JPS59173633A - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPS59173633A
JPS59173633A JP4600383A JP4600383A JPS59173633A JP S59173633 A JPS59173633 A JP S59173633A JP 4600383 A JP4600383 A JP 4600383A JP 4600383 A JP4600383 A JP 4600383A JP S59173633 A JPS59173633 A JP S59173633A
Authority
JP
Japan
Prior art keywords
combustion
fuel
flame
chamber
premixing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4600383A
Other languages
Japanese (ja)
Other versions
JPH0480292B2 (en
Inventor
Isao Sato
勲 佐藤
Yoji Ishibashi
石橋 洋二
Takashi Omori
隆司 大森
Noriyuki Hayashi
則行 林
Fumio Kato
文雄 加藤
Yoshihiro Uchiyama
内山 好弘
Michio Kuroda
黒田 倫夫
Katsuo Wada
和田 克夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4600383A priority Critical patent/JPS59173633A/en
Publication of JPS59173633A publication Critical patent/JPS59173633A/en
Publication of JPH0480292B2 publication Critical patent/JPH0480292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To contrive to reduce nitrogen oxides in exhaust gas by a structure wherein a premixing chamber to mix fuel with combustion air is arranged at the head of a combustor and a main combustion chamber is arranged on the downstream side of the premixing chamber. CONSTITUTION:A premixing chamber 25 to mix fuel with combustion air is arranged at the head of a combustor so as to perform premixed combustion in order to prevent hot spots from generating in flame and consequently to check the generation of NOx strikingly and at the same time a main combustion chamber 26, the diameter of which is larger than that of the premixing chamber, is arranged on the downstream side of the premixing chamber 25. In addition, pilot burners to perform diffusion combustion are arranged at the junction part of the premixing chamber 25 and the main combustion chamber 26 so as to generate pilot flame in order to prevent an engine from overcooling. In such a manner as mentioned above, NOx, CO and HC in exhaust gas are strikingly reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービンに高温高圧の作動気体を供給する
ための燃焼器に係シ、特に大気汚染I物質の発生を抑制
し得るように改良したガスタービン燃焼器に関するもの
である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a combustor for supplying high-temperature, high-pressure working gas to a gas turbine, and is particularly improved to suppress the generation of air pollutants. It relates to a gas turbine combustor.

〔従来技術〕[Prior art]

一般に、燃焼の過程で発生する窒素酸化物(No、)や
−酸化炭素(Co)などは大気汚染物質であり、特にガ
スタービンではこれら物質の排出を甑力抑えることがタ
ービン性能を向上させると同様に重要な課題である。N
O,の発生を抑制するためには高温度燃焼ガスの温度を
低下させるため過剰の空気で燃焼を行なういわゆる希薄
低温度燃焼法が一般的な方法である。しかしながら、過
剰の空気を供給し低温度燃焼を行うことは他方では過冷
却により燃焼性が低下し、CO−?HCなどの未燃焼性
分の発生が多くなる原因となる。このため、ガスタービ
ン燃焼器ではNOx低減とCOやHCなど未燃焼分の低
減とは相反することがらこれらを同時に解消することが
ガスタービン燃焼器の改良ポイントになる。父、NO工
の低減効果を上げるため空気と燃料をあらかじめ混合し
燃焼するいわゆる予混合燃焼法が公知であるが、この方
式においては燃料と空気との混合比が過濃若しくは過淡
になったとき燃焼状態が悪くなって、未燃焼成分である
炭化水素(HC)の生成量が大きくなるという欠点が有
る。
In general, nitrogen oxides (No) and carbon oxides (Co) generated during the combustion process are air pollutants, and in gas turbines in particular, reducing the emissions of these substances can improve turbine performance. This is an equally important issue. N
In order to suppress the generation of O, a common method is the so-called lean low-temperature combustion method in which combustion is performed using excess air to lower the temperature of high-temperature combustion gas. However, supplying excess air and performing low-temperature combustion also reduces combustibility due to supercooling, causing CO-? This causes an increase in the generation of uncombustible components such as HC. For this reason, in a gas turbine combustor, the reduction of NOx and the reduction of unburned substances such as CO and HC are contradictory, and the key to improving the gas turbine combustor is to eliminate these simultaneously. The so-called premix combustion method, in which air and fuel are mixed in advance and combusted, is known to increase the effect of reducing NO emissions, but in this method, the mixture ratio of fuel and air becomes either too rich or too light. The disadvantage is that the combustion condition deteriorates and the amount of unburned hydrocarbons (HC) produced increases.

従って、できるだけ少ない空気で効果的に火炎を均一に
冷却せしめ、かつ過冷却部が生じないようにすることが
NO,低減になシまたCO発生防止に非常に有利になる
。具体的には均一火炎を形成し、かつ効果的にNO!低
減を図る方法として、頭部燃焼室とその後流に主燃焼室
を形成し、しかも燃料を2段に供給する。いわゆる二段
燃焼方式がとられている。この方式は頭部燃・暁では火
炎を保持し、そして2段目からの燃焼供給が空気過剰の
燃焼を行い低NO,効果を上げるものであるが、頭部燃
焼室に形成する火炎の影響が大きく低NOえ効果が得ら
れず、又、二段目燃焼供給時に未燃焼性分を発生するな
どの欠点を有している。
Therefore, effectively and uniformly cooling the flame with as little air as possible and preventing the formation of supercooled areas is very advantageous in reducing NO and preventing CO generation. Specifically, it forms a uniform flame and effectively NO! One way to reduce this is to form a main combustion chamber in the head combustion chamber and its downstream side, and supply fuel to two stages. A so-called two-stage combustion method is used. This method maintains the flame during the head combustion and dawn, and the combustion supply from the second stage performs combustion with excess air, increasing the effect of reducing NO, but the effect of the flame forming in the head combustion chamber increases. This method has disadvantages such as a large amount of carbon dioxide, making it impossible to obtain a low NO effect, and generation of uncombusted components during second-stage combustion and supply.

第1図は上に述べた二段燃焼方式の、予混合燃焼式の従
来形ガスタービン燃焼器の縦断面図である。
FIG. 1 is a longitudinal sectional view of a conventional gas turbine combustor of the two-stage combustion type and premix combustion type described above.

ガスタービンは空気圧縮機1.タービン2.及び燃焼器
3を主要溝成部材としてなる。4は負荷(例えば発電機
など)である。約lθ気圧に圧縮された空気5は燃焼器
3に送シ込まれる。燃焼器3は燃焼内筒6と外筒7およ
び側閉部にカバー8が取付られ、カバー8には1次燃料
9の噴出ノズル10および2次燃料11の供給部12が
取付られている内m6ra頭部火炎13を形成する頭部
燃焼室14と後流部に2次燃料の希薄低温度燃焼を行う
主燃焼室15で形成する。頭部燃焼室14には1次燃料
と空気孔および壁面冷却孔からの空気16.17.18
を供給して頭部火炎を形成するが、主に空気流16.1
7と1次燃料9との拡散燃焼が行われる。さらに主燃焼
室には空気流21゜22および2次燃料11と過剰空気
流19との混合燃料23が供給され、これによる予混合
燃焼火炎20を形成し、予混合燃焼による希薄低温度燃
焼が支I配することで低NO,化を図る。しかし、頭部
燃焼室14に形成される頭部火炎13が高温度燃焼を行
ない、しかもこの頭部火炎13は燃焼器内筒6内の中/
Q部の大きい区域を占める。その上、周囲からの空気流
17.同18と均一な混合が出来ないため多量のNOア
を生成する。このため、予混合燃焼火炎20においてN
O,の発生を抑制しても全体としてはNO,発生量の大
幅な低減を得ることは出来ない。一方1.過剰の空気1
9との予混合燃焼火炎20を形成するが、空気19に燃
料11が供給される過程において、燃料11供給が非常
に少ない低負荷時には燃料濃度が空、気19に対し淡い
状態になりすなわち過冷却の燃焼となるため過冷却によ
る燃焼が阻害されることによりCOやF(Cなどの未・
燃焼性分が多く排出される欠点を有する。ま九、頭部火
炎13によシ未燃焼成分の再燃焼も行9が頭部壁面近傍
には冷却用の空気18が存在するためパイロット炎であ
る頭部火炎13と予混合火炎20との間に冷却空気によ
る層が形成されるため再燃焼が阻害されるためCO,H
Cなどの低減を完全にすることが出来ない。そこで、2
次子混合燃料を上記の頭部火炎に向けて供給方向を変え
る対策も試みられるが、頭部火炎にさらに燃料が供給さ
れることから燃焼器中心部はさらに高温度の燃焼となる
だめNO,の発生が多くなるという欠点を有する。この
ように従来技術においてはNOよとCOを同時に大巾低
減することが出来ない。
A gas turbine is an air compressor1. Turbine 2. and the combustor 3 as the main groove forming member. 4 is a load (for example, a generator). Air 5 compressed to about lθ atmospheric pressure is sent to the combustor 3. The combustor 3 has an inner combustion cylinder 6, an outer cylinder 7, and a cover 8 attached to the side closing part, and the cover 8 has an inner combustion chamber to which an ejection nozzle 10 for a primary fuel 9 and a supply part 12 for a secondary fuel 11 are attached. The head combustion chamber 14 forms the m6ra head flame 13, and the main combustion chamber 15 performs lean low-temperature combustion of secondary fuel in the wake section. The head combustion chamber 14 contains primary fuel and air from the air holes and wall cooling holes.
is supplied to form a head flame, but mainly air flow 16.1
7 and the primary fuel 9 are subjected to diffusion combustion. Further, air flows 21 and 22 and a mixed fuel 23 of the secondary fuel 11 and the excess air flow 19 are supplied to the main combustion chamber, thereby forming a premixed combustion flame 20, resulting in lean low-temperature combustion due to premixed combustion. Achieve low NO by controlling. However, the head flame 13 formed in the head combustion chamber 14 performs high-temperature combustion, and this head flame 13 is located inside the combustor inner cylinder 6.
It occupies a large area in part Q. Additionally, airflow from the surroundings17. Since it cannot be mixed uniformly with the same No. 18, a large amount of NOa is generated. Therefore, in the premixed combustion flame 20, N
Even if the generation of O is suppressed, the overall amount of NO generated cannot be significantly reduced. On the other hand 1. excess air 1
However, in the process of supplying the fuel 11 to the air 19, at low load when the fuel 11 supply is very low, the fuel concentration becomes lighter than the air or air 19, that is, the fuel 11 becomes overly concentrated. Because it is a cooling combustion, combustion due to supercooling is inhibited, resulting in the production of unused substances such as CO and F (C).
It has the disadvantage of emitting a large amount of combustible matter. (9) Re-burning of unburned components is also possible due to the head flame 13. Since there is cooling air 18 near the head wall surface, the head flame 13, which is a pilot flame, and the premix flame 20 are Since a layer of cooling air is formed between the
It is not possible to completely reduce C, etc. Therefore, 2
Measures have been attempted to change the supply direction of the secondary mixed fuel to the above-mentioned head flame, but since more fuel is supplied to the head flame, the combustion temperature in the center of the combustor will be even higher. This has the disadvantage of increasing the occurrence of As described above, in the conventional technology, it is not possible to simultaneously reduce NO and CO to a large extent.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為され、排気ガス中のNO
,を大幅に低減し、しかもCO,f(Cをも低減せしめ
得るガスタービン燃焼器を提供しようとするものである
The present invention has been made in view of the above-mentioned circumstances, and is aimed at reducing NO in exhaust gas.
, and also CO,f(C).

〔発明の概要〕[Summary of the invention]

上記の目的を達成する・だめの、本発明装置の基本的原
理を次に略述する。
The basic principle of the device of the present invention, which achieves the above object or not, will be briefly described below.

本発明のガスタービン燃焼器は有効に予混合燃焼を行な
わせて火炎中のホットスポ7)を防止し、これによって
NO,の発生を大幅に抑制する一方、適切な個所にパイ
ロット炎を発生せしめて過冷却を防止し、未燃焼成分で
あるHC−?COの発生を抑制するものである。
The gas turbine combustor of the present invention effectively performs premix combustion to prevent hot spots 7) in the flame, thereby greatly suppressing the generation of NO, while generating a pilot flame at an appropriate location. HC-? which prevents supercooling and is an unburned component. This suppresses the generation of CO.

上述の原理に基づいて前記の目的(NO,。Based on the above-mentioned principles, the above-mentioned objectives (NO,.

CO,H,Cの一斉低減)を達成する為、本発明装置は
、燃焼器の頭部に燃料と燃焼用空気とを混合する予混合
室を設け、上記の予混合室の後流側に該予混合室よりも
大径の主燃焼室を設け、かつ、上記の予混合室と主燃焼
室との接続部に拡散燃焼を行うパイロットバーナを設け
たことを特徴とする。
In order to achieve simultaneous reduction of CO, H, and C, the device of the present invention is equipped with a premixing chamber for mixing fuel and combustion air at the head of the combustor, and a premixing chamber on the downstream side of the premixing chamber. The present invention is characterized in that a main combustion chamber having a diameter larger than that of the premixing chamber is provided, and a pilot burner for performing diffusion combustion is provided at the connection between the premixing chamber and the main combustion chamber.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例を第2図乃至第4図について説
明する。
Next, one embodiment of the present invention will be described with reference to FIGS. 2 to 4.

第2図は本発明のガスタービン燃焼器の一実施例を示す
縦断面図である。
FIG. 2 is a longitudinal sectional view showing an embodiment of the gas turbine combustor of the present invention.

燃焼器内筒24の頭部(即ち上流側の端部)に頭部予混
合室25を設けるとともに、その中に予混合筒28を設
ける。
A head premixing chamber 25 is provided at the head (ie, the upstream end) of the combustor inner cylinder 24, and a premixing cylinder 28 is provided therein.

上記の予混合筒28は予混合燃焼を行なわせるべき燃料
26と空気(矢印で示す)27とを混合せしめるための
筒状部材(本例ではテーバを附しである)で、その周囲
に多数の噴出孔48を穿ってちる。
The premix cylinder 28 is a cylindrical member (with a taper in this example) for mixing the fuel 26 and air (indicated by an arrow) 27 to be subjected to premix combustion. The spout hole 48 is drilled.

そして、前記の頭部予混合室25の下流端の周囲に、パ
イロット火炎29を形成するため複数個の燃料ノズル3
0を配設しである。
A plurality of fuel nozzles 3 are installed around the downstream end of the head premixing chamber 25 to form a pilot flame 29.
0 is arranged.

上記の燃料ノズル30はそれぞれ空気流に旋回を与える
ためのスワラ32を備え、各ノズル30が独立して保炎
機能を有するように構成しである。
Each of the fuel nozzles 30 described above is provided with a swirler 32 for giving swirl to the airflow, and each nozzle 30 is configured to independently have a flame-holding function.

上記のノズル30から噴出する燃料は液体、気体を問わ
ずいずれの燃料でも良く、さらには広範囲の燃焼状態で
も安定な火炎を形成する拡散燃焼火炎、であることが特
徴である。又、このパイロット火炎のすぐ外周側には燃
料33と2次空気34とを燃焼器内筒24の外で混合し
た後に旋回羽根35によシ旋回流として主燃焼室36に
供給し予混合火炎37bを形成する。主室壁面には壁面
を冷却するための空気流入孔38および出口近傍には希
釈空気孔39を開孔している。
The fuel ejected from the nozzle 30 may be any fuel, whether liquid or gas, and is characterized by being a diffusive combustion flame that forms a stable flame even in a wide range of combustion conditions. Further, immediately on the outer peripheral side of this pilot flame, fuel 33 and secondary air 34 are mixed outside the combustor inner cylinder 24 and then supplied to the main combustion chamber 36 as a swirling flow by the swirling vanes 35 to create a premixed flame. 37b. An air inlet hole 38 for cooling the wall surface of the main chamber and a dilution air hole 39 near the outlet are formed in the wall surface of the main chamber.

第3図は上述の頭部予混合室25と、その出口近傍に設
けたパイロットバーナ用の燃料ノズル30と、2次燃料
供給部40を示すための切断斜視図である。頭部予混合
室25の下流側の端付近に該頭部予混合室25よりも大
径のパイロット火炎成形部38を設け、更にその外側に
はノ・イロット火炎形成部8よシも直径が大きい主燃焼
室36が存在するが、パイロット火炎形成部8と主燃焼
室36との接続部には2次燃料供給部40が開口する。
FIG. 3 is a cutaway perspective view showing the above-mentioned head premixing chamber 25, a pilot burner fuel nozzle 30 provided near its outlet, and a secondary fuel supply section 40. A pilot flame forming section 38 having a diameter larger than that of the head premixing chamber 25 is provided near the downstream end of the head premixing chamber 25, and a pilot flame forming section 38 having a diameter larger than that of the pilot flame forming section 8 is provided outside of the pilot flame forming section 38. A large main combustion chamber 36 is present, and a secondary fuel supply section 40 opens at the connection between the pilot flame forming section 8 and the main combustion chamber 36 .

2次燃料33は燃料タメ41に導かれ、2次燃料および
2次空気を旋回流入させる旋回翼42の手前で複数個の
燃料供給管43から燃料の噴霧を受ける。44は上記の
燃料供給管43に穿たれた噴出孔である。
The secondary fuel 33 is guided to a fuel tank 41 and receives fuel spray from a plurality of fuel supply pipes 43 before a swirling blade 42 that swirls the secondary fuel and secondary air. Reference numeral 44 denotes an ejection hole bored in the fuel supply pipe 43 described above.

本例においては、予混合室45は燃料溜内壁47と、パ
イロット火炎形成部外壁の延長部46との間に形成され
、2次燃料33と空気流とがこの室内で混合される。
In this example, a premixing chamber 45 is formed between the fuel reservoir inner wall 47 and the pilot flame former outer wall extension 46, in which the secondary fuel 33 and the air stream are mixed.

以上のように構成した燃焼器における火炎の形成につい
て次に述べる。
Next, the formation of flame in the combustor configured as above will be described.

(第2図参照)頭部予混合筒28で予混合された燃料は
、複数個の噴出孔48から予混合室25に噴出され、複
数個の空気孔49からの空気流と混合して予混合の状態
となる。即ち、予混合筒28から燃料過剰の予混合燃料
が供給され、更に予混合室25からの空気と混合し空気
過剰の予混合燃焼となる。本例は、予混合室25内には
火炎度 を保持する機構を設けておらず、また軸方向流速、を大
きくしているため火炎の保持は予混合内筒28先端部で
行なう予混合燃焼火炎37aとなる。
(See Figure 2) The fuel premixed in the head premixing cylinder 28 is injected into the premixing chamber 25 from the plurality of injection holes 48, mixed with the air flow from the plurality of air holes 49, and premixed. It will be in a mixed state. That is, excess premixed fuel is supplied from the premix cylinder 28 and further mixed with air from the premix chamber 25, resulting in premix combustion with excess air. In this example, a mechanism for maintaining flame intensity is not provided in the premixing chamber 25, and the axial flow velocity is increased, so the flame is maintained at the tip of the premixing inner cylinder 28. It becomes a flame 37a.

このため大巾な低N08化が可能となる。しかしながら
、予混合室壁に近い位置においては均−予混合とけなら
ず空気過剰の状態になるため未燃節分の生が多くなる。
This makes it possible to significantly reduce N08. However, at a position close to the wall of the premixing chamber, there is no uniform premixing and there is always an excess of air, resulting in a large amount of unburned fuel.

このため、本発明装置は予混合室出口近傍にパイロット
炎を形成し未燃焼生成分の再燃焼を助長するように構成
しである。
For this reason, the apparatus of the present invention is configured to form a pilot flame near the outlet of the premixing chamber to promote reburning of the unburned products.

一方、2次燃料も空気流との予混合燃焼を行い主燃焼室
の壁面に近い位置に予混合火炎を形成するため大巾な低
NO,化が可能となる。さらに燃料33の量を減少させ
て燃焼量を少なくすると空気が過剰となるために生ずる
いわゆる過冷却に起因するCO,IC発生はパイロット
火炎29により主燃焼室内で再燃焼を行うことができる
ため抑制することができる。
On the other hand, the secondary fuel also performs premix combustion with the air flow to form a premix flame near the wall of the main combustion chamber, making it possible to significantly reduce NO. Furthermore, when the amount of fuel 33 is reduced to reduce the amount of combustion, the generation of CO and IC caused by so-called supercooling caused by excess air is suppressed because re-combustion can be performed in the main combustion chamber by the pilot flame 29. can do.

第4図は火炎生成状態の説明図である。本図に示すごと
くパイロット火炎形成用ノズル30はその周囲に旋回空
気流を供給するスワラ32を有し、供給される燃料は液
体、気体を問わないが液体の場合には高圧力のエネルギ
力で液滴の微粒化を行う噴霧構造かあるいは高圧力の空
気、蒸気による気体力によシ微粒化噴霧を行ういずれか
の方式が良好である。本第4図は気体燃料供給の場合を
示してお如、旋回空気流に混合するように燃料を供給す
るいわ−φる拡散燃焼火炎を形成する。拡散燃焼火炎は
燃料濃度の濃い部分が必ず存在するため安定な燃焼を広
範囲に保つことができる。
FIG. 4 is an explanatory diagram of the flame generation state. As shown in this figure, the pilot flame forming nozzle 30 has a swirler 32 around it that supplies a swirling air flow, and the supplied fuel can be either liquid or gas, but in the case of liquid, high pressure energy is used to supply the fuel. Either a spray structure that atomizes the droplets or a system that atomizes the atomization using the gas force of high-pressure air or steam is suitable. FIG. 4 shows the case of gaseous fuel supply, in which the fuel is supplied so as to mix with the swirling air flow to form a so-called -φ diffusion combustion flame. Diffusive combustion flames always have areas with high fuel concentration, so stable combustion can be maintained over a wide range.

更に、パイロット炎は旋回空気流52によって発生する
再循環流53により保炎効果が生じるため、パイロット
火炎が安定して継続する。
Further, since the pilot flame has a flame-holding effect due to the recirculation flow 53 generated by the swirling air flow 52, the pilot flame continues stably.

このように頭部燃焼室出口外側にパイロット火炎を形成
することは頭部燃焼室が拡散燃焼の場合にも適用できる
。すなわち、拡散燃焼の場合にお   −いても低NO
工化を図るため空気を過剰に供給する燃焼法を用いるが
、燃焼器中心部は燃焼温度も比較的高く未燃焼成分の発
生はないが壁面冷却空気流や壁面の輻射熱吸収などによ
り壁面近傍の燃焼温度が低くなシ過冷却になるためCo
、HCなどの未燃燐分発生となるが本発明によるパイロ
ット炎を形成することにより再燃焼が可能となりCO,
IC発生を抑制することができる。
Forming the pilot flame outside the outlet of the head combustion chamber in this way can also be applied when the head combustion chamber performs diffusion combustion. In other words, even in the case of diffuse combustion, low NO
In order to improve the combustion efficiency, a combustion method is used in which air is supplied in excess, but the combustion temperature in the center of the combustor is relatively high and no unburned components are generated, but due to the wall cooling air flow and the absorption of radiant heat by the wall, Because the combustion temperature is low and supercooling occurs, Co
, HC and other unburned phosphorus are generated, but by forming a pilot flame according to the present invention, re-combustion becomes possible and CO, HC, etc. are generated.
IC generation can be suppressed.

第5図は上記の実施例における燃料流量制御の一例を示
す図表で、横軸はガスタービンの負荷率である。FIは
パイロット炎を得るための燃料流量、F1′は頭部予混
合室25−・の1次燃料流量、F2は2次燃料流量であ
り、Ftは燃料流量の総計である。
FIG. 5 is a chart showing an example of fuel flow rate control in the above embodiment, and the horizontal axis represents the load factor of the gas turbine. FI is the fuel flow rate for obtaining a pilot flame, F1' is the primary fuel flow rate of the head premixing chamber 25-, F2 is the secondary fuel flow rate, and Ft is the total fuel flow rate.

いま、図の10点で着火し、次第にガスタービンに負荷
を掛けてゆく場合について見ると、着火後、負荷開始点
T1まではパイロット炎のみで立上げを行う、無負荷か
ら約172負荷までは1次燃料を供給し、l/2負荷か
ら全負荷まではさらに2次燃料を供給する。但し、80
%負荷近傍ではパイロット燃料の供給を止める。これは
1次燃料のみによる未燃焼成分の生成を抑制するパイロ
ット炎の効果は20%負荷までであ)、これ以上の負荷
において1次燃料の流量が多くなシ燃焼量が増加するこ
とによってCO,IC発生原因となる過冷却部の存在が
なくなる。また、2次燃料のみに対する影響では80%
以上になると1次燃料と同様の理由により過冷却部の存
在がなくなる。
Now, looking at the case where the gas turbine is ignited at 10 points in the figure and the load is gradually applied to the gas turbine, after ignition, the start-up is performed using only the pilot flame until the load start point T1, and from no load to approximately 172 loads. Primary fuel is supplied, and secondary fuel is further supplied from 1/2 load to full load. However, 80
% load, the pilot fuel supply is stopped. This is because the effect of the pilot flame in suppressing the generation of unburned components by only the primary fuel is up to 20% load), and at loads higher than this, if the primary fuel flow rate is large, the amount of combustion increases, and CO , there is no supercooled part that causes IC generation. In addition, the impact on secondary fuel alone was 80%.
If the temperature exceeds that level, there will be no supercooled portion for the same reason as for the primary fuel.

このため80%以上の負荷においてはパイロット炎の存
在は燃焼器の内に高温度領域を形成するようになるため
、却ってNOlの生成…、を増加させる要因となる。従
って、この点(80%負荷)でパイロット炎の燃料送給
を停止し、1次燃料と2次燃料のみによる、いわゆる予
混合をなくシ、1次、2次燃料のみによるいわゆる予混
合燃焼のみで均一な低温度燃焼を実現することによシ大
巾な低NO,化ができる。このようなパイロット炎形成
に対する燃料制御を行なうことによシ着火から定格負荷
までの広範囲の作動条件においてC01HCの発生をな
くシ、シかも大巾が低No、化が実現できる燃焼器を提
供することができる。この様子を第6図に示す。本図の
縦軸はNo、、CQおよびHCに関する低減率、即ち、
本実施例にお    ′ける濃度/従来装置における捷
度である。
Therefore, at a load of 80% or more, the presence of the pilot flame forms a high-temperature region within the combustor, which actually becomes a factor that increases the production of NOl. Therefore, at this point (80% load), fuel supply to the pilot flame is stopped, so-called premix combustion using only primary and secondary fuels is eliminated, and only so-called premix combustion is performed using only primary and secondary fuels. By achieving uniform low-temperature combustion, it is possible to significantly reduce NO. By performing such fuel control on pilot flame formation, the present invention provides a combustor that eliminates the generation of CO1HC under a wide range of operating conditions from ignition to rated load, and achieves a significantly low No. be able to. This situation is shown in FIG. The vertical axis of this figure is the reduction rate regarding No., CQ and HC, that is,
This is the concentration in this example/the strength in the conventional device.

負荷率100%(定格)忙おけNO,−減率は0、4と
なり、従来装置に比して60%の抑制が達成された。
When the load factor was 100% (rated) and the load factor was 100% (rated), the NO.-decrease rate was 0.4, achieving a 60% reduction compared to the conventional device.

NOヨの低減率カーブが負荷約80%の点よりも高負荷
領域で不連続に良くなっている理由は、パイロット炎を
止めたため高温度部が消失したためである。一方、C0
9HCについては、1次燃料、2次燃料倶給開始点であ
る0%(無負荷)および50%負荷近傍においてCO,
HCj1度の減少効果が表われる。
The reason why the reduction rate curve for NOYO is discontinuously better in the high load region than at the point of about 80% load is that the high temperature part disappeared because the pilot flame was stopped. On the other hand, C0
For 9HC, CO, CO,
The effect of reducing HCj by 1 degree appears.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のガスタービン燃焼器は、
燃焼器の頭部に燃料と燃焼用空気とを混合する予混合室
を設け、上記の予混合室の後流側に該予混合室よりも大
径の主燃焼室を設け、かつ、上記の予混合室と主燃焼室
との接続部に拡散燃焼を行うパイロットバーナを設ける
ことにより、排気ガス中のNO工を大幅に低減せしめる
とともに、Co、HCをも低減せしめ得るという優れた
実用的効果を奏する。
As explained above, the gas turbine combustor of the present invention has
A premixing chamber for mixing fuel and combustion air is provided at the head of the combustor, and a main combustion chamber having a larger diameter than the premixing chamber is provided downstream of the premixing chamber, and By installing a pilot burner that performs diffusion combustion at the connection between the premixing chamber and the main combustion chamber, it has the excellent practical effect of significantly reducing NO emissions in the exhaust gas, as well as reducing Co and HC. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術に2ける低NO,形燃焼器の説明図、
第2図乃至第8図は本発明のガスタービン燃焼器を示し
、第2図は縦断面図、第3図は一部を破断して描いた斜
視図、第4図は火炎生成状態の説明図、第5図は燃料の
制御状態を示す図表、第6図はNo、、coおよびHC
の低減効果を示す図表である。 3・・・燃焼器、25・・・頭部予混合室、26・・・
1次燃料、28・・・予混合筒、30・・・パイロット
火炎用燃料ノズル、33・・・2次燃料、37 a *
 37 b・・・予混合燃焼火炎、54・・・パイロッ
ト燃料。 代理人 弁理士 秋杢正実 范3図 第6図 プγ又ターヒソ−mu<γ。ノ 第1頁の続き 0発 明 者 黒田倫夫 土浦市神立町502番地株式会社 日立製作所機械研究所内 0発 明 者 和田克夫 日立市幸町3丁目1番1号株式 %式% 手続補正書 昭和、55年7月20日 特許庁長官若杉和夫  殿 1、事件の表示 昭和 SS  年特願第≠6θ03 シJ2、発明の名
称 ガスタービン燃焼器 3、補正をする者 氏名(名称)  (510)株式会社 日立製作所4、
代理人
Figure 1 is an explanatory diagram of a low NO type combustor according to the prior art.
2 to 8 show the gas turbine combustor of the present invention, FIG. 2 is a longitudinal sectional view, FIG. 3 is a partially cutaway perspective view, and FIG. 4 is an explanation of the flame generation state. Figure 5 is a chart showing the fuel control status, Figure 6 is No, , co and HC.
2 is a chart showing the reduction effect of 3...Combustor, 25...Head premixing chamber, 26...
Primary fuel, 28... Premix cylinder, 30... Pilot flame fuel nozzle, 33... Secondary fuel, 37 a *
37 b... Premixed combustion flame, 54... Pilot fuel. Agent Patent Attorney Masami Akimoku Figure 3 Figure 6 puγmatahiso-mu<γ. Continued from page 1 of 0 Inventor: Michio Kuroda, 502 Kandachi-cho, Tsuchiura City, Hitachi, Ltd. Mechanical Research Laboratory, 0 Inventor: Katsuo Wada, 3-1-1, Saiwai-cho, Hitachi City, % formula % Procedural amendment, Showa; July 20, 1955 Kazuo Wakasugi, Commissioner of the Japan Patent Office 1, Indication of the case Showa SS Year Patent Application No.≠6θ03 shi J2, Title of the invention Gas turbine combustor 3, Name of the person making the amendment (Name) (510) Co., Ltd. Hitachi 4,
agent

Claims (1)

【特許請求の範囲】 工、燃焼器の頭部に燃料と燃焼用空気とを混合する予混
合室を設け、上記の予混合室の後流側に該予混合室よシ
も大径の主燃焼室を設け、かつ、上記の予混合室と主燃
焼室との接続部に拡散燃焼を行うパイロットバーナを設
けたことを特徴とするガスタービン燃焼器。 2、前記のパイロットバーナの外周側に、燃料、と空気
との混合ガスの供給手段を設け、前記の予混合室に発生
する予混合火炎と、上記の混合ガス(よる火炎との中間
に拡散火炎を形成せしめ得べくなしたることを特徴とす
る特許請求の範囲第1項に記載のガスタービン燃焼器。 3、 前記のパイロットバーナは、当該ガスタービンが
高負荷状態のとき燃料噴射を中止するように構成した制
御手段を備えたものであることを特徴とする特許請求の
範囲第2項に記載のガスタービン燃焼器。
[Claims] A premixing chamber for mixing fuel and combustion air is provided at the head of the combustor, and a large-diameter main body is provided on the downstream side of the premixing chamber. A gas turbine combustor comprising a combustion chamber and a pilot burner for performing diffusion combustion at the connection between the premixing chamber and the main combustion chamber. 2. A means for supplying a mixed gas of fuel and air is provided on the outer circumferential side of the pilot burner, and the mixed gas is diffused between the premixed flame generated in the premixing chamber and the mixed gas (flame caused by). The gas turbine combustor according to claim 1, characterized in that the gas turbine combustor is capable of forming a flame. 3. The pilot burner stops fuel injection when the gas turbine is in a high load state. The gas turbine combustor according to claim 2, characterized in that the gas turbine combustor is equipped with a control means configured to.
JP4600383A 1983-03-22 1983-03-22 Gas turbine combustor Granted JPS59173633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4600383A JPS59173633A (en) 1983-03-22 1983-03-22 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4600383A JPS59173633A (en) 1983-03-22 1983-03-22 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPS59173633A true JPS59173633A (en) 1984-10-01
JPH0480292B2 JPH0480292B2 (en) 1992-12-18

Family

ID=12734896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4600383A Granted JPS59173633A (en) 1983-03-22 1983-03-22 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPS59173633A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138836A (en) * 1984-12-10 1986-06-26 Toshiba Corp Gas turbine controller
US5121597A (en) * 1989-02-03 1992-06-16 Hitachi, Ltd. Gas turbine combustor and methodd of operating the same
JPH04251118A (en) * 1990-04-04 1992-09-07 General Electric Co <Ge> Combustion assembly having dilution-stage
EP0627596A1 (en) * 1993-06-01 1994-12-07 Westinghouse Electric Corporation Dual fuel ultra-low NOx combustor
US10024540B2 (en) 2007-01-29 2018-07-17 Siemens Aktiengesellschaft Combustion chamber for a gas turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436815A (en) * 1977-08-25 1979-03-17 Ricoh Kk Method of recording image
JPS54134207A (en) * 1978-03-28 1979-10-18 Rolls Royce Combustion chamber for gas turbine engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436815A (en) * 1977-08-25 1979-03-17 Ricoh Kk Method of recording image
JPS54134207A (en) * 1978-03-28 1979-10-18 Rolls Royce Combustion chamber for gas turbine engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138836A (en) * 1984-12-10 1986-06-26 Toshiba Corp Gas turbine controller
JPH0579818B2 (en) * 1984-12-10 1993-11-04 Tokyo Shibaura Electric Co
US5121597A (en) * 1989-02-03 1992-06-16 Hitachi, Ltd. Gas turbine combustor and methodd of operating the same
JPH04251118A (en) * 1990-04-04 1992-09-07 General Electric Co <Ge> Combustion assembly having dilution-stage
EP0627596A1 (en) * 1993-06-01 1994-12-07 Westinghouse Electric Corporation Dual fuel ultra-low NOx combustor
US10024540B2 (en) 2007-01-29 2018-07-17 Siemens Aktiengesellschaft Combustion chamber for a gas turbine

Also Published As

Publication number Publication date
JPH0480292B2 (en) 1992-12-18

Similar Documents

Publication Publication Date Title
RU2766102C1 (en) Combustion chamber with a low contamination level and method for combustion control therefor
US5121597A (en) Gas turbine combustor and methodd of operating the same
JP5364275B2 (en) Method and system for enabling NOx emissions to be reduced in a combustion system
US5816049A (en) Dual fuel mixer for gas turbine combustor
JP2713627B2 (en) Gas turbine combustor, gas turbine equipment including the same, and combustion method
US20070089419A1 (en) Combustor for gas turbine engine
US20020162333A1 (en) Partial premix dual circuit fuel injector
JPH0587340A (en) Air-fuel mixer for gas turbine combustor
JPS637283B2 (en)
JPH0140246B2 (en)
JPH02309124A (en) Combustor and operating method thereof
JP4086767B2 (en) Method and apparatus for reducing combustor emissions
GB2082756A (en) Combustion method and combuster for gas turbine
JP3673009B2 (en) Gas turbine combustor
US8465276B2 (en) Burner for fluid fuels and method for operating such a burner
EP1835231A1 (en) Burner in particular for a gas turbine combustor, and method of operating a burner
US20030101729A1 (en) Retrofittable air assisted fuel injection method to control gaseous and acoustic emissions
JP4400314B2 (en) Gas turbine combustor and fuel supply method for gas turbine combustor
CA2599113C (en) Fuel injection valve, combustor using the fuel injection valve, and fuel injection method for the fuel injection valve
JP2008031847A (en) Gas turbine combustor, its operating method, and modification method of gas turbine combustor
JP5896443B2 (en) Fuel nozzle
JPS59173633A (en) Gas turbine combustor
JP2767403B2 (en) Low NOx burner for gas turbine
JP3499004B2 (en) Gas turbine combustor
JP2003172505A (en) Method of internal mixture type high pressure air flow spray combustion and oil burner