US20030101729A1 - Retrofittable air assisted fuel injection method to control gaseous and acoustic emissions - Google Patents

Retrofittable air assisted fuel injection method to control gaseous and acoustic emissions Download PDF

Info

Publication number
US20030101729A1
US20030101729A1 US10/010,594 US1059401A US2003101729A1 US 20030101729 A1 US20030101729 A1 US 20030101729A1 US 1059401 A US1059401 A US 1059401A US 2003101729 A1 US2003101729 A1 US 2003101729A1
Authority
US
United States
Prior art keywords
air
fuel
premix
pilot
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/010,594
Inventor
Ram Srinivasan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority to US10/010,594 priority Critical patent/US20030101729A1/en
Assigned to HONEYWELL INTERNATIONAL, INC. reassignment HONEYWELL INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SRINIVASAN, RAM
Assigned to HONEYWELL INTERNATIONAL, INC. reassignment HONEYWELL INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURNES, DANIEL W., NAZEER, WASEEM A.
Publication of US20030101729A1 publication Critical patent/US20030101729A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices

Abstract

In the operation of gas turbine engines, it is an ever increasing goal to reduce the amount of harmful elements contained within the emissions of the engine. It is also desirable to provide a method and system that is capable of being utilized to retrofit existing gas turbine engines. In particular, it is of primary importance to reduce the amounts of nitrogen oxides contained within the emissions. Many times, reduced emissions comes at the cost of decreased flame operability. The present invention provides airflow to the pilot fuel line of a combustor in order to reduce the total harmful emissions, yet at the same time allow improved flame stability.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/251,902 filed Dec. 6, 2000 and titled “EMISSIONS IMPROVEMENT IN GAS TURBINE COMBUSTORS.”[0001]
  • BACKGROUND OF THE INVENTION
  • The present invention generally relates to generally to industrial and power generation systems, and more particularly to a method and system for modifying industrial and power generation systems with reduced emissions and improved flame operability. [0002]
  • The conventional gas turbine combustor, as used in a gas turbine power generating system, requires a mixture of fuel and air which is ignited and combusted uniformly. Generally, the fuel injected from a fuel nozzle into the inner tube of the combustor is mixed with air for combustion, fed under pressure from the air duct, ignited by a spark plug and combusted. The gas that results is lowered to a predetermined turbine inlet temperature by the addition of cooling air and dilutent air, then injected through a turbine nozzle into a gas turbine. [0003]
  • It is well known within the art that exhaust gases produced by combusting hydrocarbon fuels can contribute to atmospheric pollution. This occurrence is attributed to the development of localized high temperature zone, which can exceed 2,000° C. Exhaust gases typically contain many undesirable pollutants such as nitric oxide (NO) and nitrogen dioxide (NO[0004] 2), which are frequently grouped together as Nitrogen Oxides (NOx), unburned hydrocarbons (UHC), carbon monoxide (CO), and particulates, primarily carbon soot.
  • It is also known that the amount of undesirable pollutants can be reduced and controlled by design modifications, clean-up of exhaust gases and/or regulating the quality of fuel. The formation of oxides of nitrogen involves the direct oxidation of nitrogen and oxygen, and the rate of the chemical reaction producing this by-product is an exponential function of temperature which is particularly dependant on the temperature in the main combustion zone. Therefore, a small reduction in temperature within the main combustion zone can result in a large reduction in the quantity of oxides of nitrogen. [0005]
  • Gas turbine engines emit higher levels of Oxides of Nitrogen (NO[0006] x) at high power operation. This is caused by high peak flame temperatures existing in the combustion chamber. In most gas turbine dry low NOx combustors, emissions are reduced by premixing fuel and air. The fuel and air must be premixed to a very lean mixture to reduce the peak flame temperature. Typically, the amount of airflow required to reduce the NOx levels below 25 parts per million (ppm) is greater than 30 times the amount of fuel flow. Combustors operating with such lean mixtures operate very close to lean extinction limits and tend to have poor operability. Frequently, a richer, piloted region in the combustor is used to improve the operability of dry low emission combustors. In these systems, most of the NOx emissions are produced in the pilot region.
  • U.S. Pat. No. 5,303,542 issued to Hoffa discloses a method of reducing emissions that maintains flame temperature within predetermined limits by increasing the combustor airflow during periods of increased fuel flow and by increasing the burner area when the airflow has reached an upper limit. Increases in burner area are countered by decreasing airflow until the airflow reaches a lower limit, at which time the procedure repeats itself. When the fuel flow is decreased, the airflow is reduced until it reaches its lower limit, at which time the burner area is decreased, allowing the airflow to rise to its upper limit, at which time, the procedure repeats itself. [0007]
  • Accordingly, what is needed is a method and system for combusting hydrocarbon fuels that allows for improved operability and stability of the flame, while still providing reduced emissions. [0008]
  • SUMMARY OF THE INVENTION
  • In one aspect of the present invention, a method of combusting hydrocarbon fuel is disclosed comprising injecting an air stream into an air assist valve resulting in an air assist valve air stream; allowing the air assist valve air stream and pilot fuel to flow through a pilot fuel tube resulting in a pilot fuel-air mixture stream; allowing fuel to flow from a premix fuel line to a premixer resulting in a premix fuel stream; combining the pilot fuel stream, premix fuel stream and an air stream resulting in a mixture stream; and igniting the mixture stream. The temperature and composition of the mixture stream are selected to control simultaneously the amounts of NO[0009] x formed in the main combustor and the stability of the flame in the main combustor, thereby controlling the total amount of NOx emitted.
  • According to another aspect of the invention, a system for combusting a hydrocarbon fuel is disclosed comprising a combustor having an upstream end and a downstream end; a premix area connected to the upstream end of the combustor for receiving and substantially premixing fuel and air prior to delivery to the upstream end of the combustor. The premix area is comprised of a centerbody extending longitudinally through the premix area, at least one fueling pathway positioned radially within the centerbody, which receives air assisted pilot fuel and allows the air assisted pilot fuel to exit through a pilot fuel outlet pathway, at least one premix fueling pathway positioned radially within the centerbody which receives premix fuel, and at least one pilot air pathway positioned radially within the centerbody and allows air to exit through a pilot air outlet pathway. This system may also include an air assist line in communication with the pilot fuel. The air assist line may also have a check valve to prevent fuel entering the source of the air assist line. The air assist line may be in communication with a bleed air valve from the core compressor. [0010]
  • According to an embodiment, a system for combusting a hydrocarbon fuel is disclosed comprising a combustor having an upstream end and a downstream end; a pilot fuel line in communication with an air assist line, wherein fuel from the pilot fuel line is injected with air from the air assist line and allowed to flow through a pilot flow tube to a premix area. A check valve is controllably in communication with the air assist air stream. A premix fuel line is connected to the premix area and radially located around a centerbody. The premix area is connected to the upstream end of a combustor and receives and premixes fuel from the pilot fuel tube and premix fuel tube. The premix area is comprised of a centerbody extending longitudinally through the premix area; a fueling pathway is positioned radially within the centerbody and receives air assisted pilot fuel. A pilot air pathway is positioned radially within the centerbody. The system also comprises an igniter located centrally within the centerbody. [0011]
  • The fuel supplied to the combustor may be varied between the premix fuel line and the pilot fuel tube. According to an embodiment, about 0-50 percent of the fuel is supplied through the pilot fuel line and about 50-100 percent of the fuel is supplied through the premix fuel line. Preferably, less than twenty percent (20%) of the fuel may be supplied through the pilot fuel line and greater than eighty percent (80%) supplied through the premix fuel line. [0012]
  • The system may also have a combustor liner in communication with a heat shield. The heat shield may also be in communication with a combustor cap, wherein the heat shield is interposed between the combustor liner and combustor cap. [0013]
  • These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-section of a natural gas combustor that uses one embodiment of the present invention; [0015]
  • FIG. 2 is a cut-away view of the natural gas combustor of FIG. 1; [0016]
  • FIG. 3 is a perspective view of the natural gas combustor of FIG. 1; [0017]
  • FIG. 4 is a schematic diagram showing the aerodynamic effect of air assist; and [0018]
  • FIG. 5 is a plot of test data showing improved emissions achieved with the use of the present invention.[0019]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims. [0020]
  • The present invention generally provides an easily adaptable method and system that is capable of retrofitting industrial and power generation systems to reduce emissions while providing improved operability. The present invention allows for minimized air flow to achieve reduced No[0021] x emissions without increasing CO emissions.
  • While the prior art typically utilizes a mixture of fuel and air to a lean mixture to reduce the peak flame temperature, this results in lean premixed combustors operating very close to the lean extinction limits and tend to have poor operability. Frequently, a richer, piloted region in the combustor is used to improve operability, but this often comes at the cost of increased emissions. The present invention allow for reduced emissions and improved operability. [0022]
  • For the purposes of promoting an understanding of the principles of the invention, reference is made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates. [0023]
  • The system may be an add-on feature to current generation combustors allowing for generation combustors to be retrofitted in a manner that will reduce emissions. The system may utilize an air assist injected into the pilot fuel line. An embodiment according to the present invention is depicted in FIG. 1. Air is injected through an [0024] air assist 10. The air assist valve air stream is less than 10 times the pilot fuel stream which can flow through a pilot fuel line 14. The air assist valve air stream may be injected by several methods. These may include, without limitation, the use of bleed air from the gas turbine engine core compressor and/or the use of an air assist pump. An air assist pump may be required, such as when bleed air from the core compressor is used. The need for an air assist pump depends upon the required fuel pressure, and the pressure loss in the recuperator (which is bypassed by the bleed air). As would be understood by those of skill in the art, an external air pump could be used to supply all the air-assist 10 valve air stream without using any core compressor bleed air. The air injection can be turned on when emission reduction is needed and turned off at other operating conditions.
  • A [0025] pilot fuel tube 12 can require a tee to the existing pilot fuel line 14. The air assist line 10 can be attached to the tee. According to an alternate embodiment, a small mixing chamber with connections from pilot fuel and air assist source is used. The air assist line may have a check valve to prevent fuel entering the source of air assist 10. Air assisted fuel can be led through the pilot fuel tube 12 to an upstream end of a combustor 27. Another fuel line, a premix fuel line 20, may allow fuel to flow to an area within a premix area 22, but outside of a centerbody 23. The premix area 22 can be contained within the upstream end of the combustor 27. The centerbody 23 may extend longitudinally through or within the premix area 22.
  • A combustor cap may contain premixer [0026] area 22 and centerbody 23 at the upstream end of the combustor 27. A pilot air outlet pathway 21 may be positioned radially within the centerbody 23 and receive pilot air, and may allow pilot air to exit through the pilot air outlet pathway 21.
  • A fueling [0027] pathway 24 can receive fuel from the pilot fuel tube 12 and allow air to exit through the pilot fuel outlet 25. An igniter 18 can create a flame and burn the product from the pilot air outlet pathway 21 and the pilot fuel outlet pathway 25. The resulting mixture stream can enter the combustor 27 which may be encased by a combustor liner 28, and surrounded by a heat shield 30.
  • FIG. 2 depicts a cut-away view of the natural gas combustor of FIG. 1. As shown, the [0028] combustor liner 28 allows for the receipt of the mixture stream and radially surrounds the heat shield 30. The premix area 22 can be contained in the upstream end of the combustor and is upstream from the combustor liner 28. The centerbody 23 may also be located in the upstream end of the combustor and can contain the pilot air pathway 16 which can surround the fueling pathway 24. Fuel from the pilot fuel tube 12 may be introduced into the premix area 22 through the fueling pathway 24 and allowed to exit through the pilot fuel outlet pathway 21. Fuel from the premix fuel line 20 may be introduced into the premix area 22, but not within the centerbody 23. The igniter, not shown, may placably fit within the igniter pathway 19 contained within the centerbody 23.
  • FIG. 3 depicts a perspective view of the natural gas combustor of FIG. 1. As shown, the [0029] combustor line 28 may be radially surrounded by the heat shield 30. The heat shield can be in communication with the premix area 22, which is surrounded by the combustor cap 26. The premix fuel line 20 can be in communication with the premix area 22. The pilot fuel line 14 can be in communication with the premix area 22.
  • FIG. 4 depicts the effect of the present invention on flame location and shape. As shown, the mixture stream may be ignited by the [0030] igniter 18, and the NOx production zone that results as in the present invention creates a smaller and leaner zone, Air assist NOx production Zone 32. Previously, a larger and richer NOx production zone resulted, as shown by the non-air assist NOx Production Zone 34. The Air assist NOx production zone is also located farther away from the pilot fuel injectors, which can be used to reduce acoustic emissions.
  • EXAMPLES
  • FIG. 5 depicts the effect of air assist as measured in a [0031] Parallon 75 microturbine power generation system using the configuration depicted in FIG. 1. Gaseous emissions were measured at full load conditions. The combustor was operated with twenty percent (20%) of the fuel supplied through the pilot and the remaining eighty percent (80%) through the premixer. Metered air assist flow was varied from about zero to 40 lb/hr flow rate. As depicted, the NOx emissions at 0 pph air assist flow was measured to be about 25 ppm. As the air assist flow was increased to about 40 pph, the NOx emissions were reduced to about 6 ppm, without increasing Carbon Monoxide (CO) emissions. Further reduction in NOx emissions have been observed by reducing the pilot fuel flow split and/or by increasing the air assist flow.
  • It should be understood, of course, that the foregoing relates to preferred embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims. [0032]

Claims (22)

We claim:
1. A method of combusting hydrocarbon fuel, comprising:
injecting an air stream into an air assist valve resulting in an air assist valve air stream;
allowing said air assist valve air stream and pilot fuel to flow through a pilot fuel tube resulting in a pilot fuel stream;
allowing fuel to flow from a premix fuel line to a premixer resulting in a premix fuel stream;
combining said pilot fuel stream, premix fuel stream, and an air stream resulting in a mixture stream;
igniting said mixture stream; and
wherein a temperature and composition of said mixture stream are selected to control simultaneously the amounts of NOx formed in a main combustor and a stability of a flame in said main combustor, thereby controlling a total amount of NOx emitted.
2. The method as in claim 1, wherein said pilot fuel is in liquid form.
3. The method as in claim 1, wherein said pilot fuel is in gaseous form.
4. The method as in claim 1, further comprising expanding the mixture stream across a turbine thereby producing power.
5. The method as in claim 1, wherein between 0-50 percent of the total fuel is supplied through said pilot fuel line.
6. The method as in claim 1, wherein between 50-100 percent of the total fuel is supplied through said premix fuel line.
7. The method as in claim 1, wherein said air assist valve air stream is less than 10 times said pilot fuel stream.
8. The method as in claim 1, wherein said NOx emitted is below 9 parts per million.
9. The method as in claim 1, wherein said air stream is bleed air from a gas turbines engine core compressor and injected into said air assist valve resulting in an air assist valve air stream.
10. A system for combusting a hydrocarbon fuel, comprising:
a combustor having an upstream end and a downstream end; and
a premix area connected to the upstream end of said combustor for receiving and substantially premixing fuel and air prior to delivery of said upstream end of said combustor, said premix area comprising;
a centerbody extending longitudinally through said premix area;
at least one premix fueling pathway positioned radially around said centerbody which receives premix fuel;
at least one fueling pathway positioned radially within said centerbody, which receives air assisted pilot fuel and allows said air assisted pilot fuel to exit through a pilot fuel outlet pathway;
an igniter located within said centerbody; and
at least one pilot air pathway positioned radially within said centerbody and allows said air to exit through a pilot air outlet pathway.
11. The system as in claim 10, further comprising an air assist line in communication with a pilot fuel.
12. The system as in claim 11, wherein said air assist line has a check valve to prevent fuel entering a source of said air assist line.
13. The system as in claim 11, wherein said air assist line air flow is between 0 and 60 lb/hr.
14. The system as in claim 11, wherein said air assist line is in communication with a bleed air valve from a core compressor.
15. The system as in claim 11, further comprising an air assist pump.
16. A system for combusting a hydrocarbon fuel, comprising:
a combustor having an upstream end and a downstream end;
a pilot fuel line in communication with an air assist line, wherein fuel from said pilot fuel line is injected with air from said air assist line and allowed to flow through a pilot flow tube to a premix area;
a check valve controllably communicating with said air assist air stream;
a premix fuel line connected to said premix area, radially located around a centerbody;
said premix area is connected to the upstream end of said combustor for receiving and substantially premixing fuel from said pilot fuel tube and said premix fuel tube, said premix area comprising;
said centerbody extending longitudinally through said premix area;
a fueling pathway positioned radially within said centerbody, which receives air assisted pilot fuel;
a pilot air pathway positioned radially within said centerbody; and
an igniter located centrally within said centerbody.
17. The system as in claim 16, wherein 0-50 percent of the fuel is supplied through said pilot fuel line.
18. The system as in claim 16, wherein 50-100 percent of the fuel is supplied through said premix fuel line.
19. The system as in claim 16, further comprising a combustor liner in communication with a heat shield, said heat shield in communication with a combustor cap, wherein said heat shield is interposed between said combustor liner and said combustor cap.
20. The system as in claim 16, wherein said air assist line air flow is between 0 and 60 lb/hr.
21. The system as in claim 16, wherein said air assist line is in communication with a bleed air valve from the compressor.
22. The system as in claim 16, further comprising an air assist pump.
US10/010,594 2001-12-05 2001-12-05 Retrofittable air assisted fuel injection method to control gaseous and acoustic emissions Abandoned US20030101729A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/010,594 US20030101729A1 (en) 2001-12-05 2001-12-05 Retrofittable air assisted fuel injection method to control gaseous and acoustic emissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/010,594 US20030101729A1 (en) 2001-12-05 2001-12-05 Retrofittable air assisted fuel injection method to control gaseous and acoustic emissions

Publications (1)

Publication Number Publication Date
US20030101729A1 true US20030101729A1 (en) 2003-06-05

Family

ID=21746446

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/010,594 Abandoned US20030101729A1 (en) 2001-12-05 2001-12-05 Retrofittable air assisted fuel injection method to control gaseous and acoustic emissions

Country Status (1)

Country Link
US (1) US20030101729A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097096A1 (en) * 2007-02-05 2008-08-14 Ntnu Technology Transfer As Nox reduction system for gas turbines
US20130241089A1 (en) * 2012-03-19 2013-09-19 General Electric Company Micromixer Combustion Head End Assembly
US20140137565A1 (en) * 2012-11-20 2014-05-22 Solar Turbines, Inc. Combination air assist and pilot gaseous fuel circuit
US20140190169A1 (en) * 2013-01-04 2014-07-10 General Electric Company Coaxial Fuel Supply for a Micromixer
JP2015094582A (en) * 2013-11-11 2015-05-18 ゼネラル・エレクトリック・カンパニイ Casing manifold for high pressure air delivery to fuel nozzle pilot system
US10101032B2 (en) 2015-04-01 2018-10-16 General Electric Company Micromixer system for a turbine system and an associated method thereof
US10295190B2 (en) 2016-11-04 2019-05-21 General Electric Company Centerbody injector mini mixer fuel nozzle assembly
US10352569B2 (en) 2016-11-04 2019-07-16 General Electric Company Multi-point centerbody injector mini mixing fuel nozzle assembly
US10393382B2 (en) 2016-11-04 2019-08-27 General Electric Company Multi-point injection mini mixing fuel nozzle assembly
US10465909B2 (en) 2016-11-04 2019-11-05 General Electric Company Mini mixing fuel nozzle assembly with mixing sleeve
US10634353B2 (en) 2017-01-12 2020-04-28 General Electric Company Fuel nozzle assembly with micro channel cooling
US10724740B2 (en) 2016-11-04 2020-07-28 General Electric Company Fuel nozzle assembly with impingement purge
US10890329B2 (en) 2018-03-01 2021-01-12 General Electric Company Fuel injector assembly for gas turbine engine
US10935245B2 (en) 2018-11-20 2021-03-02 General Electric Company Annular concentric fuel nozzle assembly with annular depression and radial inlet ports
US11073114B2 (en) 2018-12-12 2021-07-27 General Electric Company Fuel injector assembly for a heat engine
US11156360B2 (en) 2019-02-18 2021-10-26 General Electric Company Fuel nozzle assembly
US11286884B2 (en) 2018-12-12 2022-03-29 General Electric Company Combustion section and fuel injector assembly for a heat engine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097096A1 (en) * 2007-02-05 2008-08-14 Ntnu Technology Transfer As Nox reduction system for gas turbines
US20130241089A1 (en) * 2012-03-19 2013-09-19 General Electric Company Micromixer Combustion Head End Assembly
US9163839B2 (en) * 2012-03-19 2015-10-20 General Electric Company Micromixer combustion head end assembly
US20140137565A1 (en) * 2012-11-20 2014-05-22 Solar Turbines, Inc. Combination air assist and pilot gaseous fuel circuit
US9212609B2 (en) * 2012-11-20 2015-12-15 Solar Turbines Incoporated Combination air assist and pilot gaseous fuel circuit
US20140190169A1 (en) * 2013-01-04 2014-07-10 General Electric Company Coaxial Fuel Supply for a Micromixer
US9151503B2 (en) * 2013-01-04 2015-10-06 General Electric Company Coaxial fuel supply for a micromixer
JP2015094582A (en) * 2013-11-11 2015-05-18 ゼネラル・エレクトリック・カンパニイ Casing manifold for high pressure air delivery to fuel nozzle pilot system
US10101032B2 (en) 2015-04-01 2018-10-16 General Electric Company Micromixer system for a turbine system and an associated method thereof
US10352569B2 (en) 2016-11-04 2019-07-16 General Electric Company Multi-point centerbody injector mini mixing fuel nozzle assembly
US10295190B2 (en) 2016-11-04 2019-05-21 General Electric Company Centerbody injector mini mixer fuel nozzle assembly
US10393382B2 (en) 2016-11-04 2019-08-27 General Electric Company Multi-point injection mini mixing fuel nozzle assembly
US10465909B2 (en) 2016-11-04 2019-11-05 General Electric Company Mini mixing fuel nozzle assembly with mixing sleeve
US10724740B2 (en) 2016-11-04 2020-07-28 General Electric Company Fuel nozzle assembly with impingement purge
US11067280B2 (en) 2016-11-04 2021-07-20 General Electric Company Centerbody injector mini mixer fuel nozzle assembly
US11156361B2 (en) 2016-11-04 2021-10-26 General Electric Company Multi-point injection mini mixing fuel nozzle assembly
US10634353B2 (en) 2017-01-12 2020-04-28 General Electric Company Fuel nozzle assembly with micro channel cooling
US10890329B2 (en) 2018-03-01 2021-01-12 General Electric Company Fuel injector assembly for gas turbine engine
US10935245B2 (en) 2018-11-20 2021-03-02 General Electric Company Annular concentric fuel nozzle assembly with annular depression and radial inlet ports
US11073114B2 (en) 2018-12-12 2021-07-27 General Electric Company Fuel injector assembly for a heat engine
US11286884B2 (en) 2018-12-12 2022-03-29 General Electric Company Combustion section and fuel injector assembly for a heat engine
US11156360B2 (en) 2019-02-18 2021-10-26 General Electric Company Fuel nozzle assembly

Similar Documents

Publication Publication Date Title
US9638423B2 (en) Multifuel gas turbine combustor with fuel mixing chamber and supplemental burner
US6826913B2 (en) Airflow modulation technique for low emissions combustors
US5404711A (en) Dual fuel injector nozzle for use with a gas turbine engine
US5974781A (en) Hybrid can-annular combustor for axial staging in low NOx combustors
US6983605B1 (en) Methods and apparatus for reducing gas turbine engine emissions
US6868676B1 (en) Turbine containing system and an injector therefor
US7886545B2 (en) Methods and systems to facilitate reducing NOx emissions in combustion systems
US5121597A (en) Gas turbine combustor and methodd of operating the same
US7677025B2 (en) Self-purging pilot fuel injection system
US7874157B2 (en) Coanda pilot nozzle for low emission combustors
US7513115B2 (en) Flashback suppression system for a gas turbine combustor
US20140090396A1 (en) Combustor with radially staged premixed pilot for improved
US20030101729A1 (en) Retrofittable air assisted fuel injection method to control gaseous and acoustic emissions
JPH05203146A (en) Gas turbine combustion apparatus and gas turbine power generator
US20060107667A1 (en) Trapped vortex combustor cavity manifold for gas turbine engine
US6874323B2 (en) Low emissions hydrogen blended pilot
JPH08210641A (en) Burner for gas turbine and gas turbine combustion system using the same
US6658856B2 (en) Hybrid lean premixing catalytic combustion system for gas turbines
KR20200142077A (en) Gas turbine combustion stability improvement system and method
JP2767403B2 (en) Low NOx burner for gas turbine
JPS59173633A (en) Gas turbine combustor
US20030126863A1 (en) Air staged catalytic combusion system
JPS60147033A (en) Gas turbine premixture combustor
KR20100064755A (en) The low nox gas turbine combustor having the multi-fuel mixing device
JPH07260149A (en) Combustion apparatus for gas turbine

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONEYWELL INTERNATIONAL, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SRINIVASAN, RAM;REEL/FRAME:012370/0988

Effective date: 20011203

AS Assignment

Owner name: HONEYWELL INTERNATIONAL, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURNES, DANIEL W.;NAZEER, WASEEM A.;REEL/FRAME:013068/0960;SIGNING DATES FROM 20020103 TO 20020314

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION