JP2021055971A - Gas turbine combustor - Google Patents

Gas turbine combustor Download PDF

Info

Publication number
JP2021055971A
JP2021055971A JP2019181123A JP2019181123A JP2021055971A JP 2021055971 A JP2021055971 A JP 2021055971A JP 2019181123 A JP2019181123 A JP 2019181123A JP 2019181123 A JP2019181123 A JP 2019181123A JP 2021055971 A JP2021055971 A JP 2021055971A
Authority
JP
Japan
Prior art keywords
fuel
gas turbine
turbine combustor
orifice
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019181123A
Other languages
Japanese (ja)
Inventor
智広 浅井
Tomohiro Asai
智広 浅井
吉田 正平
Shohei Yoshida
正平 吉田
平田 義隆
Yoshitaka Hirata
義隆 平田
恭大 穐山
Yasuhiro Akiyama
恭大 穐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2019181123A priority Critical patent/JP2021055971A/en
Priority to RU2020131740A priority patent/RU2746489C1/en
Priority to US17/035,954 priority patent/US20210095849A1/en
Priority to CN202011058007.0A priority patent/CN112594735B/en
Priority to DE102020212410.8A priority patent/DE102020212410A1/en
Publication of JP2021055971A publication Critical patent/JP2021055971A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/46Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03343Pilot burners operating in premixed mode

Abstract

To suppress generation of combustion vibration to improve structural reliability in a lean burn gas turbine combustor.SOLUTION: A gas turbine combustor comprises: a cylindrical liner that forms a combustion chamber; and a burner comprising an air hole plate that is arranged at the inlet of the liner and has a plurality of air holes for guiding compressed air to the combustion chamber, and a plurality of fuel nozzles that is arranged on the opposite side of the combustion chamber with the air hole plate interposed therebetween and injects fuel toward the corresponding air holes, wherein the air holes and the fuel nozzles form a plurality of concentric annular rows. An orifice is provided in each of the fuel flow paths of the plurality of fuel nozzles, the plurality of fuel nozzles are divided into a plurality of nozzle groups, and the axial position of the orifice is changed for each nozzle group.SELECTED DRAWING: Figure 1

Description

本発明はガスタービン燃焼器に関する。 The present invention relates to a gas turbine combustor.

火力発電プラントでは、地球温暖化の原因となる二酸化炭素(CO)の排出量を削減するために発電効率の向上が求められている。ガスタービン発電プラントの発電効率の向上には、ガスタービン燃焼器で生成される燃焼ガスの高温化が有効である。しかし、燃焼ガスの高温化には、環境汚染物質である窒素酸化物(NOx)の排出量抑制の技術課題が伴う。 Thermal power plants are required to improve power generation efficiency in order to reduce carbon dioxide (CO 2 ) emissions, which cause global warming. In order to improve the power generation efficiency of a gas turbine power plant, it is effective to raise the temperature of the combustion gas generated by the gas turbine combustor. However, raising the temperature of combustion gas is accompanied by technical problems of controlling the emission of nitrogen oxides (NOx), which is an environmental pollutant.

ガスタービン燃焼器の燃焼方式は、一般に拡散燃焼方式と予混合燃焼方式に大別される。 The combustion method of the gas turbine combustor is generally classified into a diffusion combustion method and a premixed combustion method.

拡散燃焼方式は、燃料を燃焼室に直接噴射して燃焼室内で燃料と空気を混合する方式であり、燃焼室の上流への火炎の逆流や燃料供給流路内での自着火が発生し難く燃焼安定性に優れている。反面、燃料の完全燃焼に必要な空気の割合(量論混合比)に混合された領域で火炎が形成され、火炎が局所的に高温になる。局所高温領域ではNOxが多く発生するため、水や蒸気、窒素等の不活性媒体を噴射してNOx排出量を削減する必要がある。その結果、不活性媒体を供給する補機の動力が必要となり発電効率が低下する。 The diffusion combustion method is a method in which fuel is directly injected into the combustion chamber to mix fuel and air in the combustion chamber, and it is difficult for backflow of flame to the upstream of the combustion chamber and self-ignition in the fuel supply flow path to occur. Excellent combustion stability. On the other hand, a flame is formed in a region mixed with the ratio of air required for complete combustion of fuel (stoichiometric mixture ratio), and the flame becomes locally hot. Since a large amount of NOx is generated in the local high temperature region, it is necessary to inject an inert medium such as water, steam, or nitrogen to reduce NOx emissions. As a result, the power of the auxiliary machine for supplying the inert medium is required, and the power generation efficiency is lowered.

他方の予混合燃焼方式は、燃料と空気を予め混合して燃焼室に供給する方式であり、燃料を希薄に燃焼させることができるためNOx排出量が少ない。反面、燃焼ガスを高温化するに当たり、燃焼用空気温度を上げかつ予混合器内における燃料濃度を高めると、燃焼室の上流に火炎が逆流するリスクが増加する。そのため燃焼器の構造物の焼損が懸念される。 On the other hand, the premixed combustion method is a method in which fuel and air are mixed in advance and supplied to the combustion chamber, and the fuel can be burned leanly, so that the amount of NOx emissions is small. On the other hand, when the temperature of the combustion gas is raised, if the temperature of the combustion air is raised and the fuel concentration in the premixer is raised, the risk of the flame flowing back to the upstream of the combustion chamber increases. Therefore, there is a concern that the structure of the combustor may be burnt.

そこで、燃料の分散性を高めて局所的な高温火炎の形成を防止することで、NOx排出量の低減と火炎の逆流の防止を図った希薄燃焼方式の燃焼器が知られている(特許文献1等)。同方式の燃焼器では、例えば複数の空気孔を持つ空気孔プレートと複数の燃料ノズルとを備え、各燃料ノズルから対応する空気孔に向かって燃料を噴射し、燃料流とこれを包囲する空気流とからなる同軸噴流を燃焼室に供給する。この種の燃焼器において、燃料流量の制御や偏差低減のために燃料ノズルにおける燃料流路の途中にオリフィスを設置した構成もある(特許文献2)。 Therefore, there is known a lean-burn combustor that reduces NOx emissions and prevents backflow of flames by increasing the dispersibility of fuel and preventing the formation of local high-temperature flames (Patent Documents). 1st grade). In the same type of combustor, for example, an air hole plate having a plurality of air holes and a plurality of fuel nozzles are provided, fuel is injected from each fuel nozzle toward the corresponding air hole, and the fuel flow and the air surrounding the fuel flow are injected. A coaxial jet consisting of a stream is supplied to the combustion chamber. In this type of combustor, there is also a configuration in which an orifice is installed in the middle of the fuel flow path in the fuel nozzle in order to control the fuel flow rate and reduce the deviation (Patent Document 2).

特開2003−148734号公報Japanese Unexamined Patent Publication No. 2003-148734 特開2016−035336号公報Japanese Unexamined Patent Publication No. 2016-035336

特許文献1,2のような希薄燃焼方式の燃焼器では、燃焼振動の抑制が課題となる。燃焼振動とは、燃焼室内で火炎による発熱と圧力とが変動を強め合うことで発生する一種の共鳴現象である。この燃焼振動が発生すると特定の周波数で振幅の大きな圧力振動が生じることがあり、ガスタービン構造物に亀裂や破損が発生し構造信頼性が低下する懸念がある。 In a lean-burn type combustor such as Patent Documents 1 and 2, suppression of combustion vibration becomes an issue. Combustion vibration is a kind of resonance phenomenon that occurs when heat generated by a flame and pressure in a combustion chamber intensify fluctuations. When this combustion vibration is generated, pressure vibration having a large amplitude may occur at a specific frequency, and there is a concern that the gas turbine structure may be cracked or damaged and the structural reliability may be lowered.

本発明の目的は、燃焼振動の発生を抑制して構造信頼性を向上させることができる希薄燃焼方式のガスタービン燃焼器を提供することにある。 An object of the present invention is to provide a lean-burn type gas turbine combustor capable of suppressing the generation of combustion vibration and improving the structural reliability.

上記目的を達成するために、本発明は、燃焼室を形成する筒状のライナと、前記ライナの入口に配置され、前記燃焼室に圧縮空気を導く複数の空気孔を備えた空気孔プレート、及び前記空気孔プレートを挟んで前記燃焼室と反対側に配置され、それぞれ対応する空気孔に向かって燃料を噴射する複数の燃料ノズルを備えたバーナとを備え、前記空気孔と前記燃料ノズルが同心円状の複数の環状列を構成しているガスタービン燃焼器において、前記複数の燃料ノズルがそれぞれ燃料流路にオリフィスを備えていると共に複数のノズル群に区分され、前記オリフィスの軸方向位置が前記ノズル群毎に異なっているガスタービン燃焼器を提供する。 In order to achieve the above object, the present invention comprises a tubular liner forming a combustion chamber and an air hole plate arranged at the inlet of the liner and provided with a plurality of air holes for guiding compressed air to the combustion chamber. And a burner provided with a plurality of fuel nozzles arranged on the opposite side of the combustion chamber so as to sandwich the air hole plate and injecting fuel toward the corresponding air holes, the air holes and the fuel nozzles. In a gas turbine combustor forming a plurality of concentric annular rows, the plurality of fuel nozzles each have an orifice in the fuel flow path and are divided into a plurality of nozzle groups, and the axial position of the orifice is determined. A gas turbine combustor that is different for each of the nozzle groups is provided.

本発明によれば、希薄燃焼方式のガスタービン燃焼器において燃焼振動の発生を抑制して構造信頼性を向上させることができる。 According to the present invention, it is possible to suppress the generation of combustion vibration in a lean combustion type gas turbine combustor and improve the structural reliability.

本発明の第1実施形態に係るガスタービン燃焼器を備えたガスタービンプラントの概略構成図Schematic configuration of a gas turbine plant including a gas turbine combustor according to the first embodiment of the present invention. 本発明の第1実施形態に係るガスタービン燃焼器に備えられたバーナの要部構成を表す図であってバーナの中心軸を含む断面図It is a figure which shows the main part structure of the burner provided in the gas turbine combustor which concerns on 1st Embodiment of this invention, and is the sectional view which includes the central axis of a burner. 本発明の第1実施形態に係るガスタービン燃焼器に備えられたバーナを燃焼室から見た図The figure which looked at the burner provided in the gas turbine combustor which concerns on 1st Embodiment of this invention from the combustion chamber 従来のバーナの構造図Structural drawing of a conventional burner 燃焼振動の発生メカニズムの説明図Explanatory drawing of the generation mechanism of combustion vibration 従来のバーナの燃焼室内の圧力変動分布及び燃料流量変動分布を表す図Diagram showing pressure fluctuation distribution and fuel flow rate fluctuation distribution in the combustion chamber of a conventional burner 第1実施形態のバーナの燃焼室内の圧力変動分布及び燃料流量変動分布を表す図The figure which shows the pressure fluctuation distribution and the fuel flow rate fluctuation distribution in the combustion chamber of the burner of 1st Embodiment 本発明の第2実施形態に係るガスタービン燃焼器に備えられたバーナの要部構成を表す図であってバーナの中心軸を含む断面図It is a figure which shows the main part structure of the burner provided in the gas turbine combustor which concerns on 2nd Embodiment of this invention, and is the sectional view which includes the central axis of the burner. 本発明の第2実施形態に係るガスタービン燃焼器に備えられたバーナを燃焼室から見た図The figure which looked at the burner provided in the gas turbine combustor which concerns on 2nd Embodiment of this invention from the combustion chamber 本発明の第3実施形態に係るガスタービン燃焼器を備えたガスタービンプラントの概略構成図Schematic configuration of a gas turbine plant including a gas turbine combustor according to a third embodiment of the present invention. 本発明の第3実施形態に係るガスタービン燃焼器に備えられたバーナを燃焼室から見た図The figure which looked at the burner provided in the gas turbine combustor which concerns on 3rd Embodiment of this invention from the combustion chamber

以下に図面を用いて本発明の実施形態を説明する。 An embodiment of the present invention will be described below with reference to the drawings.

(第1実施形態)
−ガスタービンプラント−
図1は本発明の第1実施形態に係るガスタービン燃焼器を備えたガスタービンプラントの概略構成図である。図2は本発明の第1実施形態に係るガスタービン燃焼器に備えられたバーナの要部構成を表す図であってバーナの中心軸を含む断面図である。図3は本発明の第1実施形態に係るガスタービン燃焼器に備えられたバーナを燃焼室から見た図である。
(First Embodiment)
-Gas turbine plant-
FIG. 1 is a schematic configuration diagram of a gas turbine plant provided with a gas turbine combustor according to the first embodiment of the present invention. FIG. 2 is a view showing a main configuration of a burner provided in the gas turbine combustor according to the first embodiment of the present invention, and is a cross-sectional view including a central axis of the burner. FIG. 3 is a view of a burner provided in the gas turbine combustor according to the first embodiment of the present invention as viewed from a combustion chamber.

ガスタービンプラント1は、空気圧縮機2、ガスタービン燃焼器(以下、燃焼器と略称する)3、タービン4、発電機6を含んで構成されている。空気圧縮機2は空気A1を吸入して圧縮し、圧縮空気A2を燃焼器3に供給する。燃焼器3は圧縮空気A2とガス燃料Fを混合し燃焼させて燃焼ガスG1を生成する。タービン4は燃焼器3で発生した燃焼ガスG1により駆動され、タービン4を駆動した燃焼ガスG1は排気ガスG2として放出される。発電機6はタービン4の回転動力により駆動されて発電する。なお、ガスタービンは起動開始時のみ起動用モータ7により駆動される。 The gas turbine plant 1 includes an air compressor 2, a gas turbine combustor (hereinafter abbreviated as a combustor) 3, a turbine 4, and a generator 6. The air compressor 2 sucks in the air A1 and compresses it, and supplies the compressed air A2 to the combustor 3. The combustor 3 mixes compressed air A2 and gas fuel F and burns them to generate combustion gas G1. The turbine 4 is driven by the combustion gas G1 generated by the combustor 3, and the combustion gas G1 that drives the turbine 4 is discharged as exhaust gas G2. The generator 6 is driven by the rotational power of the turbine 4 to generate electricity. The gas turbine is driven by the starting motor 7 only at the start of starting.

−ガスタービン燃焼器−
燃焼器3は、ガスタービンのケーシング(不図示)に取り付けられており、ライナ(内筒)12、フロースリーブ(外筒)10、バーナ8及び燃料系統200を含んで構成されている。ライナ12は円筒状の部材であり、内部に燃焼室5を形成する。フロースリーブ10はライナ12よりも内径が大きくライナ12の外周を包囲する円筒状の部材であり、ライナ12との間に円筒状の空気流路9を形成する。フロースリーブ10におけるタービン4と反対側(図1中の左側)の端部はエンドカバー13で塞がれている。フロースリーブ10によってライナ12の外周に形成された空気流路9をタービン4から離れる方向に空気圧縮機2からの圧縮空気A2が流通し、空気流路9を流れる圧縮空気A2によってライナ12の外周面が対流冷却される。加えて、ライナ12の壁面には多数の孔が形成されており、空気流路9を流れる圧縮空気A2の一部A3がそれら孔を通って燃焼室5に流入し、ライナ12の内周面をフィルム冷却する。そして、空気流路9を通過してバーナ8に到達した圧縮空気A2が、燃料系統200からバーナ8に供給されるガス燃料Fと共に燃焼室5に噴出して燃焼する。燃焼室5では圧縮空気A2とガス燃料Fとの混合気が燃焼して燃焼ガスG1が生成され、燃焼器尾筒(不図示)を介してタービン4に供給される。
-Gas turbine combustor-
The combustor 3 is attached to a casing (not shown) of a gas turbine, and includes a liner (inner cylinder) 12, a flow sleeve (outer cylinder) 10, a burner 8, and a fuel system 200. The liner 12 is a cylindrical member and forms a combustion chamber 5 inside. The flow sleeve 10 is a cylindrical member having an inner diameter larger than that of the liner 12 and surrounding the outer circumference of the liner 12, and forms a cylindrical air flow path 9 with the liner 12. The end of the flow sleeve 10 on the opposite side (left side in FIG. 1) to the turbine 4 is closed by the end cover 13. Compressed air A2 from the air compressor 2 flows through the air flow path 9 formed on the outer periphery of the liner 12 by the flow sleeve 10 in a direction away from the turbine 4, and the compressed air A2 flowing through the air flow path 9 causes the outer circumference of the liner 12 to flow. The surface is convected cooled. In addition, a large number of holes are formed on the wall surface of the liner 12, and a part A3 of the compressed air A2 flowing through the air flow path 9 flows into the combustion chamber 5 through these holes, and the inner peripheral surface of the liner 12 is formed. The film is cooled. Then, the compressed air A2 that has passed through the air flow path 9 and reached the burner 8 is ejected into the combustion chamber 5 together with the gas fuel F supplied from the fuel system 200 to the burner 8 and burned. In the combustion chamber 5, the air-fuel mixture of the compressed air A2 and the gas fuel F is burned to generate the combustion gas G1, which is supplied to the turbine 4 via the combustor tail tube (not shown).

図1に示すように、バーナ8はライナ12の入口(タービン4と反対側の端部開口)に1つだけ配置されており、空気孔プレート20、燃料ノズル21−23及び燃料分配器(燃料ヘッダ)24を備えている。 As shown in FIG. 1, only one burner 8 is arranged at the inlet of the liner 12 (the end opening opposite to the turbine 4), and the air hole plate 20, the fuel nozzle 21-23, and the fuel distributor (fuel). The header) 24 is provided.

空気孔プレート20はライナ12と同軸の円形のプレートであり、ライナ12の入口(タービン4と反対側の端部開口)に配置されている。この空気孔プレート20には燃焼室5に圧縮空気A2を導く複数の空気孔51−53が備っている。複数の空気孔51−53はライナ12の中心軸Oを中心とする同心円状の複数の環状列を構成している。1列目(最内周)の環状列に属するのが空気孔51、2列目の環状列に属するのが空気孔52、3列目(最外周)の環状列に属するのが空気孔53である。本実施形態では空気孔51−53に旋回角が付けられており、各孔の出口が入口に対して周方向の一方側にずれている。 The air hole plate 20 is a circular plate coaxial with the liner 12, and is arranged at the inlet of the liner 12 (the end opening on the opposite side of the turbine 4). The air hole plate 20 is provided with a plurality of air holes 51-53 for guiding the compressed air A2 into the combustion chamber 5. The plurality of air holes 51-53 form a plurality of concentric annular rows centered on the central axis O of the liner 12. The air holes 51 belong to the first row (innermost circumference) of the annular row, the air holes 52 belong to the second row of the annular row, and the air holes 53 belong to the third row (outermost outer circumference) of the annular row. Is. In the present embodiment, the air holes 51-53 are provided with a turning angle, and the outlet of each hole is deviated to one side in the circumferential direction with respect to the inlet.

燃料ノズル21−23は燃料分配器24に支持されて、空気孔プレート20を挟んで燃焼室5と反対側に配置されている。燃料ノズル21−23は空気孔51−53に数や位置が対応しており(1つの空気孔に1つの燃料ノズルが対応しており)、空気孔51−53と共にライナ12の中心軸Oを中心とする同心円状の複数の環状列を構成している。1列目(最内周)の環状列に属するのが燃料ノズル21、2列目の環状列に属するのが燃料ノズル22、3列目(最外周)の環状列に属するのが燃料ノズル23である。燃料ノズル21−23は対応する空気孔の入口に噴射口を向けており、それぞれ対応する空気孔に向かってガス燃料Fを噴射する。このように多数の燃料ノズルから対応する空気孔に向けて燃料を噴射することで、燃料流の周囲が空気流で覆われた燃料と空気の同軸噴流が各空気孔から燃焼室5に分散して噴射される。 The fuel nozzles 21-23 are supported by the fuel distributor 24 and are arranged on the opposite side of the combustion chamber 5 with the air hole plate 20 interposed therebetween. The number and position of the fuel nozzles 21-23 correspond to the air holes 51-53 (one fuel nozzle corresponds to one air hole), and the central axis O of the liner 12 is provided together with the air holes 51-53. It constitutes a plurality of concentric circular rows centered on it. The fuel nozzle 21 belongs to the first row (innermost circumference) of the annular row, the fuel nozzle 22 belongs to the second row of the annular row, and the fuel nozzle 23 belongs to the third row (outermost outer circumference) of the annular row. Is. The fuel nozzles 21-23 direct the injection ports to the inlets of the corresponding air holes, and inject the gas fuel F toward the corresponding air holes. By injecting fuel from a large number of fuel nozzles toward the corresponding air holes in this way, the coaxial jets of fuel and air whose perimeter of the fuel flow is covered with the air flow are dispersed from each air hole into the combustion chamber 5. Is injected.

なお、環状列の円周の違いから、外側の環状列ほど燃料ノズル及び空気孔の数が多い。つまり、1列目(最内周)の燃料ノズル21及び空気孔51の数(図3の例では各6個)は、2列目の燃料ノズル22及び空気孔52の数(図3の例では各12個)よりも少ない。2列目の燃料ノズル22及び空気孔52の数は3列目(最外周)の燃料ノズル23及び空気孔53の数(図3の例では各18個)よりも少ない。 Due to the difference in the circumference of the annular row, the number of fuel nozzles and air holes is larger in the outer annular row. That is, the number of fuel nozzles 21 and air holes 51 in the first row (innermost circumference) (6 each in the example of FIG. 3) is the number of fuel nozzles 22 and air holes 52 in the second row (example of FIG. 3). Then it is less than 12 each). The number of fuel nozzles 22 and air holes 52 in the second row is smaller than the number of fuel nozzles 23 and air holes 53 in the third row (outermost circumference) (18 each in the example of FIG. 3).

燃料分配器24は燃料ノズル21−23に燃料を分配して供給する部材であり、複数の燃料キャビティ25,26を内部に含んで構成されている。燃料キャビティ25,26は、対応する環状列に属する複数の燃料ノズルにガス燃料Fを分配して供給する役割を果たす空間である。燃料キャビティ25はライナ12の中心軸O上に円柱状に形成され、燃料キャビティ26は燃料キャビティ25の外周を囲うようにして円筒状に形成されている。本実施形態では各燃料ノズル21が燃料キャビティ25に接続し、各燃料ノズル22,23が燃料キャビティ26に接続している。燃料キャビティ25にガス燃料Fが供給されると、最内周の環状列に配置された各燃料ノズル21にガス燃料Fが分配されて噴出し、各空気孔51から燃焼室5に圧縮空気A2と共にガス燃料Fが噴出する。燃料キャビティ26にガス燃料Fが供給されると、2列目及び3列目の環状列に配置された各燃料ノズル22,23にガス燃料Fが分配されて噴出し、空気孔52,53から燃焼室5に圧縮空気A2と共にガス燃料Fが噴出する。 The fuel distributor 24 is a member that distributes and supplies fuel to the fuel nozzles 21-23, and includes a plurality of fuel cavities 25 and 26 inside. The fuel cavities 25 and 26 are spaces that play a role of distributing and supplying the gas fuel F to a plurality of fuel nozzles belonging to the corresponding ring road. The fuel cavity 25 is formed in a columnar shape on the central axis O of the liner 12, and the fuel cavity 26 is formed in a cylindrical shape so as to surround the outer periphery of the fuel cavity 25. In the present embodiment, each fuel nozzle 21 is connected to the fuel cavity 25, and each fuel nozzles 22 and 23 are connected to the fuel cavity 26. When the gas fuel F is supplied to the fuel cavity 25, the gas fuel F is distributed to each fuel nozzle 21 arranged in the innermost annular row and ejected, and the compressed air A2 is distributed from each air hole 51 to the combustion chamber 5. At the same time, gas fuel F is ejected. When the gas fuel F is supplied to the fuel cavity 26, the gas fuel F is distributed and ejected to the fuel nozzles 22 and 23 arranged in the annular rows of the second and third rows, and is ejected from the air holes 52 and 53. Gas fuel F is ejected into the combustion chamber 5 together with compressed air A2.

ここで、本実施形態においては、複数の燃料ノズル21−23のそれぞれが燃料流路にオリフィス71−73を備えている。燃料ノズルには1本につきオリフィスが1つだけ備わっている。燃料ノズル21−23(全燃料ノズル)は複数のノズル群に区分され、オリフィスの軸方向位置がノズル群毎に異なっている。本実施形態では環状列でノズル群が区分してあり、最内周の燃料ノズル21の列が第1のノズル群、2列目の燃料ノズル22の列が第2のノズル群、最外周の燃料ノズル23の列が第3のノズル群である。そして、オリフィス71は各燃料ノズル21に、オリフィス72は各燃料ノズル22に、オリフィス73は各燃料ノズル23に設けられている。なお、図3においてハッチングなしで表した空気孔(本例では空気孔51)がオリフィス71に対応している。右上がりのハッチングで区別した空気孔(本例では空気孔52)がオリフィス72に対応しており、右下がりのハッチングで区別した空気孔(本例では空気孔53)がオリフィス73に対応している。 Here, in the present embodiment, each of the plurality of fuel nozzles 21-23 is provided with an orifice 71-73 in the fuel flow path. Each fuel nozzle has only one orifice. The fuel nozzles 21-23 (all fuel nozzles) are divided into a plurality of nozzle groups, and the axial position of the orifice is different for each nozzle group. In the present embodiment, the nozzle groups are divided by an annular row, and the row of the fuel nozzles 21 on the innermost circumference is the first nozzle group, and the row of the fuel nozzles 22 in the second row is the second nozzle group and the outermost circumference. The row of fuel nozzles 23 is the third nozzle group. The orifice 71 is provided in each fuel nozzle 21, the orifice 72 is provided in each fuel nozzle 22, and the orifice 73 is provided in each fuel nozzle 23. The air holes (air holes 51 in this example) shown without hatching in FIG. 3 correspond to the orifice 71. The air holes (air holes 52 in this example) distinguished by the hatching that goes up to the right correspond to the orifice 72, and the air holes (air holes 53) that are distinguished by the hatching that goes down to the right correspond to the orifice 73. There is.

オリフィス71−73は軸方向位置がそれぞれ相違している。オリフィス72の出口から燃料ノズル22の出口(噴射口)までの距離L2は、オリフィス71の出口から燃料ノズル21の出口までの距離L1よりも長い。オリフィス73から燃料ノズル23の出口までの距離L3は距離L2よりも更に長い(L1<L2<L3)。燃料ノズル21−23の出口の軸方向位置は同一であり、燃焼室5から近い順にオリフィス71,72,73が配置されている。本実施形態では、オリフィス71は燃料ノズル21の軸方向の中央かそれよりも燃焼室5に近い位置に、オリフィス73は燃料ノズル23の入口部に、オリフィス72はオリフィス71,73の中間の軸方向位置に、それぞれ位置している。但し、燃焼室5からの近さの順は変更可能であり、例えばオリフィス73,72,71の順に燃焼室5から近い構成としても良いし、オリフィス73,71,72の順に燃焼室5から近い構成としても良い。 Orifices 71-73 have different axial positions. The distance L2 from the outlet of the orifice 72 to the outlet (injection port) of the fuel nozzle 22 is longer than the distance L1 from the outlet of the orifice 71 to the outlet of the fuel nozzle 21. The distance L3 from the orifice 73 to the outlet of the fuel nozzle 23 is even longer than the distance L2 (L1 <L2 <L3). The axial positions of the outlets of the fuel nozzles 21-23 are the same, and the orifices 71, 72, and 73 are arranged in order from the combustion chamber 5. In the present embodiment, the orifice 71 is located at the center of the fuel nozzle 21 in the axial direction or closer to the combustion chamber 5, the orifice 73 is located at the inlet of the fuel nozzle 23, and the orifice 72 is an intermediate shaft between the orifices 71 and 73. It is located in each of the directional positions. However, the order of proximity to the combustion chamber 5 can be changed. For example, the orifices 73, 72, 71 may be closer to the combustion chamber 5, or the orifices 73, 71, 72 may be closer to the combustion chamber 5. It may be configured.

上記の通り、本実施形態では同一の環状列に属する燃料ノズルのオリフィスの軸方向位置が統一されており、オリフィスの位置が同じ全ての燃料ノズルに同一の燃料キャビティから燃料が供給されるようになっている。全ての燃料ノズル21には同位置にオリフィス71が備わっており、これら燃料ノズル21には同一の燃料キャビティ25から燃料が供給される。また、全ての燃料ノズル22には同位置にオリフィス72が備わっており、同一の燃料キャビティ26から燃料が供給される。全ての燃料ノズル23には同位置にオリフィス73が備わっていて燃料キャビティ26から燃料が供給される。 As described above, in the present embodiment, the axial positions of the orifices of the fuel nozzles belonging to the same annular row are unified, and the fuel is supplied from the same fuel cavity to all the fuel nozzles having the same orifice position. It has become. All fuel nozzles 21 are provided with orifices 71 at the same positions, and fuel is supplied to these fuel nozzles 21 from the same fuel cavity 25. Further, all the fuel nozzles 22 are provided with orifices 72 at the same positions, and fuel is supplied from the same fuel cavity 26. All fuel nozzles 23 are provided with an orifice 73 at the same position to supply fuel from the fuel cavity 26.

また、本実施形態では、最内周の環状列に属するオリフィス71の開口径が、最外周の環状列に属するオリフィス73の開口径に比べて大きくしてある。2列目の環状列に属するオリフィス72の開口径は、オリフィス71の開口径以上でオリフィス73の開口径以下の範囲で設定することができるが、本実施形態ではオリフィス73の開口径に合わせてある。なお、燃料ノズル21−23の出口(噴射口)の開口径はオリフィス71−73の開口径よりも大きく、オリフィス71−73で絞られた燃料流を更に絞って圧力損失が増加しないようにしてある。 Further, in the present embodiment, the opening diameter of the orifice 71 belonging to the innermost annular row is made larger than the opening diameter of the orifice 73 belonging to the outermost annular row. The opening diameter of the orifice 72 belonging to the second annular row can be set within the range of the opening diameter of the orifice 71 or more and equal to or less than the opening diameter of the orifice 73, but in the present embodiment, it is adjusted to the opening diameter of the orifice 73. is there. The opening diameter of the outlet (injection port) of the fuel nozzle 21-23 is larger than the opening diameter of the orifice 71-73, and the fuel flow throttled by the orifice 71-73 is further throttled so that the pressure loss does not increase. is there.

燃料系統200は、燃料供給源56、主流配管57、分岐配管58,59、燃料遮断弁60、燃料流量調整弁61,62を含んで構成されている。燃料供給源56からは主流配管57が延び、この主流配管57は2つの分岐配管58,59に分岐している。分岐配管58は燃料キャビティ25に、分岐配管59は燃料キャビティ26に接続している。燃料遮断弁60は主流配管57に、燃料流量調整弁61は分岐配管58に、燃料流量調整弁62は分岐配管59にそれぞれ設けられている。燃料遮断弁60を開けることで分岐配管58,59にガス燃料Fが供給され、燃料遮断弁60を閉じることで分岐配管58,59へのガス燃料Fの供給が遮断される。燃料流量調整弁61,62は分岐配管58,59を流れる燃料の流量を開度に応じて調整する役割を果たし、全閉状態とすることで分岐配管58,59の燃料の流れを遮断することもできる。例えば燃料遮断弁60を開放し、燃料流量調整弁61の開度を全閉から上げていくことで燃料キャビティ25への燃料の供給流量が増加し、燃料ノズル21からの燃料噴射量、ひいては空気孔51から噴出する同軸噴流の燃空比が増加していく。同様に燃料流量調整弁62の開度を全閉から上げていくことで燃料キャビティ26への燃料の供給流量が増加し、燃料ノズル22,23からの燃料噴射量、ひいては空気孔52,53から噴出する同軸噴流の燃空比が増加していく。 The fuel system 200 includes a fuel supply source 56, a mainstream pipe 57, branch pipes 58 and 59, a fuel shutoff valve 60, and a fuel flow rate adjusting valve 61 and 62. A mainstream pipe 57 extends from the fuel supply source 56, and the mainstream pipe 57 branches into two branch pipes 58 and 59. The branch pipe 58 is connected to the fuel cavity 25, and the branch pipe 59 is connected to the fuel cavity 26. The fuel shutoff valve 60 is provided in the mainstream pipe 57, the fuel flow rate adjusting valve 61 is provided in the branch pipe 58, and the fuel flow rate adjusting valve 62 is provided in the branch pipe 59. By opening the fuel shutoff valve 60, the gas fuel F is supplied to the branch pipes 58 and 59, and by closing the fuel shutoff valve 60, the supply of the gas fuel F to the branch pipes 58 and 59 is cut off. The fuel flow rate adjusting valves 61 and 62 play a role of adjusting the flow rate of the fuel flowing through the branch pipes 58 and 59 according to the opening degree, and shut off the fuel flow of the branch pipes 58 and 59 by making the fuel flow rate adjusting valves 61 and 62 fully closed. You can also. For example, by opening the fuel shutoff valve 60 and increasing the opening degree of the fuel flow rate adjusting valve 61 from fully closed, the fuel supply flow rate to the fuel cavity 25 increases, the fuel injection amount from the fuel nozzle 21, and eventually the air. The fuel-air ratio of the coaxial jet flow ejected from the hole 51 increases. Similarly, by increasing the opening degree of the fuel flow rate adjusting valve 62 from fully closed, the fuel supply flow rate to the fuel cavity 26 increases, and the fuel injection amount from the fuel nozzles 22 and 23, and eventually from the air holes 52 and 53. The fuel-air ratio of the ejected coaxial jet increases.

なお、燃料供給源56から供給されるガス燃料Fは、標準的なガスタービン燃料である天然ガスの他、石油ガス、或いはコークス炉ガスや製油所オフガス、石炭ガス等といった水素や一酸化炭素を含んだガスを使用することができる。 The gas fuel F supplied from the fuel supply source 56 includes natural gas, which is a standard gas turbine fuel, as well as oil gas, hydrogen such as coke oven gas, refinery off gas, and coal gas, and carbon monoxide. The contained gas can be used.

−燃焼振動の発生原理−
従来のバーナ構造を図4に示す。同図には、比較のために本実施形態と同様に3列の同心円状の環状列に空気孔及び燃料ノズルを複数配置したバーナを例示しており、3列の全ての燃料ノズルに軸方向位置が同一のオリフィスZが一様に設置されている。
-Principle of combustion vibration-
The conventional burner structure is shown in FIG. The figure illustrates a burner in which a plurality of air holes and fuel nozzles are arranged in three rows of concentric annular rows as in the present embodiment for comparison, and all the fuel nozzles in the three rows are axially oriented. Orifices Z at the same position are uniformly installed.

図5は燃焼振動の発生メカニズムの説明図である。同図(a)−(f)のグラフは、バーナの燃料ノズル先端の出口近傍(図4の領域E)やバーナ下流の燃焼室内(図4の領域C)における圧力、燃料の供給差圧、燃料流量、発熱の時間変化を表している。近年、燃焼室内の圧力変動と火炎による発熱変動の干渉によって、以下の(a)−(f)のようなメカニズムで燃焼振動が引き起こされることが分かった。(a)−(f)の説明は図5(a)−(f)の説明に相当する。
(a)燃焼室内におけるバーナ下流の領域(領域C)の圧力Pcの変動(変動周期をTとする)が発生する。
(b)(a)と同様に燃料ノズル先端の出口近傍(領域E)の圧力Peが圧力Pcと同位相で変動する。
(c)燃料分配器内(図4の領域S)の燃料の圧力Psは一定であるため、燃料の供給差圧(Ps−Pe)が圧力Pc,Peと逆位相で変動する。
(d)燃料ノズルから領域Eに噴出した燃料の流量が燃料の供給差圧(Ps−Pe)と同位相で変動し、領域Eにおける燃空比(空気に対する燃料の流量比)も同位相で変動する。
(e)領域Eの燃料流量変動に対して、領域Eから領域Cへの燃料の移流時間τconv分の位相遅れで領域Cの燃料流量が変動し、領域Cにおける燃空比も同位相で変動する。
(f)領域Cにおいて燃料と空気の混合気が燃焼して発熱し、燃空比と同位相で火炎による発熱が変動する。
FIG. 5 is an explanatory diagram of the generation mechanism of combustion vibration. The graphs of FIGS. (A) to (f) show the pressure in the vicinity of the outlet of the fuel nozzle tip of the burner (region E in FIG. 4) and the combustion chamber downstream of the burner (region C in FIG. 4), the fuel supply differential pressure, and the fuel supply differential pressure. It shows the time change of fuel flow rate and heat generation. In recent years, it has been found that combustion vibration is caused by the following mechanisms (a)-(f) due to the interference between the pressure fluctuation in the combustion chamber and the heat generation fluctuation due to the flame. The description of (a)-(f) corresponds to the description of FIGS. 5 (a)-(f).
(A) The pressure Pc fluctuates (the fluctuation cycle is T) in the region downstream of the burner (region C) in the combustion chamber.
(B) Similar to (a), the pressure Pe in the vicinity of the outlet (region E) at the tip of the fuel nozzle fluctuates in the same phase as the pressure Pc.
(C) Since the fuel pressure Ps in the fuel distributor (region S in FIG. 4) is constant, the fuel supply differential pressure (Ps-Pe) fluctuates in the opposite phase to the pressures Pc and Pe.
(D) The flow rate of the fuel ejected from the fuel nozzle into the region E fluctuates in the same phase as the fuel supply differential pressure (Ps-Pe), and the fuel-air ratio (fuel flow rate ratio to air) in the region E also has the same phase. fluctuate.
(E) With respect to the fluctuation of the fuel flow rate in the region E, the fuel flow rate in the region C fluctuates due to the phase delay of the advection time τconv of the fuel from the region E to the region C, and the fuel-air ratio in the region C also fluctuates in the same phase. To do.
(F) In region C, the air-fuel mixture burns to generate heat, and the heat generated by the flame fluctuates in phase with the fuel-air ratio.

以上の(a)−(f)の一連の変動が発生し、領域Cにおいて圧力変動(図5(a))と発熱変動(図5(f))が同位相となって強め合い、その結果として燃焼振動が発生する。 The above series of fluctuations (a)-(f) occur, and the pressure fluctuation (FIG. 5 (a)) and the heat generation fluctuation (FIG. 5 (f)) are in phase and strengthen each other in the region C, and as a result. Combustion vibration occurs.

図6は従来のバーナの燃焼室内の圧力変動分布及び燃料流量変動分布を表す図である。同図には、圧力変動分布について、軸方向に変動する振幅の最大/最小(変動振幅の山/谷)を濃淡で表してある。また、燃料流量変動分布について、軸方向に変動する振幅の最大/最小(変動振幅の山/谷)を正弦波で表してある。燃焼室内の圧力変動分布について、同位相の点を通る面はバーナ面(空気孔プレート)に対して平行となる。そして、従来のバーナにおいては、3列の全ての燃料ノズルのオリフィスZが同じ軸方向位置に設置されているため、燃料ノズルから噴出する燃料の流量変動分布についても、同位相の点を通る面がバーナ面に対して平行になってしまう。その結果、燃焼室において圧力変動と燃料流量変動が位相の一致により強め合う領域が広くなり、3列の空気孔の下流領域全体に燃焼振動が発生し易くなる。 FIG. 6 is a diagram showing a pressure fluctuation distribution and a fuel flow rate fluctuation distribution in the combustion chamber of a conventional burner. In the figure, the maximum / minimum of the amplitude that fluctuates in the axial direction (peaks / valleys of the fluctuation amplitude) of the pressure fluctuation distribution is shown by shading. Further, regarding the fuel flow rate fluctuation distribution, the maximum / minimum of the amplitude that fluctuates in the axial direction (peak / valley of the fluctuation amplitude) is represented by a sine wave. Regarding the pressure fluctuation distribution in the combustion chamber, the surface passing through the points of the same phase is parallel to the burner surface (air hole plate). Further, in the conventional burner, since the orifices Z of all the fuel nozzles in the three rows are installed at the same axial positions, the flow rate fluctuation distribution of the fuel ejected from the fuel nozzles also passes through the points of the same phase. Becomes parallel to the burner surface. As a result, in the combustion chamber, the region where the pressure fluctuation and the fuel flow rate fluctuation strengthen each other due to the matching of the phases becomes wide, and the combustion vibration is likely to occur in the entire downstream region of the three rows of air holes.

−効果−
(1)本実施形態によれば、ノズル群毎にオリフィスの軸方向位置が異なっていることで部分負荷条件においても燃焼振動の発生を抑制できる。原理を以下に説明する。
-Effect-
(1) According to the present embodiment, since the axial position of the orifice is different for each nozzle group, it is possible to suppress the occurrence of combustion vibration even under partial load conditions. The principle will be described below.

図7は第1実施形態のバーナの燃焼室内の圧力変動分布及び燃料流量変動分布を表す図である。同図においても図6と同様に圧力変動分布及び燃料流量変動分布の変動振幅の山/谷をそれぞれ濃淡及び正弦波で示してある。燃焼室内の圧力変動分布については、本実施形態においても従来のバーナと同じく同位相の点を通る面がバーナ面に対して平行になる。それに対し、本実施形態ではノズル群毎にオリフィスの軸方向位置が変えてあるため、燃料ノズル21−23から噴出する燃料の流量変動分布については、同位相の点を通る面がバーナ面に対して傾斜する。その結果、圧力変動と燃料流量変動の位相が一致する領域が局所的になり、空気孔51−53の下流域全体で燃焼振動が発生するようなことがなくなる。これにより燃焼振動の発生を抑制することができ、希薄燃焼方式のガスタービン燃焼器において構造信頼性を向上させることができる。 FIG. 7 is a diagram showing a pressure fluctuation distribution and a fuel flow rate fluctuation distribution in the combustion chamber of the burner of the first embodiment. In the same figure as in FIG. 6, the peaks / valleys of the fluctuation amplitudes of the pressure fluctuation distribution and the fuel flow fluctuation distribution are shown by shading and sine waves, respectively. Regarding the pressure fluctuation distribution in the combustion chamber, in the present embodiment as well, the plane passing through the points of the same phase is parallel to the burner plane as in the conventional burner. On the other hand, in the present embodiment, since the axial position of the orifice is changed for each nozzle group, regarding the flow rate fluctuation distribution of the fuel ejected from the fuel nozzles 21-23, the surface passing through the points of the same phase is relative to the burner surface. And incline. As a result, the region where the phases of the pressure fluctuation and the fuel flow rate fluctuation coincide with each other becomes local, and combustion vibration does not occur in the entire downstream region of the air holes 51-53. As a result, the generation of combustion vibration can be suppressed, and the structural reliability of the lean combustion type gas turbine combustor can be improved.

また、本実施形態においては、多数の燃料ノズル21−23から分散してガス燃料Fの燃料流を噴射し、各燃料流を個別に対応する空気孔51−53に通すことで、各燃料流を圧縮空気A2で包囲された同軸噴流として燃焼室5に噴出されることができる。これにより燃料の分散性が高められてNOx排出量を低減することができる。 Further, in the present embodiment, each fuel flow is dispersed from a large number of fuel nozzles 21-23 to inject the fuel flow of the gas fuel F, and each fuel flow is passed through the corresponding air holes 51-53 individually. Can be ejected into the combustion chamber 5 as a coaxial jet surrounded by compressed air A2. As a result, the dispersibility of the fuel is enhanced and the NOx emission amount can be reduced.

(2)本実施形態に係るガスタービンの運転を開始する場合、1列目(最内周)の燃料ノズル21にガス燃料Fを供給して着火した後、部分負荷条件で2,3列目の燃料ノズル22,23にもガス燃料Fを供給して定格負荷条件まで負荷を上昇させる。このように運転される燃焼器では、環状列毎に燃料ノズルの長さや出口(噴射口)の開口径等の仕様が決定されることが多い。そのため、オリフィスの仕様も環状列毎に仕様を決める、つまり同一仕様のノズルには同一のオリフィスを同位置に設けることで、製作する燃料ノズルの種類を抑えることができ、燃料ノズルの製作コスト低減に貢献できる。 (2) When starting the operation of the gas turbine according to the present embodiment, after the gas fuel F is supplied to the fuel nozzle 21 in the first row (innermost circumference) and ignited, the second and third rows are subjected to partial load conditions. Gas fuel F is also supplied to the fuel nozzles 22 and 23 of the above to increase the load to the rated load condition. In the combustor operated in this way, specifications such as the length of the fuel nozzle and the opening diameter of the outlet (injection port) are often determined for each annular row. Therefore, the specifications of the orifices are also determined for each annular row, that is, by providing the same orifices at the same positions for nozzles with the same specifications, the types of fuel nozzles to be manufactured can be suppressed, and the manufacturing cost of fuel nozzles can be reduced. Can contribute to.

その観点において、本実施形態では同一の環状列に属する燃料ノズルのオリフィスの軸方向位置が統一してあるので、燃料ノズルの製作コスト、ひいてはバーナ8、燃焼器3、ガスタービンプラントの製作コストが抑えられる。 From this point of view, in the present embodiment, the axial positions of the orifices of the fuel nozzles belonging to the same annular row are unified, so that the manufacturing cost of the fuel nozzles, and by extension, the manufacturing costs of the burner 8, the combustor 3, and the gas turbine plant are reduced. It can be suppressed.

(3)本実施形態では、最内周の環状列に属する燃料ノズル21に設けたオリフィス71の開口径が、最外周の環状列に属する燃料ノズル23に設けたオリフィス73の開口径に比べて大きい。このように燃料ノズルの本数が少ない内周側の環状列ほどオリフィスの開口径を大きくすることで、燃料の供給差圧の過度な増加を抑えることができる。 (3) In the present embodiment, the opening diameter of the orifice 71 provided in the fuel nozzle 21 belonging to the innermost annular row is larger than the opening diameter of the orifice 73 provided in the fuel nozzle 23 belonging to the outermost annular row. large. As described above, by increasing the opening diameter of the orifice in the annular row on the inner peripheral side where the number of fuel nozzles is small, it is possible to suppress an excessive increase in the fuel supply differential pressure.

但し、前述した本質的効果(1)を得る限りにおいてはオリフィスの開口径に差を付ける必要は必ずしもなく、オリフィス71−73の開口径を統一した構成とすることができる。 However, as long as the above-mentioned essential effect (1) is obtained, it is not always necessary to make a difference in the opening diameter of the orifice, and the opening diameter of the orifices 71-73 can be unified.

(第2実施形態)
−構成−
図8は本発明の第2実施形態に係るガスタービン燃焼器に備えられたバーナの要部構成を表す図であってバーナの中心軸を含む断面図である。図9は本発明の第2実施形態に係るガスタービン燃焼器に備えられたバーナを燃焼室から見た図である。これら図8及び図9は第1実施形態の図2及び図3に対応している。
(Second Embodiment)
− Configuration −
FIG. 8 is a view showing a main configuration of a burner provided in the gas turbine combustor according to the second embodiment of the present invention, and is a cross-sectional view including a central axis of the burner. FIG. 9 is a view of a burner provided in the gas turbine combustor according to the second embodiment of the present invention as viewed from a combustion chamber. 8 and 9 correspond to FIGS. 2 and 3 of the first embodiment.

本実施形態が第1実施形態と相違する点は、環状列が周方向に複数の領域X1−X3に区分されており、ノズル群がこれら領域X1−X3で区分され、同一の環状列にオリフィスの軸方向位置が異なる燃料ノズルが混在している点である。領域X1に属するオリフィス71−73はノズル出口から距離L4の同一の軸方向位置にあり、領域X2に属するオリフィス71−73はノズル出口から距離L5(>L4)の同一の軸方向位置にある。図8では図示されていないが、領域X3に属するオリフィス71−73はノズル出口から距離L6(>L5)の同一の軸方向位置にある。図9においてハッチングなしで表した領域X1の空気孔51−53が距離L4の位置にあるオリフィス71−73に対応している。右上がりのハッチングで区別した領域X2の空気孔51−53が距離L5の位置にあるオリフィス71−73に、右下がりのハッチングで区別した領域X3の空気孔51−53が距離L6の位置にあるオリフィス71−73に対応している。このように、1列目(最内周)の環状列には、オリフィス71の軸方向位置が異なる燃料ノズル21が混在している。同じく2列目の環状列にはオリフィス72の軸方向位置が異なる燃料ノズル22が混在しており、3列目(最外周)の環状列にはオリフィス73の軸方向位置が異なる燃料ノズル23が混在している。 The difference between this embodiment and the first embodiment is that the annular row is divided into a plurality of regions X1-X3 in the circumferential direction, the nozzle group is divided into these regions X1-X3, and the orifices are formed in the same annular row. The point is that fuel nozzles with different axial positions are mixed. The orifices 71-73 belonging to the region X1 are at the same axial position at a distance L4 from the nozzle outlet, and the orifices 71-73 belonging to the region X2 are at the same axial position at a distance L5 (> L4) from the nozzle outlet. Although not shown in FIG. 8, orifices 71-73 belonging to region X3 are located at the same axial position at a distance L6 (> L5) from the nozzle outlet. The air holes 51-53 of the region X1 shown without hatching in FIG. 9 correspond to the orifices 71-73 at the position of the distance L4. The air holes 51-53 of the region X2 distinguished by the upward-sloping hatching are located at the orifice 71-73 at the distance L5, and the air holes 51-53 of the region X3 distinguished by the downward-sloping hatching are located at the distance L6. Corresponds to orifices 71-73. As described above, the fuel nozzles 21 having different axial positions of the orifice 71 are mixed in the annular row of the first row (innermost circumference). Similarly, fuel nozzles 22 having different axial positions of the orifice 72 are mixed in the second row of the annular row, and fuel nozzles 23 having different axial positions of the orifice 73 are included in the third row (outermost outer circumference) of the annular row. It is mixed.

燃料ノズル21−23及び空気孔51−53の構成や燃料ノズル1本につきオリフィスが1つだけ備わっている点、内周のオリフィス71の開口径が大きくなっている点を含め、その他の点は第1実施形態と同様である。 Other points include the configuration of the fuel nozzles 21-23 and the air holes 51-53, the fact that each fuel nozzle has only one orifice, and the fact that the opening diameter of the orifice 71 on the inner circumference is large. It is the same as the first embodiment.

−効果−
本実施形態においては、第1実施形態と同様の効果(1)及び(3)に加え、以下の効果が得られる。本実施形態に係るガスタービンの運転を開始する場合、1列目(最内周)の燃料ノズル21にガス燃料Fを供給して着火した後、部分負荷条件で2,3列目の燃料ノズル22,23にもガス燃料Fを供給して定格負荷条件まで負荷を上昇させる。この間、1列目の燃料ノズル21のみを使用した状態でも、オリフィス71の軸方向位置が異なる燃料ノズル21が混在しており、それら燃料ノズル21から噴出する燃料の流量変動について同位相の点を通る面がバーナ面に対して傾斜する。これにより、ガスタービンの起動過程の各段階において、圧力変動と燃料流量変動の位相が一致する領域の形成を抑制して燃焼振動の発生を抑制することができる。
-Effect-
In this embodiment, in addition to the same effects (1) and (3) as in the first embodiment, the following effects can be obtained. When starting the operation of the gas turbine according to the present embodiment, after the gas fuel F is supplied to the fuel nozzle 21 in the first row (innermost circumference) and ignited, the fuel nozzles in the second and third rows are subjected to partial load conditions. Gas fuel F is also supplied to 22 and 23 to increase the load to the rated load condition. During this period, even when only the fuel nozzles 21 in the first row are used, fuel nozzles 21 having different axial positions of the orifice 71 are mixed, and points having the same phase with respect to the flow rate fluctuation of the fuel ejected from the fuel nozzles 21 are pointed out. The passing surface is inclined with respect to the burner surface. As a result, it is possible to suppress the formation of a region in which the phases of the pressure fluctuation and the fuel flow rate fluctuation coincide with each other at each stage of the gas turbine starting process, and to suppress the occurrence of combustion vibration.

(第3実施形態)
−構成−
図10は本発明の第3実施形態に係るガスタービン燃焼器を備えたガスタービンプラントの概略構成図、図11は本実施形態に係るガスタービン燃焼器に備えられたバーナを燃焼室から見た図である。本実施形態が第1実施形態及び第2実施形態と相違する点は、バーナを複数含んで構成されたマルチバーナである点である。本実施形態に係る燃焼器3は、パイロットバーナ31と複数(本例では6つ)のメインバーナ32を備えており、中央に配置した1つのパイロットバーナ31の周囲を複数のメインバーナ32が囲うようにして配置されている。パイロットバーナ31及び個々のメインバーナ32には、第1実施形態又は第2実施形態のバーナ8を適用することができる。例えばパイロットバーナ31及びメインバーナ32の全てに第1実施形態のバーナ8を適用することもできるし、パイロットバーナ31及びメインバーナ32の全てに第2実施形態のバーナ8を適用することもできる。第1実施形態のバーナ8と第2実施形態のバーナ8を適宜混在させることもできる。空気孔プレート20についてはパイロットバーナ31と複数のメインバーナ32とで共用する(1枚の空気孔プレート20に各バーナの空気孔51−53を形成する)ことができる。
(Third Embodiment)
− Configuration −
FIG. 10 is a schematic configuration diagram of a gas turbine plant provided with a gas turbine combustor according to a third embodiment of the present invention, and FIG. 11 is a burner provided with a gas turbine combustor according to the present embodiment as viewed from a combustion chamber. It is a figure. The difference between the present embodiment and the first embodiment and the second embodiment is that the multi-burner is configured to include a plurality of burners. The combustor 3 according to the present embodiment includes a pilot burner 31 and a plurality of (six in this example) main burners 32, and the plurality of main burners 32 surround one pilot burner 31 arranged in the center. It is arranged in this way. The burner 8 of the first embodiment or the second embodiment can be applied to the pilot burner 31 and the individual main burners 32. For example, the burner 8 of the first embodiment can be applied to all of the pilot burner 31 and the main burner 32, or the burner 8 of the second embodiment can be applied to all of the pilot burner 31 and the main burner 32. The burner 8 of the first embodiment and the burner 8 of the second embodiment can be appropriately mixed. The air hole plate 20 can be shared by the pilot burner 31 and the plurality of main burners 32 (the air holes 51-53 of each burner are formed in one air hole plate 20).

燃料系統200については、パイロットバーナ31及びメインバーナ32の総数(本例では7)と同数組の分岐配管58,59が主流配管57から分岐し、対応するバーナの燃料キャビティ25,26に接続している。メインバーナ32については、少なくとも2つのバーナで燃料系統(分岐配管59及び燃料流量調整弁62)を共用する構成としても良い。第1実施形態及び第2実施形態と同様、主流配管57及び分岐配管58,59には、それぞれ燃料遮断弁60、燃料流量調整弁61,62が設けられている。 Regarding the fuel system 200, the same number of branch pipes 58 and 59 as the total number of pilot burners 31 and main burners 32 (7 in this example) branch from the mainstream pipes 57 and are connected to the fuel cavities 25 and 26 of the corresponding burners. ing. The main burner 32 may be configured to share the fuel system (branch pipe 59 and fuel flow rate adjusting valve 62) with at least two burners. Similar to the first embodiment and the second embodiment, the mainstream pipe 57 and the branch pipes 58 and 59 are provided with a fuel shutoff valve 60 and a fuel flow rate adjusting valve 61 and 62, respectively.

その他の点について、本実施形態は第1実施形態及び第2実施形態と同様である。 In other respects, the present embodiment is the same as the first embodiment and the second embodiment.

−効果−
第1実施形態又は第2実施形態のバーナ構成をパイロットバーナ31及びメインバーナ32に適用してマルチバーナを構成することにより、大容量のガスタービンを対象としても第1実施形態、第2実施形態又は双方の実施形態と同様の効果を得ることができる。
-Effect-
By applying the burner configuration of the first embodiment or the second embodiment to the pilot burner 31 and the main burner 32 to form a multi-burner, the first embodiment and the second embodiment can be used even for a large-capacity gas turbine. Alternatively, the same effect as that of both embodiments can be obtained.

3…ガスタービン燃焼器、5…燃焼室、8…バーナ、12…ライナ、20…空気孔プレート、21−23…燃料ノズル、25,26…燃料キャビティ、31…パイロットバーナ(バーナ)、32…メインバーナ(バーナ)、51−53…空気孔、71−73…オリフィス、A2…圧縮空気、X1−X3…領域 3 ... Gas turbine combustor, 5 ... Combustion chamber, 8 ... Burner, 12 ... Liner, 20 ... Air hole plate, 21-23 ... Fuel nozzle, 25, 26 ... Fuel cavity, 31 ... Pilot burner (burner), 32 ... Main burner (burner), 51-53 ... air holes, 71-73 ... orifice, A2 ... compressed air, X1-X3 ... region

Claims (5)

燃焼室を形成する筒状のライナと、
前記ライナの入口に配置され、前記燃焼室に圧縮空気を導く複数の空気孔を備えた空気孔プレート、及び前記空気孔プレートを挟んで前記燃焼室と反対側に配置され、それぞれ対応する空気孔に向かって燃料を噴射する複数の燃料ノズルを備えたバーナとを備え、
前記空気孔と前記燃料ノズルが同心円状の複数の環状列を構成しているガスタービン燃焼器において、
前記複数の燃料ノズルがそれぞれ燃料流路にオリフィスを備えていると共に複数のノズル群に区分され、
前記オリフィスの軸方向位置が前記ノズル群毎に異なっているガスタービン燃焼器。
The tubular liner that forms the combustion chamber and
An air hole plate arranged at the inlet of the liner and having a plurality of air holes for guiding compressed air to the combustion chamber, and an air hole arranged on the opposite side of the air hole plate from the combustion chamber and corresponding to each other. Equipped with a burner with multiple fuel nozzles that inject fuel towards
In a gas turbine combustor in which the air holes and the fuel nozzle form a plurality of concentric annular rows.
Each of the plurality of fuel nozzles has an orifice in the fuel flow path and is divided into a plurality of nozzle groups.
A gas turbine combustor in which the axial position of the orifice is different for each nozzle group.
請求項1のガスタービン燃焼器において、前記ノズル群が前記環状列で区分され、同一の環状列に属する燃料ノズルのオリフィスの軸方向位置が統一されているガスタービン燃焼器。 In the gas turbine combustor of claim 1, the gas turbine combustor in which the nozzle group is divided by the annular row and the axial positions of the orifices of the fuel nozzles belonging to the same annular row are unified. 請求項1のガスタービン燃焼器において、
対応する環状列に属する複数の燃料ノズルに燃料を分配して供給する複数の燃料キャビティを備えており、
前記環状列が周方向に複数の領域に区分され、前記ノズル群が前記領域で区分されており、同一の環状列にオリフィスの軸方向位置が異なる燃料ノズルが混在しているガスタービン燃焼器。
In the gas turbine combustor of claim 1,
It has multiple fuel cavities that distribute and supply fuel to multiple fuel nozzles belonging to the corresponding ring road.
A gas turbine combustor in which the annular row is divided into a plurality of regions in the circumferential direction, the nozzle group is divided into the regions, and fuel nozzles having different axial positions of orifices are mixed in the same annular row.
請求項1のガスタービン燃焼器において、最内周の環状列に属するオリフィスの開口径が、最外周の環状列に属するオリフィスの開口径に比べて大きいガスタービン燃焼器。 The gas turbine combustor according to claim 1, wherein the opening diameter of the orifice belonging to the innermost annular row is larger than the opening diameter of the orifice belonging to the outermost annular row. 請求項1のガスタービン燃焼器において、前記バーナを複数含んで構成されているガスタービン燃焼器。 The gas turbine combustor according to claim 1, wherein the gas turbine combustor is configured to include a plurality of the burners.
JP2019181123A 2019-10-01 2019-10-01 Gas turbine combustor Pending JP2021055971A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019181123A JP2021055971A (en) 2019-10-01 2019-10-01 Gas turbine combustor
RU2020131740A RU2746489C1 (en) 2019-10-01 2020-09-28 Gas turbine plant combustion device
US17/035,954 US20210095849A1 (en) 2019-10-01 2020-09-29 Gas Turbine Combustor
CN202011058007.0A CN112594735B (en) 2019-10-01 2020-09-29 Gas turbine combustor
DE102020212410.8A DE102020212410A1 (en) 2019-10-01 2020-09-30 Gas turbine combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019181123A JP2021055971A (en) 2019-10-01 2019-10-01 Gas turbine combustor

Publications (1)

Publication Number Publication Date
JP2021055971A true JP2021055971A (en) 2021-04-08

Family

ID=74872715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019181123A Pending JP2021055971A (en) 2019-10-01 2019-10-01 Gas turbine combustor

Country Status (5)

Country Link
US (1) US20210095849A1 (en)
JP (1) JP2021055971A (en)
CN (1) CN112594735B (en)
DE (1) DE102020212410A1 (en)
RU (1) RU2746489C1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287134B2 (en) * 2019-12-31 2022-03-29 General Electric Company Combustor with dual pressure premixing nozzles
US11828467B2 (en) 2019-12-31 2023-11-28 General Electric Company Fluid mixing apparatus using high- and low-pressure fluid streams
KR102437977B1 (en) * 2021-01-18 2022-08-30 두산에너빌리티 주식회사 Nozzle assembly, Combustor and Gas turbine comprising the same
DE102022207490A1 (en) 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Nozzle device for adding fuel into a combustion chamber of a gas turbine assembly and gas turbine assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170010A (en) * 2002-11-21 2004-06-17 Hitachi Ltd Gas turbine combustor and method of supplying fuel to the same
US20100297566A1 (en) * 2007-07-23 2010-11-25 Centre National De La Recherche Scientifique-Cnrs Device for injecting a fuel/oxidiser pre-mixture, comprising means for passive control of the combustion instabilities
JP2012154570A (en) * 2011-01-27 2012-08-16 Hitachi Ltd Gas turbine combustor
US20130045450A1 (en) * 2011-08-19 2013-02-21 General Electric Company System and method for reducing combustion dynamics in a combustor
JP2013170776A (en) * 2012-02-22 2013-09-02 Hitachi Ltd Gas turbine combustor
JP2014185791A (en) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd Combustor, and gas turbine
JP2017533399A (en) * 2014-10-06 2017-11-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Combustor and method for damping vibration modes under high frequency combustion dynamics

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528894B2 (en) * 1987-09-04 1996-08-28 株式会社日立製作所 Gas turbine combustor
CN1242201C (en) * 2001-07-10 2006-02-15 三菱重工业株式会社 Premixing nozzle, burner and gas turbine
US6813889B2 (en) * 2001-08-29 2004-11-09 Hitachi, Ltd. Gas turbine combustor and operating method thereof
JP3960166B2 (en) * 2001-08-29 2007-08-15 株式会社日立製作所 Gas turbine combustor and operation method of gas turbine combustor
US6928823B2 (en) * 2001-08-29 2005-08-16 Hitachi, Ltd. Gas turbine combustor and operating method thereof
FR2901349B1 (en) * 2006-05-19 2008-09-05 Snecma Sa COMBUSTION CHAMBER OF A TURBOMACHINE
JP5188238B2 (en) * 2007-04-26 2013-04-24 株式会社日立製作所 Combustion apparatus and burner combustion method
JP2009014297A (en) * 2007-07-06 2009-01-22 Hitachi Ltd Gas turbine combustor
US8616002B2 (en) * 2009-07-23 2013-12-31 General Electric Company Gas turbine premixing systems
JP5103454B2 (en) * 2009-09-30 2012-12-19 株式会社日立製作所 Combustor
US8919673B2 (en) * 2010-04-14 2014-12-30 General Electric Company Apparatus and method for a fuel nozzle
US8572979B2 (en) * 2010-06-24 2013-11-05 United Technologies Corporation Gas turbine combustor liner cap assembly
US20150082794A1 (en) * 2013-09-26 2015-03-26 Reinhard Schilp Apparatus for acoustic damping and operational control of damping, cooling, and emissions in a gas turbine engine
JP2015083779A (en) * 2013-10-25 2015-04-30 三菱日立パワーシステムズ株式会社 Gas turbine combustor and gas turbine combustor control method
JP5940227B2 (en) * 2013-11-05 2016-06-29 三菱日立パワーシステムズ株式会社 Gas turbine combustor
JP6191918B2 (en) * 2014-03-20 2017-09-06 三菱日立パワーシステムズ株式会社 Nozzle, burner, combustor, gas turbine, gas turbine system
CN204901832U (en) * 2015-06-10 2015-12-23 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Nozzle that axial is sprayed

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170010A (en) * 2002-11-21 2004-06-17 Hitachi Ltd Gas turbine combustor and method of supplying fuel to the same
US20100297566A1 (en) * 2007-07-23 2010-11-25 Centre National De La Recherche Scientifique-Cnrs Device for injecting a fuel/oxidiser pre-mixture, comprising means for passive control of the combustion instabilities
JP2012154570A (en) * 2011-01-27 2012-08-16 Hitachi Ltd Gas turbine combustor
US20130045450A1 (en) * 2011-08-19 2013-02-21 General Electric Company System and method for reducing combustion dynamics in a combustor
JP2013170776A (en) * 2012-02-22 2013-09-02 Hitachi Ltd Gas turbine combustor
JP2014185791A (en) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd Combustor, and gas turbine
JP2017533399A (en) * 2014-10-06 2017-11-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Combustor and method for damping vibration modes under high frequency combustion dynamics

Also Published As

Publication number Publication date
CN112594735A (en) 2021-04-02
RU2746489C1 (en) 2021-04-14
US20210095849A1 (en) 2021-04-01
CN112594735B (en) 2022-06-14
DE102020212410A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US10584638B2 (en) Turbine nozzle cooling with panel fuel injector
EP1426689B1 (en) Gas turbine combustor having staged burners with dissimilar mixing passage geometries
US6826913B2 (en) Airflow modulation technique for low emissions combustors
JP2021055971A (en) Gas turbine combustor
KR101576452B1 (en) Method for mixing a dilution air in a sequential combustion system of a gas turbine
US7908863B2 (en) Fuel nozzle for a gas turbine engine and method for fabricating the same
US20110016866A1 (en) Apparatus for fuel injection in a turbine engine
US20100218501A1 (en) Premixed direct injection disk
US20100319353A1 (en) Multiple Fuel Circuits for Syngas/NG DLN in a Premixed Nozzle
US20150219336A1 (en) Systems and methods for reducing modal coupling of combustion dynamics
KR20050029676A (en) Method and apparatus for reducing gas turbine engine emissions
US20150135723A1 (en) Combustor nozzle and method of supplying fuel to a combustor
CN112594734B (en) Gas turbine combustor
US20210180518A1 (en) Gas Turbine Combustor
JP2016538454A (en) Liquid fuel cartridge for fuel nozzle
US20140352312A1 (en) Injector for introducing a fuel-air mixture into a combustion chamber
US20180340689A1 (en) Low Profile Axially Staged Fuel Injector
JP5972125B2 (en) Gas turbine combustor
US20230288067A1 (en) Combustor for a gas turbine
KR102522144B1 (en) Fuel supply system for combustor
JP2017072271A (en) Gas turbine combustor
JP2556798B2 (en) Gas turbine combustor
KR20230040672A (en) Fuel supply system for combustor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20211214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230926