WO1988010318A1 - Feuille d'acier lamine a chaud de grande resistance, presentant une excellente aptitude a l'usinage a froid et procede de production - Google Patents

Feuille d'acier lamine a chaud de grande resistance, presentant une excellente aptitude a l'usinage a froid et procede de production Download PDF

Info

Publication number
WO1988010318A1
WO1988010318A1 PCT/JP1988/000639 JP8800639W WO8810318A1 WO 1988010318 A1 WO1988010318 A1 WO 1988010318A1 JP 8800639 W JP8800639 W JP 8800639W WO 8810318 A1 WO8810318 A1 WO 8810318A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
rolled steel
steel sheet
rolled
Prior art date
Application number
PCT/JP1988/000639
Other languages
English (en)
French (fr)
Inventor
Koji Kishida
Osamu Akisue
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2576788A external-priority patent/JPS6479347A/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Publication of WO1988010318A1 publication Critical patent/WO1988010318A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • High-strength hot-rolled steel sheet and its manufacturing method which are excellent in cold workability.
  • the present invention provides hot-rolled steel sheets and manufacturing details thereof for use in fields requiring extremely high formability and at the same time high product strength.
  • the conventional hot-rolled high-strength steel sheet for processing has a carbon content of approximately 0 .G 3% or more, and in addition to strengthening the structure by quenching using that carbon, solid solution strengthening of M ⁇ , S i, P, etc. It is usually manufactured by adding elements or utilizing precipitation strengthening by carbonitrides such as T i and N b.
  • the high-strength steel sheet thus obtained has lower ductility and especially ductility as the tensile strength increases. Therefore, it is not possible to secure high strength and high workability at the same time.
  • the hot-rolled steel sheet for processing of the present invention is C ⁇ . ⁇ QQ 5 to 0.015%, ⁇ 0.05 to 0.5%, S 0.001 to 0.030%, Cu 1.0 to 2.2%, P 0.100% Below, Si 1.0% or less, N 0.0050% or less, S 01. A 1 0.002 to 0.10%, and other unavoidable elements, and as a main reason for avoiding the occurrence of pearls.
  • it is composed of a single phase of ferrite, and if necessary, one or two kinds of Ti .Nb, and further N i can be added. Is included.
  • the present inventors have conducted research on hot-rolled steel sheets in which various elements are added to the Cu-added steel alone or in combination, and as a result, the amount of increase in strength due to the precipitation of Cu depends on the amount of C. It is possible to obtain a strength increase much larger than the strength increase due to the precipitation of Cu, which has been known for a long time by reducing the C content.
  • Figure 1 shows that the basic component is steel containing Mn 0.15%, Si 0.02%, S 0.015%, P 0.01%, N 0.0020%, Sol .Al 0.03%, Cu 1.13%, and the C content is 0.0 Q 15% ⁇ .
  • the curve (a) is for a hot rolled steel sheet that has not been wound up at 300
  • the curve (b) is for a hot rolled steel sheet that has been heat treated at 60 Q e C for 10 minutes.
  • the difference between the curve (a) and the curve (b) is the amount of strength increase due to the precipitation of Cu. If the amount of C is G .025% or more, the upper limit of strength is about 15 kgf / mm 2 .
  • Fig. 2 is a graph showing the relationship between the elongation and C content of the hot-rolled steel sheet containing 1.3% Gu as in Fig. 1. From the figure, it can be seen that extremely high ductility can be ensured by controlling the C content to 0.015% or less.
  • the amount of c must be reduced as much as possible in order to secure an extremely high strength increase amount and an extremely high ductility.
  • the lower limit of the C content is 0.05% of the limit of industrial melting.
  • the C content exceeds 0.015%, the strength increase and the ductility decrease, and at the same time, when the steel sheet before processing is manufactured, the hot rolling coiling temperature Restrictions will occur. In other words, it is because the quenching structure occurs and the ductility of the steel sheet before processing is lowered. Therefore, the C content is in the range of 0.0 0 0 5 to 0.0 15%.
  • the preferable amount of C which depends on the steelmaking ability, is 0.00.050 to 0.00500%.
  • the amount of C was disclosed as Q.04% according to the example, and the hot rolling was performed.
  • the straight steel sheet has an elongation of 37.9% and a tensile strength of 38.1 kg / mm 2 .
  • the amount of increase in strength due to the heat treatment at 550 ° C X 1 H r is 13.9 kg / mm 2 .
  • this is the amount of C in the above-mentioned patent, and since there is a pearl phase as an organization, it is already present in the hot rolling stage. u is partially precipitated, the ductility is significantly lower than that of the present invention, and the amount of strength increase due to heat treatment is also significantly small.
  • the characteristic feature of the strength improvement after heat treatment in the present invention is that not only the overall strength increase due to heat treatment but also the local strength increase of the molded part due to local heating is large. ..
  • the local heating means for example, spot welding, arc welding, flash notch welding, etc.
  • Welding and local heating means eg high energy beam (laser, electronic beam) irradiation, plasma heating, high frequency heating, panner heating, etc.).
  • Figure 3 shows the hardness distribution of the spot welds of the steel of the present invention.
  • Fig. 4 is a diagram showing the ten-figure tensile strength of the welded joint in comparison with that of the comparative steel.
  • the cross tensile strength of the steel of the present invention is much higher than that of the comparative steel, and when the welding diameter is 5 t (t is the plate thickness), which is the proper welding current. It is recognized that it has more than twice the strength of the + tensile strength. As shown in Fig. 3, this is due to the increase in hardness due to the precipitation of Cu observed in the heat-affected zone. It has the characteristic that a local increase in strength can be obtained even with such a very short time heat input.
  • Fig. 5 is a diagram showing the effect of the number of laser irradiations on the change in the hardness of the steel sheet when the steel of the present invention is irradiated with laser.
  • the laser irradiation conditions were a C 0 2 gas laser, 10 k ff, 110 mm beam, irradiation time of 05 seconds, and irradiation interval of 6 seconds.
  • the hardness increases significantly after several laser irradiations.
  • the risk of destruction of the strength member is often a very limited part, and therefore it is not necessary to strengthen the heat treatment of the entire part.
  • Wheels are one of the important safety components, and their life is governed by the fatigue properties of the material.
  • the cracks on the wheels are the parts with large strain in the plate thickness direction such as nut seats and hats, the decorative holes, the bolts on the sheared holes such as bolt holes. It is the welded portion of the disc and rim, and the fatigue strength is important here.
  • Figure 6 shows the results of an examination of the fatigue strength of the steel sheet of the present invention before and after heat treatment (600 x 30 seconds).
  • the steel of the present invention has a higher fatigue strength, and in particular, the tensile strength after heat treatment increases, resulting in an extremely high fatigue strength.
  • the P content may be 0.03% or less. ..
  • addition of P is effective together with addition of Cu to enhance the corrosion resistance performance of the steel sheet.
  • S i is usually contained as an impurity in an amount of G .03% or less, but as an element that increases the strength of the steel plate, it is 1.0% depending on the required strength level. Below, preferably add 0 to 3 to 1.0%. However, if it exceeds 1.0%, the scale is significantly generated in the hot rolling process and the surface quality of the steel sheet is deteriorated, so the upper limit is 1.0%. And The Mn and S contents are preferably low so as to improve the workability of the steel sheet, and the upper limits of each are set to 0.5% and 0.030%, respectively. %. If the Mn content is too low, surface defects on the steel sheet are likely to occur, so the lower limit is made 0.05%.
  • the N content is preferably low to improve workability, and is preferably 0.0050% or less.
  • FIG. 7 shows the amount of strength increase (tensile strength after heat treatment-hot rolled tensile strength) as a function of heat treatment time (at a heat treatment temperature of 550) for a steel with Gu added to an ultra-low carbon steel. 'u is shown as a parameter.In the figure, curve (a) is Cu2.06%, curve (b) is Cu 1.68%, curve (c) is Gu 1.38. %, Curve (.d) is for G u 0.71%. As shown in the figure, when C u is less than 1.0%, the amount of increase in strength as shown by the curve U) is insufficient. On the other hand, if it exceeds 2.2%, the surface quality deteriorates, so the range is 1.0 to 2.2%, preferably 1.2 to 2.0%.
  • a 1 is an element necessary for deoxidation, and if S 01. A 1 is less than 0.002%, deoxidation is not + minutes, while if too much, the amount of aluminum produced increases. Since it adversely affects the surface quality of steel, its upper limit is 0.10%.
  • Non-aged steel sheet does not reduce ductility due to aging, and a higher ductility steel sheet can be obtained. Since it reacts with C, 0, N, S, etc. in Ti steel, it must be considered together with these amounts, but these elements are fixed and high-grade In order to obtain workability, it is necessary to add Q.01% or more, while on the other hand, it is costly disadvantageous to add more than 0.2%.
  • Ni steel sheet high quality and preventing hot brittleness.
  • 0.15 to 0.45% may be added.
  • the hot brittleness of the Cu-added steel is that the Cu enriched part formed below the scale formed on the steel surface becomes liquid because it is heated above its melting point. Austenite is caused by its penetration into grain boundaries. Therefore, in order to prevent hot embrittlement during the hot rolling stage of the slab, it is ideal to heat it below the melting point of the Cu enriched part, and to heat it below 108 Q ° C. I want you. However, since the heating temperature is lowered and the rolling load is increased, heating of 1 Q 8 Q ° C or less cannot always be performed depending on the performance of the rolling mill. In this case, the addition of N i is effective. Due to the addition of N i, N i is also concentrated in the Cu enrichment section, and the melting point of the Cu enrichment section is increased. Addition of less than 0.15% has almost no effect, while addition of more than 0.45% of Ni has a costly disadvantage.
  • B is steel due to C u and the composite loading ⁇ .
  • the present inventors have found to their new parents that they have the effect of significantly reducing Ar 3 of the above.
  • the rolling end temperature must be Ar 3 or higher in order to keep the material of the steel plate good.
  • C was set to 0.015% or less, and accordingly, the value of ⁇ to 3 points was high. First, it is necessary to raise the rolling end temperature.
  • FIG. 8 is a diagram showing the effect of ⁇ on Ar 3 of a Ti-added ultra-low carbon steel containing about 3% Gu, which was heated at 100 Q ° C for 10 minutes and then cooled during hot rolling. This is the measurement result of A r 3 points when cooled at a cooling rate of 30 ⁇ / s, which is equivalent to the speed. ,
  • Addition of B up to 0.0010% causes the A r 3 point to decrease sharply, and addition of B or more causes the A r 3 point to decrease gradually.
  • the hot rolling process in the method for manufacturing the steel sheet of the present invention will be described.
  • hot strips that were sent directly from a continuous iron mill or hot strips that were heated were not hot-rolled at a temperature of Ar 3 or higher. Then, wind it at a temperature below 500 ° C. If it is wound at a temperature higher than 500, Cu precipitates, and it cannot be considered that a soft steel sheet with good workability cannot be obtained, and the increase in strength due to heat treatment is small.
  • the amount of C is limited to suppress the elution of C u at the winding stage, and most of the C u is removed by winding at a temperature of 500 ° C or less. Keep it in a supersaturated solid solution state.
  • the take-up temperature should be 350 ° C or less. Rukoto is the most suitable.
  • the C content or Mn content is high, as in the case of conventional steel, when it is wound at a low temperature, it will undergo transformation such as the martensite phase or the vaneite phase. Since a hard phase is generated and hardens, the lower limit of the coiling temperature must be set in order to avoid this.
  • the present invention controls the C content and the Mn content to be low and significantly suppresses the hardenability, so there is no metallurgical lower limit of the coiling temperature.
  • the coiling temperature is less than 100 ° C, the winding shape will be bad and the surface quality will be deteriorated due to this.
  • Below C above 100 ° C.
  • the hot-rolled sheet obtained is subjected to heat treatment after forming to increase its strength, but from the viewpoint of workability of heat treatment, it can be finished by heat treatment at low temperature for a short time.
  • the above points have been thoroughly studied, and the objective can be achieved by heat treatment in a short time.
  • the heat treatment temperature is less than 750, and the heat treatment time is less than 30 minutes.
  • the steel sheet of the present invention may be used for, for example, automobile frames, wheels, reinforcing parts and pressure vessels, compressor force bars, and bearings.
  • Figure 1 shows the effect of C content on the strength of hot-rolled steel sheets before and after the heat treatment for precipitation of Cu.
  • Figure 2 is a graph showing the effect of C content on the ductility of hot-rolled steel sheets.
  • Fig. 3 is a graph showing the hardness distribution of the cross section of the spot weld of the steel sheet of the present invention
  • Fig. 4 is a graph showing the effect of welding current on the cross tensile strength of the spot welds of the steel sheet of the present invention.
  • Fig. 5 is a graph showing the change in hardness of the steel sheet of the present invention depending on the number of laser irradiation baths
  • Figure 6 is a graph showing the fatigue characteristics of the steel sheet of the present invention before and after heat treatment.
  • Figure 7 is a graph showing the effect of heat treatment time on the strength increase of ultra low carbon steel hot rolled steel sheet, using Cu content as a parameter.
  • Figure 8 is a graph showing the effect of the B content on the Ar 3 points of the steel of the present invention.
  • Fig. 9 is a graph showing the effect of welding current on the shear tension of the spot welds of the steel of the present invention.
  • Table 1 Steel pieces from A to S shown in Table 1 were heated at the heating temperature shown in the same table, hot-rolled, and wound to obtain a hot-rolled steel sheet with a thickness of 3.0 mm. It also shows its mechanical properties.
  • Table 2 shows the mechanical properties of the steel sheet when heat-treated without deformation and deformation.
  • the invention steels have extremely excellent ductility during processing, and the tensile strength increases remarkably by heat treatment for a very short time.
  • R. Solid solution strengthening ability of C u is Ri Ah 1% those other Ri about 4 kgf / mm 2
  • the steel A was added 2.11% of Cu on ultra low carbon steel strength in hot-rolled or or is extremely rather low It has high ductility, and it is possible to increase the strength of 25 kgf / ⁇ 2 or more by a short heat treatment such as 600 at 10 minutes.
  • Steel C with S i added and steel D with added force Q of P have high strength in hot rolling, but have good ductility, and strength increase due to heat treatment is also large.
  • All of the gongs A to F and J to L of the present invention have a large elongation value before the heat treatment, and the strength is remarkably increased as compared with the heat treatment for a short time, and they have excellent properties.
  • the rolling is terminated in the single-phase single-phase region (A r 3 point or higher), and the steel is cooled in the post-rolling process. It is necessary that the structure of the steel sheet when the iron phase is transformed into the ferrite phase and is wound is mainly the single phase structure of the ferrite.
  • the Ar 3 points of these steels of the present invention are high, and as shown in Table 2, the hot rolling finishing temperature is high.
  • Electrode-alloy, truncated type Electrode tip diameter 7 ⁇ -5 ⁇ T
  • Initial pressurization time S .T 30 AC cycle
  • Fig. 3 shows the results of the cross-sectional hardness distribution measurement, and the hardness corresponding to the precipitation of Cu is observed in the heat affected zone of the steel of the present invention.
  • Figure 4 shows the results of measuring the cross tensile strength at each welding current.
  • the steel of the present invention has a high cross tensile strength even when the welding current is small, and a cross tensile strength at a current value where the welding diameter is 5 which is an appropriate welding current value. Comparing the strengths, that of Sukaimei Steel is more than double that of Comparative Steel.
  • Figure 9 shows the measurement results of shear tensile strength at each welding current.
  • the steels of the present invention have higher shear tensile strength than the comparative steels at any welding current.
  • the present invention has a very good hot workability and has a high strength required for the final product in a short time heat treatment after cold working.
  • the new hot-rolled steel sheet that can be achieved by the above-mentioned method is a simple means of controlling the composition of the hot-rolled steel sheet and controlling the coiling temperature of the hot-rolled steel sheet. It provides a new method of manufacturing steel sheets, and is sufficiently responsive to the new demands from the users of steel sheets, which is an industrial advantage. This is extremely large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

冷 間 加 ェ 性 の 極 め て 優 れ た 高 強 度 熱 延 鋼 板 及 び そ の 製 造 方 法
技術分野
本発明 ほ極め て加工度の高い成形性 と 同時 に高い製品の強 度が要求 さ れ る利用分野 に提供す る熱延鋼板お よ びそ の製造 細
方法 に関す る も の で あ る 。
背景技術
従来 の加工用熱延高強度鋼板 は炭素量約 0 . G 3 % 以上で あ り 、 そ の炭素を利用 し た焼入れ に よ る 組織強化の ほか に M η , S i , P 等の固溶体強化元素を添加 し た り T iや N b等の炭窒化物 に よ る析出強化を活用 し て製造さ れ る のが通常で あ る 。
こ の よ う に し て得 ら れ た高強度鋼板は引張強さが高 く な る に従い加ェ性、 特 に延性が低 く な つ て い く 。 従 っ て高強度 と 同時 に高い加工性を確保す る こ と は で き ない。
高強度 と 同時 に高い加工性を確保 し な ければな ら ない と い う 相矛盾す る課題 に十分 に応え る技術は見当 た ら な い。 一つ の理想 と 思わ れ る技術は 、 冷間加工変形を す る と き は鋼板の 強度が低い と 同時 に加工性、 特 に延性が十分 に高 く 、 加工が 終了 し た後 に そ の加工品の強度が高 く な る と すれば最終製品 と し て複雑な加工部品 に な る と 共 に強固な部品 に な る こ と に な る 。 こ の考え方 に従 っ た技術の例は、 例え ば、 .特公昭 5 7 - 1 7 0 4 9 号公報な ど に み ら れ る 。 こ の場合で は、 C u の固溶状態 か ら そ れの析出状態への変化を利用 し て い る 。 即 ち 、 強度の 低いう ち に加工 し てお き その後の熱処理に よ つ て C uを析出さ せる こ と に よ っ て加工部品の強度を上げ よ う と す る も の であ る 。
し か し なが ら 、 特公昭 57 - 17 Q49号公報に見 ら れる 固溶した Guを熱処理に よ つ て析出させ鋼板の強度をあ げる こ と お よ び 熱処理条件等 は古 く か ら 周知 の技術で あ る 。 そ れ は例えば Al loys of - rron .ah d c o p'e r ( c GRA - H I L L BOO COMPANY , Inc . , 1934) に明言 5さ れてい る 。
最近の高加工性熱延鋼板の材質特性に対す る利用者側か ら の要求の度合は益々 高 く な り つつあ る。 即ち 、 益々 の高加工 変形を必要 と す る複雑な形状部品がふえてい る こ と と 、 鋼板 の利用者側での変形加工工程を出来る限 り 少な く し て低コ ス ト イ匕を計る 必要性が近年 と み に増え て い る ためで あ る 。 従つ て、 前述の特公眧 57-17049号公報.記載の技術内容で は到底錮 板の利用者側の要求を満たす も ので ほ ない。
利用者側か ら の高加工性熱延鋼板 に たいす る最近の強い要 求の一つ は、 最終製品の超高強度化で あ る 。 例えば、 従来で は弓 I張強度で 45kgf/mm2 程度の部品を、 最近で は 60 k gf /mm 2 以上の強度を持 つ た鋼板で製造 し た レヽ と 言 う 要求で あ る 。 従つ て、 こ の鋼板の超高強度化 と 同時に高加工性を同時に満 たす技術を開発する 必要があ る 。
その次ほ鋼板の変形加工時の極めて高い変形加ェ性能が要 求 さ れてい る こ と で あ る 。 こ れは最終部品-の形状が益々 複雑 に な っ て き て お り こ れ に応え う る鐧板を提供 し な く て は な ら ない こ と で あ る 。 ま た、 利用者側での加工工程数を減 ら し た い と い う 要望も強 く その ため に も極め て高い変形加工性能を も っ た鋼板を提供 し な く て は な ら な く な っ て レヽ る 。
さ ら に ほ、 利用者側での熱処理工程の簡素化の必要性で あ る 。 当然、 低 コ ス ト ィヒを指向す る部品メ ーカ ー と し て は、 短 時間で熱処理が済み生産性を一層高め る 必要があ る 。
こ れ ら の最近の鋼板利用者側か ら の新 し い鋼板 に た い す る 要求 に 対 し て 従来技術 で は満足 に 応 え う る も の は な い。 本発明 で は そ れ ら の要求 に 応 え る 技術 を掃発 'し 'た も の で あ る 。
発明の開示
先ず、 本発明の対象で あ る加工用熱延鋼板 に つ い て説明す る 。
本発明の加工用熱延鋼板は、 以下の理由 に よ り C ϋ . ϋ Q Q 5〜 0.015 % , Μη 0.05〜 0.-5 % , S 0.001 〜 0.030 % , Cu 1.0 ~ 2.2 % , P 0.100 %以下, Si 1.0%以下, N 0.0050 %以 下 , S 01. A 1 0.002 ~ 0.10 % , そ の 他不可避 的 元素 か ら な り 、 か つ パー ラ イ ト の発生を回避 し た主 と し て フ ェ ラ イ ト 単 相 か ら な る こ と を基本 と し、 こ れ に 必要 に応 じ て Ti . Nbの一 種 ま た は二種を、 更 に は N iを更 に ま た B を含有さ せ る 。
本発明者等は、 C u 添加鋼 に種々 の元素を単独あ る い は複合 添加 し た熱延鋼板の研究を行 つ た結果、 C uの析出 に よ る強度 上昇量が C 量 に よ り 変化 し、 C 量を低減す る こ と に よ っ て従 来知 ら れて い た C uの析出 に よ る強度上昇量よ り も 遙か に大 き な強度上昇量 が得 ら れ る 事 を新規 に 知見 し た 。 第 1 図 は Mn 0.15% , Si 0.02 % , S 0.015 % , P 0.01 % , N 0.0020 % , Sol .Al 0.03 % , Cu 1.13 % を含む鋼を基本成分 と し、 C 量 を 0.0 Q 15 % 〜 0.0465 % の範囲で変化 さ せ た鋼を溶製 し、 1050 で で加熱後、 A3点以上で熱間圧延を終了 し板厚 3. Omra と し、 300 eC で巻き取っ た時の C 量 と 引張強さの閬係を示すダ ラ フ で あ り 、 図中、 曲線 (a) は 300 で で巻き取っ た ま ま の熱延鋼 板の場合、 曲線 (b) はそ の熱延鋼板を 60 Q eC で 1 0 分間熱処 理 し た場合を示す。 曲線 (a) と 曲線 (b) の差が Cuの析出 に よ る強度上昇量であ り 、 C 量が G .025 %以上でほ強度上舁量は 約 1 5 kgf /mm2 である の に対 じ、 C量が 0.015 %以下で ほ強 度上昇量ほ約 2 0 kgf/nim2 と 極めて大き な強度上昇量が得ら れる 。 C 量が Q .015 % を境に巻き 取っ た ま ま の熱延鋼板の引 張強さ に大き な変化が認め ら れる が、 こ の強度差ほ C の固溶 強化だけで ほ説明で き ない。 こ の強度差に対応 し て、 C量が 0.015 % を境に巻き取 つ た ま ま の熱延鋼板の伸び に も大 き な 変化が認め られる 。 第 2 図は第 1 図 と 同じ 1.3 % G u含有熱延 鋼板の伸び と C 量の関係を示すグ ラ フ で あ る 。 同図よ り 、 C 量を 0.015 %以下に制御す る事に よ り 極めて高い延性を確保 し得る事が認め ら れる。
こ の よ う に C 量が G .015 %以下の場合、 延性が高 く 且つ熱 処理に よ る強度上昇量が大き く な る理由 は未だ明 ら かで は な い が、 敢 え て推測す れ ば以下の如 く 考 え る 事が で き る 。 即 ち 、 Cuは鋼中で偏折 し Cuの含有量は フ ェ ラ イ ト 中 と ノ ー ラ イ ト 中で は異な り 、 パ一 ラ イ ト 中の方が高い。 こ の ため パー ラ ィ ト 中の Cuは フ ェ ラ イ ト 中の Guに比べ平衡固溶度に対す る過 飽和度が大き く 析出 し易い状態に あ る 。 従っ て 3 0 0 で と い う 低温で巻き取っ た場合でも 、 C 量が高 く パ一ラ イ ト が存在 す る場合に は Cuが一部析出 し硬質化す る 。 こ れに対し C 量が 低 く パー ラ イ ト が存在せず フ ヱ ラ イ ト 単相の場合 に ほ、 Cuが 過飽和 な状態で 固溶 さ れ硬質化 し な い 。 こ れ ら の熱延板を ' 6 0 0 'C 程度の高温で熱処理す る と 過飽和状態 に あ っ た C uの 十分な析出が起 こ り 強度が上舁す る も の と 想定さ れ る 。
こ の様 に c 量は極め て高い強度上昇量 と 極め て高い延性を 確保す る た め に は極力低減さ せ る こ と が必要で あ る 。 C 量の 下限 ほ工業的 に溶製 し う る 限界の 0 . 0 0 0 5 % と す る 。 逆 に C 量 が 0 . 0 1 5 % を超 え る と 強度上昇量 と 延性 は さ が る と 同時 に 、 加工前の鋼板を製造す る と き に熱延の巻 き 取 り 温度 に対す る 制限が発生す る 。 即ち 、 焼入れ組織が発生 し て加工前の鋼板 の延性を下げ る か ら で あ る 。 従 っ て、 C 量は 0 . 0 0 0 5〜 0 . 0 1 5 %の範囲 と す る 。
特 に 好 ま し レヽ C 量 は 、 製鋼 能 力 に も よ る が 、 0 . 0 0 0 5〜 0 . 0 0 5 0 % で あ る 。
こ れ に対 し、 前述の特公昭 5 7 - 1 7 Q 4 9号で は、 C 量は、 そ の 実施例 に よ れば、 Q . 0 4 % が開示さ れ、 そ し て熱延 ま ま の鋼板 の伸 び は 3 7 · 9 % 、 引張強 さ は 3 8 . 1 k g / m m 2 で あ る 。 一方、 5 5 0 °C X 1 H rの熱処理 に よ る 強度上昇量 は 1 3 . 9 k g/ m m 2で あ る 。 こ れ は上記特許 に お け る C 量で は、 本発明 に 反 し て、 組 織 と し て パ ー ラ イ ト 相が存在す る た め 、 熱延 ま ま の段階で も 既 に C uが一部析出 し て お り 、 延性が本発明 よ り 著 し ぐ低 く 、 且つ熱処理 に よ る強度上昇量 も 著 し く 少 な い も の で あ る 。
本発明 に お け る熱処理後の強度向上の特徴点 は、 熱処理 に よ る 全体の強度上昇のみ な ら ず、 局部加熱 に よ る成形部品の 局部的強度上昇が大 き い こ と で あ る 。 こ こ で局部加熱 と は、 例え ばス ポ ッ ト 溶接、 アーク 溶接、 フ ラ ッ シ ュ ノ ッ ト 溶接等 の溶接お よ び局部的加熱手段 (例え ば、 高エネ ルギービ一ム ( レ ーザー、. 電子ビー ム ) 照射、 プ ラ ズ マ加熱、 高周波加 熱、 パーナ一加熱等) を意味す る 。 第 3 図 は本発明鋼のス ポ ツ ト 溶接部の断面硬さ分布を示 した図で あ る 。 同図よ り 本 棻明鋼 ほ同一強度の比較鋼に比べ、 C量が少ない ためナゲ 卜 部の硬さ が低い こ と お よ び熱影響部 に G uの析出 に よ る硬さ 上昇が認め られる 。 第 4懷 末 ¾明鑼のス ポ ; 卜 溶接部の十 字引張強さ を比較鋼の それ と対比 して示 し た図で あ る 。 同図 よ り 、 本発明鋼の十字引張強さ は比較鋼の そ れ に比べ極めて 高く 、 適正溶接電流であ る ナゲ ッ ト 径が 5 t ( t は板厚) と な る溶接電流時の +字引張強さ で比べる と 2 倍以上の強さ を持つ こ と が認め ら れる。 こ れは第 3 図 に示 し た よ う に、 熱 影響部 に 認め ら れ る C uの析出 に よ る 硬 さ 上昇 に よ る も の で あ り 、 术発明鋼 は ス ポ ッ ド溶接の よ う な極 く 短時間の入熱 に よ っ て も 局部的 な強度上昇を はか り 得 る 特性 を も つ てい る。
第 5 図ほ本発明鋼に レーザーを照射し た時の、 鋼板の硬さ の変化 に お よ ぼす レ ーザー照射回数の影響 を示 し た図であ る。 レーザ一照射条件は C 0 2 ガス レーザ一、 1 0 k ff、 1 0 1 0 m mビー ム 、 照射時間 0 5秒、 照射間陽 6 秒で あ る 。 数回 の レーザー照射 に よ り 硬さ は大き く 上昇 し てい る 。 - 一般に、 強度部材で の破壊危険部位は、 ご く 限 ら れた部分 であ る こ と が多 く 、 従っ て、 部品全体の熱処理強化を必要と す る こ と は少ない。 ま た、 成形加ェ品の熱処理は、 生産性、 コ ス ト の面か ら 、 短時間 に、 しかも連続的 に処理す る こ と が 望ま し い。 従っ て破壊危険部位だ けを短時間の熱処理に よ つ て強化す る こ と の技術的意義は極め て大 き い。
具体例の 1 つ に 自動車の ホ イ ールデ ィ ス ク があ る 。 ホ イ一 ル は重要保安部品の 1 つ で あ り 、 そ の寿命は材料の疲労特性 に支配さ れ る 。 ホ イ ールの亀裂発生箇所は ナ ツ ト 座、 ハ ツ ト 部等の板厚方向歪の大 き な部位、 飾 り 穴部、 ボル ト 穴部等の 剪断 さ れ た穴の緣お よ びデ ィ ス ク と リ ム のス ボ ッ 卜 溶接部で あ り 、 こ こ で の疲労強度が重要で あ る 。
図 6 は本発明鋼板の熱処理 ( 6 0 0 X 3 0 秒) 前後の疲 労強度を調査 し た結果を示 し た図で あ る 。 比較材 に く ら べ、 本発明鋼は疲労強度が高 く 、 特 に熱処理後は そ の引張 り 強さ が上昇 し た結果、 極め て高い疲労強度を も っ て い る 。 前述の ホ イ ール に お け る疲労亀裂発生危険箇所 に局部加熱を施す こ と に よ っ て、 著 し い寿命の延長が は か ら れ得る 。
P ほ鋼板の強度お よ び耐食性を向上さ せ る元素 と し て有効 で あ る が、 そ の必要が なレヽ と き は、 P 量は 0 . 0 3 %以下で あ つ て も よ い。 一方、 鋼板の強度お よ び耐食性を向上さ せ る場合 に は、 0 . 0 6〜 0 . 1 0 % の P の添加が好 ま し レヽ。 し か し、 0 . 1 0 0 % を超え る と 鋼板の二次加工割れが発生す る の で そ れを上限 と す る 。 尚、 P の添加は C uの添加 と と も に鋼板の耐食性能を 高め る の に有効で あ る 。
S iは通常、 不純物 と し て は 、 G . 0 3 % 以下含 ま れ る が、 綱 板の強度 を上 げ る 元素 と し て そ の 必要強度 レ ベ ル に 応 じ て 1 . 0 %以下、 好 ま し く ほ 0 · 3 〜 1 . 0 % 添カロす る 。 し か,し 、 1 . 0 % を超 え る と 熱間圧延工程 に お け る ス ケールの発生が著 し く 、 鋼板の表面性状を劣化さ せ る た め そ の上限を 1 . 0 % と す る 。 Mnお よび S 量は鋼板の加工性を高め る ため に ほ低い ほ う が 好ま し く 、 それぞれの上限を 0.5 % , 0.030 % と し、 好ま し く ほ、 それぞれ 0.05〜 0.30% , 0.001 〜 0.010 % と す る。 Mn 量があ ま り 低 く な り す ぎる と 鋼板の表面疵が発生し易 く な る のでその下限を 0.05 % と す る。
N 量は加工性を高め る ため に も低い ほ う が好ま し く 0.0050 %以下 と する。
σιι量ほ加工前で ほ固镕状態に し て お き 、 加工後の熱処理に よ り Cuを析出さ せて強度を あ げ る 。 第 7 図は極低炭素鋼に Gu を添加 し た鋼の熱処理時間 (熱処理温度 5 5 0 で ) に よ る 強度上昇量 ( 熱処理後の引張強 さ - 熱延 ま ま 引張強さ ) を G'uをパ ラ メ ータ と し て示すグ ラ フ で あ り 、 図中、 曲線 (a) は Cu2.06% , 曲線 ( b ) は C u 1.68 % , 曲線 ( c ) は G u 1.38 %、 曲線 (.d ) は G u 0.71 %の場合であ る 。 同図よ り C u 1.0 %未満 で は曲線 U) の如 く 強度の上昇量は不十分で あ る 。 一方 2.2 % を超え る と 表面品質が劣化す る の で、 ほ 1.0〜 2.2 %、 好ま し く は 1.2 〜 2.0 % の範囲 と す る 。
A 1ほ脱酸に必要な元素で あ り 、 S 01. A 1が 0.002 %未満で は 脱酸が +分で は な く 、 一方多過 ぎ る と ア ル ミ ナ生成量が増 え、 鋼の表面品篁に悪影響を与え る の で、 その上限を 0.10 % と す る 。
T i , Nb の一種ま た二種をそれぞれ 0.01〜 0„ 2 % 0.005 〜 0.2 %の範囲で添加す る と 、 C と N は こ れ ら に よ っ て固定 ざれ、 得 ら れ る鋼板ほ非時効性の鋼板に な る 。 非時効性鋼板 に なる と 時効に よ る延性の低下はな く な り 、 一層の高延性鋼 板が得 ら れる こ と に な る 。 Tiほ鋼中の C , 0 , N , S な ど と 反応す る の で、 こ れ ら の 量 と 併せ考えね ばな ら ないが、 こ れ ら の元素を固定 し、 高度 の ブ レ ス 加工性を得 る た め に は Q .01 %·以上の添加が必要で あ り 、 一方 0.2 % よ り 多 く す る こ と は コ ス ト 的 に 不利で あ る 。
Nbも鋼中の C , 0 , N な ど と 反応す る の で、 こ れ ら の量 と 併せ考 え ね ば な ら な レ、 が、 こ れ ら の 元素 を 固定 じ 、 高度の ブ レ ス 加工性 を得 る た め に は Q . Q Q 5 % 以上の添加が必要で あ り 、 一方 0.2 % よ り 多 く す る こ と は コ ス ト 的 に不利で あ る 。 -
N iほ鋼板の表面品質を高品位 に保ち 、 熱間脆性を防止す る の に 有効 で あ る 。 必要.に 応 じ て 0.15〜 0.45 %添加 し て も よ い。
C u添加鋼の熱間脆性は鋼表面 に生成 し た ス ケールの下 に形 成さ れ る C u濃縮部が、 そ の融点以上 に加熱 さ れ る こ と に よ つ て液状 と な り オース テ ナ イ ト 粒界 に浸透す る こ と に よ っ て引 き 起 こ さ れ る 。 し た が っ て ス ラ ブの熱延段階で の熱間脆性を 防止す る に は、 C u濃縮部の融点以下で加熱す る こ と が理想で あ り 、 108 Q°C 以下の加熱が望 ま し い。 し か し、 加熱温度の低 下 ほ圧延荷重の増加を も た ら す た め、 圧延機の性能 に よ っ て は必ず し も 、 1 Q 8 Q °C 以下の加熱は実施で き ない。 こ の場合 に は N iの添加が有効であ る 。 N iの添加 に よ り 、 上記の C u濃縮部 に N iも濃縮さ れ、 C u濃縮部の融点を あ げ る 。 0.15 %未満の添 加で ほ そ の効果は小 さ く 、 一方 0.45 % を超え る N iの添加 は コ ス ト 的 に不利で あ る 。
次 に B で あ る が、 B は C uと 複合添力 Πさ れ る こ と に よ っ て鋼 の Ar3 を著 し く 低下さ せる効果のある こ と を本発明者等は新 親 に知見 し た。 本発明鋼の熱延に おいて、 圧延終了温度は鐧 板の材質を良好に保つ為 Ar3 以上であ る こ と が必要であ る。 しか る に本発明鋼 に おい て は、 前述の如 く Cuの固溶も し く は 析出を制御す る ため に C を 0.015 %以下 と し てお り 、 従っ て その Αι~3 点ほ高 く 、 圧延終了温度を高 く す る 必要が あ る 。 ― 方、 本発明鋼板の表面品質を高品位に保つた め にぱ如熱温度 を 《する こ と が望ま しい こ と は既に述べた と お り であ り 、 低温加熱 と 高温で の圧延終了 と い う 製造上の困難が と も な う 。 本発明者ら は こ の観点か ら、 G uを添加 し 'た極低炭素鋼の &r3 に お よ ぼす元素の影響を検討 し、 B の添加 に よ っ て Ar3 点が大幅 に低下する こ と を知見 し た。 - 図 8 ほ 3 % Guを含有し た Ti添加極低炭素鋼の Ar3 に お よ ぼす Β の効果を示し た図であ り 、 100 Q °C X 1 0 分加熱後熱延 時の冷却速度に相当す る 3 0 Ό / s の冷却速度で冷却 し た時 の A r 3 点測定結果で あ る 。、
0.0010 % ま での B の添加に よ り A r 3 点は急激に低下 し、 そ れ'以上の添加に よ り A r 3 点は緩やか に低下す る 。
ひ.0001 %未満の添加で は A r 3 点低下の絶対値が小さ い ため 下限を 0.0001% と す る 。 一方、 0.0030% を超え る B の添加は コ ス ト 的 に不利で あ る 。 なお'、 こ の範囲の B の添加は 2 次加 ェ割れ性を向上さ せ る上でも好ま しい。
以上述べた T i , Nb の一種ま た は二種の添加、 N i の添加お よび B の添加は単独で添加 して も 、 それ ら の二種以上を複合 添加 し て も効果を発揮する 。
次 に本発明鋼板の製造方法 に お け る 熱間圧延工程 につい て で あ る が、 連鎵機か ら 直送 さ れ た 高温錶片 ま た は、 加熱 に よ っ て え ら れた高温錶片 を A r 3 以上の温度で熱間圧延を お こ ない、 そ の後、 5 0 0 °C以下の温度で巻 き 取る 。 5 0 0 で を超え る温度で巻取る と C uの析出が起 こ り 、 加工性の良い軟 質鋼板が得 ら れないのみな ら ず、 熱処理 に よ る強度上昇量が 小 さ く な る 。 本発明 で は C 量を制限 し て巻取段階で の C uの析 出 を抑制 し て お り 、 5 0 0 °C 以下の温度で巻取 る こ と に よ り 大部分の C uを過飽和固溶の状態 に保 ち う る 。 し か し 5 0 0 ¾ を超え る温度で巻取る と G uの析出が起 こ り 硬質化す る た め、 巻取温度の上限を 5 0 O 'C と す る 。 C uの析出を抑え る ため に ほ低温 に すればす る ほ ど良い こ と ほ公知で あ り 、 全て の C uを 固溶状態 に保つ に は卷取温度を 3 5 0 °C 以下 に す る こ と が最 適で あ る 。 従来の鋼の よ う に C 量も し く は M n量が高い場合 に は、 低温で巻取る と マ ルテ ン サ イ ト 相も し く はべ ィ ナ イ ト 相 と い う 変態 に よ る硬質相が生成 し硬質化す る た め、 こ れを避 け る ため に巻取温度 に下限を設け な け ればな ら ない。 本発明 鋼ほ C 量お よ び M n量を低 く 制御 し、 焼 き 入れ性を著 し く 抑え て い る た め巻取温度の冶金学的 な下限温度 は な い。 但 し 、 1 0 0 °C 未満で巻取る と 巻形状が悪 く な り 、 こ れ に起因す る 表面品質の劣化を招 く た め、 好 ま し く ほ巻取温度を 3 5 0 °C 以下、 1 0 0 °C 以上 と す る 。
こ れ に対 し て前掲の特公昭 5 7 - 1 7 0 4 9号 に よ れば、 巻取温度 を 3 5 0 eC 以上 ( 4 5 0 t 以下 ) に 限定 さ れ て レヽ る 。 こ れ は、 3 5 0 °C 以下の低温で は、 相変態 ( マ ル テ ン サ イ 卜 も し く はべ イ ナ イ ト 変態) が生 じ る た め に加ェ性が劣化す る観点 よ り 限定 し て レヽ る も の で あ る 。 しか る に、 上記の如 く 本発明で は極低炭素領域に限定 して い る の で、 巻取温度 と し て 3 5 0 以下を採用 し て も相変態 がお こ ら ず、 従っ て加工性の 題がないの で、 前掲特許よ り も 、 C uの固溶量の多い低温巻取が採用で き る も のであ る 。
得 ら れた熱延板は成形加工後 に熱処理を施 し て その強度を 高め る が、 熱処理作業性か ら み る と 出来る だ け低温で然も短 時間の熱処理-で-終 きせ る と が極めて大切であ る 本発明 で ほ こ の点 に ついて も十分な検討を加え、 短時間の熱処理で その 目 的が達成さ れる よ う に し た も のであ る。
例え ば熱処理温度ほ 7 5 0 で以下、 熱処理時間は 3 0 分以 下 と い っ た短時間でその 目 的が十分 に達せ ら れる 。
本発明鋼板ほ、 例え ば自動車の フ レ ーム 、 ホ イ ール、 補強 部品や圧力容器、 コ ン プ レ ッ サー力 パー、 軸受けの よ う な用 途が考え ら れる。
次 に実施例を あ げて本発明を具体的 に説明す る 。
図面の簡単な説明
第 1 図は熱延鋼板の強度に及ぼす C 量の影響を、 C uの析出 の為の熱処理の前後で示すグ ラ フ 、
第 2 図 は熱延鋼板の延性 に 及ぼす C 量の影響を示す ダ ラ フ 、
第 3 図は本発明鋼板のス ポ ッ ト 溶接部の断面の硬さ分布を 示すグ ラ フ、
第 4 図は本発明鋼板のス ポ ッ ト 溶接部の十字引張強さ に お よ ぼす溶接電流の影響を示すダ ラ フ、
5 図は レーザー照射バス数 に よ る本発明鋼板の硬さ の変 ィ匕を示すグ ラ フ 、 第 6 図 は本発明鋼板の疲労特性 を熱処理前後 で示すダ ラ フ 、
第 7 図ほ極低炭素鋼熱延鋼板の強度上昇量 に お よ ぼす熱処 理時間の影響を Cu量をパ ラ メ ータ と し て示すグ ラ フ 、
第 8 図は本発明鋼の Ar3 点 に お よ ぼす B 量の影響を示すグ ラ フ 、
第 9 図は本発明鋼.の ス ポ ッ ト 溶接部の剪断引張 ざに お よ ぼす溶接電流の影響を示すグ ラ フ で あ る 。
発明を実施す る た め の最良の形態
実施例 1
第 1 表 に示 し た A か ら S ま での鋼片 を同表 に示す加熱温度 で加熱、 熱延 し、 巻 き 取 り 、 板厚 3.0 mmの熱延鋼板を得た。 ま た そ の機械的性質を示す。 そ の鋼板 に変形加工ほ施さ ず に 熱処理を与え た場合の機械的性質を第 2 表 に示す。
第 1 表 お よ び第 2 表 に 示す通 り 、 术発明鋼 は加工時 は極 め て 優れ た延性 を持 っ て お り 、 極め て 短時間 の熱処理で引 張強度が著 し く 上昇す る 。 C uの固溶強化能は 1 % 当 た り 約 4 kgf /mm2 で あ り 、 極低炭素鋼 に Cuを 2.11 %添加 し た鋼 A は熱 延 ま ま での強度は低 く 極め て高い延性を有 し、 且つ 6 0 0 で 1 0 分 と い う 短時間の熱処理で 2 5 kgf/ιηπι2 以上の強度上 异が可能で あ る 。 S iを添加 し た鋼 C , P を添力 Q し た鋼 D は熱 延 ま ま で の強度が高いが良好な延性を有 し て お り 、 熱処理 に よ る強度上昇も大 き い。 T i , N bを单独も し く は複合添加 し た 鋼 B , E , F , J , K 及び L ほ時効後の伸びの低下が な く 、 —層の鋼延性,鋼板 と な っ て い る 。 こ れ に対 し比較鋼 G お よ び I は C 量が高 く 加工時の延性が劣 り 、 比較鋼 H は C u量が少な く 本発明の 目 的 と す る短時間の熱処理で は引張強度の上昇が 見 ら れない。
本発明鑼 A 〜 F お よび J 〜 L ほいずれも熱処理前の伸びの 値が大き く 、 短時間の熱処理 に よ り 、 著 し く 強度が上昇 し て お り 優れた特性を有 し てい る が、 こ の よ う な優れた特性を得 る ため に はォ一ス テナ イ ト 单相域 ( A r 3 点以上の温度) で圧 延を終了 し、 圧延後の冷却過程でオ ス テナ イ ド相が ら フ エ ラ イ ト 相に変態さ せ、 巻き 取っ た時の鋼板の組織が主 と して フ ェ ラ イ ト 单相組織であ る こ と が必要である 。 しか る に こ れ ら の本発明鋼の A r 3 点は高 く 、 従 っ て表 2 に示す よ う に熱延 仕上温度は高く し てい る 。 し か し、 G u添加 に起因す る熱間脆 性を回避す る に ほ、 熱延加熱温度は低い ほ ど望ま しい こ と ほ 既に述べた通 り であ り 、 低温加熱でかつ高温圧延終了 と い う 製造上の困難があ る 。 こ の問題点を解決す る手段 と し て本発 明鋼 M〜 S に は B を複合添加 し た。 C u含有鋼 に微量の B を複 合添加す る こ と に よ り 、 A r 3 点が第 8 図に示す よ う に大幅に 低下す る と い う 本発明者 ら の新た な知見に基づき 、 本発明鋼 M〜 S に おいて は熱延仕上温度を表 2 に示す如 く 大幅に低く し た。 こ れ ら の鋼板の機械的性質およ び熱処理に よ る強度上 昇量は第 1 表お よ び第 2 表に示す如 く 、 B を添加 し てい ない 本発明鋼 J ( G u量 は ほ ぼ同量 ) の そ れ ら と 同様 に 優れてい る 。 第 1 表 試験材の化学組成(w t¾) と熱延条件および機械的性質 鋼 C Si Mn P s Al N Ti Nb Cu
A 0.0052 0.01 0.15 0.005 0.009 0.03 0.0018 一 2. 11
B 0.0013 0.01 0.18 0.009 0.007 0.05 0.0023 0.035 一 1 .43
C 0.0135 0.84 0.20 0.007 0.010 0.04 0.0021 一 ― 1 .68,
D 0.0064 0.01 0.25 0.078 0.008 0.02 0.0015 ― 一 1 .24
E 0.0046 0.64 0.25 0.079 0.015 0.07 0.0019 0.048 ― 2 .06:
F 0.0072 0.01 0.15 0.081 0.03 0.0020 0.053 0.008 1 .87
G 0.01 0.31 0.006 0.007 0.04 0.0023 ― ― 1 .05
H 0.0054 0.01 0.15 0.008 0.009 0.05 0.0018 一 0.68 o
1 0.0730 0.01 0.22 0.06 0.0022 ― 1.24
J 0.0036 0.02 0.24 0.010 0.008 0.04 0.0024 0.052 1.36
K 0.0019 0.01 0.21 0.015 0.012 0.06 0.0027 0.043 1.55
L 0.0062 0.02 0.22 0.011 0.008 0.07 0.0030 0.044 0.007 1 .30
M 0.01 0.15 0.005 0.007 0.04 0.0025 1 .35
N 0.0024 0.01 0.11 0.007 0.005 0.05 0.0031 0.045 1 .34
0 0.0052 0.01 0.12 0 , 005 0.004 0.04 0.0024 0.052 1 .33
P 0.0045 0.01 0.18 0.006 0.005 0.06 0.0027 1 .34
Q 0.0012 0.02 0.19 0.009 0.007 0.03 0.0021 0.046 1 .32
R 0.0021 0.01 0.16 0.010 0.008 0.04 0.0023 0.042 1 .38
S 0.01 0.14 0.008 0.009 0.04 0.0028 0.051 0.008 1 .37
( 第 1 表 続 き ) 熱 延 条 件 時 効
Figure imgf000018_0001
(loot) X lh)
m ま九 imSI* ^ HO yB FfiF
ft Hin yj執¾ ェ _Πΐ [皿 ist ¾ A — iim rr f ί糸 仙 ΙΨ ΐリ ( V% /) 老
(°c) (X) (¾) (kgf/mmつ {%)
A 1050 912 330 28.1 39.2 43.6 42.5 本発明鋼
B 1050 906 340 25.4 36.7 47.2 47.1 木発明鋼
C 1050 897 220 34.5 44.9 38.6 37.1 本発明鋼
D 1250 925 460 30.8 42.4 40.9 39.8 本発明鋼
E 1250 932 280 35.1 49.2 36.4 36.3 本発明鋼
F 1050 911 300 29.9 44.4 40.1 40.1 本発明綱
G 1050 907 400 28.4 37.6 37.2 ' 36.1 比較鋼-
,H 1050 908 400 23.9 34.2 47.5 47.3 比較鋼
I 1050 914 550 56.5 63.8 15.7 13.9 比較鋼
J 1050 907 320 25.8 36.9 46.3 46.1 本発明鋼
K 1200 910 350 26.3 37.8 43.1 43.2 1本発明鋼
L 1100 908 400 26.1 37.2 43 J 43.2 1本発明鋼
1050 850 310 25.2 36.6 46.5 45.1 本発明鋼
N 1050 840 305 24.6 36.1 47.2 47,1 本発明鋼
0 1100 810 222 24.8 36.2 46.5 46.4 本発明鋼
P 1050 812 211 25.4 37.1 45.4 44.3 本発明鋼
Q 1050 830 290 24.8 36.3 47.4 47.5 本発明鋼
1050 815 230 25.1 37.3 46.2 46.3 本発明鋼
S 1050 821 235 24.4 37.4 46.4 46.3 本発明鋼
第 2 表 熱処理条件と機械的性質
Figure imgf000019_0001
実施例 2
第 3 表に示す組成の鋼 N o . 1お よ び N o . 2を熱間圧延 し て板厚 3 . 0 m mの熱延鋼板を得'た。 こ れ ら の鋼板を圧力容器 に成形加 ェ し た。 こ の圧力容器か ら 、 サ ン ブルを切 り 出 し た。 切 り 出 し た サ ン ブルの板厚歪 は約 2 6 % で あ っ た 。 こ の サ ン ブルの ま ま の引張強さ お よび 6 3 0 °C で 5 分間の熱処理 (圧力容器 の內部応力-を除去する応力除去焼鈍 に粗当) 後の引 '張強さを 第 4 表に示す。 同表中の強度上昇量 Δ Τ 3 ほ、 ブ レ ス成形お よぴ熱処理後の引張強さ か ら、 熱延 ま ま の引張強さ を引いた 値であ る。 比較鋼は加工後の熱処理 に よ り 大幅に軟化してい る の に対 し、 本発明鋼は加工後の熱処理 に よ り 更な る強度上 昇が達成されてい る。
第 3 表 試験材の化学組成 (wt¾) と熱延条件および機械的性質
Figure imgf000021_0001
Figure imgf000021_0002
表 ブレスカロェ後の引張強さ 強度上昇量厶 T S 鋼 (kgf/flira2) 熱処理後の引張強さ (kgf/mm2)
1 55 .1 58.2 21.4
2 58.4 40.2 - 3.0
実施例 3
第 5 表に示す組成の鋼 Νο·3お よび No.4を熱間圧延 し て板厚 2.0 mmの熱延鋼板を得た。 こ れ ら の鋼板を酸洗後、 サ ン ブル を切 り 出 しス ボ ッ ト 溶接を行っ た。 ス ポ ッ ト 溶接条件を第 6 表に示す。 ス ポ ッ 卜 溶接部の評価をす る ため に、 各溶接電流 で の剪断引張強度、 十字引張強度、 ナ ゲ ッ ト 径を測定する と 同時 に、 ナゲ 小 径が 5 扳厚と な る溶接電流で—久 ポ V ト 溶 接し たサ ン ブルの断面硬さ分布測定を行つ た。
第 5 表 試験材の化学組成 (wt¾) と熱延条件および機械的性質
Figure imgf000023_0001
熱延仕上温度 熱延巻取温度 び
鋼 (t) (°c) 一 伸
備 考 (%)
3 860 340 35.1 44.5 39.0 本発明鋼
4 870 610 29.7 44.4 39.9 比較鋼
第 6 表 ス ポ ッ ト 溶接条件
電極 - 合金 ,截頭型 . 電極先端径 7πιπι-5 ~T 初期加圧時間 S . T = 30 交流サイ ク ル
xa. 時间 W . Τ = 26 交流サ イ ク ル = (10 t+ 2) X 6/5 保持時間 ― H . Τ= δ - 交流サ ク ル — ' 加圧時間 60 Okgf = 300 t 溶接電流
強度の低い低入熱条件か ら 、 溶接中 に "散 り " を 発生す る よ う な入熱過大域ま で広 く 変化さ せた。
第 3 図ほその断面硬さ分布測定結果であ り 、 本発明鋼ほ溶 接熱影響部 に C uの析出 に対応する硬さ の上昇が認め られる 。 第 4 図は各溶接電流での十字引張強さ の測定結果であ る 。 本 発明鋼は溶接電流の小さ い時か ら高い十字引張強さ をも っ て お り 、 適正な溶接電流値で あ る ナ ゲ ッ ト 径が 5 板厚と な る 電流値での十字引張強さ で比較する と 、 末究明鋼のそれは比 較鋼のそれ に比べ 2 倍以上の優れた強さ を も っ てい る 。 第 9 図は各溶接電流で の剪断引張強さ の測定結果で あ る 。 本発明 鋼 はいずれの溶接電流で も比較鋼に く ら べ高い剪断引張強度 を も っ てい る 。
産業上の利用可能性
本発明 ほ、 極めて良好な泠間加工性を有する と 共に、 最終 製品で必要 と さ れる高い強度が冷間加工後の短時間の熱処理 に よ り 達成さ れ得る新規な熱延鋼板を提供す る も の で あ り 、 ま たかか る熱延鋼板を成分規制お よ び熱延鋼板の巻取温度の 制御 と い う 簡便な手段 に よ り 製造 し う る新規な方法を提供す る も の で あ る か ら 、 鋼板利用者側か ら の新 た な要求 に 十分 応 え う る も の で あ り 、 産業上裨益す る と こ ろ が極め て大で あ る 。

Claims

― 請 求 の 範 囲 C 0.0005 ~ 0.015 % , Mn 0 . 05 ~ 0 . 5 % , S 0 . 001 〜 0.030 % , Cu 1.0〜 2.2 % , P 0. 100 %以下, S i 1.0% 以下, N 0.0050 %以下, So 1 . A 1 0.002〜 Q .1 Q % を含有 し、 残部 F e及び不可避的元素か ら な り 、 パ一 ラ イ -ト の発生 を回避 し た主 と し て フ ェ ラ イ ト 单相か ら な る こ と を特徴 と す る冷間加工性の極めて優れた高強度熱延鋼板。
C O .0005〜 0.015 % , Mn 0 . 05 ~ 0. 5 % , S 0 . 001 〜 0.030 % , Cu 1.0〜 2 , 2 % , P 0.100 %以下, S i 1.0 %以 下, N 0.0050 %以下, S 01. A 1 0.002〜 0.10% にカロえて Ti ま た ほ N bの一種も し く は二種を それぞ れ 0.01〜 0.2 % ,
0.005 〜 Q .2 %の範囲で含有 し、 残部 F e及び不可避的元素 か ら な り 、 パー ラ ト の発生を回避し た主 と し て フ ェ ライ ト 单相か ら なる こ と を特徴 と する冷間加工性の極めて優れ た高強度熱延鋼板。
C 0.0005〜 015 % , Mn 0 .05 ~ 0 .5 % , S 0 .001 〜 0.030 % , Cu 1.0〜 2.2 % , P 0.100 %以下, Si 1.0%以 下, N i 0.15 ~ 0.45 % , N 0.0050 %以下, Sol . A1 0.002 〜 0. 10 % を含有 し 、 残部 F e及び不可避的元素か ら な り 、 パ一 ラ イ ト の発生を回避 レ た主 と して フ ェ ラ イ 卜 单相か ら な る こ と を特徴 と する冷間加ェ性の極め て優れた高強度熱 延鋼板。
C O .— 0005〜 0.015 % , Mn 0 . 05 ~ 0 . 5 % , S 0 .001 〜 0.030 % , Cu 1.0— 2.2 % , P 0.100 %以下, S i 1.0%以 下, N 0.0050 %以下, So 1. A 1 0.002〜 0.10% , B 0.0001 〜 0. Q 030 % を含有 し、 残部 F e及び不可避的元素か ら な り 、 パー ラ イ 卜 の発生を回避 し た主 と し て フ ェ ラ イ ト 单相か ら な る こ と を特徴 と す る 泠間加工性の極め て優れ た高強度熱 延鋼板。
C O .0005〜 0.015 % , Mn 0 .05 ~ 0.5 % , S 0.001 〜 0.030 % , 'G u 1.0—2.2 % -; P 0.100 %以下, S i 1.0 %以 下, N i 0.15 〜 0.45% , N 0.0050 %以下, So 1. A 1 0.002 〜 0.10% に力 Qえ て Tiま た は Nbの一種も し く は二種をそ れぞ れ 0.01〜 0.2 % , 0.005 〜 0.2 % の範囲で含有 し、 残部 F e 及び不可避的元素か ら な り 、 パ ー ラ イ 卜 の発生を回避 し た 主 と し て フ ラ イ ト 单相か ら な る こ と を特徴 と す る冷間加 ェ性の極め て優れた高強度熱延鋼板。
C O .0005〜 0.015 % , Mn 0.05〜 0.5 % , S 0.001 〜 0.030 % , Cu 1.0〜 2.2 % , P 0.100 %以下, Si 1.0%以 下, N i 0.15 ~ 0.45 % , N 0.0050 %以下, So 1. A 1 0.002 〜 0 · 10% , B 0.0001〜 0030% を含有 し 、 残部 Fe及び不可 避的元素か ら な り 、 パー ラ イ 卜 の発生を回避 し た主 と し て フ ェ ラ イ ト 单相か ら な る こ と を特徴 と す る 冷間加工性の極 め て優れ た高強度熱延鋼板。
C 0.0005〜 0.015 % , Mn 0.05 ~ 0.5 % , S 0.001 〜 0.030 % , Cu 1.0〜 2.2 % , P 0.100 %以下, Si 1.0%以 下, N 0.0050 %以下, Sol .Al 0.002〜 0.10% , B 0.0001 〜 0. Q D 30 % に加え て T iま た は N bの一種も し く ほ二種を そ れ ぞれ 0.01〜 0.2 % , 0.005 〜 0.2 % の範囲で含有 し、 残部 Fe及び不可避的元素か ら な り 、 パー ラ イ 卜 の発生を回 辟 し た主と し て フ ェ ラ イ ト 単相か ら な る こ と を特徵 と する冷間 加工性の極め て優れた高強度熱延鋼板。
C 0.0005^ 0.015 % , Mn 0 .05 ~ 0.5 % , S 0 .001 〜 0 , 030 % , Cu 1.0 ~ 2.2 % , P 0.100 %以下, Si 1.0 %以 下, Ni 0.15 〜 0.45 % , N 0.0050 %以下, Sol .Al 0.002 〜 0.10 % , B 0.0001〜 0.0030 % にカロ え て T iま た は N bの一種 も し く ほ二種を そ れ ぞれ 0.61 ~ "0 Λ -% , Ό .005 〜 0.2 % の 範囲で舍有 し、 残部 Fe及び不可避的元素か ら な り 、 パー ラ ィ 卜 の発生を回避し た主 と して フ ェ ラ イ ト 単相か ら な る こ と を特徴 と す る 冷間加工性の極め て優れ た髙強度熱延鋼 扳。
C O .0005〜 0.015 % , Mn 0.05 ~ 0.5 % , S 0.001 〜
0.030 % , Cu 1.0〜 2.2 % . P 0.100 %以下, Si 1.0%以 下, N 0.0050 %以下, So 1. A 1 0.002〜 0.10 % を含有 し、 残部 F e及び不可避的元素か ら な る鋼を、 A r 3 以上の温度で 熱間圧延 し、 得ら れた熱間圧延鋼蒂を 5 0 0 eC 以下の温度 で巻き取る こ と を特徴 と する冷間加工性の極め て優れた高 強度熱延鋼板の製造方法。
C O .0005〜 0.015 % , Mn 0 .05 ~ 0 .5 % , S 0 . 001 〜 0.030 % , Cu 1.0〜 2 .2 % , P 0 . 100 %以下 , S i 0 % 以下, N 0.0050 %以下, Sol . Al 0.002〜 0.10 % にカロえ て T iま た は N bの一種も し く は二種をそ れ ぞれ 0.01〜 (! .2 % , 0.005 〜 0.2 %の範囲で含有し、 残部 Fe及び不可避的元素 か ら なる鋼を、 Ar3 以上の温度で熱間圧延 し、 得ら れた熱 間圧延鋼帯を 5 0 0 以下の温度で巻 き取る こ と を特徴 と す る 冷間加工性の極め て優れ た高強度熱延鋼板の製造方 法。
C O .0005〜 0.015 % , Μη 0.05 ~ 0.5 % , S 0.001 〜 0.030 % , Cu 1.0〜 2.2 % , Ρ 0.100 %以下, Si 1.0%以 下 , N i 0.15 ~ 0.45 % , N 0.0050 %以下, So 1. A 1 0.002 〜 0.10% を舍有 し 、 残部 Fe及び不可避的元素か ら な る 鋼 を、 A r 3 以上の温度で熱間圧延 し 、 得 ら れ た熱間圧延鋼带 を 5 0 0 °C 以下の温度で巻 き 取 る こ と を特徴 と す る 冷間加 ェ性の極め て優れ た高強度熱延鋼板の製造方法。
C 0.0005— 0.015 % , n 0.05〜 0.5 % , S 0.001 〜
0.030 % , Cu 1.0〜 2.2 % , P 0.100 %以下, Si 1.0%以 下, N 0.0050 %以下, So 1. A 1 0.002〜 0.10% , B 0.0001 〜 0..0030 % を含有 し、 残部 F e及び不可避的元素か ら な る鋼 を、 以上の温度で熱間圧延 し、 得 ら れ た熱間圧延鋼帯 を 5 0 0 °C以下の温度で巻 き 取る こ と を特徴 と す る 冷間加 ェ性の極め て優れ た高強度熱延鋼板の製造方法。
C O .0005〜 0.015 % , Mn 0.05〜 0.5 % , S 0.001 〜 0.030 % , Cu 1.0〜 2.2 % , P 0.100 %以下, Si 1.0%以 下 , N i 0.15 〜 0.45% , N 0.0050 %以下, So 1. A 1 0.002 〜 0.1Q% に加え て Tiま た は Nbの一種も し く は二種を そ れぞ れ 0.01〜 0.2 % , 0.005 〜 0.2 % の範囲で舍有 し 、 残部 Fe 及び不可避的元素か ら な る鋼を、 A r 3 以上の温度で熱間圧 延 し、 得 ら れ た熱間圧延鋼带を 5 0 0 で 以下の温度で巻 き 取'る こ と を特徴 と す る 冷間加工性の極め て優れ た高強度熱 延鋼板の製造方法。
C 0.0005〜 0.015 % , Mn 0 .05 ~ 0.5 % , S 0.001 〜 0.030 % , Cu 1.0〜 2.2 % , P 0.100 %以下, Si 1.0%以 下, Νί 0.15 〜 0.45 % , Ν 0.0050 %以下, So 1. Al 0.002 〜 0.10% , B O .0001〜 0.0030%を含有 し、 残部 Fe及
び不可避的元素か ら なる鋼を、 A r 3 以上の温度で熱間圧延 し、 得 ら れた熱間圧延鋼蒂を 5 0 0 で 以下の温度で巻き取 る こ と を特徴 と す る拎間加工性の極めて優れた高強度熱延 鋼板の製造方法。
C 0.0005 0.015- % , Μη 0 . 05〜 0 .5 % , S - 0 , 001 〜 0.030 % , Cu 1.0— 2.2 % , P 0.100 %以下, S i 1.0 %以 下 , N 0.0050 %以下, Sol . A1 0.002〜 0.10% , B 0.0001 〜 0.0030 % に加えて T iま た は Nbの一種も し く は二種を それ ぞれ 0. Q 1〜 Q .2 % , 0.005 〜 0.2 %の範囲で含有 し、 残部 Fe及ぴ不可避的元素か ら な る鋼を ,、 Ar3 以上の温度で熱間 圧延 レ、 得 ら れた熱間圧延鋼蒂を 5 0 · 0 で以下の温度で卷 き取る こ と を特徴 と す る拎間加工性の極め て優れた高強度 熱延鋼板の製造方法。
C 0.0005— 0.015 % , n 0 . 05 ~ 0 . 5 % , S 0 . 001 〜 0.030 % , Cu 1.0〜 2.2 % , P 0.100 %以下, S i 1.0 %以 下, ί 0.15 ~ 0.45 % , Ν 0.0050 %以下, So 1. A 1 0.002 〜 0.10 % , Β 0. Q 001〜 0030 % に力 [Iえて T iま た ほ N bの一種 も し く は二種を そ れぞ れ 0.01〜 0.2 % , 0.005 〜 0.2 % の 範匪で會有 し 、 残部 F e及び不可避的元素か ら な る 鋼 を、 Ar3 以上の温度で熱間圧延 し 、 得 ら れ た熱間圧延鋼蒂を 5 0 0 で以下の温度で巻き取る ; ί と を特徴 と す る拎間加工 性の極めて優れた高強度熱延鋼板の製造方法。
請求の範囲第 9 項〜第 1 6 項の何れか 1 項 に 記載の方 法に お いて、 熱間圧延後の巻取温度を 3 5 0 °C以下 1 0 0 °C 以上 と す る こ と を特徴 と す る泠間加工性の極めて優れた 高強度熱延鋼板の製造方法。
PCT/JP1988/000639 1987-06-26 1988-06-27 Feuille d'acier lamine a chaud de grande resistance, presentant une excellente aptitude a l'usinage a froid et procede de production WO1988010318A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62/157891 1987-06-26
JP15789187 1987-06-26
JP2576788A JPS6479347A (en) 1988-02-08 1988-02-08 High strength hot rolled steel plate having drastically excellent cold workability and its manufacture
JP63/25767 1988-02-08

Publications (1)

Publication Number Publication Date
WO1988010318A1 true WO1988010318A1 (fr) 1988-12-29

Family

ID=26363455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000639 WO1988010318A1 (fr) 1987-06-26 1988-06-27 Feuille d'acier lamine a chaud de grande resistance, presentant une excellente aptitude a l'usinage a froid et procede de production

Country Status (4)

Country Link
US (1) US4925500A (ja)
EP (1) EP0322463B1 (ja)
DE (1) DE3881002T2 (ja)
WO (1) WO1988010318A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411613A (en) * 1993-10-05 1995-05-02 United States Surgical Corporation Method of making heat treated stainless steel needles
CH687879A5 (de) * 1993-12-01 1997-03-14 Met Cnam Paris Max Willy Tisch Armierungs-, Maschinen-, Apparate- und Metallbaustaehle in Feinkornguete mit stabiler Korrosionsschutzschicht.
EP0884398B1 (en) * 1996-09-27 2003-09-03 JFE Steel Corporation High strength and high tenacity non-heat-treated steel having excellent machinability
US6669789B1 (en) 2001-08-31 2003-12-30 Nucor Corporation Method for producing titanium-bearing microalloyed high-strength low-alloy steel
FR2834722B1 (fr) * 2002-01-14 2004-12-24 Usinor Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
FR2841947B1 (fr) * 2002-07-05 2005-04-29 Valmex Vis en acier a tete creuse
JP5108630B2 (ja) * 2008-05-27 2012-12-26 兼房株式会社 平板状刃物
US20090320299A1 (en) * 2008-06-27 2009-12-31 Justin Kuhn Scraper Blade
EP2460613A4 (en) * 2009-07-31 2015-11-04 Neturen Co Ltd WELDED CONSTRUCTION ELEMENT AND WELDING METHOD
JP2016055337A (ja) * 2014-09-11 2016-04-21 高周波熱錬株式会社 溶接方法及び溶接構造物
CN112536322B (zh) * 2020-11-11 2023-01-31 山西太钢不锈钢股份有限公司 不对称表面不锈钢的轧制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159528A (ja) * 1985-01-08 1986-07-19 Nippon Steel Corp 加工用熱延鋼板の製造方法
JPH06152349A (ja) * 1992-10-29 1994-05-31 Canon Inc 制御装置および画像形成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1957427A (en) * 1930-07-08 1934-05-08 Vereinigte Stahlwerke Ag Process for increasing the mechanical strength properties of steel
US4043807A (en) * 1974-01-02 1977-08-23 The International Nickel Company, Inc. Alloy steels
JPS5379717A (en) * 1976-12-24 1978-07-14 Kobe Steel Ltd Manufacture of hot rolled steel sheet with excellent cold workability
JPS5579827A (en) * 1978-12-12 1980-06-16 Nippon Kokan Kk <Nkk> Manufacture of copper-containing steel having no surface flaw
JPS6152349A (ja) * 1984-08-22 1986-03-15 Nippon Steel Corp 耐爪とび性に優れたホ−ロ−用熱延鋼板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159528A (ja) * 1985-01-08 1986-07-19 Nippon Steel Corp 加工用熱延鋼板の製造方法
JPH06152349A (ja) * 1992-10-29 1994-05-31 Canon Inc 制御装置および画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0322463A4 *

Also Published As

Publication number Publication date
DE3881002D1 (de) 1993-06-17
DE3881002T2 (de) 1993-12-02
EP0322463B1 (en) 1993-05-12
EP0322463A4 (en) 1989-11-14
US4925500A (en) 1990-05-15
EP0322463A1 (en) 1989-07-05

Similar Documents

Publication Publication Date Title
JP6704995B2 (ja) 耐水素遅れ破壊特性、耐剥離性、及び溶接性に優れた熱間成形用アルミニウム−鉄合金めっき鋼板、並びにそれを用いた熱間成形部材
JP7261822B2 (ja) TWB溶接特性に優れた熱間成形用Al-Fe合金化めっき鋼板、熱間成形部材の製造方法
TW201307581A (zh) 高碳薄鋼板及其製造方法
WO1988010318A1 (fr) Feuille d&#39;acier lamine a chaud de grande resistance, presentant une excellente aptitude a l&#39;usinage a froid et procede de production
JPH07188834A (ja) 高延性を有する高強度鋼板およびその製造方法
CN110088331B (zh) 焊接性优异的电阻焊钢管用热轧钢板及其制造方法
JP6828622B2 (ja) 熱間プレス用鋼板とその製造方法、ならびに熱間プレス成形部材およびその製造方法
JP2010126808A (ja) 冷延鋼板およびその製造方法
JPH10280090A (ja) 形状が良好で曲げ性に優れた高強度冷延鋼板とその製造方法
JP3290595B2 (ja) 靱性、溶接性に優れた高張力厚鋼板の製造方法
JP4867338B2 (ja) 超高強度鋼板およびその製造方法
JPH07118792A (ja) 高強度熱延鋼板及びその製造方法
JP4432725B2 (ja) 伸びフランジ性に優れたCr含有高強度冷延鋼板およびその製造方法
JP2002363650A (ja) シーム溶接性に優れた超高強度冷延鋼板の製造方法
JP2732885B2 (ja) 冷間加工性および表面品質の優れた高強度熱延鋼板およびその製造方法
JPS63100126A (ja) 加工性に優れた電縫鋼管用熱延高張力鋼の製造方法
JPS6320414A (ja) 高靭性高張力鋼板の製造法
JPH03199343A (ja) 化成処理性,溶接性,打ち抜き性および摺動性の極めて優れたプレス加工用冷延鋼板の製造方法
JP2618563B2 (ja) 溶接熱影響部の軟化しにくい高強度電縫鋼管およびその製造方法
JPS6149365B2 (ja)
JP3943754B2 (ja) 母材の疲労特性及び溶接後の成形性に優れ溶接熱影響部の軟化しにくい高強度冷延鋼板および高強度表面処理鋼板
EP3730634B1 (en) Hot-rolled steel sheet having excellent durability and method for manufacturing same
JP2001089816A (ja) 高強度熱延鋼板の製造方法
JPH0813030A (ja) メタルソー基板用鋼板の製造方法
JPH04289122A (ja) 偏平化試験特性に優れた車輌ドアインパクトバー用アズロールタイプ超高張力電縫鋼管の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1988906041

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988906041

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988906041

Country of ref document: EP