WO1988003094A1 - Radial tire for passenger cars and production thereof - Google Patents

Radial tire for passenger cars and production thereof Download PDF

Info

Publication number
WO1988003094A1
WO1988003094A1 PCT/JP1987/000805 JP8700805W WO8803094A1 WO 1988003094 A1 WO1988003094 A1 WO 1988003094A1 JP 8700805 W JP8700805 W JP 8700805W WO 8803094 A1 WO8803094 A1 WO 8803094A1
Authority
WO
WIPO (PCT)
Prior art keywords
carcass
tire
radius
curvature
internal pressure
Prior art date
Application number
PCT/JP1987/000805
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Noma
Kenji Takehara
Kenichi Fujiwara
Original Assignee
Sumitomo Rubber Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP61252465A external-priority patent/JPS63106102A/ja
Priority claimed from JP62013408A external-priority patent/JPS63179708A/ja
Application filed by Sumitomo Rubber Industries, Ltd. filed Critical Sumitomo Rubber Industries, Ltd.
Priority to DE8787906793T priority Critical patent/DE3771713D1/de
Publication of WO1988003094A1 publication Critical patent/WO1988003094A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0083Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the curvature of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/0292Carcass ply curvature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/28Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass

Definitions

  • the amount of deformation of the shoulder portion in the tire radial direction outward due to the addition of the standard internal pressure is set to be greater than the amount of deformation of the crown portion therebetween, thereby providing wear resistance and uneven wear resistance.
  • the present invention relates to a radial tire having improved tire performance such as fuel efficiency and the like, and a method of manufacturing the radial tire.
  • tires having a radial structure in which carcass cords are arranged almost at right angles to the tire equatorial plane, have been widely used because of their excellent properties such as wear resistance and steering stability.
  • a so-called pelt layer having a relatively large rigidity in which organic or metal codes are arranged at a relatively small angle with respect to the tire equatorial plane around the outer periphery of the carcass is provided. By arranging it, the tire is given a taga effect.
  • such a radial tire has a bore shape set so as to have a natural equilibrium shape in which a carcass is not deformed when a standard internal pressure is applied.
  • the natural equilibrium shape refers to the carcass profile obtained by the natural equilibrium shape theory, and this natural equilibrium shape theory is defined by Hoffano and W. Hofferber th. u ts ch. Gummi (8-1955, 124-130) .
  • This theory considers the belt layer as a rigid ring that does not deform due to an increase in internal pressure.
  • the carcass disposed between this belt layer and the other bead core that does not deform, and extends from the side wall portion to the bead portion is shaped into a shape that does not deform even by increasing the internal pressure. It is intended to be preformed with a metal mold.
  • the carcass profile based on the natural equilibrium shape theory does not deform the carcass due to an increase in the internal pressure. That is, the purpose is to apply a uniform tension to the carcass cord.
  • bias tires are described in Akasaka's article "On the cross-sectional shape of radial tires” in the Journal of the Japan Society for Composite Materials, VOL. 3, 4 (1977), 9-154. It has been extended to accommodate radial tyres.
  • the belt layer is made of metal code, etc., it is not actually a perfect rigid body, but some deformation occurs due to the internal pressure.
  • the belt layer is liable to be deformed by pushing up with force.
  • the vicinity of the bead is large due to the folded portion of the force, the bead ⁇ 'x, and other coercive layers.
  • the curve based on this theory should consider the above-mentioned equivalent bead position as the starting point. .
  • the natural equilibrium theory used in the conventional tires describes the carcass profile of the tire in the vulcanization mold (hereinafter, referred to as a molded tire in the present specification) as a standard.
  • a standard internal pressure is applied to a rim, the curve does not change in shape and a uniform tension is generated in the carcass.
  • the clipping width of the molded tire ie the distance between the outer surface of the bee and the bottom, is set equal to the width of the standard rim.
  • the one that makes the clipping width of the molded tire different from the rim width is described in, for example, Japanese Patent Publication No. Sho 61-28521. Proposed.
  • the carcass profile obtained by applying the natural equilibrium shape theory after numerically converting the width of the crepe and the nose into a rim width is the same as the carcass profile after internal pressure is applied. Basically, it is the same, and only the clipping width is different from the rim width is within the scope of the natural equilibrium shape theory.
  • the bonding force due to the pressing between the carcass A and the belt layer B is not much larger than the bonding force during non-internal pressure filling, and the carcass A and the belt layer B are pressed. Inferior to the binding force between the coat layer B. Therefore, the tension acting on the carcass A hardly acts on the belt layer B particularly near the end of the belt layer B, and the belt layer B cannot exhibit the necessary tagging effect.
  • the surface shape of the shoulder of the tread tends to be non-uniform, and the binding force due to the belt layer B is reduced, causing uneven wear and deteriorating wear resistance.
  • the amount of bending in the radial direction acting on the belt layer B increases when the tire is transferred, the stress acting on the belt layer B increases, so that the rolling resistance increases and the fuel consumption performance deteriorates. There is a problem of doing.
  • the amount of deformation of the shoulder portion due to the increase of the internal pressure is made larger than the amount of deformation of the crown portion between them so that the radius of curvature of the tread surface becomes larger at the standard internal pressure than at the low internal pressure.
  • the tension of the carcass A to the belt layer B and increasing the hoop effect of the belt layer B, the wear resistance and uneven wear resistance are improved, the rolling resistance is reduced, and the fuel efficiency is improved. It is an object of the present invention to provide a radial tire for a passenger car and a method for manufacturing the same.
  • the radial tire for a passenger car includes a carcass made of at least one ply of an organic woven fiber cord, and is assembled to a standard rim by a rim to apply a 10% pressure of the standard internal pressure.
  • the radius ratio RT2 / RT1 between the radius of curvature RT1 of the red surface and the radius of curvature of the red surface RT2 when a standard pressure is applied is not less than 1.10 and not more than 1.40, and
  • the radius ratio between the radius of curvature RC 1 when the 1% pressure is applied and the radius of curvature RC 2 when the standard internal pressure is applied, of the shoulder portion of the car power passing near the red shoulder portion RC 2 ⁇ RC 1 Is not less than 0.65 and not more than 0.85.
  • the maximum width WA of the carcass in the vulcanizing mold of the tire is larger than the maximum width WB of the car force determined by the natural equilibrium shape theory.
  • the height HA in the radial direction from the bead bottom of the vulcanizing mold 1 to the position of the maximum width of the curling force in the vulcanizing mold 1 is determined from the bead bottom obtained by the natural equilibrium type ⁇ theory. It is characterized in that it is smaller than the height HB in the radial direction up to the position CB of the maximum width of the carcass.
  • FIG. 1 is a sectional view showing an embodiment of a tire according to the present invention
  • FIG. 2 is a diagram schematically showing the deformation of the tread portion due to the application of the standard internal pressure
  • FIG. 3 is a cross-sectional view showing the shoulder portion in detail
  • FIG. 4 is a sectional view showing an embodiment of the manufacturing method of the present invention.
  • Fig. 5 is a diagram explaining the natural equilibrium ⁇ theory
  • FIG. 8 is a diagram showing a conventional structure of a tire using only a carcass and a belt layer.
  • a radial tire 1 for a passenger car includes bead portions 3, 3 on both sides through which a bead core 2 passes, and side wall portions 4, 4 extending radially outward from the bead portion 3. And a body portion of a carcass 6 which is folded around the bead core 2 from the inside to the outside, over the side wall portion 4 and the trad portion 5. Is established.
  • a belt layer 7 is disposed on the tread portion 5 outside the force cascade 6.
  • a bead box 9 is arranged between the carcass 6 main body and its turnback.
  • the radial tire 1 for a passenger car is rim-assembled into a standard rim 10.
  • the carcass 6 has an organic fiber code of about 80 with respect to the tire equatorial plane C0. ⁇ 90. 1 to 3 plies of radial carcass plies arranged at different angles.
  • nylon, polyester, rayon, aromatic polyamide, etc. are used as the material of the cord.
  • the belt layer 7 has a two-ply structure in this example, and includes a first ply 7A disposed on the force cascade 6 side and a second ply 7B disposed outside the first ply 7A.
  • the cord of each ply 7A, 7B is made of metal cord, has a relatively shallow angle with respect to the tire equatorial plane CO, and is inclined in the opposite direction to the cord of the adjacent ply. Will be distributed.
  • the first brie 7A is wider than the second brie 7B, and both ends of the first ply 7A extend to the lower part of the tread part 5 at the bottom a.
  • the radial tire 1 for a passenger car of this example has a bead portion 3 from the lower end to the tread portion 5 at the time of the standard internal pressure.
  • the distance to the maximum height point b of 1 2, that is, the ratio of the cross section length DT of the tire to the tire width W is smaller than 1, for example, slightly flattened to about 0.9.
  • the radius of curvature RT1 of the tread surface 12 when 10% of the standard internal pressure is applied is larger than the radius of curvature RT1 when the internal pressure is increased.
  • the deformation is such that the radius of curvature RT2 of the tread surface 12 when the internal pressure is applied becomes larger. That is, the deformation is made so that the difference DC-DS between the tire outer diameter DC at the maximum height point b shown in FIG. 1 and the tire outer diameter DS at the upper part a becomes smaller.
  • the amount of deformation of the outer bulge of the shoulder portions 12B on both sides of the crown portion 12A at the center of the tread surface 12 is larger than that of the crown portion 12A.
  • the carcass & pushes up the belt layer 7 particularly near the end, thereby increasing the bonding force between the carcass S and the belt layer 7 and reducing the tensile force acting on the carcass 6 to the belt layer.
  • the belt layer 7 act on the end portion, and the hoop effect of the belt layer 7 can be enhanced.
  • the radius ratio RT2 / RT1 is set to 1.10 or more and 1.0 or less.
  • the radius ratio RT2 is larger than 1.40, the overhang amount of the shoulder portion becomes excessive, and excessive tensile force acts on the carcass 3, thereby deteriorating its durability.
  • the tension of the dressed rubber increases, and it has disadvantages such as fatigue cracking and chipping. If the radius ratio is smaller than 1.10, the pushing up of the belt layer 7 by the force scum 6 is not sufficient, and the above-mentioned effect cannot be exhibited.
  • the shoulder portion 6A of the force 1 that passes below the torsion shoulder portion 12B is deformed so that the radius of curvature at a standard internal pressure becomes smaller than that at a 10% pressure. This helps to increase the radius of curvature of the tread surface 12 by pushing up the shoulder portion 12B by adding the standard pressure.
  • the radius ratio RC 2 2RC 1 is set to 0.65 or more and 0.85 or less. When the radius ratio RC 2 RCRC 1 is smaller than 0.65, the carcass 6 is excessively bent, and the tensile force is excessively increased as described above, thereby impairing tire durability due to fatigue and the like. When the value exceeds 0.85, the amount of pushing up the belt layer 7 by the carcass 6 is reduced, and the above-mentioned effect cannot be exhibited.
  • the radius RC 1, RC 2 of the shoulder portion 6 A passes through the section a at each internal pressure, and the perpendicular d perpendicular to the tire axis direction is equal to the carcass 6 at each internal pressure.
  • the line f parallel to the tire axis passing through the maximum width position is represented by the radius of a circle passing through the three points P 3 where the car force 6 intersects. Note that, in the case of a tread having a shape with a curvature at the end of the tread, the position of the ⁇ a is defined by the extension of the tread surface 12 and the extension of the surface of the side wall 4. Intersection.
  • deformation occurs as the radius of curvature of the tread surface 12 increases due to the addition of the standard internal pressure, and the wear resistance improves, and the rolling resistance decreases due to the improvement of the tagging effect, and fuel consumption is reduced. Be improved. Further, such deformation of the carcass 6 increases the tensile force of the shoulder portion 6A, and also serves to increase the tension acting on the belt layer 7.
  • the tire 1 has a ratio R T2 ZDB of the curvature radius R T2 at a standard internal pressure to the outer diameter D B of the belt layer 7 of 0.42 or more.
  • the tread surface 12 By setting the radius of curvature of the tread surface 12 at the standard internal pressure in this way, the tread surface 12 can exhibit a relatively large arc, and the shoulder portion 12B can be removed. Deform in the direction.
  • the standard internal pressure refers to the internal pressure applied to the tire under standard operating conditions or a pressure in the range of 10% above and below.
  • the tire of the present invention is provided with a reinforcing layer (not shown) for strengthening the bead portion, changing the number of plies of the belt layer 7, and further increasing the width of the outer ply 7B. Can be transformed.
  • the radial tire for a passenger car of the present invention increases the curvature-radius of the tread surface when the standard positive value is added, as compared to when the internal pressure is applied, as the value increases in a specific numerical range. You have set. Therefore, the contact property of the tread can be improved, and the amount of wear can be reduced.
  • the amount of deformation of the shoulder portion in the radially outward direction of the tire is larger than that of the conventional tire, the bonding force between the force scum and the belt layer is increased, and the haga effect of the belt layer is commercialized. it can.
  • the rigidity of the shoulder part is increased, the rolling resistance is reduced, and the discipline performance can be improved.
  • there are many effects such as an increase in cornering space and an improvement in steering stability.
  • the maximum TlT WA of the force of the mold tire 1A in the vulcanizing mold 20 and the maximum TlT WA of 6A was determined by the natural equilibrium shape theory, and the carcass 6B (shown by a broken line). Larger than the maximum TfT WB of the molded tire ⁇ A, and from the bead bottom 3A of the bead portion 3 of the molded tire ⁇ A to the position of the maximum width of the force and scum 6A in the radial direction.
  • the height HA is set to be smaller than the radial height HB to the position CB of the maximum width of the force 6B from the bead bottom 3A in the natural equilibrium ⁇ ⁇ theory.
  • the carcass 6A of the mold tire 1A is obtained from the intersection DA described later near the edge d of the belt layer 7 according to the natural equilibrium shape theory.
  • the curve passes through the inside of the obtained curve in the radial direction and intersects the curve at a position radially outside the position CA of the maximum width to form a curve that reaches the position CA of the maximum width.
  • the monolithic tire 1A has its clipping width BA set to be approximately the same as the length between the flanges 11 and 11 of the standard rim 10. .
  • the car cusp opening file can be obtained by the following equation.
  • Equation (1) where each symbol is, as shown in Fig. 5,
  • Point D The point where the perpendicular X descending from the edge d of the belt layer 7 to the axle Z, that is, the Z axis in this example, intersects the carcass 6B.
  • r Height in the tire radial direction from the Z axis (r axis in this example)
  • r C Radial height from the Z axis to the point C on the carcass 6B
  • ⁇ D Angle formed by the normal Y of the carcass 6 B at the intersection D and the Z axis
  • the Z axis may be replaced by a line passing horizontally through the bead bottom 3A.
  • Equation (1) indicates that at least near the end d of the belt layer 7 Carcass 6B is required to form an arc.
  • Equation (1) is obtained using the point of intersection 0 between the r-axis passing through the intersection D and the two axes as the origin. By giving the height r, the deviation in the horizontal direction from the r-axis can be obtained. The position, that is, the Z value can be measured, and a curve according to the natural equilibrium shape theory is obtained.
  • the bead portion 3 has a relatively large bending stiffness due to the folded portion of the force, the bead eddyx, the reinforcing layer, and the like.
  • the natural equilibrium shape theory is applied at the upper end of the range of great rigidity, that is, at the nod region from the equivalent bead position B to the intersection D through the point C.
  • the lower part thereof is formed as an inwardly convex arc above the position B and smoothly connected to the outwardly convex arc obtained by the natural equilibrium type ⁇ theory.
  • the position B forms an inflection point or rimboin.
  • the height HA in the radial direction from the bead bottom 3A to the position CA of the maximum width of the carcass 6A is determined by the bead in the natural equilibrium shape theory as described above.
  • the height is smaller than the height HB from the bottom 3B, and the carcass profile is formed in a downwardly bulging shape.
  • the ratio H A / H B between the height H A and the height H B is set so as to be 0.85 to 0.95.
  • this height HA is within the range of 40 to 48% with respect to the above-mentioned surface height DT of the tire.
  • W A / W B is set in the range from 1.01 to 1.04, preferably from 1.015 to 1.025.
  • the carcass profile from the position CA of the maximum width of the mold tire 1A to the equivalent bead position B differs from the carcass profile obtained by the natural equilibrium shape theory. It will have the bottom bulging carcass profile removed.
  • the carcass 6A is a curve obtained by the natural equilibrium shape theory from the intersection DA of the perpendicular X drawn from the end of the belt layer 7 and the carcass 6A.
  • the curve passes through the inside in the radial direction and crosses the curve at the position outside the maximum width position CA in the radial direction and reaches the maximum width position CA.
  • the carcass 6A of the mold tire 1A has a natural equilibrium.
  • the carcass 6B is formed to have almost the same length as that obtained by the shape theory.
  • the ratio of the maximum widths WA and W'B is 1.01 to 1.04, and the ratio of the heights HA and HB is 0.85 to 0.95.
  • the radius ratio RT 2 ZRT 1 is set to 1.10 or more and 1.40 or less by appropriately determining the shape of the tread surface and the shape of the belt layer of the vulcanizing mold 20. It can be.
  • Such a carcass profile is a special one in which the inner cavity of the vulcanizing mold 20 to be used has a shape set by adding a necessary rubber gauge in each part to the carcass profile, and also a conventional one.
  • a vulcanizing mold having an inner cavity based on the natural equilibrium shape theory may be formed by changing the distribution of rubber gauges such as side walls.
  • the carcass profile is a curve connecting the center of the carcass thickness, and when using multiple plies, it is defined as a curve passing through the center point of the total thickness.
  • the upper part of the mold tire 1A from the position CA at the maximum width to the intersection DA is the upper part when the entire carcass profile is obtained by the natural equilibrium type I theory.
  • the upper part of the carcass profile of the molded tire 1A passes inside the upper part of the curve of the natural equilibrium shape theory.
  • the force profile of such a shape is deformed so that the stress generated in each part is balanced with the stress due to the internal pressure acting on each part as the internal pressure is increased, which is usually a curve obtained by the natural equilibrium shape theory.
  • the radius of curvature at the intersection DA decreases, and the arc having the radius of curvature RC1 at the intersection DA becomes smaller than the radius of curvature of the radius of curvature RC2 that approximates the radius of curvature according to the natural equilibrium shape theory.
  • the shoulder 12B is pushed up by the addition of the standard internal pressure to increase the radius of curvature of the tread surface 12 by the addition.
  • the method of manufacturing a radial tire for a passenger car according to the present invention is based on the fact that the maximum width and height of the carcass of the molded tire in the vulcanizing mold is determined by the force obtained by the natural equilibrium shape theory and the position of the cas profile. It is based on intentional displacement from height.
  • a tester was prototyped in accordance with the present invention and the natural equilibrium shape theory, and the values of each part at a standard internal pressure and at a 10% pressure were measured, and rolling resistance and abrasion resistance were compared.
  • the tires of Examples 1 and 2 have the carcass profile of the present invention manufactured according to the specifications shown in Table 1, and the tires of Comparative Examples 1 and 2 are based on the natural equilibrium shape theory. It has a carcass profile.
  • Example 1 The tires of Example 1 and Comparative Example 1 have the structure shown in FIG. Table 1
  • Table 1 shows the specifications of Examples 1 and 2 and numerical values calculated by the natural equilibrium shape theory.
  • Table 2 shows the values of each part and the rolling resistance index at standard internal pressure and 10% pressure. In the table, when values in parentheses are also shown, the average value is shown outside the parentheses, and the distribution of the data is shown in parentheses.
  • the rolling resistance index was calculated by comparing the elliptical rotation speed from when a tire was pressed against a drum with a diameter of 1 ⁇ 07 TM with a predetermined load to a stop at a predetermined speed (80 km / h) to 10 °. Indicated by an index of 0.
  • FIG. 4 shows the results of an accelerated wear test performed up to 800 km on a passenger car with a displacement of 1800 cc. From this, it can be seen that the tire of the embodiment has reduced wear. Further, FIG. 5 shows the amount of wear at the portion a of the tread surface 12, that is, the amount of shoulder drop. From this, it can be seen that the tire of the embodiment is similarly excellent.
  • the present invention can be effectively applied to radial tires having various types of transmission, tread patterns, and tire sizes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

明 細 書
乗用車用ラジアルタイ ャ及びその製造方法
〔技術分野〕
本発明は、 標準内圧の付加にともなう ショルダ部のタイ ヤ半 径方向外向きの変形量がその間のク ラウ ン部の変形量より大と なるように設定し、 耐摩耗性、 耐偏摩耗性、 燃費性能等のタイ ャ性能をバラ ンスよ く 向上したラジアルタイ ャ及びその製造方 法に関する。
〔背景技術〕
近年、 カーカスコ ー ドをタイ ヤ赤道面に対してほぼ直角に配 列するラ ジアル構造のタイ ヤが、 耐摩耗性、 操縦安定性などの 特性に優れるものとして多用されている。 又このようなラジア ルタイ ヤでは、 カーカスの外周を囲んで、 有機又は金属のコ ー ドをタイ ヤ赤道面に対して比較的小さな角度で配列した剛性の 比較的大なる、 いわゆるペル ト層を配することにより、 タイ ヤ にタガ効果を与えている。
このよ う なラジアルタイ ヤは、 従来、 標準内圧を付加した状 態において、 カーカスに変形が生じない自然平衡形状となるよ うにその内腔形状が設定されている。
こ こで自然平衡形状とは、 自然平衡形状理論によって求めら れるカーカスプロファ ィルをいい、 この自然平衡形状理論とは、 ホ ッ ファノ、'ース ( W . Ho f f erber t h ) が、 Ka u ts ch . G u mm i ( 8 - 19 55 , 124 〜 130 ) で論じたものであって、 この理論は、 ベル ト 層を内圧の増加によって変形しない剛のリ ング体と考えるとと もに、 このベル ト層と、 他方の変形を生じないビー ドコア一と の間に配され、 サイ ドウオール部からビー ド部に跨るカーカス を、 該内圧の増加によっても変形を生じない形状に、 加硫金型 によって予め成形することを意図している。
又この自然平衡形状理論に基づく カーカスプロファイ ルは、 前記のごと く 、 内圧の増加によってカーカスは変形を生じない こと、 即ちカーカスコードに均一に張力を作用させることを目 的としているのである。
なおこのホッファバースの理論ば、 バイアスタイヤについて のものであるが、 赤坂氏によって、 「ラジアルタイヤの断面形 状について」 日本複合材料学会誌 VOL . 3 , 4 (1977) , 9〜 154 に おいて、 ラジアルタィャにおいても適応しう るように拡張され ている。
又この自然平衡形状理論の適用についてば、 少なく とも次の 2点において捕足するのが好ましい。
第 1 に、 ベル ト層が金属コ一ドなどからなる場合においても、 実際にば完全な剛体ではなく、 内圧によって多少の変形が生じ、 特に偏平比が小さな偏平タイヤであるほど、 内圧付加による力 一力スの押し上げによつて、 該ベルト層が変形しがちであるこ と。
第 2 に、 ビー ド部付近は、 力一カスの折り返し部分、 ビー ド ェ—ぺ'ックス、 その他の捕強層によって爾性が大であり、 従つ て、 ビー ドコア一から、 通常リ ムボイ ン トといわれるカーカス プロフアイルの変曲点即ち等価ビー ド位置までの範囲では、 自 然平衡形状理論に一致せず、 従って、 該理論による曲線ば、 前 記等価ビー ド位置を起点として考えること。
このように従来のタィャで採用される自然平衡彤钛理論は、 前記したごと く、 加硫金型内のタイヤ (本明細書において、 以 後要すればモールドタイヤという ) のカーカスプロファイルを、 標準 ムにリ ム組みしかつ標準内圧を付加したときにも、 形状 の変化を伴わず、 カ ーカスに均一な張力を生じさせる曲線とす るための理論であり、 又通常、 加硫金型内のモール ドタイヤの ク リ ップリ ング巾、 即ちビー に底部の外面間の長さは、 標準リ ムの巾と等しく設定される。
なおモール ドタイヤのク リ ップリ ング巾を、 リム巾と異なら せるものが、 例えば特公昭 6 1 - 2 8 5 2 1号公報等によって 提案されている。 しかしこのようなタイ ヤにおいても、 そのク リ 、ノ' プリ ング巾をリ ム巾に数値変換したうえ自然平衡形状理論 を適用して求めたカーカスプロファイ ルは、 内圧付加後のカー カスプロファイルと基本的に同じとなり、 単にク リ ップリ ング 巾のみをリム巾とは異ならせたものは、 自然平衡形状理論の範 嚀に舍まれるのである。
しかし、 このよう な、 自然平衡形状理論に基づく カーカスプ 口ファイ ルのラジアルタイ ヤ、 特に偏平率が比較的高く カー力 スプロファ イルが円形に近く なるタイ ヤにおいては、 第 8図に 示すごと く 、 標準内圧の付加によっても、 カーカス Aとベル ト 層 B との間、 特にベル ト層 Bの端部付近において、 カーカス A のシ ョ ルダー部分でのタイ ヤ半径方向外向きの変形が小である こ とによって (自然平衡形状理論では内圧充塡によるカーカス の伸長はないと仮定しているが、 実際にはカ ーカスはやや伸長 し、. この自然平衡形状理論によるカーカスプロファイ ルは、 略 相似形に膨らむ) カ ーカス Aとベル ト層 B との間の押付けによ る結合力が、 非内圧充塡時における結合力より もたいして大と はならず、 カーカス Aとベル ト層 B との間の拘束力に劣る。 従って、 ベル ト層 Bの、 特に端部付近では、 カーカス Aに作 用するテンショ ンがベル ト層 Bに作用し難く 、 ベル ト層 Bは必 要なタガ効果を発揮しえない。
その結果、 ト レ ッ ドのショ ルダー部の表面形状は不均一とな りやすく又ベル ト層 Bによる拘束力が低下するこ ととあいまつ て、 偏摩耗が発生し、 耐摩耗性が悪化する。 又タイ ヤの転勳に 際してベル ト層 Bに作用する半径方向の曲げ量が増すこ とによ り該ベル ト層 Bに作用する応力が増大し、 ころがり抵抗も増し 燃費性能も劣化するという問題がある。
本発明は、 ト レ ッ ド面の曲率半径が低内圧時より も標準内圧 時に大となるように、 内圧増加に伴う ショ ルダー部の変形量を その間のクラウ ン部の変形量より も大き く することを基本とし て、 カーカス Aのテンショ ンをベル ト層 Bに有効に作用させ、 ベルト層 Bによるタガ効果を増大させることにより、 耐摩耗、 耐偏摩耗特性を向上させるとともにころがり抵抗を低減させ燃 費性能をも高めう る乗用車用ラジアルタィャ及びその製造方法 の提供を目的としている。
〔発明の開示〕
本発明の乗用車用ラジアルタイヤば、 少なく とも 1 プライの 有機織維コ一 ドからなるカーカスを具えるとともに、 標準リ ム にリム組し、 撂準内圧の 1 0 %圧を付加したときの ト レツ ド面 の曲率半径 R T 1 と標準內圧を付加したときの ト レッ ド面曲率 半径 R T 2 との半径比 R T 2 / R T 1が 1. 1 0以上かつ 1. 4 0 以下であり、 しかも レツ ドショルダ部付近を通る前記カー力 スのショルダ部分の、 前記 1 ひ%圧を付加したときの曲率半径 R C 1 と標準内圧を付加したときの曲率半径 R C 2 との半径比 R C 2ノ R C 1が 0. 6 5以上かつ 0. 8 5以下であ.ることを特徴 としている。 . また本発明の乗用車用ラジアルタイヤの製造方法ば、 前記タ ィャの、 加硫金型内におけるカーカスの最大巾 W Aを、 自然平 衡形状理論により求められるカー力スの最大巾 W Bより も大と し、 かつ加硫金型 1 におけるビー ド底からの前記カー力スの最 大巾の位置迄の半径方向の高さ H Aを、 自然平衡形扰理論によ り求めたビー ド底からのカーカスの最大巾の位置 C B迄の半径 方向の高さ H Bより も小としたことを特徴としている。
〔図面の簡単な説明〕
第 1図は本発明のタィャの一実施例を示す断面図、
第 2図は標準内圧付加による ト レツ ド部の変形を略示する線図、 第 3図はショ ルダ部を詳示する断面図、
第 4図は本発明の製造方法の実施例を示す断面図、
第 5図は自然平衡形扰理論を説明する線図、
第 6 〜了図ば摩耗試験の結果を示す線図、 第 8図は従来構造のタィ ャをカーカスとベル ト層のみにより示 す線図である。
〔発明を実施するための最良の形態〕 以下本発明の乗用車用ラ ジアルタ イ ヤの一実施例を図面に基 づき説明する。 *
第 1図において、 乗用車用ラジアルタイ ヤ 1 は、 ビー ドコア 2が通る両側のビー ド部 3、 3 と、 該ビー ド部 3から半径方向 外向きにのびるサイ ドウオール部 4、 4 とその.両端を継ぐ ト レ ッ ド部 5 とを具え、 前記サイ ドウオール部 4、 卜 レツ ド部 5 に は、 前記ビー ドコア 2 のまわりを内側から外側に向かって折り 返したカーカ ス 6 の本体部が跨設される。 又前記 ト レ ッ ド部 5 には、 前記力一カ ス 6 の外側にベル ト層 7を配する。 またカー カス 6 の本体部とその折り返し部との間には、 ビー ドエーぺッ ク ス 9を配する。 そしてこの乗用車用ラ ジアルタ イ ヤ 1 は、 標 準リ ム 1 0にリ ム組みされる。
前記カーカ ス 6 は、 有機織維コー ドをタイ ャ赤道面 C 0に対 して約 8 0 。〜 9 0 。 の角度に配列した 1〜 3 プライ のラジア ルカーカスプライを具える。 またそのコ ー ドの材質としてナイ ロ ン、 ポ リ エステル、 レー ヨ ン、 芳香族ポリ ア ミ ド等が採用さ れる。
又前記ベル ト層 7 は、 本例では 2 プライ構造であり、 前記力 一カス 6側に配された第 1 のプライ 7 Aとその外側に配された 第 2 のプライ 7 Bを具える。 各プライ 7 A、 7 B のコー ドは、 金属コー ドからなり、 タ イ ヤ赤道面 C Oに対して比較的浅い角 度でかつ隣接するプライ のコ ー ドに対して逆方向に傾斜して配 される。 又第 1 のブライ 7 Aは第 2 のブライ 7 Bより も広幅で あり、 又第 1 のプライ 7 Aの両端は、 ト レ ツ ド部 5 の緣部 a下 方まで延在している。
なお本例の乗用車用ラジアルタイ ャ 1 は、 標準内圧時におい て、 ビー ド部 3下端から ト レツ ド部 5外表面である ト レ 'ン ド面 1 2 の最大高さ点 bまでの距離、 即ちタィャの断面髙さ D Tと タイ ヤ巾 Wとの比が 1 より も小、 例えば 0. 9程度のやや偏平に 形成されている。
標準リ ムにリム組みされたタイャ 1 ば、 内圧の增加とともに 第 2 に示すように、 標準内圧の 1 0 %圧を付加したときの ト レッ ド面 1 2 の曲率半径 R T 1より も、 標準内圧を付加したと きの ト レッ ド面 1 2の曲率半径 R T 2 の方が大となるように変 形する。 即ち、 第 1図に示した前記最大高さ点 bにおけるタィ ャ外径 D Cと、 前記緣部 aにおけるタイ ャ外径 D Sとの差 D C 一 D Sが小さ く なるように変形する。 これによつて、 トレツ ド 面 1 2中央のクラウ ン部 1 2 Aに比してその両側のショルダ部 1 2 Bの外膨らみの変形量を大き く している。 その結果、 内圧 増加とともにカーカス &がベルト層 7の特に端部付近を押し上 げることによって、 カーカス S とベルト層 7 との結合力を高め、 該カーカス 6 に作用する引張力をベル ト層 7のと く に端部に作 用させることを可能とし、 ベルト層 7のタガ効果を高めること ができる。
又その半径比 R T 2 / R T 1 ば 1. 1 0以上かつ 1. 0以下に 設定している。 ここで、 前記半径比 R T 2ノ R T 1が 1. 4 0 よ り も大であるときには、 ショルダ部の張り出し量が過大となり カーカス 3にば過度の引張力が作用-し、 その耐久性が損なわれ る とともに、 ドレッ ドゴムの張力も増し、 疲労割れ、 欠けが生 じやすく なるなどの欠点.を伴う。 又半径比が 1. 1 0 より も小の ときにば、 力一カス 6によるベルト層 7 の押し上げが充分では なく 、 前記した効果を発揮しえない。
さらに ト レツ ドショルダ部 1 2 B下方を通過する力一カス 6 のショルダ部分 6 Aば、 1 0 %圧の場合に比べて檩準内圧の場 合の曲率半径が小となるように変形する。 これは、 標準丙圧の 付加により ショルダ部 1 2 Bを押し上げ、 付加による ト レツ ド 面 1 2 の曲率半径を増大させるのに役立つ。 又その半径比 R C 2ノ R C 1 は 0. 6 5以上かつ 0. 8 5以下に 設定する。 半径比 R C 2ノ R C 1 が 0. 6 5 より小であるとき、 カーカス 6 は過度に折曲げられ、 前記したと同様にその引張力 を過大とし疲労等によってタイ ヤの耐久性を損なう。 又 0. 8 5 をこえるときには、 カーカス 6 によるベル ト層 7 の押し上げ量 を減じ、 前記効果を発揮しえない。
なお、 シ ョ ルダー部分 6 Aの半径 R C 1 、 R C 2 は、 第 3図 に示すように、 夫々の内圧において、 前記緣部 a を通り、 タイ ャ軸方向と直角な垂線 dがカーカス 6 と交わる点 P l 、 ト レッ ド巾の半分を 2分する位置即ち最大高さ点 b と緣部 a との間の 距離を 2分する位置を通る垂線 eがカーカスと交わる点 P 2 及びタイ ヤの最大巾位置を通るタイ ヤ軸と平行な線 f がカー力 ス 6 と交わる点 P 3 の 3点を通る円の半径で表される。 なお ト レ ツ ド端部に曲率を有する形状の ト レ ツ ドの場合、 緣部 a の位 置は、 ト レッ ド面 1 2 の延長面とサイ ドウオール部 4表面の延 '長面との交点とする。
このような構成を有することにより、 標準内圧付加により ト レッ ド面 1 2 の曲率半径が増大するごと く変形し、 耐摩耗性が 向上するとともに、 タガ効果の向上により ころがり抵抗が減じ、 燃費が改善される。 又カーカス 6 のこのような変形は、 ショ ル ダ部分 6 Aの引張力を増大させ、 ベル ト層 7 に作用するテンシ ョ ンの增大にも役立つ。
さ らに、 タイ ヤ 1 は、 標準内圧時の前記曲率半径 R T 2 と、 ベル ト層 7 の外径 D B との比 R T 2 Z D Bを 0. 4 2以上として いる。
このよう に標準内圧時の ト レ ッ ド面 1 2 の曲率半径を設定す るこ とによって、 ト レ ッ ド面 1 2 は比較的大きな円弧を呈する ことができ、 ショルダ部 1 2 Bを外向きに変形させう る。
なお本発明において、 標準内圧とは、 標準使用条件において タイ ヤに付される内圧ないしはその上下 1 0 %の範囲の圧力を 又本発明のタイヤには、 ビー ド部を捕強する補強層 (図示せ ず) を設け、 又ベルト層 7のプライ数を変え、 さらには外方の プライ 7 Bを広幅とするなど、 種々変形できる。
このように本発明の乗用車用ラジアルタィャは、 抵内圧を付 加したときに比べて、 標準内正を付加したときの ト レツ ド面の 曲率-半径を、 特定の数値範囲で大となるごと ぐ設定している。 従って、 ト レツ ドの接地性を高めることができ、 摩耗量を低減 できる。
またショルダ部のタィャ半径方向外方への変形量が、 従来の タイ ャに比べて大となるため、 力一カスとベル ト層との結合力 を高め、 該ベルト層によるタガ効果を商上できる。
またその結果、 ショルダ部の動きが抑制され安定化され、 肩 落ち摩耗などの偏摩耗を抑制しタィ ャ寿命を延ばすことができ る。 ,
さらにショルダ部の剛性が高まり、 ころがり抵抗が低減し懲 費性能を向上しうるとともに、 コーナリ ングパヮ一を高め操縦 安定性をも向上しう るなど、 多 く の効果を奏する。
次に本発明の乗用車用ラジアルタィャの製造方法の一実施例 を図面に基づき説明する。
第 4図において、 加硫金型 2 0内のモールドタイ ヤ 1 Aの力 一カス 6 A (実線で示す) の最大 TlT W Aを、 自然平衡形状理論 により求めたカーカス 6 B (破線で示す) の最大 TfT W Bより も 大に設定し、 さ らに前記モールドタイヤ Γ Aのビー ド部 3 のビ 一ド底 3 Aから、 前記力一カス 6 Aの最大巾の位置じ までの 半径方向の高さ H Aを、 自然平衡^扰理論におけるビ— ド底 3 Aからの力一力ス 6 Bの最大巾の位置 C Bまでの半径方向の高 さ H Bより も小に設定している。
なお、 モール ドタイ ャ 1 Aのカーカス 6 Aはベルト層 7 の端 縁 d近傍の後述する交点 D Aから前記自然平衡形状理論により 求められる曲線の半径方向内側を通り、 最大巾の位置 C Aの半 径方向外側の位置で該曲線と交わり、 前記最大巾の位置 C Aに 至る曲線を形成する。
さ らに、 本例では、 モーノレ ドタイ ヤ 1 Aは、 そのク リ ップリ ング巾 B Aを、 標準リ ム 1 0 のフラ ンジ 1 1 、 1 1 間の長さ と ほぼ同寸に設定されている。
(自然平衡形状理論によるカーカスプロファイ ル)
—方、 自然平衡形状理論によっては、 次式によりカーカスプ 口ファイ ルが求められる。
Figure imgf000011_0001
( 1. ) 式 こ こで各記号は、 第 5図に示すように、
点 D : ベル ト層 7 の端都 dから車軸 Z、 即ち本例では Z軸に下 ろした垂線 Xがカーカス 6 Bに交わる点
点 C : カ ー力スの最大巾の点
r : Z軸からのタイ ヤ半径方向の高さ (本例では r軸) r C : Z軸から前記カーカス 6 B上の前記点 Cまでの半径方向 の高さ
r D : Z軸から、 カ ーカス 6 Bの前記交点 Dまでの半径方向の 问
Φ D : 前記交点 Dにおけるカーカス 6 B の法線 Yと前記 Z軸 とがなす角
である。 なお前記 Z軸はビ— ド底 3 Aを水平に通る線に置換し てもよい。
又 (1)式は、 ベル ト層 7の少な く とも端部 d の近傍において、 カーカス 6 Bが円弧をなすものとして求められる。
又 (1)式は、 前記交点 Dを通る r軸と、 2軸との交点 0を原点 として求めたものであって、 高さ rを与えることによって、 前 記 r軸からの水平方向の偏位量、 即ち Z値を計寘でき、 自然平 衡形状理論のよる曲線を求めう る。
さらに、 ビー ド部 3 の部分では、 前記したごと く、 力一カス の折り返し部、 ビー ドエーぺツ クス、 捕強層などによつて、 比 較的大なる曲げ剛性を有しており、 従って、 剛性の大なる範囲 の上端、 即ち前記等価ビ― ド位置 Bから前記点 Cをへて交点 D に至る頷域において自然平衡形状理論は適応される。
なお、 前記等 «ビー ド位置 Bの付近では、 その下方は、 該位 置 Bの上方の、 自然平衡形扰理論により求まる外向きに凸な円 弧と滑らかに連なる内向きに凸な円弧として形成され、 該位置 Bは変曲点即ちリムボイ ン十をなす。
- このように、 自然平衡形状理論では、 (1)式からも明らかなよ うに、 前記高さ r C、 r Dの位置及び前記角度 ø Dを与えられ たとき、 その曲線が決定される。 なお、 前記点じの Z値を予め 与えるときには、 角度 ø D、 高さ r Cの一方を与える ことによ ¾、 他方を求めう る。
(本発明のカーカスプロフアイル)
これに対して、 本発明の製造方法では、 カーカス 6 Aの最大 巾の位置 C Aまでの、 ビー ド底 3 Aからの半径方向の高さ H A を、 前述のとおり、 自然平衡形状理論におけるビー ド底 3 Bか らの高さ H Bより も小とし、 カーカスプロファィルを下膨らみ 形状に形成する。
又高さ H Aと高さ H B との比率 H A / H Bは、 0. 8 5〜 0. 9 5 となるように設定する。
又この高さ H Aば、 タイ ヤの前記靳面高さ D Tに対して、 4 0〜 4 8 %となる範囲に収められる。
さ らにモールドタイ ャ 1 Aでば力一カス 6 Aの最大巾 W Aを、 自然平衡形状理論における最大巾 W Bより も大とし、 その比率
W A / W Bは、 1. 0 1 〜 1. 0 4、 好ま し く は 1. 0 1 5 〜 1. 0 2 5 の範囲に設定する。
これによつてモール ドタ イ ャ 1 Aの最大巾の位置 C Aから前 記等価ビ一 ド位置 Bまでのカーカスプロファイ ルは、 自然平衡 形状理論により得られるカーカスプロファイルとは異なる、 該 曲線を故意に外した、 下膨らみのカーカスプロファイ ルを有す る こ ととなる。
さ らに、 モール ドタイ ヤ 1 Aでは、 前記のごと く 、 カーカス 6 Aはベル ト層 7 の端部から下ろした垂線 Xとカーカス 6 Aと の交点 D Aから自然平衡形状理論により得られる曲線の半径方 向内側を通り、 最大巾の位置 C Aの半径方向外側の位置で該曲 線と交わり前記最大巾の位置 C Aに至る曲線とし、 又モール ド タイ ヤ 1 Aのカーカス 6 Aは、 自然平衡形状理論により得られ るカーカス 6 Bの長さとほぼ同一に形成される。
さ らに前記のように、 前記最大巾 W A、 W' Bの比を 1. 0 1 〜 1. 0 4、 高さ H A、 H Bの比を 0. 8 5 〜 0. 9 5 とし、 さ らに加 硫金型 2 0 の ト レ ツ ド面形状、 ベル ト層形状等を適宜に定める こ とによ って、 その半径比 R T 2 Z R T 1 を 1. 1 0以上かつ 1. 4 0以下とすることができる。
このよ う なカーカスプロファイ ルは、 使用する加硫金型 2 0 の内腔を、 前記カ ーカスプロフアイ ルに各部における必要ゴム ゲージを付加することにより設定される形状とした専用のもの の他、 従来の、 自然平衡形状理論による内腔を有する加硫金型 であっても、 サイ ドウオール部などのゴムゲージ分布を変化さ せることによつて形成しう る場合もある。
なおカ ーカスプロファイ ルとは、 カーカスの厚さの中心を結 ぶ曲線であり、 複数のプライを用いるときには、 全厚さの中央 点を通る曲線として定義する。
このモール ドタイ ヤ 1 Aを加硫金型 1 0から取り出し、 標準 ひム 1 0に装着し、 標準内圧の 1 0 %圧を付加することによつ て、 タイヤは、 加硫金型 2 0内における彤状を略再現する。
また、 モールドタイ ヤ 1 Aの、 前記最大巾の位置 C Aから交 点 D Aに至る上方部が、 第 1図に示すごと く、 カーカスプロフ ァィル全体を自然平衡形祅理論により求めたときの上方部より も大きな半径の円弧を有することに伴い、 モール ドタイ ヤ 1 A のカーカスプロフアイ ルの上方部は自然平衡形状理論の曲線の 上方部の内方を通る。 このような形状の力一カスプロファイ ル は、 内圧の增加とともに、 各部に生じる応力が各部に作用する 内圧による応力と平衡するように変形し、 これは通常、 自然平 衡形状理論により求める曲線に近づき、 上方部の曲率半径を減 じるに伴い、 即ち、 前記交点 D Aにおいて曲率半径 R C 1 を有 する円弧が自然平衡形状理論による曲率半径に近似したより小 さな曲率半径 R C 2 の円弧となるように変形するに伴い、 標準 内圧の付加により ショルダ部 1 2 Bを.押し上げ、 付加による ト レツ ド面 1 2 の曲率半径を増大させる。
このように本 ¾明の乗用車用ラジアルタイ ャの製造方法は、 加硫金型内におけるモールドタイヤの、 カーカス最大巾位置、 高さを、 自然平衡形状理論から求まる力一カスプロフアイ ルそ のの位置、 高さから故意に位置ずれさせることを基本としてい る。
(比較テス ト)
本発明及び自然平衡形状理論に従ってテス トタィ ャを試作し、 標準内圧時と 1 0 %圧時の各部の数値を測定するとともに、 こ ろがり抵抗、 -耐摩耗性を比較した。
実施例 1、 2 のタイ ヤは、 第 1表に示す仕様に徒って製作さ れた本発明のカーカスプロファイ ルを具え、 また比較例 1、 2 のタイ ヤは、 自然平衡形状理論に基づく カーカスプロファイ ル を具えている。
実施例 1、 比較例 1 のタイ ヤは、 第 1図に示す構造を具え、 第 1 表
Figure imgf000015_0002
Figure imgf000015_0001
そのサイ ズは 5 . であり、 標準リム 4J X 13にリ ム組みされ た。 なお標準内圧は 2. 0 kg / oiであり、 その 1 0 %圧は 0. 2 k g ノ erfである。 また実施例 2、 比較例 2のタイ ヤは、 タイ ヤサイ ズ 6 .纖 14である。
第 1表は、 実施例 1、 2の各仕様と自然平衡形状理論により 計算された各数値とを併記している。
第 2表は、 標準内圧時と 1 0 %圧時の各部の数値及びころが り抵抗指数を示している。 なお表中、 括弧付きの値が併記され ている場合、 平均値を括弧外に示し、 括弧内にそのデータのば らっきを示している。 ころがり抵抗指数は、 タィ ャを直径 1 Ί 0 7 ™の ドラムに所定の負荷で押しつけ、 所定の速度 ( 8 0 km / h ) から停止するまでの楕行回転数を、 比較例 1 を 1 0 0 と した指数で袠示している。
第 4図は、 排気量 1 8 0 0 ccの乗用車に装着し、 8 0 0 0 km までの加速摩耗テス トの結果を示している。 これから、 実施例 のタイ ヤば.、 摩耗が低減しているのがわかる。 . さらに、 第 5図は、 ト レッ ド面 1 2 の緣部 aでの摩耗量、 即 ち肩落ち量を示している。 これからも同様に実施例のタィャが 優れていることがわかる。
〔産業上の利甩可能性〕
本発明は、 各種の搆遣、 ト レツ ドバターン、 タイ ヤサイ ズを 具えるラジアルタィャに有効に適応できる。

Claims

請求の範囲
1 . ラジアル方向に配列された少な く とも 1 プライ の有機織 維コ一 ドからなるカーカスを具えるとともに、 標準リ ムにリム 組しかつ標準内圧の 1 0 %圧を付加したときの ト レッ ド面の曲 率半径 ( R T 1 ) と前記標準内圧を付加したときの ト レ ッ ド面 曲率半径 ( R T 2 ) との半径比 ( R T 2 Z R T 1 ) が 1. 1 0以 上かつ 1. 4 0以下であり、 しかも ト レッ ドショルダ部付近を通 る前記カーカスのショルダ部分の、 前記 1 0 %圧を付加したと きの曲率半径 ( R C 1 ) と標準内圧を付加したときの曲率半径 ( R C 2 ) との半径比 ( R C 2 Z R C 1 ) が 0. 6 5以上かつ 0. 8 5以下である乗用車用ラジアルタイ ヤ。
2. 前記標準内圧を付加したときの前記曲率半径 ( R T 2 ) は、 該曲率半径 ( R T 2 ) と、 前記カーカスのタイ ャ半径方向 外側に配されるベル ト層の標準内圧を付加したときの外径 ( D B ) との比 ( R T 2 Z D B ) が 0. 4 2以上であることを特徴と. する請求の範囲第 1 項記載の乗用車用ラ ジアルタイ 'ャ。
3. ラジアル方向にコー ドを配列したカーカスと、 該カ一力 スのタイ ャ半径方向外側に配したベル ト層とを具えるラ ジアル タイ ヤの製造方法であって、 加硫金型内における前記カ ーカス の最大巾 (WA ) を、 自然平衡形状理論により求められるカー カスの最大巾 ( W B ) より も大とし、 かつ加硫金型内における ビ― ド底からの前記カーカスの最大巾 (WA) の位置 ( C A ) 迄の半径方向の高さ ( H A ) を、 自然平衡形状理論により求め たビ― ド底からの力—カスの最大巾 (W B ) の位置 ( C B ) 迄 の半径方向の高さ ( H B ) より も小とした加硫金型内カーカス プロフアイ ルを設定し、 このプロ フアイ ルに基づいて加硫成型 する こ とを特徴とする ラ ジアルタイ ャの製造方法。
PCT/JP1987/000805 1986-10-22 1987-10-17 Radial tire for passenger cars and production thereof WO1988003094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8787906793T DE3771713D1 (de) 1986-10-22 1987-10-17 Radialreifen fuer personenkraftwagen und verfahren zu dessen herstellung.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP61/252465 1986-10-22
JP61252465A JPS63106102A (ja) 1986-10-22 1986-10-22 乗用車用ラジアルタイヤ
JP62013408A JPS63179708A (ja) 1987-01-22 1987-01-22 ラジアルタイヤの製造方法
JP62/13408 1987-01-22

Publications (1)

Publication Number Publication Date
WO1988003094A1 true WO1988003094A1 (en) 1988-05-05

Family

ID=26349203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000805 WO1988003094A1 (en) 1986-10-22 1987-10-17 Radial tire for passenger cars and production thereof

Country Status (2)

Country Link
EP (1) EP0292563B1 (ja)
WO (1) WO1988003094A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976300A (en) * 1988-04-22 1990-12-11 Sumitomo Rubber Industries, Ltd. Pneumatic tire profile
JP2013173395A (ja) * 2012-02-23 2013-09-05 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643312B1 (fr) * 1989-02-22 1991-07-26 Michelin & Cie Bande de roulement pour pneumatique " poids lourd ", dont les nervures centrales sont munies d'incisions inclinees
JPH02225105A (ja) * 1989-02-25 1990-09-07 Sumitomo Rubber Ind Ltd 高速重荷重用ラジアルタイヤ
JPH03204307A (ja) * 1989-12-29 1991-09-05 Sumitomo Rubber Ind Ltd 乗用車用ラジアルタイヤ
JP2544528B2 (ja) * 1991-02-15 1996-10-16 住友ゴム工業株式会社 高速重荷重用タイヤ
DE19932027A1 (de) * 1999-07-09 2001-01-18 Continental Ag Fahrzeugluftreifen
WO2011161854A1 (ja) * 2010-06-21 2011-12-29 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424762B2 (ja) * 1974-09-18 1979-08-23
JPS56131403A (en) * 1980-02-29 1981-10-15 Pirelli Tire
JPS577923B2 (ja) * 1977-08-05 1982-02-13
JPS5896927U (ja) * 1981-12-25 1983-07-01 横浜ゴム株式会社 空気入りタイヤ成型用金型
JPS61200004A (ja) * 1985-03-01 1986-09-04 Sumitomo Rubber Ind Ltd 進歩した形状を有するラジアルタイヤ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2430858A1 (fr) * 1978-07-10 1980-02-08 Michelin & Cie Pneumatique a carcasse radiale
JPS6060005A (ja) * 1983-09-14 1985-04-06 Bridgestone Corp 乗用車用空気入りラジアルタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424762B2 (ja) * 1974-09-18 1979-08-23
JPS577923B2 (ja) * 1977-08-05 1982-02-13
JPS56131403A (en) * 1980-02-29 1981-10-15 Pirelli Tire
JPS5896927U (ja) * 1981-12-25 1983-07-01 横浜ゴム株式会社 空気入りタイヤ成型用金型
JPS61200004A (ja) * 1985-03-01 1986-09-04 Sumitomo Rubber Ind Ltd 進歩した形状を有するラジアルタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0292563A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976300A (en) * 1988-04-22 1990-12-11 Sumitomo Rubber Industries, Ltd. Pneumatic tire profile
JP2013173395A (ja) * 2012-02-23 2013-09-05 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Also Published As

Publication number Publication date
EP0292563A1 (en) 1988-11-30
EP0292563A4 (en) 1989-01-18
EP0292563B1 (en) 1991-07-24

Similar Documents

Publication Publication Date Title
JP5732817B2 (ja) 空気入りランフラットタイヤ
JP3270273B2 (ja) 低ビード質量を有するタイヤ
JP3287774B2 (ja) 自動二輪車用タイヤ
EP0605177A1 (en) Pneumatic tire
WO2006137536A1 (ja) 重荷重用偏平空気入りラジアルタイヤ及びその製造方法
WO2017183704A1 (ja) タイヤ
WO1988003094A1 (en) Radial tire for passenger cars and production thereof
JP2003237315A (ja) 空気入りラジアルタイヤ及びその製造方法
JP2001071716A (ja) 空気入りタイヤ
JPH04183604A (ja) 空気入りラジアルタイヤ
JP3226606B2 (ja) 空気入りタイヤ
JP2643085B2 (ja) 空気入りタイヤ及びその製造方法
JP2000301910A (ja) 空気入りラジアルタイヤ
JP2002518231A (ja) ランフラットタイヤ用のトレッドおよびサイドウォール構造
JP3377462B2 (ja) 重荷重用空気入りタイヤ
JPH02147407A (ja) 乗用車用ラジアルタイヤ
WO2021070578A1 (ja) 空気入りタイヤ
JPH0270501A (ja) 高速ラジアルタイヤ
JP2019001197A (ja) 補強部材およびそれを用いたタイヤ
JPS63199102A (ja) ラジアルタイヤ
JP3372347B2 (ja) 空気入りラジアルタイヤ
JP3471863B2 (ja) 二輪自動車用空気入りラジアルタイヤ
JPS63179708A (ja) ラジアルタイヤの製造方法
JP2000016012A (ja) 空気入りタイヤ
JPH0443801B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1987906793

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987906793

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1987906793

Country of ref document: EP