WO1988009931A1 - Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves - Google Patents

Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves Download PDF

Info

Publication number
WO1988009931A1
WO1988009931A1 PCT/JP1987/000358 JP8700358W WO8809931A1 WO 1988009931 A1 WO1988009931 A1 WO 1988009931A1 JP 8700358 W JP8700358 W JP 8700358W WO 8809931 A1 WO8809931 A1 WO 8809931A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
depth
surface opening
probe
echo
Prior art date
Application number
PCT/JP1987/000358
Other languages
English (en)
French (fr)
Inventor
Takeshi Miyajima
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to EP87903745A priority Critical patent/EP0317629B1/en
Priority to US07/381,684 priority patent/US5005420A/en
Priority to DE3789869T priority patent/DE3789869T2/de
Priority to PCT/JP1987/000358 priority patent/WO1988009931A1/ja
Publication of WO1988009931A1 publication Critical patent/WO1988009931A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/40Detecting the response signal, e.g. electronic circuits specially adapted therefor by amplitude filtering, e.g. by applying a threshold or by gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0422Shear waves, transverse waves, horizontally polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/101Number of transducers one transducer

Definitions

  • the present invention relates to a method for measuring the depth of a surface opening defect of a solid using ultrasonic waves.
  • Solid surface opening defects referred to here include defects that are generated by opening in the surface of parts or members that constitute devices in various industrial fields, for example, electrical devices and mechanical devices, as well as non-surface defects. Even an opening is a defect that is located very close to the surface, regardless of the height of the defect. Specific examples of surface opening defects include weld cracks at welds, burn cracks during heat treatment, wear cracks during polishing, cracks such as stress corrosion cracks, and fatigue cracks in materials. All of them are objects of the present invention.
  • the solid in the present invention refers to metals and nonmetals (glass, ceramics, synthetic resin, rubber, and the like), and objects through which ultrasonic waves can propagate.
  • the depth of the surface opening defect refers to a vertical distance from the surface of the solid where the defect is opened to the tip of the defect in the solid.
  • the above report (4) uses a flaw detector that can measure the propagation time of ultrasonic waves with high accuracy, and uses the edge peak echo method, the short pulse shear wave method, and the propagation wave measured using the surface wave method. It measures the notch depth based on time.
  • (1) requires detection of the position of the peak echo from the tip of the fatigue crack
  • report (2) requires detection of the rise time position of the scattered wave reception waveform.
  • Report (3) requires the detection of echoes at the penetration defect defect displayed on the ultrasonic flaw detector and the position detection of those echoes on the time axis.
  • the above report (2) is a measurement method based on the water immersion method.
  • Report (3) is also a direct erosion method, but the measurement target is limited as in report (2).
  • report (4) it is necessary to detect the position of the peak echo in the edge peak echo method and the short pulse shear wave method as in the case of the report (1), and in the case of the surface wave method, In order to find the notch depth from the propagation time, it is necessary to detect the position where the echo appears on the CRT.
  • the measurement methods described in the above-mentioned reports (1), (2), (3), and (4) both require the echo of the surface opening defect and the relocation of the appearance position of the echo. Measurement accuracy depends on this detection accuracy. Is
  • the edge peak echo method is considered to be the most general method among the above-mentioned measurement methods.However, the method of measuring the depth of a surface opening defect using this method has been reported in addition to the above report, Ultrasonic Testing B ”1979—Japan Nondestructive Testing Association P. 117-.118. An outline of the measurement method will be described with reference to FIGS. 11 and 12.
  • reference numeral 10 denotes a subject, and a planar defect 10a having a depth d is formed on the surface thereof.
  • 10b is the flaw detection surface of the test object
  • 10C is the tip of the defect 1Qa
  • 10d is the bottom surface (anti-flaw detection surface) of the test object 10.
  • Reference numeral 20 denotes a normal angle beam probe or point focusing angle beam probe (hereinafter referred to as angle beam probe), which comes into contact with the flaw detection surface 10b and captures an echo from the tip 10c of the defect.
  • the ultrasonic wave is emitted while scanning back and forth in the direction of A or B.
  • 20a 5 20b indicates an arbitrary position when the oblique probe 2Q is scanned back and forth.
  • a heak echo 60 is obtained at a position on the CRT 21 corresponding to the beam path X, and the echo 3 ⁇ 4 The position is displayed on the link 50.
  • the end heak Nikoh method is based on the peak Nicho 60 from the point 10c before the defect. From the beam path x of the position and the refraction angle of the oblique probe 20
  • the angle ⁇ between the incident direction of the sound wave and the surface of the defect 10a is 10 ° or less.
  • the peak echo 60 is clearer due to the above measurement condition
  • the depth should be approximately ⁇ 2 m.
  • FIG. 13 shows another example of the above-mentioned peak method.
  • the tangle is the echo (corner) from the surface opening of the defect 11s.
  • the depth d of defect 11a is, for example,
  • Japanese Patent Application No. 60-68379 relating to the present applicant's application as a method of measuring the depth of a surface opening defect.
  • a vertical probe is brought into contact with the defect on the solid surface having an opening defect, and the propagation time of the scattered wave reflected from the tip of the ultrasonic wave incident toward the end of the opening defect is measured.
  • the depth of the defect is determined by measuring the echo depth of the surface opening defect and its appearance position in the present application, as in the previous report. 2), (3), position the probe directly above the mouth defect in Table a. Measurement restrictions.
  • the echo at the tip of the surface opening defect and its appearance position are used as measurement indices, and the detection accuracy determines the measurement accuracy. It will affect you. For this reason, it is necessary to improve the detection accuracy, but the detection of the echo from the defect and the appearance position of the defect, not only for the surface opening defect but also for the general partial defect, is performed by using a probe, a flaw detector, and the like. Even if the flaw detection conditions, such as flaw detection sensitivity and the like, are kept constant, it depends on the material characteristics of the specimen, differences in ultrasonic physical phenomena due to non-uniformity of defects, and individual differences among the measurers.
  • the detection of the echo height and its appearance position relative to the tip of a real surface opening defect is performed at the same depth as the standard test piece-the detection of the artificially processed surface opening defect. There is a problem that the variation is large and the measurement accuracy is reduced accordingly.
  • the present invention solves the above-mentioned problems of the prior art, and measures the depth of a solid surface-related defect with high accuracy and in real time without being affected by the depth. Opening of solid surface due to super-wave Its basic purpose is to provide a method for measuring the depth of a depression.
  • Another object of the present invention is to perform ordinary back-and-forth scanning using a normal angle beam probe to easily and accurately measure a wide range of measurement targets. It is an object of the present invention to provide a method for measuring the depth of a surface opening defect of a solid by using ultrasonic waves.
  • ultrasonic waves are incident on the solid surface opening defect while scanning the oblique probe in contact with the surface of the solid back and forth, and the oblique angle of the ultrasonic wave is increased by the surface opening defect.
  • a constant level threshold value is set for the echo envelope of the reflected wave according to the moving position of the probe, and the echo in the region exceeding the threshold value is moved by the oblique probe in the region.
  • the method is characterized in that the set area is subdivided, and the integrated value of the integrated area is used as an evaluation index to measure the depth of the surface opening defect.
  • reference numeral 1 denotes an object in which the members 1A and 1B are butt-welded, and the butt-welding 1 has a ⁇ ⁇ -shaped defect 1a opened in the surface 1e.
  • 1b is a corner at the opening of the defect 1a
  • 1c is a tip of the defect 1a
  • 1d is a flaw detection surface.
  • Reference numeral 2 denotes a bevel probe (hereinafter simply referred to as a probe), which is in contact with the flaw detection surface 1d, and is indicated by a chain 2a, 2b, 2 in the direction of arrow A or B shown in the figure. It is scanned back and forth at positions such as c and emits an ultrasonic wave (in this case, a simulated wave) at the defect 1 a. Is detected by the reflected beam reflected from the defect 1a, and is received by the probe 2. The front-back scan is performed, and the reflected wave 4 received from each moving position of the probe 2 is received by the CRT 6a of the ultrasonic flaw detector 6.
  • the reflected wave 4 When displayed above, the reflected wave 4 produces echoes of different heights from the appearance position of the transmission pulse T to the position corresponding to the moving position of the probe 2.
  • the beam paths X 1, X 2, X 3, X 2 from the incident point at the moving position 2 : 2 a ; 2 b, 2 c of the probe 2 to the corner lb serving as the main reflection sound source of the defect 1 a are shown.
  • h X the position on the CRT corresponding to c, the echo F of the reflected wave 4, F, F b, F c is displayed.
  • the curtain is the echo height (h: unit dB)
  • the height of each Niko is the ultrasonic beam at the corner 1b.
  • the position of the probe 2 that receives the reflected wave 4 with respect to the incident wave 3 that has entered that is, the distance from the cutout 1a
  • the maximum height of the echo F position L chi other distances from Ketsu ⁇ 1 a of probe ⁇ 2 to respond to higher beam path L xa - L x, each different echo in accordance with L x "
  • the echo envelope ⁇ 5 can be obtained.Of course, in this case, when the defect 1 a does not exist, the reflected wave 4 is generated. It does not occur and echo envelope # 5 cannot be obtained.
  • the area where the echo envelope ⁇ .5 appears on the CRT that is, the echo envelope of ⁇ from the one movement position of probe 2 to the other movement end position ⁇
  • [Directivity of the transmitted wave determined by the transducer's transducer dimensions and frequency] [Directivity of the transmitted wave when the reflected wave that has been scattered and attenuated in the solid is received by the probe. ]
  • [Table-Depth of open defect] [Table-Depth of open defect].
  • a threshold with a constant echo height is set in the echo envelope having the above property, and a region exceeding the threshold is set to a range where the probe in the region has moved.
  • the area value of the integrated area is This method measures the depth of surface opening defects by utilizing the fact that there is a certain relationship between the depth of mouth defects and the depth of mouth defects. The mutual relationship between the area value of the integrated region and the depth of the surface opening defect was verified by an experiment described later by the inventor of the present invention, and the same applies to solids of other different materials. It can be easily obtained by experiment, and the echo envelope can be easily obtained from the echo of the reflected wave from the surface aperture defect displayed on the CRT, and the threshold can be set arbitrarily.
  • the depth of the surface aperture defect is measured by using the area of the echo envelope which is always stably obtained by performing normal back-and-forth scanning using a commercially available probe.
  • the depth of the defect It has the feature that it can easily and accurately measure a wide range of measurement objects without being affected by individual differences in measurement. This feature also makes it possible to easily measure a large number of subjects automatically.
  • the characteristic feature of the present invention is that a defect that is very close to the surface of a member even if it is not opened is used. Can also be used. Defects that are very close to the surface of the member here are defined as The minute gap between the surface of the member and the surface
  • the approach probe is to use the probe and the material of the subject.
  • the size is about 1 or less.
  • Fig. 11 and Fig. 2 explain the principle of the determination method according to the present invention.
  • Fig. 1 shows the measurement procedure
  • Fig. 2 shows the surface opening defect.
  • Fig. 3 shows a surface word defect at the butt weld
  • FIG. 3 is a side view of the inspection
  • the third H (b) is Heishi of the inspection! ! Is shown.
  • Fig. 41 is Fig. 3
  • the sample shown in Fig. 1 was measured by the method shown in Figs. 1 and 2.
  • Figure 5 shows an experiment to verify the effect of the present invention.
  • Fig. 5 (s) shows the inverted test
  • Figure 6 is based on Simpson's formula.
  • FIG. 9 shows the experimental results for the fifth test body shown in FIG, 3 losses with different depths of the scan
  • Li Tsu k Fig. 10 and Fig. 10 are explanatory diagrams of the relationship between the depth of the slit and the area of the region exceeding the threshold of the eco-envelope of the test specimen of Fig. 5.
  • FIGS. 11 to 13 are examples of a conventional method for measuring the depth of a surface opening defect.
  • FIG. 11 is a schematic explanatory view of the Hao Shao Peak method
  • FIG. 12 is a method of FIG.
  • FIG. 13 is a view showing the obtained echo pattern on the CRT
  • FIG. 13 is a view showing another measurement example of the surface opening defect by the edge peak echo method.
  • FIGS. 3 to 10 A preferred embodiment of the present invention will be described below with reference to FIGS. 3 to 10.
  • the same reference numerals as those in FIGS. 1 and 2 indicate the same parts.
  • Figure 3 shows the shape and dimensions of the subject 1.
  • Fig. 3 (a) is a side view, and Fig. 3 (! Is a plan view.
  • a minute width defect 1a having an opening of up to 10 TM is provided.
  • the material is SS 41 (JISG 3101) and the number of samples is 17.
  • the probe 2 used was 2Z10X10A70 (JISZ2344) having a frequency of 2 MHz, a transducer size of 10 TM 10mffi , and a refraction angle of 70 °.
  • the probe 2 is brought into contact with the flaw detector 1d, and the echo envelope II is obtained by the method described in FIGS. 1 and 2 described above. Then, the inventor of the present invention who is lost Using the regression equation obtained from the relationship between the area value of a region exceeding a certain height of the echo envelope verified by the experiment and the depth of the displayed opening defect, Various depths H of the defect 1 a provided in the butt weld of the subject 1 were measured. The measured value is indicated by a triangle in FIG.
  • the depth H of the defect 1a in the length direction that is, the depth H at another position in the width direction of the subject 1
  • This high measurement accuracy indicates that it is not affected by the magnitude of the depth H of the defect 1a, and at the same time, the accuracy of the present measurement method has been proved.
  • This high measurement accuracy is due to the fact that the echo envelope obtained at various depths K at the surface opening gap is limited by the probe used and the probe. This is due to the fact that, although the height of the echo is different if the shape, dimensions and material of the specimen are the same, the shape formed is similar.
  • the measurement accuracy that is not affected by the magnitude of the depth H of the defect la enables the measurement of small defects.
  • Fig. 5 shows the test specimens used in the experiment.
  • Fig. 5 (a) shows the side view and
  • Fig. 5 (b) shows the plan view.
  • Specimen 7 has a thickness of 19 mm, a length of 250 mm, and a width of 120 mm.
  • a slit 7a formed by electric discharge machining with a width of 0.3 is provided on the surface-7e at a position 50 from one end, and the slit 7a is deep.
  • H 0, 3, 0.5,
  • the probe used was the same 2Z10X10A70 (JIS Z2344) as the probe used in the description of FIG.
  • the echo envelope 8 shown in FIG. 6 is obtained.
  • the area of the echo envelope 8 is determined.
  • the threshold value of the constant level of the echo was determined in JISZ 2348 (1978) “A2 standard shape test piece for ultrasonic oblique flaw detection” (hereinafter STB —
  • the shaded area in the figure is the area to be determined, and PG, ⁇ 1, ⁇ 2 ... ⁇ ⁇ indicates the echo height of one skip distance at equally divided positions.
  • FIG. 10 which summarizes the relationship between the area S obtained for the above eight types of test specimens and the depth H of the slit 7a.
  • the horizontal axis in the figure is the slit depth H (unit), and the vertical axis is the area S (unit dB-rm) of the region exceeding the threshold value of the echo envelope.
  • the triangles in the figure indicate eight types of experimental values. The experimental results show that a linear censorship is established between the slit depth H and the area value S, and the regression equation of the graph is obtained by the least square method.
  • a simple formula is obtained. Using this formula, the depth of the defect can be easily obtained from the area value of the region exceeding the threshold value of the echo envelope, and the linear correlation can be obtained from the linear correlation. It was also verified that accurate measurement was possible without being affected by the depth of the defect.
  • FIGS. 1 to 3 and 5 shows an example in which the probe is brought into contact with the surface of the subject having no surface opening defect to measure the depth of the defect.
  • the probe may be made to abut on the surface of the subject having the surface opening defect and scan back and forth. In this case, however, the position where the incident wave incident on the object from the probe is reflected on the back surface of the object and reaches the surface opening defect, that is, the probe is almost one skip from the surface opening defect.
  • the probe touches the distance of the loop, and the probe moves back and forth around the 1 skip point. Then, the degree of the ultrasonic flaw detector is adjusted to the extent that the beam path becomes longer.
  • the 3-envelope varies in shape and dB value depending on the acoustic characteristics of the material of the object, the inclination angle of the surface aperture defect with the surface of the object, and the like. For this reason, if the inclination angle is determined by changing the solids of various materials by experiments, the depth of the surface defect can be easily, easily, and with high accuracy, as in the above embodiment. Can be measured.
  • This simple and easy-to-measure feature has the effect of enabling real-time measurements on a wide variety of measurement targets in a wide range of technologies.
  • the method described above is a visual measurement method in which an echo is displayed on the CRT, but is not displayed on the CRT, and the analog amount of the echo height that forms the echo envelope is digitally measured by a commonly used means. It is also possible to calculate the area of the echo envelope in the region exceeding the threshold, and to represent the numerical value together with the depth of the surface opening defect determined by the regression equation. Also, these By storing the numerical values in the storage device and comparing them with the reference values, it can be used to diagnose equipment failures and lifespan, and can be used for automatic measurement of a large number of analytes on a manufacturing line. It is also possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

明 細 書
超音波によ る固体の表面開口欠陥の深さ測定方法 技 術 分 野
本発明は、 超音波を利用して固体の表面開口欠陥の 深さを測定する方法に閬する 。
こ こ にいう 固体の表面開口欠陥と は、 各種産業分野 の、 たと えば電気装置、 機械装置などの装置を構成し ている部品または部材の表面に開口 して発生している 欠陥のほか、 非開口であっても表面に極めて近接して 存在している欠陥を云い、 欠陥の高さの大小は問わな い。 具体的な表面開口欠陥の例と し-ては、 溶接部にお ける溶接割れ、 熱処理における燒き割れ、 研摩加工に おける 摩割れ、 応力腐蝕割れ等の各種割れおよび材 料の疲労き裂等があ り 、 いずれも本発明の対象となる 。 また本発明でいう 固体とは、 金属および非金属 (ガラ ス , セラ ミ ッ クス, 合成樹脂, ゴム等) であって、 超 音波が伝搬され得る物体をいう 。
なお、 こ こ にいう表面開口欠陥の深さは、 欠陥の開 口 している固体の表面よ り固体内の欠陥先端までの垂 直距離をいう 。
背 景 技 術
超音波を利甩して溶接部における溶接割れゃ部材の 応力集中部における疲労き裂等の固体表面に開口 した 欠陥の深さ を!!定する こ とは、 その測定情報の必要性 から近年各種の測定方法が研究され、 その砑究結果も 報告されている。 例えば(1) 端部ピークエコー法によ る疲労き裂の深さ測定が 「非破壊検査 J 第 31卷第 9号 昭 57年 9月 P.690 〜P.691 に、 (2) 超音波散乱波を利 用したき裂検查法が 「非破壞検査」' 第 29卷第 2号昭 55 年 2月 P.138 〜P.137 に、 (3) 鐲板溶接部の溶込み不 良欠陥高さの測定が 「非铍壞検查 J 第 34卷第 2号昭 60 年 2月 112 〜Ρ· "3 に、 (4) 超音波の伝搬時間によ る切欠き深さの測定精度についてが 「非破壊検査」 第 29卷第 2号昭 55年 2月 Ρ.130 〜 131 にそれぞれ報告 されている 。 前記各報告のう ち(1) は、 点集束彤の緞 波斜角搮蝕子を倥用し、 管の屈曲部內表面の軸方向に 加工された各種深さのスリ ッ トについて端部ピークェ コ一法によ り ビーム骼程と深さ との閧係を管外周面か ら測定し、 測定したビーム路程から作或した較正曲線 によってき裂深さ を求める ものであ り 、 前記報告(2) は、 超音波送波子と受波子を仕切扳を介して对象に配 置した探触子を使用し、 送波子から水中に置かれた被 検体に超音波を入射したと き、 被検体にき裂がない場 合とある場合とで生ずる散乱波の受渋子に受信される 時閭差 Δ t を測定し、 時間差 Δ t とき裂深さ d との相 鬨鬨係を利用してき裂深-さ dを求める ものである 。 又 前記報告(3) は、 二振動子型垂直探蝕子を平滑に仕上 げられた扳厚 t (報告では 9〜12^ ) の片面突合せ溶 接 上に当接し、 溶接 の溶込み深さ dを超晉技探傷 器の時間軸から直読して板厚 t と比較し溶込み不良欠 陥高さ h = ( t — d ) を測定する ものである 。 前記報 告(4) は、 超音波の伝搬時間を高精度で測定でき る探 傷器を使用 し、 端部ピークエコー法, シ ョ ー トパルス シァーウェイ ブ法, 表面波法を用いて測定した伝搬時 間にも とづいて切欠き深さ を測定する ものである 。 こ れら各報告のう ち、 (1) は疲労き裂先端からのピーク エコーの位置検出が必要であ り 、 報告(2) は散乱波受 信波形の立ち上がり時間位置の検出が必要である 。 報 告(3) は超音波探傷器に表示される溶込み不良欠陥都 のエコーの検出およびそのエコーの時間軸上の位置検 出を必要とする 。 また前記報告( 2 ) は水浸法による測 定方法である上に、 探触子を被検体の表面開口欠陥位 置の直上に位置させて測定しなければならないから、 測定の対象が限定される測定上の制約を受け、 報告 (3) も直接接蝕法であるが報告(2) と 同様に測定対象 が限定される測定上の制約を受ける 。 前記報告(4) は 端部ピークエコー法およびシ ョ ー 卜パルスシァーゥェ イ ブ法では前記報告(1) と 同様にピークエコーの位置 検出が必要であ り 、 表面波法の場合には表面波の伝搬 時間よ り切欠き深さを求めるため C R T上のエコーの 出現位置の検出が必要になる 。 こ のよ う に前記報告 (1) (2) (3) , (4) の測定方法においては、 いず れも表面開口欠陷韶のエコーおよびエコーの出現位置 の揆出を必要と し、 測定精度はこの検出精度に左右さ れる 。
と ころで端部ピークエコー法は前記測定方法の中で 最も一般的方法と されているが、 本方法を使用して表 面開口欠陥の深さを測定する方法が、 前記報告のほか 「超音波探傷試験 B 」 1979—日本非破壞検查協会 P. 117 〜.118にも報告されている。 その測定方法の概要 を第 11図および第 12図によ り説明する 。 図において、 10は被検体で、 その表面に開口 した深さ dの面状の欠 陷 10a が設けられている 。 10b は被検体 10の探傷面、 10C は欠陥 1Qa の先缙、 10d は被検体 10の底面 (反探 傷面) である。 20は通常の斜角探蝕子または点集束斜 角探触子 (以下斜角採蝕子と いう ) で、 探傷面 10b に 当接し、 欠陥の先端 10c からのエコーを捕らえるよ う に、 矢印 Aまたは Bの方向に前後走査しながら超音波 を焭射する 。 20 a 5 20 b は斜角探蝕子 2Qを前後走査し たと きの任意の位置を示す。 いま斜角探蝕子 20を 20 a の位置から矢印 Bの方向に走查する と 、 第 12図の Aス コープ表示の C R T21上に、 斜角探触子 20の移動距齄 に伴う欠陥 10a からのエコー高さが次第に泜くなるよ う に連続的に変化して表示され、 エコー包絡線 50が得 ちれる 。 この場合、 斜角探蝕子 20のビーム寧 30が欠陷 の先 i§10c に入 ftする と 、 ビーム路程 Xに対応する C R T 21上の位置に^干のヒークエコー 60が得られ、 エコー ¾絡锈 50にその位置が表示される 。 端部ヒーク ニコー法は、 欠陷の先 10c からのピークニコー 60の 位置のビーム路程 xと 、 斜角探触子 20の屈折角 から
幾何学的に欠陥の深さ d を、
d = X ■ cos θ
と して求める方法である 。 そ して報告においては、 超
音波の入射方向と欠陥 10a の面とのなす角 βが 10° 以
上の時と いう測定朵件で、 ピークエコー 60をよ り明瞭
に識別するには屈折角 ^ = 45° の通常の斜角探触子を
使周するか、 音波を絞れる点集束斜角探触子または分
割形探触子を使用する と よいこ とが記され、 欠陥の深
さ dが比較的大き い場合には、 ± 2 m 程度の精度で深
さ dの寸法推定が可能である 旨記载されている 。 しか
し欠陥の先端 10C に他の欠陥が付随した場合には測定
精度が落ちる と報告されている 。
また、 第 13図は前記 έ§部ピークヱコ一法によ る他の
測定^で、 斜角探蝕子 20を欠陷 11a の無い側の面 11a
に当接した場合を示す。 この場合に得られるエコー包
絡線は欠陷 11 s の表面開口部からのエコー ( コーナー
ニコー〉 が ¾大となるが、 欠陷 11 a の深さ dが例えば
2 mi前後の低い場合には欠陥の先端 11 C からのエコー
は低レベルで図に示すよ う にエコー包絡線 51の内部に
含まれエコーの検出ができない場合がある 。 このよ う
に表面開口欠陥の最も一般的な測定方法と されている
端部 ークニコー法による測定においても以下に述べ
る種々の測定上の問題点を有する 。 -すなわち( i ) 表面 - . ロ欠陷の深さ dが浅い場合には、 欠陥の先绢からの エコーの高さおよび位置が、 欠陥の他の部分のエコー と返接して判別できない場合や、 コーナーエコーを最 大とするエコー包絡籙の中に含まれて検出できない場 合等が発生し、 同時に斜角探蝕子の移動距離が小さい ため測定誤差が大き くなり易い。 ( ) 欠陥の先端の 幅寸法が小さい場合には、 欠陥の先端からのヱコ一高 さが小さ く ノイズレベルのェ 一高さ以下となりェコ 一を検出できない場合が多い。 ( 〉 欠陥の先端の形 拔ゃ大き さによ り超音波の散乱状態が異なる こ とから、 測定値がば-ちつき精度が泜下する 。 ( ίν ) 探蝕子の公 称屈折角で欠陥の先端に超音波を入射しても 、 ーク エコーが得られない場合があ り.、 またビーム軸が欠陥 の先端に一致していない時にピークエコーが表示され るこ とがあるため、 幾何学的に欠陥深さを求める根拠 が崩れ、 測定精度の低下をもたらす直接の原因となる 。 などである 。
つぎに徒来の表面開口欠陷深さの測定方法と して本 願人の出願に係わる特願昭 60— 68379 がある。 本出 顥は垂直探蝕子を開口欠陥を有-する固体表面の該欠陷 上に当接し、 開口欠陥の 端に向けて入射した超音波 の欠陷先端から反射する散乱波の伝搬時閬を測定して 欠陷深さを求める ものであるが、 本出願においても前 記報告と 同様に表面開口欠陥部のエコーおよびその出 現位置の検 が必要であ り、 また前記 f§告(2 ) , ( 3 ) と 同様に探 ¾子を表 a .嘿口欠陷の直上に位置させて測 定しなければならないための測定上の制約を受ける こ と になる 。
前記の如く 、 来の表面開口欠陥の深さ測定方法は、 いずれも表面開口欠陥の先端部のエコーおよびその出 現位置を測定上の指標と してお り 、 その検出精度が測 定精度を左右する こ と になる 。 このため前記検出精度 を向上させる こ とが必要になるが、 表面開口欠陷に限 ちず一般の內部欠陥においても欠陥からのエコーおよ びその出現位置の検出は、 使用する探蝕子, 探傷器, 探傷感度等の探傷杂件を一定に保っても 、 被検体の材 料特性, 欠陥の不均一性によ る超音波の物理的現象の 差, 測定者の個人差等によ りかな りの影響を受けるか ら、 たと え形状, 寸法, 村質等が近似する同種の被検 体を測定した場合でも常に一定の関係で行う こ とは困 難であ り 、 異種の被検体を測定する場合には一層検出 精度を保つこ とが困難となる 。 ^つて実在する表面開 口欠陥の先端に対するエコー高さおよびその出現位置 の検出は、 標準試験片ゃ人為的に加工された表面開口 欠陥に対する検出に比べて同 じ欠陥の深さであっても ばらつきが大き く 、 それだけ測定精度を泜下させる問 題点を有する 。
本発明は上述した 来技術の問題点を解消する もの であって、 固体の表面関ロ欠陷の深さ を、 その深さ に 影響を受ける こ となく高精度に しかも リ アルタイムに 測定する こ とができ る超晉波によ る固体の表面開口欠 陥の深さ測定方法-を提供するこ と を基本的な目的とす る。
また本発明の他の目的は、 通常の斜角探触子を使用 し通常の前後走査を行う こ とによ り 、 広い技術範囲の 測定対象に対して容易にしかも高精度に測定する こ と ができる超音波による固体の表面開口欠陥の深さ測定 方法を提供する こ と を目的とする。
さ らに本発明の戗の目的は、 以下の記述から明らか に理解されるであろ う 。 - 発 明 の 翳 示
本焭明は、 固体の表靣開口欠陥に对して固体の表面 に当接した斜角探蝕子を前後走査させながら超音波を 入射させ、 その超音波の前記表面開口欠陥よ り斜角探 蝕子の移動位置に応じて反射する反射波のエコー包絡 線に一定レベルのしきい値を設定し、 該しきい値を超 えた領域におけるエコーを該镇域の斜角採触子の移動 した範圏について覆分し、 その積分した前記領域の靣 積値を評儸指標と して表面開口欠陷の深さを測定する こ と を特徵とする。
本発明のこの特徴は、 前記エコー包絡綠の一定のェ コーレベルを超えた領域を、 その領域の斜角探触子の 移動した^囲について覆分して^めた面積値が、 固体 の表面 S口欠陷の深さ との に一定の相 W 係を有す る i¾質を禾 ί' Εする ものであるが、 これを本 明の原理 m ¾図である第 1 図および第 2図によ り説明する 。 ¾において、 1 は部材 1 Aと部材 1 Bが突合せ溶接 された被検体で、 突合せ溶接窑には面 1 e に開口 した 瀵状の欠陥 1 aがある 。 1 bは欠陥 1 aの開口部にお ける コーナー、 1 c は欠陷 1 aの先端、 1 dは探傷面 である 。 2は斜角探触子 (以下単に探蝕子と いう ) で、 探傷面 1 d に当接してお り 、 図に示す矢印 Aまたは B の方向に鎖辕で示す 2 a , 2 b , 2 c等の位置に前後 走査させられ欠陥 1 aに対して超音波 ( この場合模波〉 を発射する 。 3は被検体 1 に一定のビーム幅で入射さ れた入射波、 4は入射波 3が欠陥 1 aから反射した反 射铰で探, 子 2 に受信される 。 前後走査して探触子 2 の各移動位置よ り受信される反射波 4 を超音波探傷器 6の C R T 6 a上に表示させる と 、 反射波 4 は送信パ ルス Tの出現位置から探蝕子 2 の移動位 .·置に封応する 位置に異なる高さのエコーを岀現する 。 第 2図はこの 状態を示すもので、 探蝕子 2の各移動位置 2 : 2 a ; 2 b , 2 c における入射点から欠陷 1 aの主たる反射 音源となる コーナー l b までの各ビーム路程 X , X。 , X h , X c に対応する C R T上の位置に、 反射波 4の エコー F , F , F b , F c が表示される 。 図の横軸 は欠陥 1 aから探触子 2 までの水乎距齄 ( L、, : 単位 τ,τ ) 、 緞 ¾はエコー高さ ( h : 単位 d B ) である 。 こ の場合各ニコーの高さは、 コーナー 1 b に超音波のビ 一ム¾が ϋ:接入射された入射波 3 に対する反射波 4 を 受信する探 ¾子 2 の位置、 つま り 欠 ί¾ 1 a から距 L χ の位置のエコー Fの高さを最大に、 他はビーム路 程に 応する探蝕子 2の欠陷 1 aからの距離 L x a - L x , L x„に応じてそれぞれの異なるエコー高さ とな る 。 そ して各エコーの高さの頂点を詰ぶこ と によ りェ コー包絡籙 5が得られる 。 もちろんこの場合に欠陥 1 aが存在しないと きは反射波 4が発生せず、 エコー包 絡籙 5は得られない。
と ころでエコー包絡綠.5の C R T上の出現領域、 つ ま り探蝕子 2の一方の移動墙位置から他方の移動端位 置までの閭のエコー包絡籙 5で圑まれた靣積は、 [探 触子の振動子寸法と周波数によって定ま る送信波の指 向性 ] , [送信波の固体内において散乱 · 渡衰を経た 反射波が探蝕子に受信される際の指向性 ] および [表 靣開ロ欠陷の深さ】 の. 数となる 。 このため測定に同 —の探 子を使用した場合には送 · 受信の指肉性は一 定とな り 、 エコー包絡籙 5の出現領璩は [表面開口欠 陥の深さ ] のみの鬨数になる。 このこ とほ表面開口欠 陥の深さのみ異なり ί也は同じ被検体を同一の探蝕子を m して測定した場合には、 ニコー包絡線 5は表面翳 口欠-陷の深さ に応じた大き さの出現領域となり 同時に ^妆は相^形になること を示している 。
本 ¾明の測定方法は、 前記性質を有するエコー包絡 綠に一定のエコー高さのしきい疸を設定し、 該しきい 値を超えた領域をその領域の探蝕子の移動した範圏に つい-て覆分し、 その積分した領嫒の面積値が、 表面開 口欠陥の深さ との間に一定の相鬨関係を有する こ と を 利用して表面開口欠陥の深さを測定する方法である 。 前記積分した領域の面積値と表面開口欠陥の深さ との 相鬨関係は、 本発明の発明者が後述する実験によ り検 証したもので、 他の異なる各種材質の固体についても 同様の実験によ り容易に求め得る ものであ り 、 またェ コー包絡線は C R T上に表示される表面開口欠陥から の反射波のエコーよ り容易に求められ、 設定する しき い値も任意に設定可能であるから、 従来の特定の位置 のエコー高さを使用して測定する方法、 すなわち表面 開口欠陥の先端部の不安定なエコー高さおよびその出 現位置を指標とする測定方法と比較し、 本発明の測定 方法は、 市販の探触子を使用し通常の前後走査を行う こ と によ り常に安定して得られるエコー包絡線の面積 を使用して表面開口欠陥の深さを測定する方法である から、 欠陥の深さの大小や測定の個人差等に影響を受 ける こ となく広範囲の測定対象に対して容易にかつ高 精度に測定する こ とができ る特徴がある 。 そ してこの 特徵は大量の被検体を自動測定する こ と も容易に可能 にする 。
以上の説明は部材の表靣に開口 している欠陥につい て行ったが、 本発明の特徴とする性質は非開口であつ ても部材の表面に極めて近接して存在している欠陥に 対しても利用する こ とができ る 。 こ こでいう部材の表 面に極めて近接 して存在している欠陥と は、 該欠陥と 部材表面との間の微小間隔部が、 第 1 図における表面
開口欠陥 1 aのコーナー Γ b と同檨の反射音源にな り
得る閬隔に接近している状態の欠陥を云い、 具体的な
接近閭陽と しては、 使用する探蝕子および被検体の材
質で決まる波長の約 1 /2 以下の微小閭隔であ り 、 例え
ば約 1 以下の寸法である。 かかる状態の非開口欠陥
は、 前記表面開口欠陥の場合と同檨の方法によ りェコ
一包絡綠が得られ、 本発明の特徴とする性質を利用し
て同様に測定するこ とが可能である 。
図 面 の 篋 単 な 説 明
第 1 11および第 2図は本発明の激定方法の原理説明
1 で、 第 1 図は測定要領を、 第 2図ば表面開口欠陷に
封するエコー包絡線の形成犹態を示す図である。
第 3図は鑕扳の突合せ溶接部に表面語口欠陷を設け
た被椟体を示す図で、 第 3 ϋ! ) は铵検^の側面図、
第 3 H ( b ) は铵検侔の平西!!を示す。 第 4 1 は第 3図
に示す被検体を第 1 図および第 2図の方法によ り測定
した推定欠 深さ と実際の欠陷深さ との関係を示す図
でめる 。
第 5図は本発明の効果を検証するために実験に洪し
た試験侔で、 第 5図(s ) はその倒靣図、 第 5図(b ) は
その平面図を示す。 第 6図はシンプソンの公式によ り
ニコー包辂線の探蝕子の移動距離範 Hの面稷を求める
M ¾ . 第 7 !1ない し第 9図は第 5図に示す試験体の , ス リ ッ kの深さの異なる 3倒に対する実験結果を示す 図、 第 10図は第 5図の試験体のス リ ッ 卜の深さ とェコ 一包絡線のしき い値を超えた領域の面積との相鬨鬨係 説明図である 。
第 11図ない し第 13図は従来の表面開口欠陥の深さ を 測定する方法の例で、 第 11図は端韶ピークヱコ一法の 概略説明図、 第 12図は第 11図の方法によ り 得られた C R T上のエコーパターンを示す図、 第 13図は端部ピ ークエコー法によ る表靣開口欠陷の他の測定例を示す 図である 。
発明を実施するための最良の形態
本発明の好ま しい実施例について以下第 3図ないし 第 10図を蓼照しながら説明する 。 図の中で第 1 図およ び第 2図と 同じ符号のものは同じものを示す。
被検体 1 の彤状および寸法を第 3図に示す。 第 3図 (a) は側面図、 第 3図(!)) は平面図を示 し、 板厚 14 X長さ 5 X 幅 5 Onraの部材 1 A と 、 扳厚 14m:a X長さ 200 ™ X i SOmaの部材 1 Bが突合せ溶接され、 該突合 せ溶接部の面 1 e に深さ H = 0 , 1 ns!〜 10™の開口 した 微^幅の欠陥 1 aが設けられている 。 材質は S S 41 ( J I S G 3101 ) でサンプル数は 17である 。 使用 した 探蝕子 2は、 周波数 2 MHz , 振動子寸法 10™ X 10mffi , 屈折角 70° の 2 Z 10 X 10A 70 ( J I S Z 2344 ) である 。
測定は、 まず探蝕子 2 を探傷靣 1 d上に当接させ、 前述の第 1 図および第 2図にて説明,した方法によ りェ コー包絡 IIを得る 。 ついで後迷する本発明の発明者が 実験によ り検証したエコー包絡線の一定のヱコ一高さ を超えた領域の面積値と表靣開口欠陥の深さ との祖鬨 閱係よ り求めた回帰式を使用して、 前記被検体 1の突 合せ溶接部に設けた欠陥 1 aの各種深さ Hを測定した。 その測定値を第 4図中に〇印で示す。 なお、 欠陥 1 a の長さ方向つま り被検体 1の幅方向の他の位置におけ る深さ Hを測定する場合は、 探蝕子 2 を図中の矢印 C または Dの方向へ順次移動させた後、 前記前後走査を 行う 。 全数の測定終了後、 被検体 1 を切断しマクロエ
、、/チングにより実際の欠陥深さを 20倍のルーペで実測 した。 第 4図は横軸に被検体 1 を切靳して実測した実 際の欠陥深さの値 ^ !^ (単位皿) を、 縦軸に本発明に 係わる方法によ り測定した推定欠陥深さの値 (阜 泣 〉 を示し、 また図中の斜め ( 45 β ) の実線ほ実測 値 H R =推定値 H„ で測定誤差ゼロの場合を示
示の通り測定値の〇印はいずれも該実線にきわめて接 近した値となり 、 本実施例における測定誤差の平均値 Xおよび標準僵差びを求める と 、
X = + 0. 0 5 CI31
ΰ = 0. 1 6 mm
が得られた。 この高い測定精度ほ、 欠陥 1 aの深さ H の大小にほ影響を受けないこ と を示してお り 、 同時に 本測定方法の精度の良さが証明されている 。 そ してこ の高い測定精度は、 表面開口欠階.の種々の深さ Kによ り得られるエコー包絡 が、 使用する探蝕子および被 検体の形状, 寸法, 材質が同一であればエコー高さは 異なる ものの形成される形状が相似形になる こ と を利 用している こ と に起因する 。 この欠陥 l aの深さ Hの 大小に影響を受けない測定精度は、 徴小欠陷—の測定を 可能にしている 。
前記した本発明による具体的な効果は、 本発明の発 明者が行った以下に説明する実験によ り検証されてい る 。 第 5図は実験に供した試験体で、 第 5図(a) はそ の側面図、 第 5図(b) は平面図を示す。 試験体 7は、 寸法が厚さ 19顧 X長さ 250 mm X幅 120 mmの鐲板 (材質
S S 41- J I S G 3101 ) で、 一端から 50 の位置の面 - 7 e に幅が 0.3 の放電加工によ るス リ ッ ト 7 aが設 けられてお り 、 ス リ ッ ト 7 aは深さ H = 0, 3 , 0.5 ,
1.0 , 2.0 , 3.0 , 4.0 , 5.0 , 7.0 霞の 8種類であ る 。 使用した探触子は、 前記第 3図の説明の際使用し た探蝕子と 同一の 2 Z 10X 10A 70 ( J I S Z 2344 ) で ある 。 こ の探触子を探傷面 7 d上に当接 しス リ ッ ト 7 a に対して超音波を発射させながら前後走査する と 、 前述の第 1 図および第 2図に説明したと 同様に第 6図 に示すエコー包絡線 8が得られる 。 ついでエコー包絡 線 8の面積を求めるが、 本実験においては、 エコーの —定レベルのしき い値を J I S Z 2348 ( 1978 ) 「超音 波斜角探傷用 A 2形惑度標準試験片」 (以下 S T B —
A 2 と.いう ) の 4 4 X 4 の穴の 1 スキ ップ距離の探傷 愚度をゼロ d B と し、 この しき い値を超えたニコー高 さの領域の面積を求めた。 そ して該面積を求めるに当 つては、 第 6図に示すよ う にエコー包絡線 8の探触子 の移動距離、 つま り求める面積の積分範厘 ( a , b ) を幅 h = ( b — a ) / n (ただし nは偶数) の n個の 部分に等分し、 x m = a ÷ IIL h ( m = 0 , 1 , 2 , … n ) , エコー包絡線 8の方程式を y m = f ( x ^ ) と おき 、 下記に示すシンプソンの公式によ り求めた。
Figure imgf000018_0001
h
図中斜線で示す範囲が求める面積で、 P G , Ρ 1 , Ρ 2… Ρ η は等分した位置における 1 スキップ距離のェ コー高さを示す。
前記試験体 7 について行った実翳結果をス リ .ッ ト 7 aの深さ }"1 = 0.5 imc , 1.0 ma , 4.0 ranの 3例につい て第 7図ないし第 9図を参照して説明する。 各図と も 横軸は探蝕子の移動距龍 ( =探蝕子 · 欠陥距籠) L -、 縦軸はエコー高さ で、 しきい値が前記 S T B— A 2 の 1 スキップ距齄の愚度 (ゼロ d B ) である。 まず第 7図はス リ ッ ト 7 aの深さ H = 0.5 maの場合で、 斜線 で示すしきい値ゼロ d Bを超えた領域の靣積 Sは、 上 記シンプソンの公式によ り 、 65■ 4 d B ' 画が求められ た。 つぎに第 8図は深さ H = 1 . 0 nunの場合で、 面積 S = 261 d B . Πが求ま り 、 第 9図は深さ H = 4 . 0 mm C 場合で面積 S = 909 d B ' 顏が求められた。 この 3例 からも明らかなよ う にス リ ッ ト 7 aの深さ Hが大き く なる程最大エコー高さ も高くなり 、 しかも前記しき い 値を超える領域の面積 S も大き く なつているが、 この 相閬鬨係は前記 8種類の試験体について求めた面積 S とス リ ッ ト 7 aの深さ Hと の関係を纏めた第 1 0図に一 層明確に示されている 。 図の横軸はス リ ッ トの深さ H (単位 ) 、 縦軸はエコー包絡線の しき い値を超えた 領域の面積 S (単位 d B - rm ) である 。 図中〇印は 8 種類の実験値を示す。 実験結果はス リ ッ トの深さ Hと 面積値 S との間に直線的な相閬閲係が成立する こ と を 示してお り 、 グラフの回帰式を最小 2乗法によ り求め る と 、
S = 255 H
の簡単な式が得られる 。 本式を使用 してエコー包絡線 の しきい値を超えた領域の面積値よ り欠陥の深さ を容 易に求める こ とが可能にな り 、 さ らに前記直線的な相 関関係から欠陷の深さの大小に影響を受ける こ となく 精度よ く測定する こ とができ る こ と も検証された。
前記第 1 図ない し第 3図および第 5図の説明におい ては、 被検体の表面開口欠陥を有しない側の面に探触 子を当接して欠陷深さ を測定する例を示 したが、 本 ¾ 明はこのよ うな測定方法に限定される ものではなく 、 被検体の表面開口欠陷を有する側の面に探蝕子を当接 して前後走査させるよ う にしてもよい。 ただしこの場 合には、 探触子よ り被検体に入射した入射波が被検体 の裏面で反射して表面開口欠陥に達する位置、 つま り 探触子を表面開口欠陥よ りほぼ 1スキ ップの距離に当 接し、 その 1 スキップ点を中心にして探蝕子を前後走 查させる こ と になる 。 そ してビーム路程が長くなる分 だけ超音波探傷器の惑度を謌整する 。
前記ェ: 3—包絡線は、 被検体の材質による音響特性 や表面開口欠陥の被検体表面とのなす傾き角等によ-り 彤状および d B値が異なる。 このため実験によ り種々 の材質の固体について前記傾き角を変えて求めておけ ば'、 前記実施例における と同檨に、 簡単かつ容易に高 い精度で表靣閽ロ欠陷の深さを測定するこ とができる 。 そ してこの箇単かつ容易に測定するこ とができる特徴 は、 広い技術範囲の多種類の測定対象に対して リアル タイ ムに測定する こ とができ る効果をもたらす。
以上説明した方法は、 C R T上にエコーを表示して 目視による測定方法であるが、 C R T上 表示せず、 エコー包絡線を形成するエコー高さのアナログ量を通 常慣用されている手段によってデジタル化し、 しきい 値を超えた領域におけるエコー包絡線の面積を計算さ せ、 回帰式にて計箕させた表面開口欠陥の深さ と と も に数値化して表わすこ と も可能である。 また、 これら の数値を記憶装置に記憶させ、 基準値と比較させる こ と によ り機器の故障診断や寿命診断を行わせた り 、 製 造ライ ン上における大量の被検体の自動測定に利用す る こ と も可能である 。
なお当然のこ とであるが、 本発明は前記実施例のみ に限定される ものではなく 、 本発明の技術的思想の範 通內において種々変更し得る こ と は勿論である 。

Claims

請 汞 の 範 囲
1 . 超音波を利用して固体の表面開口欠陥の深さを測 定する方法であって、 前記表面開口欠陥に対して固 体の表面に当接した探蝕子を前後走査させながら超 音波を入射させ、 その超音波の前記表面開口欠陥よ り探蝕子の移動位置に応じて反射する反射波のェコ 一によ り形成されるエコー包絡綠に一定のレベルの しきい値を設定し、 該しきい値を超えたエコー包絡 線の領域を該領域の探触子の移動した範囲について 積分し、 その積分して求めた前記領域の面積値を評 偭指嚣と して表面開口欠陥の深さを測定する方法。
2. 請求の範囲 1 に従う固体の表面開口欠陷の深さを 測定する方法であって、 探蝕子を被検体の表面開口 欠陥を有しない側の面に当接し、 該面を表面開口欠 陥に対して前後走査させながら測定する方法。
3. 請求の範囲 1 に従う固体の表面開口欠陥の深さを 測定する方法であって、 探触子を被検体の表面開口 欠陁を有する側の面に表面開口欠陥よ りほほ ' 1 スキ ップの距離に当接し、 該面を表面開口欠陥に対して 前記 1スキップ点を中心に前後走査させながら測定 する方法。
4. 請求の範囲 1 に従う固体の表面開口欠陥の深さ を 測定する方法であって、 エコー包絡綠に設定する一 定レベルのしきい値を、 感度標準試駿片の 1 スキッ プ距 の探傷感度をゼ σ d. Bにした偟と して測定す る方法。
PCT/JP1987/000358 1987-06-08 1987-06-08 Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves WO1988009931A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP87903745A EP0317629B1 (en) 1987-06-08 1987-06-08 Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves
US07/381,684 US5005420A (en) 1987-06-08 1987-06-08 Ultrasonic method for measurement of depth of surface opening flaw in solid mass
DE3789869T DE3789869T2 (de) 1987-06-08 1987-06-08 Verfahren zur messung der tiefe von oberflächenunebenheitsfehlern eines festen materials unter verwendung von ultraschallwellen.
PCT/JP1987/000358 WO1988009931A1 (en) 1987-06-08 1987-06-08 Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1987/000358 WO1988009931A1 (en) 1987-06-08 1987-06-08 Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves

Publications (1)

Publication Number Publication Date
WO1988009931A1 true WO1988009931A1 (en) 1988-12-15

Family

ID=13902698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000358 WO1988009931A1 (en) 1987-06-08 1987-06-08 Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves

Country Status (4)

Country Link
US (1) US5005420A (ja)
EP (1) EP0317629B1 (ja)
DE (1) DE3789869T2 (ja)
WO (1) WO1988009931A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021621A (ja) * 2001-07-09 2003-01-24 Nkk Corp 腐食診断システム
JP2006284578A (ja) * 2005-03-31 2006-10-19 General Electric Co <Ge> 超音波走査データを用いて物体を検査する方法およびシステム
JP5916864B2 (ja) * 2012-07-31 2016-05-11 株式会社Ihiインフラシステム 未溶着量の測定方法及び超音波探傷装置
JP7349390B2 (ja) 2020-03-02 2023-09-22 株式会社日立製作所 溶接部の超音波検査装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829714A4 (en) * 1996-03-28 2007-06-27 Mitsubishi Electric Corp ULTRASONIC SOUND DETECTOR AND ULTRASONIC PROCEDURE FOR DETECTING ERRORS
JP3723555B2 (ja) * 2003-05-09 2005-12-07 川田工業株式会社 溶接部の超音波検査方法
FR2881228B1 (fr) * 2005-01-27 2007-09-28 Snecma Moteurs Sa Procede de controle par ultrasons d'une piece en immersion
WO2007004303A1 (ja) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry 超音波探傷試験における傷高さ測定法並びに装置
JP4544240B2 (ja) * 2005-11-21 2010-09-15 Jfeスチール株式会社 管体の超音波探傷装置および超音波探傷方法
JP4785151B2 (ja) * 2006-07-11 2011-10-05 財団法人電力中央研究所 超音波探傷装置及び方法
US7757558B2 (en) * 2007-03-19 2010-07-20 The Boeing Company Method and apparatus for inspecting a workpiece with angularly offset ultrasonic signals
US7712369B2 (en) * 2007-11-27 2010-05-11 The Boeing Company Array-based system and method for inspecting a workpiece with backscattered ultrasonic signals
EP2618141A4 (en) * 2010-09-16 2014-03-19 Ihi Corp METHOD AND DEVICE FOR MEASURING A LAYER WITH SURFACE CURING
CN105698988B (zh) * 2016-02-29 2018-04-13 江苏科技大学 气孔直径影响临界折射纵波评价金属材料应力的修正方法
WO2018136769A1 (en) * 2017-01-19 2018-07-26 Aegion Coating Services, Llc Pipe joint inspection
CN111398555A (zh) * 2020-02-26 2020-07-10 天津市特种设备监督检验技术研究院(天津市特种设备事故应急调查处理中心) 一种压力管道深度焊接缺陷的安全评定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585385A (ja) * 1991-09-25 1993-04-06 Toyota Motor Corp 四輪操舵車の後輪操舵制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776026A (en) * 1972-08-08 1973-12-04 Atomic Energy Commission Ultrasonic flaw determination by spectral anaylsis
US4274288A (en) * 1979-07-23 1981-06-23 Rockwell International Corporation Method for measuring the depth of surface flaws
DE3504210A1 (de) * 1985-02-07 1986-08-07 Kraftwerk Union AG, 4330 Mülheim Einrichtung zum bestimmen von oberflaechenrissen
WO1986006486A1 (en) * 1985-04-22 1986-11-06 Hitachi Construction Machinery Co., Ltd. Method of measuring angle of inclination of planar flaw in solid object with ultrasonic wave

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585385A (ja) * 1991-09-25 1993-04-06 Toyota Motor Corp 四輪操舵車の後輪操舵制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021621A (ja) * 2001-07-09 2003-01-24 Nkk Corp 腐食診断システム
JP2006284578A (ja) * 2005-03-31 2006-10-19 General Electric Co <Ge> 超音波走査データを用いて物体を検査する方法およびシステム
JP5916864B2 (ja) * 2012-07-31 2016-05-11 株式会社Ihiインフラシステム 未溶着量の測定方法及び超音波探傷装置
US9612226B2 (en) 2012-07-31 2017-04-04 Ihi Infrastructure Systems Co., Ltd. Method for measuring height of lack of penetration and ultrasonic flaw detector
JP7349390B2 (ja) 2020-03-02 2023-09-22 株式会社日立製作所 溶接部の超音波検査装置

Also Published As

Publication number Publication date
DE3789869T2 (de) 1994-12-22
EP0317629A1 (en) 1989-05-31
EP0317629B1 (en) 1994-05-18
US5005420A (en) 1991-04-09
DE3789869D1 (de) 1994-06-23
EP0317629A4 (en) 1990-10-10

Similar Documents

Publication Publication Date Title
WO1988009931A1 (en) Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves
US5497662A (en) Method and apparatus for measuring and controlling refracted angle of ultrasonic waves
US5665893A (en) Reference block for determining operating characteristics of ultrasonic transducer in right circular cylinder type probe
EP0226638B1 (en) Method of measuring angle of inclination of planar flaw in solid object with ultrasonic wave
JP5192939B2 (ja) 超音波探傷による欠陥高さ推定方法
JP3723555B2 (ja) 溶接部の超音波検査方法
CN111458415B (zh) 一种超声相控阵换能器与待测工件耦合状态的检测方法
JP2001021542A (ja) 溶接線横割れ欠陥長さ測定方法
JP3761292B2 (ja) ホイール組付溶接部の超音波測定法
JP5061891B2 (ja) 亀裂状欠陥深さの測定方法
JP3761883B2 (ja) 超音波探傷方法
US20060162457A1 (en) Method of using ultrasound to inspect a part in immersion
Burch et al. M-skip: a quantitative technique for the measurement of wall loss in inaccessible components
JP6089805B2 (ja) 測定装置、測定方法、プログラム及び記憶媒体
CN103207240B (zh) 一种斜探头超声场纵向声压分布的测量方法
JPH0513263B2 (ja)
RU2397489C1 (ru) Устройство ультразвуковой дефектоскопии и способ ультразвуковой дефектоскопии
JP7318617B2 (ja) 管状被検体の超音波探傷方法
US7415865B2 (en) Determining the extent of a lateral shadow zone in an ultrasound inspection method
JP4636967B2 (ja) 超音波探傷方法
RU2739385C1 (ru) Способ ультразвукового контроля паяных соединений
JPH01107149A (ja) 超音波探傷試験方法
JPH07325070A (ja) 超音波法による欠陥深さの測定方法
JPS63302359A (ja) 超音波による表面開口欠陥深さの測定方法
JPH0338525B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

WWE Wipo information: entry into national phase

Ref document number: 1987903745

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987903745

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1987903745

Country of ref document: EP