WO1988007865A1 - COMPOSITION PHARMACEUTIQUE, ADMINISTRABLE PAR VOIE ORALE, DESTINEE A REDUIRE LES EFFETS DES ß-LACTAMINES - Google Patents

COMPOSITION PHARMACEUTIQUE, ADMINISTRABLE PAR VOIE ORALE, DESTINEE A REDUIRE LES EFFETS DES ß-LACTAMINES Download PDF

Info

Publication number
WO1988007865A1
WO1988007865A1 PCT/FR1988/000172 FR8800172W WO8807865A1 WO 1988007865 A1 WO1988007865 A1 WO 1988007865A1 FR 8800172 W FR8800172 W FR 8800172W WO 8807865 A1 WO8807865 A1 WO 8807865A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
lactamases
strains
producing
composition according
Prior art date
Application number
PCT/FR1988/000172
Other languages
English (en)
Inventor
Cyrille Tancrede
Antoine Andremont
Roger Labia
Florence Leonard
Original Assignee
Institut Gustave Roussy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Gustave Roussy filed Critical Institut Gustave Roussy
Publication of WO1988007865A1 publication Critical patent/WO1988007865A1/fr
Priority to DK685988A priority Critical patent/DK685988A/da

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals

Definitions

  • the present invention relates to a pharmaceutical composition which can be administered orally, intended to reduce the effects of ⁇ -lactams on the intestinal flora.
  • the present invention relates more specifically to a composition containing bacteria which are not pathogenic to humans.
  • modifications may relate in particular to the strict anaerobic bacteria which constitute the dominant populations of the intestinal flora and which normally oppose colonization by potentially pathogenic microorganisms such as enterobacteria, Pseudomonas, Staphylococci, yeasts, etc. the dominant flora can therefore lead to the development of infectious germs, which is particularly dangerous in some patients.
  • the present invention aims to provide a composition containing non-pathogenic bacteria which is intended not to replace the initial flora but to avoid the disappearance of the natural intestinal flora.
  • the subject of the present invention is a pharmaceutical composition, which can be administered orally, intended to reduce the effects of ⁇ -lactams. on the intestinal flora in humans, and characterized in that it comprises strict anaerobic bacteria producing ⁇ -lactamases:
  • composition according to the invention is normally administered orally a few hours before or practically at the same time as the treatment with ⁇ -lactamine. Repeated doses may be considered during treatment with ⁇ -lactamine.
  • composition according to the invention finds an application during treatment with ⁇ -lactams such as:
  • penicillins in particular penicillin G and phenoxymethylpenicillins, methicillin and isoxazolylpenicillins (for example oxacillin and cloxacillin), aminopenicillins (for example ampicillin and amoxicillin), amidinopenicillins
  • acylureidopenicillins e.g. Mezlocilline, Azlocilline,
  • cephalosporins including cefalotin, cefazolin, cefamandole, cefuroxime, cefotaxime, ceftizoxime, ceftazidime, ceftriaxone. monobactams (with an azetidine ring), for example aztreonam.
  • strains of strict anaerobic bacteria which are used in the present invention are in particular strains producing ⁇ -lactamase belonging to the genus Bacteroides.
  • the strains producing ⁇ -lactamases can be determined by an in vitro test.
  • a method can be used for this purpose which consists in measuring the amount of residual ⁇ -lactam after contact with the solution presumed to contain a ⁇ -lactamase activity (Rolfe RD et al. J. Infect Dis. 147, 227, 1983).
  • Strains are selected which have an enzymatic activity of at least 0.02 ⁇ mole of cephaloridine / minute / mg of protein.
  • Strains producing ⁇ -lactamases can be isolated from human feces.
  • the strict non-pathogenic anaerobic bacteria producing ⁇ -lactamases can be packaged in lyophilized form and added to a drinkable excipient just before administration. They can also be packaged in the form of capsules, tablets, or similar solid forms in admixture with excipients. To avoid any destruction of bacteria during passage through the stomach, provision may in particular be made of forms comprising an anti-acid excipient or an enteric coating.
  • the quantity of bacteria producing ⁇ -lactamases which is administered to humans by the oral route is approximately 10 8 to 10 11 viable bacterial cells.
  • compositions according to the invention has been demonstrated on the model of the heteroxenic mouse treated with ceftriaxone.
  • strains of anaerobic bacteria producing ⁇ -lactamases had been isolated from samples of human faeces and it was the cultures derived from these bacteria that were administered.
  • Faeces from healthy subjects were isolated from strict anaerobic bacteria under anaerobic conditions. In each subject, the dominant clones were identified and the ⁇ -lactamase activity of the isolated strains was measured in vitro.
  • ⁇ -lactamases are detected using the semi-quantitative microbiological method described by Rolfe RD et al. (J. Infect Dis. 147, 227, 1983). The activity is quantified on a scale of 0+ to 4+. The maximum ⁇ -lactamase activity is represented by 4+. Intermediate activities 3+, 2+, 1+ correspond to partial hydrolysis of the antibiotic. 0 is considered to be the absence of ⁇ -lactamase activity.
  • Medium 5 agar medium (Difco) and test strain B. subtilis ATCC6633 were used.
  • the activity profile of isolated strains is given in Table I below. The values given are the percentages of hydrolysis of the various ⁇ -lactams.
  • strains used must have a ⁇ -lactamase activity ⁇ 0.02 ⁇ mole of cephaloridine / minute / mg of total bacterial proteins.
  • mice have also been associated with complex human flora.
  • the gavage solution is prepared in an anaerobic chamber, from freshly emitted human faeces.
  • the sample is ground using of an Ultraturrax, and diluted 100 times in LCY medium. This dilution is transferred to the isolator where axenic mice are found.
  • transport takes place in hermetically sealed tubes inside the anaerobic chamber.
  • the previously thirsty animals are force-fed by the gastric and rectal route. The force-feeding is repeated after 24 h. Ten to fifteen days are necessary to obtain equilibria and barrier effects comparable to those observed in the donor.
  • mice with human flora are inoculated intragastrically with 1 ml of TGY broth (Trypticase 30 g / l, yeast extract 20
  • Enterobacteriaceae sensitive to Ceftriaxone are eliminated. Enterococcal counts are equivalent to those obtained for flora E, untreated control. Resistance to colonization by exogenous microorganisms resistant to Ceftriaxone (Ent.cloacae IGR67, C.albicans IGR66) is maintained in mice in which the strains of active Bacteroides have been previously implanted.
  • the anaerobic bacteria persist in the group having received the Bacteroides and the total counts made in anaerobic room are not significantly modified by the presence of these bacteria, compared to the control.
  • the MIC 50 and 90 of these bacteria are respectively 512 and> 1024 ⁇ g of ceftriaxone per ml.
  • Gram-negative bacilli represent 84% of this flora, there are also 13% of spore-forming Gram-positive bacilli and 3% of cocci.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

La présente invention a pour objet une composition pharmaceutique, administrable par voie orale, destinée à réduire les effets des ss-lactamines sur la flore intestinale chez l'homme, et caractérisée en ce qu'elle comprend des bacteries anaérobies strictes non pathogènes pour l'homme et productrices de ss-lactamases.

Description

COMPOSITION PHARMACEUTIQUE, ADMINISTRABLE PAR VOIE ORALE,
DESTINEE A REDUIRE LES EFFETS DES β-LACTAMINES
La présente invention concerne une composition pharmaceutique administrable par voie orale, destinée à réduire les effets des β-lactamines sur la flore intestinale. La présente invention concerne plus spécialement une composi tion contenant des bactéries non pathogènes pour l'homme.
On sait que le traitement par des β-lactamines à large spectre entraîne des modifications importantes de la flore microbienne normale et en particulier de la flore intestinale dans le cas d'un traitement par des β-lactamines à élimination biliaire notable.
Ces modifications peuvent concerner en particulier les bactéries anaérobies strictes qui constituent les populations dominantes de la flore intestinale et qui s'opposent normalement à la colonisation par des microorganismes potentiellement pathogènes tels que entérobactéries, Pseudomonas, Staphylocoques, levures, etc... La diminution de la flore dominante peut donc conduire au développement de germes infectieux, ce qui est particulièrement dangereux chez certains patients.
Par le passé, on a déjà proposé d'administrer par voie orale diverses bactéries ou levures. Il s'agissait toutefois de suppléer aux bactéries constituant initialement la flore intestinale.
La présente invention vise à fournir une composition contenant des bactéries non pathogènes qui est destinée non pas à remplacer la flore initiale mais à éviter la disparition de la flore intestinale naturelle.
A cet effet, la présente invention a pour objet une composition pharmaceutique, administrable par voie orale, destinée à réduire les effets des β-lactamines. sur la flore intestinale chez l'homme, et caractérisée en ce qu'elle comprend des bactéries anaércbies strictes productrices de β-lactamases :
- Bactéroides fragilis
- Bactéroides mélaninogenicus - Bactéroides intermedius - Bactéroides nonfragilis
- Bactéroides asaccharolyticus
- Bactéroides bivius
- Bactéroides disiens - Bactéroides oralis
- Bactéroides ruminicola
- Bactéroides capillosus
- Bactéroides uniformis
- Clostridium butyricum - Fusobacterium nucleatum
(Nord CE. 1986 Rev. Infect Dis.8-5 543, 548).
Ces bactéries font partie de la flore intestinale de sujets normaux et leur introduction dans l'intestin de sujets qui en sont dépourvus ne présente pas d'inconvénients.
La composition selon l'invention est normalement administrée par voie orale quelques heures avant ou pratiquement en même temps que le traitement par la β-lactamine. Des prises répétées peuvent être envisagées pendant le traitement par la β-lactamine.
La composition selon l'invention trouve une application lors du traitement par des β-lactamines telles que :
- des pénicillines notamment la pénicilline G et les phénoxyméthylpénicillines, la méthicilline et les isoxazolylpénicillines (par exemple oxacilline et cloxacilline), des aminopénicillines (par exemple ampicilline et amoxicilline), des amidinopénicillines
(par exemple pivmecillinam), des carboxypénicillines (par exemple carbénicilline, ticarcilline), des méthoxycarboxypénicillines (par exemple témocilline), des acylureidopénicillines (par exemple Mezlocilline, Azlocilline,
Pipéracilline), des acylpénicillines (par exemple
Apalcilline).
- des céphalosporines notamment la céfalotine, la céfazoline, le céfamandole, le céfuroxime, le céfotaxime, le ceftizoxime, la ceftazidime, la ceftriaxone. des monobactames (à noyau azétidine), par exemple l'aztréonam.
Les souches de bactéries anaérobies strictes que l'on utilise dans la présente invention sont notamment des souches productrices de β-lactamase appartenant au genre Bactéroides.
Les souches productrices de β-lactamases peuvent être déterminées par un test in vitro. On peut utiliser à cet effet une méthode qui consiste à doser la quantité de β-lactamine résiduelle après contact avec la solution présumée contenir une activité β-lactamase (Rolfe RD et coll.J. Infect Dis. 147, 227, 1983).
On sélectionne les souches qui ont une activité enzymatique d'au moins 0,02 μmole de céphaloridine/minute/mg de protéine.
Des souches productrices de β-lactamases peuvent être isolées de fèces humaines. Les bactéries anaérobies strictes non pathogènes productrices de β-lactamases peuvent être conditionnées sous forme lyophilisée et ajoutées à un excipient buvable juste avant l'administration. Elles peuvent être également conditionnées sous forme de gélules, comprimés, ou formes solides analogues en mélange avec des excipients. Pour éviter toute destruction des bactéries lors du passage dans l'estomac, on peut notamment prévoir des formes comportant un excipient anti-acide ou un revêtement entérique.
La quantité de bactéries productrices de β-lactamases qui est administrée chez l'homme par voie orale est d'environ 108 à 1011 cellules bactériennes viables.
L'activité des compositions selon l'invention a été mise en évidence sur le modèle de la souris hétéroxénique traitée par la ceftriaxone. Préalablement, des souches de bactéries anaérobies productrices de β-lactamases avaient été isolées d'échantillons de fèces humaines et ce sont les cultures tirées de ces bactéries qui ont été administrées.
1.- Isolement de souches de bactéries anaérobies strictes productrices de β-lactamase.
On a isolé des fèces de sujets sains des bactéries anaérobies strictes dans des conditions d'anaérobiose. Chez chaque sujet, on a identifié les clones dominants et on a mesuré in vitro l'activité β-lactamase des souches isolées.
Les β-lactamases sont détectées grâce à la méthode microbiologique semi-quantitative décrite par Rolfe RD et coll. (J. Infect Dis. 147, 227, 1983). L'activité est quantifiée sur une échelle de 0+ à 4+. Le maximum d'activité β-lactamase est représenté par 4+. Les activités intermédiaires 3+, 2+, 1+ correspondent à une hydrolyse partielle de l'antibiotique. 0 est considéré comme l'absence d'activité β-lactamase. Le milieu gélose Médium 5 (Difco) et la souche test B. subtilis ATCC6633 ont été utilisés.
Les échantillons de fèces sont incubés pendant
30 minutes à 37 °C, avec une concentration connue d'antibiotique : Amoxicilline, Amoxicilline + acide clavulanique, Ticarcilline, Cefotaxime, Ceftriaxone ou Cefoperazone; l'activité antibiotique résiduelle est dosée.
Le profil d'activité de souches isolées est donné dans le tableau I suivant. Les valeurs données sont les pourcentages d'hydrolyse des différentes β-lactamines.
Figure imgf000008_0001
L'activité β-lactamase a en outre été testée selon une méthode spectrophométrique (O'Callaghan et coll. Antimicrobial Agents Chemotherapy 1, 283, 1972). Les résultats sont reportés dans le tableau II ci-dessous.
Figure imgf000009_0001
On considère que les souches utilisées doivent avoir une activité β-lactamase ≥0,02 μmole de céphaloridine/minute/mg de protéines bactériennes totales. 2. - Mise en évidence chez la souris des propriétés des souches isolées chez la souris,
a) Association de quatre souches d'anaérobies productrices de β-lactamase et traitement par la ceftriaxone : Des souris sans germe (axéniques) C3H (Centre de
Sélection des Animaux de Laboratoires, Orléans, Trance), sont maintenues en isolateur de plastique souple de type Texler. Elles reçoivent de l'eau de boisson à pH 3, stérilisée par la chaleur. La nourriture est préparée commercialement (RO3, Villemoisson/Orge, France) et stérilisée par irradiation à 4 mégarads.
De tels animaux sont associés à quatre souches de bactéries anaérobies :
- C1 : B.thétaiotaomicron - C6 : C.clostridiformis
- E9 : B.uniformis
- V4E3 : B.thétaiotaomicron
Avant le traitement par la ceftriaxone, l'activité β-lactamase n'est pas détectable (0+), alors que les souches bactériennes s'implantent à 10(10,02 ± 0,31)ufc/g de fèces. Lorsque ces mêmes souris recoivent la ceftriaxone per os (ajouté à l'eau de boisson à raison de 2 mg/ml), les comptes totaux ne sont pas modifiés, l'activité enzymatique reste non détectable mais l'antibiotique n'est pas retrouvé dans les fèces.
b) Influence de l'introduction des souches d'anaérobies productrices de β-lactamases chez les souris à flore humaine traitées avec la ceftriaxone :
- Des souris axéniques ont été également associées à une flore complexe humaine. La préparation de la solution de gavage est réalisée en chambre anaérobie, à partir de fèces humaines fraîchement émises. L'échantillon est broyé à l'aide d'un Ultraturrax, et dilué 100 fois en milieu LCY. Cette dilution est transférée jusqu'à l'isolateur où se trouvent des souris axéniques. Afin de protéger cette solution bactérienne du contact avec l'oxygène, le transport se fait dans des tubes fermés hermétiquement à l'intérieur de la chambre anaérobie. Comme dans le cas précédent, les animaux préalablement assoiffés sont gavés par voie gastrique et rectale. Le gavage est répété après 24 h. Dix à quinze jours sont nécessaires pour obtenir des équilibres et des effets de barrières comparables à ceux observés chez le donneur.
Les souris à flore humaine sont inoculées par voie intragastrique avec 1 ml de bouillon TGY (Trypticase 30 g/l, extrait de levure 20 g/l, glucose 5 g/l, Thioglycolate de sodium 1 g/l, pH = 7,4) contenant 5.108ufc/ml de 4 souches d'anaérobies productrices de β-lactamase (C1, C6, E9, V4E3) avant l'administration orale de Ceftriaxone (2 mg/ml dans l'eau de boisson). Les résultats sont présentés dans le tableau III.
Pendant la période de traitement, aucune concentration antibiotique n'est détectée dans les fèces. Une activité β-lactamase sur la ceftriaxone est décelée après 14 jours de traitement, elle varie entre 1+ et 4+.
Les entérobactéries sensibles à la Ceftriaxone sont éliminées. Les comptes d'entérocoques sont équivalents à ceux obtenus pour la flore E, témoin non traitée. La résistance à la colonisation par des microorganismes exogènes résistants à la Ceftriaxone (Ent.cloacae IGR67, C.albicans IGR66) est maintenue chez les souris chez lesquelles les souches de Bactéroides actives ont été implantées précédemment.
Les bactéries anaérobies persistent dans le groupe ayant reçu les Bactéroides et les comptes totaux effectués en chambre anaérobie ne sont pas significativement modifiés par la présence de ces bactéries, par rapport au témoin. Les CMI 50 et 90 de ces bactéries sont respectivement de 512 et >1024 μg de ceftriaxone par ml. Les bacilles à Gram négatif représentent alors 84 % de cette flore, il y a également 13 % de bacilles à Gram positif sporulés et 3 % de cocci.
L'identification par le système Api 20A permet de retrouver parmi ces souches des C.clostridiformis et B.uniformis ayant les mêmes caractères que ceux administrés juste avant le début du traitement par Ceftriaxone.
Figure imgf000013_0001
Moyenne ± SEM ufc/g de fèces (10 g) sur 6 prélèvements
Résultats soulignés : différences significatives p > 0,5
* Valeurs extrêmes s = nombre de souris testées n ≈ nombre d'échantillons fécaux étudiés
En thérapeutique humaine, on administre 108 à 1011 de bactéries par jour de traitement antibiotique sous forme de gélules gastroresistantes à debitement enterique (gélules 5.109 de bactéroides).

Claims

REVENDICATIONS
1) Composition pharmaceutique, administrable par voie orale, destinée à réduire les effets des β-lactamines sur la flore intestinale chez l'homme, et caractérisée en ce qu'elle comprend des bactéries anaérobies strictes non pathogènes pour l'homme et productrices de β-lactamases.
2) Composition selon la revendication 1, caractérisée en ce que les bactéries sont choisies parmi les souches de Clostridium et de Bactéroides productrices de β-lactamases.
3) Composition selon la revendication 2, caractérisée en ce que les bactéries sont choisies parmi les souches de
Clostridium productrices de β-lactamases.
4) Composition selon la revendication 2, caractérisée en ce que les bactéries sont choisies parmi les souches de Bactéroides uniformis productrices de β-lactamases.
5) Composition selon la revendication 2, caractérisée en ce que les bactéries sont choisies parmi les souches de Bactéroides thétaiotaomicron productrices de β-lactamases.
6) Composition selon l'une quelconque des revendications 1 a 5, caractérisée en ce que les bactéries choisies ont une activité β-lactamase d'au moins 0,02 μmole de céphaloridine/minute/mg de protéines bactériennes totales.
7) Composition selon l'une quelconque des revendications
1 à 6, caractérisée en ce qu'elle contient d'environ 108 à 10 11 bactéries anaérobies strictes non pathogènes productrices de β-lactamases. A B R E G E
La présente invention a pour objet une composition pharmaceutique, administrable par voie orale, destinée à réduire les effets des β-lactamines sur la flore intestinale chez l'homme, et caractérisée en ce qu'elle comprend des bactéries anaérobies strictes non pathogènes pour l'homme et productrices de β-lactamases.
PCT/FR1988/000172 1987-04-10 1988-04-08 COMPOSITION PHARMACEUTIQUE, ADMINISTRABLE PAR VOIE ORALE, DESTINEE A REDUIRE LES EFFETS DES ß-LACTAMINES WO1988007865A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK685988A DK685988A (da) 1987-04-10 1988-12-09 Peroralt farmaceutisk praeparat til reduktion af beta-lactaminers virkning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8705110A FR2613624B1 (fr) 1987-04-10 1987-04-10 Composition pharmaceutique, administrable par voie orale, destinee a reduire les effets des b-lactamines
FR87/05110 1987-04-10

Publications (1)

Publication Number Publication Date
WO1988007865A1 true WO1988007865A1 (fr) 1988-10-20

Family

ID=9350003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1988/000172 WO1988007865A1 (fr) 1987-04-10 1988-04-08 COMPOSITION PHARMACEUTIQUE, ADMINISTRABLE PAR VOIE ORALE, DESTINEE A REDUIRE LES EFFETS DES ß-LACTAMINES

Country Status (8)

Country Link
EP (1) EP0309532A1 (fr)
JP (1) JPH01503537A (fr)
AU (1) AU604117B2 (fr)
FR (1) FR2613624B1 (fr)
OA (1) OA09023A (fr)
PT (1) PT87190B (fr)
WO (1) WO1988007865A1 (fr)
ZA (1) ZA882426B (fr)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013795A1 (fr) * 1992-01-17 1993-07-22 Pekka Untamo Heino Application medicale, procede medical et preparation pharmaceutique
EP1992336A2 (fr) 2002-08-09 2008-11-19 DA Volterra Forme galénique pour la délivrance colique de principes actifs
US8273376B2 (en) 2006-11-17 2012-09-25 Da Volterra Colonic delivery of metallo-dependent enzymes
US8894994B2 (en) 2010-05-24 2014-11-25 Synthetic Biologics, Inc. Modified beta-lactamases and methods and uses related thereto
US9290754B2 (en) 2014-04-17 2016-03-22 Synthetic Biologics Inc. Beta-lactamases with improved properties for therapy
US9744221B2 (en) 2014-12-23 2017-08-29 Synthetic Biologics, Inc. Method and compositions for inhibiting or preventing adverse effects of oral antibiotics
US10105322B2 (en) 2014-10-08 2018-10-23 Synthetic Biologics, Inc. Beta-lactamase formulations and uses thereof
US10471108B2 (en) 2015-11-20 2019-11-12 4D Pharma Research Limited Compositions comprising bacterial strains
US10485830B2 (en) 2016-12-12 2019-11-26 4D Pharma Plc Compositions comprising bacterial strains
US10493112B2 (en) 2015-06-15 2019-12-03 4D Pharma Research Limited Compositions comprising bacterial strains
US10500237B2 (en) 2015-06-15 2019-12-10 4D Pharma Research Limited Compositions comprising bacterial strains
US10548955B2 (en) 2015-02-23 2020-02-04 Synthetic Biologics, Inc. Carbapenemases for use with antibiotics for the protection of the intestinal microbiome
US10583158B2 (en) 2016-03-04 2020-03-10 4D Pharma Plc Compositions comprising bacterial strains
US10610549B2 (en) 2016-07-13 2020-04-07 4D Pharma Plc Composition comprising bacterial strains
US10610550B2 (en) 2015-11-20 2020-04-07 4D Pharma Research Limited Compositions comprising bacterial strains
US10709773B2 (en) 2015-03-06 2020-07-14 Synthetic Biologics, Inc. Safe and effective beta-lactamase dosing for microbiome protection
US10736926B2 (en) 2015-06-15 2020-08-11 4D Pharma Research Limited Compositions comprising bacterial strains
US10780134B2 (en) 2015-06-15 2020-09-22 4D Pharma Research Limited Compositions comprising bacterial strains
US10851137B2 (en) 2013-04-10 2020-12-01 4D Pharma Research Limited Polypeptide and immune modulation
US10973872B2 (en) 2014-12-23 2021-04-13 4D Pharma Research Limited Pirin polypeptide and immune modulation
US10987387B2 (en) 2017-05-24 2021-04-27 4D Pharma Research Limited Compositions comprising bacterial strain
US11007233B2 (en) 2017-06-14 2021-05-18 4D Pharma Research Limited Compositions comprising a bacterial strain of the genus Megasphera and uses thereof
US11034966B2 (en) 2014-08-28 2021-06-15 Synthetic Biologics, Inc. E. coli-based production of beta-lactamase
US11123378B2 (en) 2017-05-22 2021-09-21 4D Pharma Research Limited Compositions comprising bacterial strains
US11123379B2 (en) 2017-06-14 2021-09-21 4D Pharma Research Limited Compositions comprising bacterial strains
US11224620B2 (en) 2016-07-13 2022-01-18 4D Pharma Plc Compositions comprising bacterial strains
US11266698B2 (en) 2011-10-07 2022-03-08 4D Pharma Research Limited Bacterium for use as a probiotic for nutritional and medical applications
US11389493B2 (en) 2015-06-15 2022-07-19 4D Pharma Research Limited Compositions comprising bacterial strains
US11723933B2 (en) 2014-12-23 2023-08-15 Cj Bioscience, Inc. Composition of bacteroides thetaiotaomicron for immune modulation
US12048720B2 (en) 2017-06-14 2024-07-30 Cj Bioscience, Inc. Compositions comprising bacterial strains

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Vol. 104, No. 25, 23 June 1986, (Columbus, Ohio, US), K. SAWA et al., "The Effect of Cefixime on Bacterial Flora in the Intestinal Tracts of Healthy Male Volunteers", page 22, Abstract No. 218682m; & CHEMOTHERAPY (TOKYO), 1985, 33, (Suppl. 6), 169-180. *
CHEMICAL ABSTRACTS, Vol. 85, No. 13, 27 September 1976, (Columbus, Ohio, US), A.E. WEINRICH et al., "Beta-Lactamase Activity in Anaerobic Bacteria", page 273, Abstract No. 89887v; & ANTIMICROB. AGENTS CHEMOTHER., 1976, 10(1), 106-11. *
CHEMICAL ABSTRACTS, Vol. 92, No. 7, 18 February 1980, (Columbus, Ohio, US), F.P. TALLY et al., "Inactivation of Cephalosporins by Bacteroides", pages 138-139, Abstract No. 52714e; & ANTIMICROB. AGENTS CHEMOTHER., 1979, 16(5), 565-71. *
CHEMICAL ABSTRACTS, Vol. 99, No. 1, 4 July 1983, (Columbus, Ohio, US), M. TAJIMA et al., "The Beta-Lactamases of Genus Bacteroides", page 276, Abstract No. 2765w; & J. ANTIBIOT., 1983, 36 (4), 423-8. *

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013795A1 (fr) * 1992-01-17 1993-07-22 Pekka Untamo Heino Application medicale, procede medical et preparation pharmaceutique
US5607671A (en) * 1992-01-17 1997-03-04 Heino; Pekka U. Medical use, a medical method and a pharmaceutical preparation
US7833765B2 (en) 2002-08-09 2010-11-16 Da Volterra Galenic formulation for colon-targeted delivery of active ingredients
US7485294B2 (en) * 2002-08-09 2009-02-03 Da Volterra Galenic pectinate formulation for colon-targeted delivery of antibiotic-inactivating enzymes and method of use thereof
EP1992336A2 (fr) 2002-08-09 2008-11-19 DA Volterra Forme galénique pour la délivrance colique de principes actifs
US8273376B2 (en) 2006-11-17 2012-09-25 Da Volterra Colonic delivery of metallo-dependent enzymes
US8894994B2 (en) 2010-05-24 2014-11-25 Synthetic Biologics, Inc. Modified beta-lactamases and methods and uses related thereto
US9034602B2 (en) 2010-05-24 2015-05-19 Synthetic Biologics, Inc. Modified beta-lactamases and methods and uses related thereto
US9301995B2 (en) 2010-05-24 2016-04-05 Synthetic Biologics, Inc. Modified beta-lactamases and methods and uses related thereto
US9301996B2 (en) 2010-05-24 2016-04-05 Synthetic Biologics, Inc. Modified beta-lactamases and methods and uses related thereto
US10041056B2 (en) 2010-05-24 2018-08-07 Synthetic Biologics, Inc. Modified beta-lactamases and methods and uses related thereto
US11214787B2 (en) 2010-05-24 2022-01-04 Synthetic Biologies, Inc. Modified beta-lactamases and methods and uses related thereto
US9587234B2 (en) 2010-05-24 2017-03-07 Synthetic Biologics, Inc. Modified beta-lactamases and methods and uses related thereto
US10253306B2 (en) 2010-05-24 2019-04-09 Synthetic Biologics, Inc. Modified beta-lactamases and methods and uses related thereto
US9765320B2 (en) 2010-05-24 2017-09-19 Synthetic Biologics, Inc. Modified beta-lactamases and methods and uses related thereto
US11266698B2 (en) 2011-10-07 2022-03-08 4D Pharma Research Limited Bacterium for use as a probiotic for nutritional and medical applications
US11414463B2 (en) 2013-04-10 2022-08-16 4D Pharma Research Limited Polypeptide and immune modulation
US10851137B2 (en) 2013-04-10 2020-12-01 4D Pharma Research Limited Polypeptide and immune modulation
US11236319B2 (en) 2014-04-17 2022-02-01 Synthetic Biologies, Inc. Beta-lactamases with improved properties for therapy
US10584326B2 (en) 2014-04-17 2020-03-10 Synthetic Biologics, Inc. Beta-lactamases with improved properties for therapy
US9783797B1 (en) 2014-04-17 2017-10-10 Synthetic Biologics, Inc. Beta-lactamases with improved properties for therapy
US10767171B2 (en) 2014-04-17 2020-09-08 Synthetic Biologics, Inc. Beta-lactamases with improved properties for therapy
US10087433B1 (en) 2014-04-17 2018-10-02 Synthetic Biologics, Inc. Beta-lactamases with improved properties for therapy
US11608494B2 (en) 2014-04-17 2023-03-21 Theriva Biologics, Inc. Beta-lactamases with improved properties for therapy
US10011824B2 (en) 2014-04-17 2018-07-03 Synthetic Biologics, Inc. Beta-lactamases with improved properties for therapy
US10336995B2 (en) 2014-04-17 2019-07-02 Synthetic Biologics, Inc. Beta-lactamases with improved properties for therapy
US9376673B1 (en) 2014-04-17 2016-06-28 Synthetic Biologics, Inc. Beta-lactamases with improved properties for therapy
US9695409B2 (en) 2014-04-17 2017-07-04 Synthetic Biologics, Inc. Beta-lactamases with improved properties for therapy
US9404103B1 (en) 2014-04-17 2016-08-02 Synthetic Biologics, Inc. Beta-lactamases with improved properties for therapy
US9290754B2 (en) 2014-04-17 2016-03-22 Synthetic Biologics Inc. Beta-lactamases with improved properties for therapy
US9464280B1 (en) 2014-04-17 2016-10-11 Synthetic Biologics, Inc. Beta-lactamases with improved properties for therapy
US11981899B2 (en) 2014-08-28 2024-05-14 Theriva Biologics, Inc. E. coli-based production of beta-lactamase
US11542510B2 (en) 2014-08-28 2023-01-03 Synthetic Biologics, Inc. E. coli-based production of beta-lactamase
US11034966B2 (en) 2014-08-28 2021-06-15 Synthetic Biologics, Inc. E. coli-based production of beta-lactamase
US10105322B2 (en) 2014-10-08 2018-10-23 Synthetic Biologics, Inc. Beta-lactamase formulations and uses thereof
US10828260B2 (en) 2014-10-08 2020-11-10 Synthetic Biologics, Inc. Beta-lactamase formulations and uses thereof
US9744221B2 (en) 2014-12-23 2017-08-29 Synthetic Biologics, Inc. Method and compositions for inhibiting or preventing adverse effects of oral antibiotics
US11944669B2 (en) 2014-12-23 2024-04-02 Theriva Biologics, Inc. Method and compositions for inhibiting or preventing adverse effects of oral antibiotics
US11596674B2 (en) 2014-12-23 2023-03-07 Synthetic Biologies, Inc. Method and compositions for inhibiting or preventing adverse effects of oral antibiotics
US10973872B2 (en) 2014-12-23 2021-04-13 4D Pharma Research Limited Pirin polypeptide and immune modulation
US10046035B2 (en) 2014-12-23 2018-08-14 Synthetic Biologics, Inc. Methods and compositions for inhibiting or preventing adverse effects of oral antibiotics
US11723933B2 (en) 2014-12-23 2023-08-15 Cj Bioscience, Inc. Composition of bacteroides thetaiotaomicron for immune modulation
US10792346B2 (en) 2014-12-23 2020-10-06 Synthetic Biologics, Inc. Method and compositions for inhibiting or preventing adverse effects of oral antibiotics
US10548955B2 (en) 2015-02-23 2020-02-04 Synthetic Biologics, Inc. Carbapenemases for use with antibiotics for the protection of the intestinal microbiome
US11123413B2 (en) 2015-02-23 2021-09-21 Synthetic Biologies, Inc. Carbapenemases for use with antibiotics for the protection of the intestinal microbiome
US10709773B2 (en) 2015-03-06 2020-07-14 Synthetic Biologics, Inc. Safe and effective beta-lactamase dosing for microbiome protection
US11872268B2 (en) 2015-03-06 2024-01-16 Theriva Biologics, Inc. Safe and effective beta-lactamase dosing for microbiome protection
US11253577B2 (en) 2015-03-06 2022-02-22 Synthetic Biologics, Inc. Safe and effective beta-lactamase dosing for microbiome protection
US11389493B2 (en) 2015-06-15 2022-07-19 4D Pharma Research Limited Compositions comprising bacterial strains
US10493112B2 (en) 2015-06-15 2019-12-03 4D Pharma Research Limited Compositions comprising bacterial strains
US11331352B2 (en) 2015-06-15 2022-05-17 4D Pharma Research Limited Compositions comprising bacterial strains
US11040075B2 (en) 2015-06-15 2021-06-22 4D Pharma Research Limited Compositions comprising bacterial strains
US11273185B2 (en) 2015-06-15 2022-03-15 4D Pharma Research Limited Compositions comprising bacterial strains
US10744167B2 (en) 2015-06-15 2020-08-18 4D Pharma Research Limited Compositions comprising bacterial strains
US10780134B2 (en) 2015-06-15 2020-09-22 4D Pharma Research Limited Compositions comprising bacterial strains
US11433106B2 (en) 2015-06-15 2022-09-06 4D Pharma Research Limited Compositions comprising bacterial strains
US10864236B2 (en) 2015-06-15 2020-12-15 4D Pharma Research Limited Compositions comprising bacterial strains
US10500237B2 (en) 2015-06-15 2019-12-10 4D Pharma Research Limited Compositions comprising bacterial strains
US10736926B2 (en) 2015-06-15 2020-08-11 4D Pharma Research Limited Compositions comprising bacterial strains
US10471108B2 (en) 2015-11-20 2019-11-12 4D Pharma Research Limited Compositions comprising bacterial strains
US11058732B2 (en) 2015-11-20 2021-07-13 4D Pharma Research Limited Compositions comprising bacterial strains
US10610550B2 (en) 2015-11-20 2020-04-07 4D Pharma Research Limited Compositions comprising bacterial strains
US10583158B2 (en) 2016-03-04 2020-03-10 4D Pharma Plc Compositions comprising bacterial strains
US10610549B2 (en) 2016-07-13 2020-04-07 4D Pharma Plc Composition comprising bacterial strains
US10960031B2 (en) 2016-07-13 2021-03-30 4D Pharma Plc Compositions comprising bacterial strains
US11224620B2 (en) 2016-07-13 2022-01-18 4D Pharma Plc Compositions comprising bacterial strains
US10610548B2 (en) 2016-07-13 2020-04-07 4D Pharma Plc Compositions comprising bacterial strains
US10967010B2 (en) 2016-07-13 2021-04-06 4D Pharma Plc Compositions comprising bacterial strains
US10485830B2 (en) 2016-12-12 2019-11-26 4D Pharma Plc Compositions comprising bacterial strains
US11376284B2 (en) 2017-05-22 2022-07-05 4D Pharma Research Limited Compositions comprising bacterial strains
US11382936B2 (en) 2017-05-22 2022-07-12 4D Pharma Research Limited Compositions comprising bacterial strains
US11123378B2 (en) 2017-05-22 2021-09-21 4D Pharma Research Limited Compositions comprising bacterial strains
US10987387B2 (en) 2017-05-24 2021-04-27 4D Pharma Research Limited Compositions comprising bacterial strain
US11123379B2 (en) 2017-06-14 2021-09-21 4D Pharma Research Limited Compositions comprising bacterial strains
US11779613B2 (en) 2017-06-14 2023-10-10 Cj Bioscience, Inc. Compositions comprising a bacterial strain of the genus Megasphera and uses thereof
US11660319B2 (en) 2017-06-14 2023-05-30 4D Pharma Research Limited Compositions comprising bacterial strains
US11007233B2 (en) 2017-06-14 2021-05-18 4D Pharma Research Limited Compositions comprising a bacterial strain of the genus Megasphera and uses thereof
US12048720B2 (en) 2017-06-14 2024-07-30 Cj Bioscience, Inc. Compositions comprising bacterial strains

Also Published As

Publication number Publication date
AU1578688A (en) 1988-11-04
PT87190A (pt) 1988-05-01
PT87190B (pt) 1992-08-31
ZA882426B (en) 1988-09-28
AU604117B2 (en) 1990-12-06
FR2613624A1 (fr) 1988-10-14
EP0309532A1 (fr) 1989-04-05
JPH01503537A (ja) 1989-11-30
OA09023A (fr) 1991-03-31
FR2613624B1 (fr) 1990-11-23

Similar Documents

Publication Publication Date Title
WO1988007865A1 (fr) COMPOSITION PHARMACEUTIQUE, ADMINISTRABLE PAR VOIE ORALE, DESTINEE A REDUIRE LES EFFETS DES ß-LACTAMINES
FI119678B (fi) Beta-laktamaasin käyttö
US7854927B2 (en) Methods and compositions for the dietary management of autoimmune disorders
FR285F (fr) Médicament renfermant des colibacilles antibiorésistants.
CZ286286B6 (cs) Aplikační forma, sterilizační prostředek, doplňkové krmivo a způsob sterilizace
AU662601B2 (en) Probiotic for control of salmonella
KR20000070973A (ko) 헬리코박터 에스피 감염의 예방 및 치료에 사용되는 경구용제제
EP0689842A1 (fr) Utilisation d'un extrait organique de cannelle pour l'inhibition d'helicobacter pylori
EP3207141B1 (fr) Molecule proteique hybride apte a inhiber au moins un antibiotique et composition pharmaceutique la comportant
JPH0656679A (ja) クロストリジウム・ディフィシル下痢症および偽膜性大腸炎の予防ならびに治療用医薬組成物
US5472695A (en) Therapeutic application of a thyme extract and in - vitro methods for inhibiting the growth and urease activity of helicobacter pylori
WO2001034182A2 (fr) Composition pour le traitement des infections des voies respiratoires contenant le menthol, l'eucalyptol et une alpha-amylase
EP0768376B1 (fr) Milieux sélectifs de culture et d'isolement des bactéries Gram, composition antibiotique
CN114478742A (zh) 一种抗幽门螺杆菌活性多肽及其应用
US20210330755A1 (en) Haloperoxidase compositions and uses thereof
EP0577481B1 (fr) Nouvelle application thérapeutique d'un extrait de thym et in-vitro méthodes d'inhibition de la croissance et d'activité d'uréase de Helicobacter pylori
EP1000625A1 (fr) Composition anti-bactérienne
Andersen et al. Pivmecillinam in the treatment of therapy resistant urinary tract infections: A comparison with pivmecillinam, pivampicillin and their combination
EP3979834B1 (fr) Composition comprenant une levure pour la prevention de la cystite simple et/ou recidivante
FR3052065B1 (fr) Combinaison de cineol et d'amoxicilline pour une utilisation dans le traitement d'une infection bacterienne
BE505709A (fr)
Hofstra et al. A comparative study of the effect of oral treatment with augmentin, amoxycillin and bacampicillin on the faecal flora in mice
FR2656798A1 (fr) Souche de bacteries lactobacillus casei subsp. casei 37 pour la preparation d'un produit bacterien doue d'une activite biologique.
Hosaka et al. Helicobacter pylori may survive ampicillin treatment in the remnant stomach
BE825937A (fr) Compositions antibacteriennes comprenant un compose de cephalosporine et un compose de penicilline

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1988903277

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AU DK JP KP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG

WWP Wipo information: published in national office

Ref document number: 1988903277

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1988903277

Country of ref document: EP