of 20 m / s to 70 ms, there is no danger of flashback.
  • the premixed gas from the main nozzle 14 is stably burned by the auxiliary flame, even if the air ratio is lean such as 1.5 or more.
  • Fig. 5 (a), (b) and 6th (a), (b) show the NOx and CO emissions when the premixed air is burned with the air ratio changed. It shows the relationship.
  • the inner diameter of the combustion cylinder is ⁇ 90 ran, height 7 '; mm
  • Fig. 5 (b) shows the combustion cylinder when the premixed flame is formed under the same combustion conditions when the inside diameter of the combustion cylinder is 0 2 O 8 ran and the height is 6 24. This is the result of analysis of the exhaust gas.
  • Fig. 5 (b) shows the analysis of exhaust gas up to the high air ratio range of 3.6.
  • the main flame has an air ratio of 1.5 or more, so the amount of N0X generated is markedly small and small as shown in 181, CO, CO, H 2 is almost zero, as seen in 1991 and 201 respectively.
  • 02 shows a characteristic like 211. .
  • the air ratio of the premixed gas in the auxiliary nozzle is close to 1, so the amount of generated NOx increases, but the fuel ratio of the auxiliary flame is about 10% at the rated load, so the overall Therefore, the amount of N ⁇ X generated is reduced.
  • Fig. 7 shows the sampling and probe movement from the center of the nozzle to the five thighs in the downstream direction from the main nozzle (inner diameter of about 26 mm), and sampling and analysis of the fuel gas from the center of the nozzle.
  • This is a study of the combustion state near, and the auxiliary flame.
  • CH4 burns as it approaches the auxiliary flame, and above the auxiliary flame nozzle, CH4 burns 100%.
  • the main flame starts from the auxiliary flame of the auxiliary nozzle. It can be seen that the nozzle was surely transferred to the premixed gas.
  • the dimension of the wrench used in this example is 26 for the main nozzle inner diameter, the spacer thickness around the main nozzle is 2 ran, and the auxiliary nozzle is 2 nm.
  • Fig. 8 shows that the main nozzles provided on the end wall on the head side of the combustor inner cylinder are divided into three groups, and the main nozzles blow out when the turbine load is varied in the range of 20% to 100%.
  • the amount of fuel supplied to each nozzle group is independently increased or decreased so that the air ratio of the fuel-air mixture becomes within the range of 1 * 2 to 2,5.
  • This is an example of a gas turbine combustor that suppresses the amount of NOx and CO generated.
  • the numbers given to the main nozzles in the combustor ⁇ front view shown in Fig. 9 are the classification numbers of the main nozzle group divided into three. The number of main nozzles in each nozzle group was four.
  • 6 1, 6 2, 6 3 are flow regulating valves, 61 increases / decreases the amount of fuel supplied to the second nozzle group, 62 is the first nozzle group, and ⁇ 63 is the third nozzle group. Adjustment valve.
  • Reference numeral 19 denotes a diffusion flame parner for igniting a pilot frame formed in the auxiliary nozzle, which stops supplying the feed after forming the pilot frame in the auxiliary nozzle. And the flame is extinguished.
  • Fig. 10 shows the change in the amount of fuel supplied to each nozzle group when the load on the gas turbine combustor in Fig. 8 was changed. Things.
  • Turbine load From 0% to 39%, fuel was supplied only to the first nozzle group, and when the air ratio of the dominate-air premixed gas ejected from the main nozzle became 1.25. Then, the fuel supply is reduced until the air ratio becomes 2.5, and at the same time, the fuel is supplied to the second nozzle group so that the air ratio becomes 2.5, and the amount of fuel supplied to the second nozzle group is fixed.
  • the turbine load increases from 39% to 60%.
  • the auxiliary flame having a low ejection speed is used as an auxiliary flame for igniting and maintaining a premixed flame (main flame) having a high ejection speed. Therefore, the injection speed of the premixed gas to form a pilot flame for flame holding is set to approximately 0.4 m / s, the same as the combustion speed, and by setting the air ratio to 0.8 to 1.2, NO x And to prevent blowout.
  • the vortex formed by the velocity difference of the jet of the fuel stably flows between the main flame auxiliary and the auxiliary flame parner, and between the main flame premixed air and the auxiliary flame premixed air.
  • the main flame and the auxiliary flame are separated by a thin wall such as a knife edge without using a spacer, the flow of the auxiliary flame is determined by the jet of the main flame. In the experiment where the main flame was blown out and the main flame blown out, the auxiliary flame also went out. It is clear.
  • the main flame and the auxiliary flame do not directly mix near the burner outlet, and some of the rainy people mix in the vortex formed by the spacer. Since the auxiliary flame can always be stably formed without being affected by the main flame, the effect of increasing the range of the flow velocity or air ratio at which the main flame is stably formed can also be obtained.

Abstract

This invention relates to a gas turbine combustor of a premixing combustion system in which a fuel and the air are mixed and burnt, consisting of a cylindrical main nozzle provided on an upstream end wall of a cylindrical combustion chamber, an auxiliary nozzle formed around the main nozzle, a main premixed gas supply means for supplying a premixed gas to the main nozzle, and an auxiliary premixed gas supply means for supplying a premixed gas, the excess air ratio of which is smaller than that of the main premixed gas, to the auxiliary nozzle. Owing to this arrangement, a lean premixed gas having an excess air ratio larger than 1 can be burnt stably under low to high loads of a gas turbine.

Description

明 細 書  Specification
ガスタービン燃焼器  Gas turbine combustor
技術分野  Technical field
本発明はガスタービン燃焼器に係 り、 特に燃料と空気 と を予め混合して燃焼させる予混合燃焼方式のガスター ビン燃焼器に関する。  The present invention relates to a gas turbine combustor, and more particularly to a premixed combustion type gas turbine combustor in which fuel and air are mixed in advance and burned.
背景技術 Background art
液化天然ガス ( L N G ) 等の窒素含有量の少ない気体 燃料の燃焼時に発生する窒素酸化物(N 0 X )は、 燃焼用 空気中の窒素が高温雰囲気中で酸化されて生成するサ一 マル N O x がその大部分を占めている。 サーマル N〇 x の生成は温度依存性が大き く 、 火炎温度が高く なるにつ れて生成量が増大し、 特に 1 5 0 0 °Cを越える と、 生成 量が急激に増加する こ と が知られている。 火炎温度は燃 料と空気との混合比にょ リ変化し、 燃料を完全燃焼させ るのに過不足のない空気量すなわち理論空気量付近で燃 焼する時最も高く なる。 N O x発生量の抑制には、 火炎 温度を低くする必要がある。 火炎温度を下げるには、 燃 料室内に水あるいは蒸気を吹き込んで強制的に温度を下 げる方法や、 燃料と空気との混合割合を理論空気量よ り は、 極端に多く した り、 反対に少な く した状態で燃焼さ せる方法が提案されている。  Gases with a low nitrogen content, such as liquefied natural gas (LNG) Nitrogen oxides (N0X) generated during the combustion of fuel are generated by oxidizing nitrogen in the combustion air in a high-temperature atmosphere and producing NO. x makes up the majority. The production of thermal N〇 x has a large temperature dependence, and the production increases as the flame temperature increases, and especially when the temperature exceeds 150 ° C, the production may increase rapidly. Are known. The flame temperature changes depending on the mixture ratio of fuel and air, and becomes the highest when the fuel is burned near the stoichiometric amount of air where there is no excess or shortage to completely burn the fuel. In order to suppress the amount of NOx generated, it is necessary to lower the flame temperature. In order to lower the flame temperature, water or steam is blown into the fuel chamber to forcibly lower the temperature, or the mixing ratio of fuel and air is set to be extremely larger than the theoretical air amount, or the opposite. A method has been proposed in which combustion is performed in a reduced amount.
水あるいは、 蒸気を吹き込む方法は、 タ ービンの効率 低下という新たな問題が生ずる。 Injecting water or steam depends on the efficiency of the turbine. A new problem of degradation arises.
通常の燃焼装置では、 火炎の安定性や逆火防止対策と して、 燃料と空気と別個のノズルよ リ嘖出し、 燃焼器内 で雨者を混合して燃焼する。 所謂、 拡散火炎が使用され る。 しかしながら、 燃料と空気とが混合する過程におい ては、 空気比 (空気流量と理論空気量との比) が 1付近 になる領域が存在し、 こ こで火炎温度は局所的に高くな る。 従って、 N 0 X発生量の多い領域が形成されること になり、 N 0 Xの排出量は多く なる。  In a normal combustion device, as a measure for flame stability and flashback prevention, separate nozzles are used to separate fuel and air from the fuel, and the rain is mixed in the combustor and burned. A so-called diffusion flame is used. However, in the process of mixing fuel and air, there is a region where the air ratio (the ratio between the air flow rate and the theoretical air amount) is close to 1, where the flame temperature locally rises. Therefore, a region with a large amount of N 0 X is formed, and the amount of N 0 X discharged is increased.
このよう な拡散火炎を利用する燃焼装置に対して、 理 論空気量よ り過剰な空気と燃料と を予め混合して燃焼器 内に噴出する予混合火炎を使用する燃焼装置がある。 空 気比の高い予混合火炎では、 局所的に温度の高く なる領 域の形成を防止できるため、 N O x排出量の低減を図る こ とが可能であるが、 予混合火炎は空気比が 1付近で最 も安定であ り、 また、 噴出速度を高くすると吹き消え易 く、 また低噴出速度では、 火炎がノ ズル内に入り、 逆火 し易い。 ガスタ ービンの ϋ焼器では、 通常 4 0 m Z s か ら 7 O m Z s程度の高い噴出速度で燃料と空気との予混 合気を噴出する必要があ り、 このような噴出速度の高い 条件では火炎は形成され難い。 従って、 燃料を分割して 供給し、 一部を拡散火炎形成用, 残り を予混合火炎形成 用と して利用し、 比較的安定な拡散火炎、 或いは、 拡散 火炎で生成する高温の燃焼ガスを予混合火炎の着火用に 使用する燃焼器がある(特開昭 61— 22127 号)この様な燃 焼器では、 従来の拡散火炎を利用する燃焼器よ り N 0 X の排出量を低減する こと ができる。 しかしながら、 拡散 火炎に使用する燃料の流量を低減し、 予混合火炎の燃料 流量を増加する と N O xの低減を図れるが、 予混合の割 合が増加する と火炎が不安定になるので N O X排出量の 低減には限界がある。 In contrast to such a combustion device using a diffusion flame, there is a combustion device that uses a premixed flame in which an excess amount of air and fuel is mixed in advance with a theoretical amount of air and then injected into a combustor. Premixed flames with a high air-to-air ratio can prevent the formation of locally high-temperature regions, which can reduce NOx emissions.However, premixed flames have an air-to-air ratio of 1 It is most stable in the vicinity, and tends to blow out when the ejection speed is high, and at low ejection speed, the flame easily enters the nozzle and flashes back. In gas turbine sintering devices, it is necessary to eject a premixed mixture of fuel and air at a high ejection speed, usually about 40 mZs to 7 OmZs. Flames are difficult to form under high conditions. Therefore, the fuel is divided and supplied, and a part is used for forming a diffusion flame, and the rest is used for forming a premixed flame, and a relatively stable diffusion flame or diffusion is used. There is a combustor that uses the high-temperature combustion gas generated by the flame to ignite a premixed flame (Japanese Patent Laid-Open No. 22127/1986). Such a combustor is more effective than a conventional combustor using a diffusion flame. The emission of N 0 X can be reduced. However, reducing the flow rate of the fuel used for the diffusion flame and increasing the fuel flow rate of the premixed flame can reduce NOx, but increasing the premixed rate makes the flame unstable, so NOX emissions There is a limit to reducing the volume.
不安定な予混合火炎を安定化し、 ガスタービン燃焼方 '式を完全予混合燃焼にすればガスタービン燃焼器から発 生する N O x を低減する こ と が可能となる。  If unstable premixed flames are stabilized and the gas turbine combustion method is changed to complete premixed combustion, it is possible to reduce NOx generated from gas turbine combustors.
ガスタ ービン燃焼方式を完全予混合燃焼に した時の問 題点は、 低負荷運転時に燃料流量に比ベて大量の燃焼用 空気を流すこ と になるので、 燃料希薄状態にな り 、 着火 しに く いこ と、 及び、 高負荷運転時には供給嫘料及び空 気流量を増大するために、 予混合気の流速は更に高く な り、 予混合火炎が吹き-消えやすいという問題点があった。 発明の開示  A problem when the gas turbine combustion system is completely premixed combustion is that a large amount of combustion air flows compared to the fuel flow rate during low-load operation, so the fuel becomes lean and ignites. In addition, during high-load operation, the flow rate of the premixed gas further increased in order to increase the supply material and the air flow rate, and there was a problem that the premixed flame was likely to blow and disappear. Disclosure of the invention
本発明の 目的は、 空気比が 1 よ り大きな希薄な予混合 気をガスタ ービンの低負荷から高負荷まで安定して燃焼 させる こ と が可能なガスタービン燃焼器並びに燃焼方法 を提供する こ と にある。  An object of the present invention is to provide a gas turbine combustor and a combustion method capable of stably burning a lean premixed air having an air ratio greater than 1 from a low load to a high load on a gas turbine. It is in.
この 目的は、 筒状の燃焼室の上流側端壁に設けられた 円筒状の主ノ ズルと、 前記主ノ ズルの外周部に形成した 補助ノズルと、 前記主ノズルに予混合気を供給する主予 混合気供耠手段と、 前記補助ノ ズルに前記主予混合気よ リ小さい空気比の予混合気を供給する補助予混合気供給 手段と を備えたこと を特徴とするガスダービン燃焼器に よって達成される。 更に円筒状の主ノズルの開口部よ り 噴出する予混合気を前記生ノ ズルの開口部の外周に形成 した予混合火炎で燃焼することを特徴とするガスタービ ン燃焼器の予混合燃焼方法によっても達成される。 This purpose is provided on the upstream end wall of the cylindrical combustion chamber. A cylindrical main nozzle, an auxiliary nozzle formed on an outer peripheral portion of the main nozzle, a main premix air supply means for supplying a premix air to the main nozzle, and the main premix to the auxiliary nozzle This is achieved by a gas Durbin combustor characterized by comprising auxiliary premixed gas supply means for supplying a premixed gas having an air ratio smaller than that of air. Furthermore, a premixed combustion method for a gas turbine combustor, characterized in that premixed gas ejected from an opening of a cylindrical main nozzle is burned by a premixed flame formed on an outer periphery of the opening of the raw nozzle. Is also achieved.
本発明によれば、 高空気比燃焼火炎の根元に、 絶えず 安定した補助火炎を形成するこ とによ り、 高速繳焼する 主火炎を保炎することができる。 その結果、 ガスタービ ン燃焼方式を完全予混合燃焼型にできるので、 主火炎用 の燃料一空気混合気体の空気比を 1 . 0 から高空気比側 に設定して希薄燃焼をおこなえば、 ガスタービン燃焼器 から発生する環境汚染物質である N O x及び C O を低減 できる効果がある。  ADVANTAGE OF THE INVENTION According to this invention, the main flame which burns at high speed can be maintained by forming a stable auxiliary flame constantly at the base of the high air ratio combustion flame. As a result, the gas turbine combustion system can be completely premixed combustion, and if the air ratio of the fuel-air mixture gas for the main flame is set from 1.0 to the high air ratio side to perform lean combustion, the gas turbine It has the effect of reducing the environmental pollutants NOx and CO generated from the combustor.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明を実施したガスタービン燃焼器の一 部断面図、 第 2図は第 1 図の Π — Π線に沿う断面図, 第 3図は第 1 図のノズル部分の詳細断面図、 第 4図はター ビン負荷と第 1図に示された各弁の開度の関係を示すグ ラフ、 第 5 図 ( a ) 及び ( b ) は予混合気の空気比を変 えて燃焼させたと きの N O x発生量と H2 , C Oの発生 量との関係を示すグラフ、 第 6図 ( a ) 及び ( b ) は本 発明の燃焼器を用いて得られた空気比 3.6 の髙空気比 領域までの排ガス組成のグラ フ、 第 7図は火炎のノズル 半径方向の燃焼排ガスの組成を示すグラ フ、 第 8 図は本 発明のガスタービン燃焼器の他の実施例を示す一部新面 図、 第 9 図は第 8図の E— K線に沿う簡略断面図、 第 1 0図は第 8 図のガスタービン燃焼器における負荷変動 と燃料供給方式の関係を示す特性図である。 FIG. 1 is a partial cross-sectional view of a gas turbine combustor embodying the present invention, FIG. 2 is a cross-sectional view taken along the line Π—Π in FIG. 1, and FIG. 3 is a detailed cross-sectional view of a nozzle portion in FIG. Fig. 4 is a graph showing the relationship between the turbine load and the opening of each valve shown in Fig. 1, and Figs. 5 (a) and (b) show changes in the air ratio of the premixed gas. Ete graph showing the relationship between the generated amount of the burned Kino NO x generation amount and the H 2, CO, FIG. 6 (a) and (b) the air ratio obtained by using the combustor of the present invention 3.6 7 is a graph showing the composition of the exhaust gas in the radial direction of the flame nozzle, and FIG. 8 is a graph showing another embodiment of the gas turbine combustor of the present invention. Fig. 9 is a simplified cross-sectional view along the line E-K in Fig. 8, and Fig. 10 is a characteristic diagram showing the relationship between load fluctuation and fuel supply system in the gas turbine combustor in Fig. 8. It is.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
第 1 図は、 本発明を実施したガスタ ービン燃焼器の断 面図である。 円筒状の外筒 1 0内に、 同芯状に内筒 2 0 が配置され、 外筒 1 0 と内筒 2 0 との間に形成された瑗 状の空間は図示しない圧縮機からの吐出空気を内筒の頭 部に導く空気通路 1 2 を構成している。 内筒 2 0 の頭部 に、 二重の端壁 1 1 , 1 2 が設けられ、 内側の端壁 1 1 には、 第 2図に示す如く、 そのほぼ全面に主ノ ズル 1 4 とその周囲を と り かこむよう に補助ノズル 1 5 と が開口 している。 主ノズル 1 4は、 外側の端壁 1 2側に端壁 1 2 を貫通して延びた筒状の予混合筒 1 6 の右端に形成 され、 予混合筒 1 6 の左端は、 端壁 1 2の左側に形成し た空気室 1 7 から空気を取り入れる。 各予混合筒 1 6 に は、 燃料供給管 1 8 が挿入され、 燃料供給管 1 8 の端部 から噴出した燃料は、 筒 1 6内を流れる際、 空気と混合 して予混合気を生成する。 補助ノズル 1 5は、 端壁 1 1 と 1 2の間に形成された補助予混合室 3 0に連通してお リ、 この室 3 0には、 3 1なるベンチユリ式混合器から 均一な予混合気が供給される。 3 1の混合器に 2 6の導 入板によ り空気調整弁 4 0を介して高い圧力の空気を導 入することによ り、 大気圧下に調整された燃料を吸引し て、 均一な予混合気を生成する。 燃料供給管 1 8は、 そ れぞれの管に設けた止弁 5 0 を介して、 主燃料調整弁 6 0に連通される。 弁 5 0, 6 0は、 制御器 7 0からの 指令によ リ制御される。 制御器 7 0にはガスタービンの 負荷, 回転速度信号 取り込まれる。 FIG. 1 is a cross-sectional view of a gas turbine combustor embodying the present invention. An inner cylinder 20 is arranged concentrically inside the cylindrical outer cylinder 10, and a rectangular space formed between the outer cylinder 10 and the inner cylinder 20 is discharged from a compressor (not shown). An air passage 12 is formed to guide air to the head of the inner cylinder. At the head of the inner cylinder 20, double end walls 11 and 12 are provided. On the inner end wall 11 as shown in FIG. Auxiliary nozzles 15 and are open so that they surround the surroundings. The main nozzle 14 is formed at the right end of a cylindrical premix cylinder 16 extending through the end wall 12 to the outer end wall 12 side, and the left end of the premix cylinder 16 is formed at the end wall 1 Air is taken in from the air chamber 17 formed on the left side of 2. A fuel supply pipe 18 is inserted into each premixing cylinder 16, and an end of the fuel supply pipe 18 is provided. When fuel flows out of the cylinder 16, it mixes with air to generate a premixed gas. The auxiliary nozzle 15 communicates with an auxiliary premixing chamber 30 formed between the end walls 11 and 12, and the chamber 30 is provided with a uniform premixing chamber from a bench lily mixer 31. An air-fuel mixture is supplied. 3 By introducing high-pressure air into the mixer 1 through the air inlet valve 40 through the inlet plate 26, the fuel adjusted to atmospheric pressure is sucked into Generates a premixed gas. The fuel supply pipes 18 are communicated with the main fuel regulating valve 60 via stop valves 50 provided on the respective pipes. The valves 50 and 60 are controlled by a command from the controller 70. The controller 70 receives the gas turbine load and rotation speed signals.
止弁 5 0は、 制御器 7 0から開信号が与えられると、 全開 し、 それ以外では全閉を保っている。 第 1図では、 止弁は 4個じか示されていないが、 すべての燃.料供給管 1 9 に設けられており この実施例では 1 9個の止弁が あ り、 第 4図に示すよう にタービンの負荷が増大するに つれて、 止弁の開ぐ個数が増大する。 一方、 調整弁 6 0 の開度は、 タービン負荷にほぼ比例的に増大する。 調整 弁 4 0はタービン負荷にかかおらず、 ほぼ一定の開度 (約 1 0 %) を保っている。 しかして、 補助予混合室 3 0 に導入される予混合気は 3 1の混合器において、 均 一な予混合気体となり、 空気比で 0.8〜 1.2の範囲に あるよ う に設定され、 かつ、 補助ノズル 1 5 からの噴出 速度が、 燃焼速度とほぼ同一の速度となるよう に、 空気 調整弁 4 0 を調整する。 The stop valve 50 is fully opened when an open signal is given from the controller 70, and is kept fully closed otherwise. Although only four stop valves are shown in FIG. 1, they are provided in all fuel supply pipes 19, and in this embodiment there are 19 stop valves, and FIG. As shown, as the load on the turbine increases, the number of open stop valves increases. On the other hand, the opening of the regulating valve 60 increases almost in proportion to the turbine load. The regulating valve 40 maintains an almost constant opening (about 10%) regardless of the turbine load. Thus, the premixed gas introduced into the auxiliary premixing chamber 30 becomes a uniform premixed gas in the mixer 31 and has an air ratio in the range of 0.8 to 1.2. The air adjusting valve 40 is adjusted so that the air blowing rate is set to a certain value and the ejection speed from the auxiliary nozzle 15 is almost the same as the combustion speed.
ガスタービンの運転に際しては、 まず、 補助火炎用空 気調整弁 4 0 を開いて、 混合器 3 1で、 補助予混合気を 生成する。 次に、 図示しない点火栓によ り、 補助ノ ズル 1 5から噴出する予混合気に点火する。 補助予混合気の 空気比は 1近傍即ち 0.8〜 1.2に設定されてお り噴出 速度は燃焼速度と同程度の 0.4 m となっているた めに着火は確実であ り、 着火後も安定して燃焼する。  When operating the gas turbine, first, the auxiliary flame air regulating valve 40 is opened, and the auxiliary premixed gas is generated by the mixer 31. Next, a premixed gas ejected from the auxiliary nozzle 15 is ignited by an ignition plug (not shown). The air ratio of the auxiliary premixed gas is set to around 1, that is, 0.8 to 1.2, and the injection speed is 0.4 m, which is almost the same as the combustion speed, so ignition is reliable and stable after ignition Burn.
このとき、 .ほとんどの止弁 5 0は閉じているため主ノ ズル 1 4からは、 空気のみが噴出 している。 タービンの 負荷信号によ り調整弁 6 0の開度が徐々 に大き く な リ、 止弁 5 0も予め定め られた順序で開弁する。 する と予混 合筒 1 6内で予混合気が生成し、 主ノ ズル 1 4よ り 、 '予 混合気が高速で噴出する。 主ノ ズル 1 4から噴出する予 混合気は、 その周囲に形成した補助火炎 8 0 (第 3図) によ り着火され、 主火炎 9 0 となる。  At this time, since most of the stop valves 50 are closed, only air is ejected from the main nozzle 14. The opening of the regulating valve 60 gradually increases according to the load signal of the turbine, and the stop valve 50 also opens in a predetermined order. Then, a premixed gas is generated in the premixed cylinder 16, and the premixed gas is ejected at a high speed from the main nozzle 14. The premixture jetted from the main nozzle 14 is ignited by the auxiliary flame 80 (Fig. 3) formed around it and becomes the main flame 90.
止弁 5 0が順次開く につれて、 主ノ ズル 1 4に形成さ れる火炎の数も順次増大して、 定格負荷では、 すべての 主ノズル 1 4に火炎が形成される。 一般に発電用のガス タービンでは、 負荷 0 %から 1 0 0 %まで、 タ ービンの 回転速度は一定であるため、 燃焼器に供給される空気は ほぼ一定である。 したがって空気室 1 7 よ り、 予混合筒 1 6 に流入する空気量はほぼ一定である。 As the stop valves 50 are sequentially opened, the number of flames formed in the main nozzles 14 also increases, and at the rated load, flames are formed in all the main nozzles 14. Generally, in a gas turbine for power generation, the turbine rotation speed is constant from 0% to 100% load, so the air supplied to the combustor is Almost constant. Therefore, the amount of air flowing into the premix cylinder 16 from the air chamber 17 is substantially constant.
一方、 調整弁 6 0 を通る燃料量はタービン負荷にほぼ 比树して変るが、 止弁 5 0の開弁個数が、 燃料量に応じ て変るので、 開いている止め弁 1個当 り の予混合筒に供 給する燃料量は、 ほぼ一定であ り、 予混合筒 1 6で生成 される混合気の空気比は、 大きく変化しない。 そこで、 本実施例では、 空気比が 1 .2から 2。 5の範囲に設定し てある。  On the other hand, although the amount of fuel passing through the regulating valve 60 changes almost in proportion to the turbine load, the number of open stop valves 50 changes according to the amount of fuel. The amount of fuel supplied to the premix cylinder is substantially constant, and the air ratio of the air-fuel mixture generated in the premix cylinder 16 does not change significantly. Therefore, in this embodiment, the air ratio is from 1.2 to 2. 5 is set.
本実施例では、 補助ノズル 1 5 の予混合気は空気比が 1近傍の保炎性の良い範囲に設定されているため、 主ノ ズル 1 4から予混合気が 2 0 m Z s以上、 好ま し く は 4 0 m/ ~ 7 0 m / s の高速で噴出しても、 吹き消え の恐れがない。 又、 主ノズル 1 4 からは絶えず 2 0 m / s〜 7 0 m s の高速で空気が噴出しているため、 逆火 の恐れもない。  In this embodiment, since the premixed air of the auxiliary nozzle 15 is set to a range in which the air ratio is close to 1 and the flame holding property is good, the premixed air from the main nozzle 14 is 20 mZ s or more. Preferably, even at a high speed of 40 m / ~ 70 m / s, there is no danger of blowing out. In addition, since the main nozzle 14 constantly blows air at a high speed of 20 m / s to 70 ms, there is no danger of flashback.
更に、 主ノズル 1 4からの予混合気は、 空気比が 1.5 以上の希薄なものであっても、 補助火炎によ り、 安定に 燃焼する。  Furthermore, the premixed gas from the main nozzle 14 is stably burned by the auxiliary flame, even if the air ratio is lean such as 1.5 or more.
第 5図 ( a ) , ( b ) 及び第 6画 ( a ) , ( b ) は、 予混合気の空気比を変えて燃-焼させたときの N O x発生 量と , C Oの発生量との閧係を示したものである。 第 5図 ( a ) は燃焼筒の内径が ^ 9 0 ran、 高さ 7'; 3 4 6 mmの時、 第 5 図 ( b ) は燃焼筒の内径が 0 2 O 8 ran、 高 さが 6 2 4 の時に、 同一燃焼条件下で予混合火炎を形 成させた時の、 燃焼筒からの排ガスを分析した結果であ る。 Fig. 5 (a), (b) and 6th (a), (b) show the NOx and CO emissions when the premixed air is burned with the air ratio changed. It shows the relationship. In Fig. 5 (a), the inner diameter of the combustion cylinder is ^ 90 ran, height 7 '; mm, Fig. 5 (b) shows the combustion cylinder when the premixed flame is formed under the same combustion conditions when the inside diameter of the combustion cylinder is 0 2 O 8 ran and the height is 6 24. This is the result of analysis of the exhaust gas.
又、 第 5 図 ( b ) は空気比 ; 3.6 の高空気比領域ま での排ガスを分析したものである。 第 5 図( a ), ( b )に おいて主火炎は、 空気比が 1 .5以上であるため N 0 X の発生量は 1 8 1 に示す如く著し く少な く な リ 、 C O , H2 はそれぞれ 1 9 1 , 2 0 1 に見られる如く 、 ほぼ零 となる。 尚、 当然のことながら 02 は、 2 1 1 のよ う な 特性を示す。 . Fig. 5 (b) shows the analysis of exhaust gas up to the high air ratio range of 3.6. In Figs. 5 (a) and 5 (b), the main flame has an air ratio of 1.5 or more, so the amount of N0X generated is markedly small and small as shown in 181, CO, CO, H 2 is almost zero, as seen in 1991 and 201 respectively. Of course, 02 shows a characteristic like 211. .
この特性から見る と補助ノ ズルの予混合気の空気比は 1 に近いため、 N O xの発生量は多く なるが補助火炎の 燃料比率は、 定格負荷において、 1 0 %程度であるため 全体と しては、 N〇 Xの発生量は少な く なる。  From this characteristic, the air ratio of the premixed gas in the auxiliary nozzle is close to 1, so the amount of generated NOx increases, but the fuel ratio of the auxiliary flame is about 10% at the rated load, so the overall Therefore, the amount of N〇 X generated is reduced.
第 7 図は、 主ノズル (内径約 2 6咖) から下流方向に 5腿の地点を、 ノズル中心から半径方向にサンプリ ング, プローブを移動し、 燃料ガスを採取 ' 分析し、 主火炎内 部、 及び補助火炎近辺の燃焼状態を調べたものである。 図からわかるよう に、 主火炎内部はほとんど C H 4 は燃 焼していないが、 補助火炎に近づく につれて C H 4 は燃 焼していき、 補助火炎ノ ズルの上方では、 C H4 は 100 %燃焼している。 つま り、 補助ノ ズルの補助火炎から主 ノズルの予混合気への火移り が確実に行おれている こと が判る。 本実施例で使用した 'パーナ寸法は主ノズル内径 が 2 6職、 主ノズルの周囲に存在するスぺーサ厚みは 2 ran , 補助ノズル檑は 2 nmである。 Fig. 7 shows the sampling and probe movement from the center of the nozzle to the five thighs in the downstream direction from the main nozzle (inner diameter of about 26 mm), and sampling and analysis of the fuel gas from the center of the nozzle. This is a study of the combustion state near, and the auxiliary flame. As can be seen from the figure, almost no CH4 burns inside the main flame, but CH4 burns as it approaches the auxiliary flame, and above the auxiliary flame nozzle, CH4 burns 100%. ing. In other words, the main flame starts from the auxiliary flame of the auxiliary nozzle. It can be seen that the nozzle was surely transferred to the premixed gas. The dimension of the wrench used in this example is 26 for the main nozzle inner diameter, the spacer thickness around the main nozzle is 2 ran, and the auxiliary nozzle is 2 nm.
第 8図は燃焼器内筒の頭部側端壁に設けた複数個の主 ノズルを 3つの群に分け、 タービン負荷を 2 0 %から 1 0 0 %の範囲で変動させる時に主ノズルから噴出する 燃料一空気混合気体の空気比が 1 * 2 から 2 , 5 になる範 囲内になるよう に、 それぞれのノズル群に供給する燃料 量を独立して増減させるこ と によ リ、 燃焼器から発生す る N O x , C Oの発生量.を抑制するガスタービン燃焼器 の 1例である。 第 9 図に示す燃焼器 · 正面図の主ノズル に記した番号は、 3つに分けた主ノズル群の分類番号で ある。 各ノズル群が有する主ノズルの数は 4本と した。 6 1 , 6 2 , 6 3は流量調整弁であ り、 6 1 が第 2 ノズ ル群、 6 2 が第 1 ノズル群、 -6 3 が第 3 ノ ズル群に供給 する燃料量を増減させるための調整弁である。 1 9 は補 助ノズルに形成されるパイ ロッ ト · フ レームを着火させ るための拡散火炎用パーナであ り、 補助ノズルにパイ口 ッ 卜 · フ レームを形成した後は懋料供給を停止し、 火炎 は消失させる。  Fig. 8 shows that the main nozzles provided on the end wall on the head side of the combustor inner cylinder are divided into three groups, and the main nozzles blow out when the turbine load is varied in the range of 20% to 100%. The amount of fuel supplied to each nozzle group is independently increased or decreased so that the air ratio of the fuel-air mixture becomes within the range of 1 * 2 to 2,5. This is an example of a gas turbine combustor that suppresses the amount of NOx and CO generated. The numbers given to the main nozzles in the combustor · front view shown in Fig. 9 are the classification numbers of the main nozzle group divided into three. The number of main nozzles in each nozzle group was four. 6 1, 6 2, 6 3 are flow regulating valves, 61 increases / decreases the amount of fuel supplied to the second nozzle group, 62 is the first nozzle group, and −63 is the third nozzle group. Adjustment valve. Reference numeral 19 denotes a diffusion flame parner for igniting a pilot frame formed in the auxiliary nozzle, which stops supplying the feed after forming the pilot frame in the auxiliary nozzle. And the flame is extinguished.
第 1 0図は第 8 図のガスタービン燃焼器の負荷を変化 させた時の各ノズル群に供給する燃料量の変化を記した ものである。 タービン負荷 : 0 %から 3 9 %までは第 1 ノ.ズル群だけに燃料を供給していき、 主ノズルから噴出 する燉料一空気予混合気体の空気比が 1.2 5 になった と ころで、 空気比が 2.5 になるまで供給燃料を減少さ せ、 それと同時に第 2 ノズル群に燃料を供給して空気比 が 2.5 になるよう に し、 第 2 ノズル群に供給する燃料 量を一定の条件下で第 1 ノズル群に供給する燃料量を増 加させるこ とで、 タービン負荷 : 3 9 %から 6 0 %まで 増大させる。 更に第 1 ノズル群の燃料一空気混合気体の 空気比が 1.2 5 になったと こ ろで、 第 1 ノズル群の空 気比が 2.5 になるまで供給燃料を減少させ、 それと同 時に第 3 ノズル群に燃料を供給し、 空気比が 2 · 5 にな るよ うにし、 タービン負荷 : 6 0 %から 1 0 0 %までは 第 1 , 第 2 , 第 3 ノズル群に供給する燃料量を比例的に 増大させ、 ービン負荷 : 1 0 0 %においては、 第 1 , 第 2 , 第 3 ノズルから噴出する燃料一空気混合気体の空 気比が 1.5 になるよ う に運転する。 Fig. 10 shows the change in the amount of fuel supplied to each nozzle group when the load on the gas turbine combustor in Fig. 8 was changed. Things. Turbine load: From 0% to 39%, fuel was supplied only to the first nozzle group, and when the air ratio of the dominate-air premixed gas ejected from the main nozzle became 1.25. Then, the fuel supply is reduced until the air ratio becomes 2.5, and at the same time, the fuel is supplied to the second nozzle group so that the air ratio becomes 2.5, and the amount of fuel supplied to the second nozzle group is fixed. By increasing the amount of fuel supplied to the first nozzle group below, the turbine load increases from 39% to 60%. Further, when the air ratio of the fuel-air mixture gas in the first nozzle group became 1.25, the supply fuel was reduced until the air ratio in the first nozzle group became 2.5, and at the same time, the third nozzle group So that the air ratio becomes 2.5. Turbine load: From 60% to 100%, the amount of fuel supplied to the first, second and third nozzle groups is proportional. When the bin load is 100%, the operation is performed so that the air ratio of the fuel-air mixture gas ejected from the first, second, and third nozzles becomes 1.5.
第 1 0図に示すガスタービン運転条件では、 タ ービン 負荷 : 2 0 %から 1 0 0 %の間では、 第 1 , 第 2, 第 3 ノズル群から噴出する燃料一空気混合気体の空気比が 1.2 5から 2.5 0の間である。 第 6図 ( a ) ( b ) か らわかるよ う に空気比 : 1.2 5から 2.5 0の間では、 発生 N 0 Xはほぼ 1 0 0 ppm 以下であ り、 かつ未燃分で ある C O, Ha, C H4の発生量はほとんど少ないこ とよ り このガスタービン燃焼器の操作方法は低 N O X用のガ スタービン燃焼方式と して効果的であると言える。 Under the gas turbine operating conditions shown in Fig. 10, when the turbine load is between 20% and 100%, the air ratio of the fuel-air mixture gas ejected from the first, second, and third nozzle groups is reduced. It is between 1.25 and 2.50. As can be seen from Fig. 6 (a) and (b), when the air ratio is between 1.25 and 2.50, the generated N0X is almost 100 ppm or less, and the Since the amount of CO, Ha, and CH4 generated is almost small, it can be said that this method of operating a gas turbine combustor is effective as a gas turbine combustion method for low NOX.
以上に述べた通リ本発明において、 噴出速度の低い、 補助火炎は高噴出速度の予混合火炎 (主火炎) の着火及 び保炎用の補助火炎と して使用される。 従って保炎用の パイ ロッ 卜火炎を形成するための予混合気の噴出速度は、 燃焼速度と同一の約 0.4 m / s と し、 空気比を 0.8〜 1.2 とする ことによ り、 N O xの発生を抑えて、 かつ、 吹き消えを防止する。 また、 高噴出速度で噴出する予混 合気の外周全体を保炎用の補助火炎で囲むこ と によ.リ、 保炎用火炎で発生する熱を効率良く、 主火炎に伝えるこ とができる。 更には、 主火炎用パーナと補助火炎パーナ 間を、 主火炎用予混合気と補助火炎用予混合気と を噴出 するパーナ間に、 而者の噴流の速度差によって形成され る渦流が安定に形成できるだけのスぺーサを設け、 こご- で主火炎用の高空気比の予混合気と、 高温の捕助火炎か らの燃焼ガスとの混合を促進し、 これによ リ主火炎の着 火性を促進できる。 また、 スぺーサを設けずに、 たとえ ば、 ナイ フエッジのような薄肉の隔壁によ り、 主火炎と 補助火炎の分離を図る場合には、 主火炎の噴流によ り、 補助火炎の流れが大きな影響を受け、 主火炎が吹き消え る条件では、 補助火炎も消炎する ことが発明者らの実験 では明らかである。 それ故、 スぺーサを設ける こ と によ リ、 主火炎と補助火炎と が、 バーナ出口近傍で直接混合 せず、 スぺーサ部で形成される渦流内で雨者の一部が混 合する構成とな り、 補助火炎は主火炎の影響を受けずに 常時安定に形成すること が出来るため、 主火炎が安定に 形成される流速あるいは空気比の範囲が増加する という 効果も得られる。 In the present invention described above, the auxiliary flame having a low ejection speed is used as an auxiliary flame for igniting and maintaining a premixed flame (main flame) having a high ejection speed. Therefore, the injection speed of the premixed gas to form a pilot flame for flame holding is set to approximately 0.4 m / s, the same as the combustion speed, and by setting the air ratio to 0.8 to 1.2, NO x And to prevent blowout. By enclosing the entire periphery of the premixture that gushes at a high blast speed with an auxiliary flame for flame holding, the heat generated by the flame for flame holding can be efficiently transmitted to the main flame. it can. Furthermore, the vortex formed by the velocity difference of the jet of the fuel stably flows between the main flame auxiliary and the auxiliary flame parner, and between the main flame premixed air and the auxiliary flame premixed air. Provide a spacer as large as possible, and use the iron to promote the mixing of the premixed gas with a high air ratio for the main flame and the combustion gas from the high-temperature trapping flame. It can promote ignitability. In addition, when the main flame and the auxiliary flame are separated by a thin wall such as a knife edge without using a spacer, the flow of the auxiliary flame is determined by the jet of the main flame. In the experiment where the main flame was blown out and the main flame blown out, the auxiliary flame also went out. It is clear. Therefore, by providing a spacer, the main flame and the auxiliary flame do not directly mix near the burner outlet, and some of the rainy people mix in the vortex formed by the spacer. Since the auxiliary flame can always be stably formed without being affected by the main flame, the effect of increasing the range of the flow velocity or air ratio at which the main flame is stably formed can also be obtained.

Claims

請求の範囲 The scope of the claims
1 . 筒状の燃焼室(20)と、 該燃焼室の上流側端壁に複数 設けられた円筒状の主ノズル(14)と、 前記主ノズルの 外周部に形成した補助ノズル(15)と、 前記主ノズル (14)に予混合気を供紿する主予混合気供給手段 (17, 18)と、 前記主予混合気よ リ小さい空気比の予混合気 を前記補助ノズル(15)に供給する捕助予混合気供給手 段(31)と を備えたこと を特徵とするガスタ ービン燃焼 器。  1. A cylindrical combustion chamber (20), a plurality of cylindrical main nozzles (14) provided on an upstream end wall of the combustion chamber, and an auxiliary nozzle (15) formed on an outer peripheral portion of the main nozzle. A main premixed air supply means (17, 18) for supplying a premixed air to the main nozzle (14); and a premixed air having an air ratio smaller than the main premixed air to the auxiliary nozzle (15). A gas turbine combustor characterized by comprising a supplementary premixed gas supply means (31) for supplying.
2 β 筒状の燃、焼室(20)の上流側端壁に設けられた円筒状 の主ノズル(14)と、 前記主ノズル(14)の外周部に形成 した捕助ノズル(15)と、 前記主ノズル(14)に予混合気 を供給する主予混合気供給手段(17, 18)と、 前記補助 ノズル(15)に前記主予混合気よ リ小さい空気比の予混 合気を供耠する補助予混合気供給手段(31 )と を備えた こと を特徵とするガスタービン燃焼器。 2 A cylindrical main nozzle (14) provided on the upstream end wall of the β- cylindrical combustion and firing chamber (20), and a catching nozzle (15) formed on the outer periphery of the main nozzle (14) A main premixed air supply means (17, 18) for supplying a premixed air to the main nozzle (14); and a premixed air having an air ratio smaller than the main premixed air to the auxiliary nozzle (15). A gas turbine combustor characterized by comprising an auxiliary premixed gas supply means (31) to be supplied.
3 . 筒状の燃焼室(20)の上流側端壁に複数設けられた円 筒状の主ノズル(14)と、 前記主ノ ズル(14)の各々の外 周部に同心円状に形成した補助ノズル(15)と、 前記主 ノズル(14)に予混合気を供給する主予混合気供給手段 (17, 18)と、 前記補助ノズル(15)に予混合気を供給す る補助予混合気供給手段(31 )とを備えたこ と を特徵と するガスタ ービン燃焼器。 3. A plurality of cylindrical main nozzles (14) provided on the upstream end wall of the cylindrical combustion chamber (20), and concentrically formed on the outer periphery of each of the main nozzles (14). Auxiliary nozzle (15), main premixed air supply means (17, 18) for supplying a premixed air to the main nozzle (14), and auxiliary premixing for supplying a premixed air to the auxiliary nozzle (15) A gas turbine combustor characterized by having a gas supply means (31).
4 . 筒状の燃焼室(20)の上流側端壁に複数設けられた円 筒状の主ノズル(14)と、 前記主ノズル(14)の各々の外 周部に同心円状に形成した補助ノズル(15)と、 前記主 ノズル(14)に空気比が 1 よ リ大きい予混合気を供給す る主予混合気供給手段(17, 18)と、 前記補助ノ ズル (15)に空気比が 0 . 8〜 1 . 2 の予混合気を供給する補 助予混合気供給手段(31 )と を備えたこと を特徴とする ガスタ ービン燃焼器。 4. A plurality of cylindrical main nozzles (14) provided on the upstream end wall of the cylindrical combustion chamber (20), and an auxiliary formed concentrically around the outer periphery of each of the main nozzles (14). A nozzle (15), main premixed air supply means (17, 18) for supplying a premixed air having an air ratio greater than 1 to the main nozzle (14), and an air ratio to the auxiliary nozzle (15). A gas turbine combustor characterized by comprising auxiliary premixed gas supply means (31) for supplying 0.8 to 1.2 premixed gas.
5 . 筒状の燃焼室(20)の上流側端壁に複数設けられた円 筒状の主ノズル(14)と、 前記主ノズル(14)の各々の外 周部に同心円状に形成した補助ノズル(15)と、 前記主 ノズル(14)に予混合気を該予混合気の燃焼速度よ り大 きい噴出速度で供給する主予混合気供給手段(17, 18 ) と、 前記補助ノ ズル(15)に予混合気を該予混合気の燃 焼速度とほぼ同一の噴出速度で供給する補助予混合気 供給手段(31 )と を備えたこと を特徴とするガスタ ービ ン燃焼器。  5. A plurality of cylindrical main nozzles (14) provided on the upstream end wall of the cylindrical combustion chamber (20), and an auxiliary formed concentrically around the outer periphery of each of the main nozzles (14). A nozzle (15); main premixed gas supply means (17, 18) for supplying a premixed gas to the main nozzle (14) at an ejection speed greater than a combustion speed of the premixed gas; (15) A gas turbine combustor comprising an auxiliary premixed gas supply means (31) for supplying the premixed gas at an ejection speed substantially equal to the burning speed of the premixed gas.
. 筒状の嫘焼室(20)の上流側端壁に複数設けられた円 筒状の主ノズル(14)と、 前記主ノズル(14)の各々の外 周部に環状に形成した補助ノ ズル(15)と、 前記主ノズ ル(14)に空気比が 1 よ リ大きい予混合気を 2 0 m Z秒 以上の噴出速度で供給する主予混合気供給手段 (17, 18)と、 前記補助ノズル(15)に空気比が 0 . 8〜 1 . 2 の予混合気を該予混合気の燃焼速度とほぼ同一の噴出 速度で供給する補助予混合気供給手段(31 )と を備えた こと を特徵とするガスタービン燃焼器。A plurality of cylindrical main nozzles (14) provided on the upstream end wall of the tubular firing chamber (20), and auxiliary nozzles formed in an annular shape on the outer periphery of each of the main nozzles (14). A main premixed air supply means (17, 18) for supplying a premixed air having an air ratio greater than 1 to the main nozzle (14) at an ejection speed of 20 mZ seconds or more to the nozzle (15); The auxiliary nozzle (15) has an air ratio of 0.8 to 1.2. A gas turbine combustor characterized by comprising auxiliary premixed gas supply means (31) for supplying the premixed gas at an ejection speed substantially equal to the combustion speed of the premixed gas.
. 円筒状の主ノズル(14)の開口部のよ り噴出する予混 合気を前記主ノズル(14)の開口部の外周に形成した予 混合火炎(80)で燃焼することを特徴とするガスタービ ン燃焼器の予混合燃焼方法。 The premixed gas ejected from the opening of the cylindrical main nozzle (14) is combusted by a premixed flame (80) formed on the outer periphery of the opening of the main nozzle (14). Premixed combustion method for gas turbine combustor.
. 空気比が 1 ょ リ大きい予混合気を円筒状の主ノズル (14)の開口部よ り 2 0 m Z秒以上の速度で噴出し、 前 記主ノズル(14)の開口部の外周に形成した予混合火炎 (80)で燃焼する こ と を特徵とするガスタービン燃焼器 の予混合燃焼方法。A premixed air mixture with an air ratio of 1 greater than that of the main nozzle (14) is jetted at a speed of 20 mZ seconds or more from the opening of the main nozzle (14). A premixed combustion method for a gas turbine combustor, characterized by burning with the formed premixed flame (80).
. 空気比が 1 ょ リ大きい予混合気を円筒状の主ノ ズル ( 14)の開口部よ リ噴出し、 前記主ノズル(14)の開口部 の外周に形成した空気比が 0 。 8〜 1 , 2の予混合火炎 (80)で燃焼することを特徵とするガスタービン燃焼器 の予混合燃焼方法。A premixed air having an air ratio of one greater was blown out from the opening of the cylindrical main nozzle (14), and the air ratio formed on the outer periphery of the opening of the main nozzle (14) was zero. A premixed combustion method for a gas turbine combustor, characterized in that combustion is performed with 8 to 1 and 2 premixed flames (80).
". 空気比が 1 よ ¾大きい予混合気を円筒状の主ノ ズル (14)の開口部よ リ該予混合気の燃焼速度よ り大きい噴 出速度で噴出し、 前記主ノズル(14)の開口部の外周に 形成した予混合火炎(80)で燃焼する こ とを特徴とする ガスタービン燃焼器の予混合燃焼方法。 The premixed air having an air ratio greater than 1 is ejected from the opening of the cylindrical main nozzle (14) at an ejection speed higher than the combustion speed of the premixed air, and the main nozzle (14) is discharged. A premixed combustion method for a gas turbine combustor, characterized in that combustion is performed by a premixed flame (80) formed on the outer periphery of the opening of the gas turbine.
PCT/JP1988/000870 1987-09-04 1988-08-31 Gas turbine combustor WO1989002052A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE3854666T DE3854666T2 (en) 1987-09-04 1988-08-31 GAS TURBINE BURNER.
EP88907798A EP0335978B1 (en) 1987-09-04 1988-08-31 Gas turbine combustor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62220206A JP2528894B2 (en) 1987-09-04 1987-09-04 Gas turbine combustor
JP62/220206 1987-09-04

Publications (1)

Publication Number Publication Date
WO1989002052A1 true WO1989002052A1 (en) 1989-03-09

Family

ID=16747549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000870 WO1989002052A1 (en) 1987-09-04 1988-08-31 Gas turbine combustor

Country Status (5)

Country Link
EP (1) EP0335978B1 (en)
JP (1) JP2528894B2 (en)
CN (1) CN1011064B (en)
DE (1) DE3854666T2 (en)
WO (1) WO1989002052A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691511A1 (en) * 1994-06-10 1996-01-10 General Electric Company Operating a combustor of a gas turbine

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518986Y2 (en) * 1989-01-20 1996-12-04 川崎重工業株式会社 Gas turbine combustor
US5097666A (en) * 1989-12-11 1992-03-24 Sundstrand Corporation Combustor fuel injection system
JPH03260518A (en) * 1990-03-08 1991-11-20 Advance Koojienereeshiyon Syst Gijutsu Kenkyu Kumiai Gas turbine catalyst combustion system
JP2564022B2 (en) * 1990-06-07 1996-12-18 川崎重工業株式会社 Gas turbine combustor
JPH05196232A (en) * 1991-08-01 1993-08-06 General Electric Co <Ge> Back fire-resistant fuel staging type premixed combustion apparatus
US5318436A (en) * 1991-11-14 1994-06-07 United Technologies Corporation Low NOx combustion piloted by low NOx pilots
US5361586A (en) * 1993-04-15 1994-11-08 Westinghouse Electric Corporation Gas turbine ultra low NOx combustor
US5359847B1 (en) * 1993-06-01 1996-04-09 Westinghouse Electric Corp Dual fuel ultra-flow nox combustor
US5636510A (en) * 1994-05-25 1997-06-10 Westinghouse Electric Corporation Gas turbine topping combustor
US6298667B1 (en) * 2000-06-22 2001-10-09 General Electric Company Modular combustor dome
US6755024B1 (en) * 2001-08-23 2004-06-29 Delavan Inc. Multiplex injector
US6813889B2 (en) * 2001-08-29 2004-11-09 Hitachi, Ltd. Gas turbine combustor and operating method thereof
US6962055B2 (en) 2002-09-27 2005-11-08 United Technologies Corporation Multi-point staging strategy for low emission and stable combustion
EP1531305A1 (en) * 2003-11-12 2005-05-18 United Technologies Corporation Multi-point fuel injector
JP4015656B2 (en) 2004-11-17 2007-11-28 三菱重工業株式会社 Gas turbine combustor
JP4418442B2 (en) * 2006-03-30 2010-02-17 三菱重工業株式会社 Gas turbine combustor and combustion control method
US7966820B2 (en) 2007-08-15 2011-06-28 General Electric Company Method and apparatus for combusting fuel within a gas turbine engine
US20090223227A1 (en) * 2008-03-05 2009-09-10 General Electric Company Combustion cap with crown mixing holes
DE102008032265B4 (en) * 2008-07-09 2010-06-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. incinerator
US8327642B2 (en) * 2008-10-21 2012-12-11 General Electric Company Multiple tube premixing device
US20110048022A1 (en) * 2009-08-29 2011-03-03 General Electric Company System and method for combustion dynamics control of gas turbine
US8613197B2 (en) * 2010-08-05 2013-12-24 General Electric Company Turbine combustor with fuel nozzles having inner and outer fuel circuits
US20120055163A1 (en) * 2010-09-08 2012-03-08 Jong Ho Uhm Fuel injection assembly for use in turbine engines and method of assembling same
US8707672B2 (en) * 2010-09-10 2014-04-29 General Electric Company Apparatus and method for cooling a combustor cap
US8991187B2 (en) * 2010-10-11 2015-03-31 General Electric Company Combustor with a lean pre-nozzle fuel injection system
US20130036743A1 (en) * 2011-08-08 2013-02-14 General Electric Company Turbomachine combustor assembly
US8966906B2 (en) * 2011-09-28 2015-03-03 General Electric Company System for supplying pressurized fluid to a cap assembly of a gas turbine combustor
US8966907B2 (en) * 2012-04-16 2015-03-03 General Electric Company Turbine combustor system having aerodynamic feed cap
US20130283802A1 (en) * 2012-04-27 2013-10-31 General Electric Company Combustor
DE102013204307A1 (en) * 2013-03-13 2014-09-18 Siemens Aktiengesellschaft Jet burner with cooling channel in the base plate
US10101032B2 (en) * 2015-04-01 2018-10-16 General Electric Company Micromixer system for a turbine system and an associated method thereof
JP6423760B2 (en) 2015-06-24 2018-11-14 三菱日立パワーシステムズ株式会社 Fuel nozzle structure of gas turbine combustor
JP6074090B1 (en) * 2016-02-02 2017-02-01 大口 元気 Liquid container with pump dispenser
CN106016362B (en) * 2016-05-16 2018-10-09 中国科学院工程热物理研究所 A kind of soft combustion chamber of gas turbine and its control method
CN109424976B (en) * 2017-09-05 2021-07-02 深圳意动航空科技有限公司 Flat aeroderivative gas nozzle
JP2019128125A (en) * 2018-01-26 2019-08-01 川崎重工業株式会社 Burner device
JP2020085284A (en) * 2018-11-20 2020-06-04 三菱日立パワーシステムズ株式会社 Combustor and gas turbine
JP2021055971A (en) * 2019-10-01 2021-04-08 三菱パワー株式会社 Gas turbine combustor
KR102433706B1 (en) * 2021-01-07 2022-08-19 두산에너빌리티 주식회사 Nozzle assembly, Combustor and Gas turbine comprising the same
KR102437976B1 (en) * 2021-01-14 2022-08-30 두산에너빌리티 주식회사 Nozzle assembly, Combustor and Gas turbine comprising the same
FR3135114A1 (en) * 2022-05-02 2023-11-03 Safran METHOD FOR INJECTING HYDROGEN-AIR MIXTURE FOR TURBOMACHINE BURNER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630589Y2 (en) * 1989-04-19 1994-08-17 石川島播磨重工業株式会社 Supporting device for suspension frame in traveling carriage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1074920B (en) * 1955-07-07 1960-02-04 Ing habil Fritz A F Schmidt Murnau Dr (Obb) Method and device for regulating gas turbine combustion chambers with subdivided combustion and several pressure levels
CH407653A (en) * 1962-07-24 1966-02-15 Prvni Brnenska Strojirna Burners for gaseous and liquid fuel, in particular for gas turbines
US3919840A (en) 1973-04-18 1975-11-18 United Technologies Corp Combustion chamber for dissimilar fluids in swirling flow relationship
US4100733A (en) * 1976-10-04 1978-07-18 United Technologies Corporation Premix combustor
JPS5857656A (en) * 1981-09-30 1983-04-05 Toshiba Corp Switching device of control loop
EP0095788B1 (en) * 1982-05-28 1985-12-18 BBC Aktiengesellschaft Brown, Boveri & Cie. Gas turbine combustion chamber and method of operating it
JPS6057131A (en) * 1983-09-08 1985-04-02 Hitachi Ltd Fuel feeding process for gas turbine combustor
EP0169431B1 (en) * 1984-07-10 1990-04-11 Hitachi, Ltd. Gas turbine combustor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630589Y2 (en) * 1989-04-19 1994-08-17 石川島播磨重工業株式会社 Supporting device for suspension frame in traveling carriage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0335978A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691511A1 (en) * 1994-06-10 1996-01-10 General Electric Company Operating a combustor of a gas turbine

Also Published As

Publication number Publication date
DE3854666D1 (en) 1995-12-14
EP0335978A1 (en) 1989-10-11
JPS6463721A (en) 1989-03-09
DE3854666T2 (en) 1996-04-25
JP2528894B2 (en) 1996-08-28
CN1032230A (en) 1989-04-05
CN1011064B (en) 1991-01-02
EP0335978A4 (en) 1989-12-13
EP0335978B1 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
WO1989002052A1 (en) Gas turbine combustor
US5339635A (en) Gas turbine combustor of the completely premixed combustion type
US4910957A (en) Staged lean premix low nox hot wall gas turbine combustor with improved turndown capability
US4356698A (en) Staged combustor having aerodynamically separated combustion zones
US4928481A (en) Staged low NOx premix gas turbine combustor
JP2597793B2 (en) Fuel stage premixed low NOx combustor
US6826913B2 (en) Airflow modulation technique for low emissions combustors
US5201181A (en) Combustor and method of operating same
EP2171356B1 (en) Cool flame combustion
US5473881A (en) Low emission, fixed geometry gas turbine combustor
US5402633A (en) Premix gas nozzle
US4150539A (en) Low pollution combustor
US6616442B2 (en) Low NOx premix burner apparatus and methods
US5013236A (en) Ultra-low pollutant emission combustion process and apparatus
JPH02208417A (en) Gas-turbine burner and operating method therefor
GB2082756A (en) Combustion method and combuster for gas turbine
US5022849A (en) Low NOx burning method and low NOx burner apparatus
US20030101729A1 (en) Retrofittable air assisted fuel injection method to control gaseous and acoustic emissions
JPH08210641A (en) Burner for gas turbine and gas turbine combustion system using the same
GB2098720A (en) Stationary gas turbine combustor arrangements
JPS5913822A (en) Combustion of low calorie gas and burner therefor
JP2544515B2 (en) Gas combustor
JP2565980B2 (en) Gas turbine combustor for low-calorie gas
JPH08128636A (en) Gas combustion apparatus
JP2526272B2 (en) Burner for low NOx combustion of pulverized coal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988907798

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988907798

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988907798

Country of ref document: EP