WO1988002096A1 - Procede pour reduire les influences thermiques sur les appareils de mesure de coordonnees - Google Patents

Procede pour reduire les influences thermiques sur les appareils de mesure de coordonnees Download PDF

Info

Publication number
WO1988002096A1
WO1988002096A1 PCT/EP1987/000497 EP8700497W WO8802096A1 WO 1988002096 A1 WO1988002096 A1 WO 1988002096A1 EP 8700497 W EP8700497 W EP 8700497W WO 8802096 A1 WO8802096 A1 WO 8802096A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
coordinate measuring
measuring machine
correction data
air
Prior art date
Application number
PCT/EP1987/000497
Other languages
German (de)
English (en)
Inventor
Karl-Hermann Breyer
Rainer Ohnheiser
Original Assignee
Carl-Zeiss-Stiftung Handelnd Als Carl Zeiss
Carl Zeiss
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl-Zeiss-Stiftung Handelnd Als Carl Zeiss, Carl Zeiss filed Critical Carl-Zeiss-Stiftung Handelnd Als Carl Zeiss
Publication of WO1988002096A1 publication Critical patent/WO1988002096A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight
    • G01B5/0014Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature

Definitions

  • the measuring accuracy of a coordinate measuring machine is very strongly influenced by the ambient temperature and the temporal and spatial temperature gradient in the area of the machine.
  • Coordinate measuring machines are therefore mainly used in measuring rooms that are air-conditioned to a constant reference temperature of 20 ° C and in which the temporal and spatial temperature gradients are maintained at less than 0.5 ° C per hour or 0.5 ° C above the measuring range of the machine are. If the coordinate measuring machine has a device for arithmetically correcting its guiding errors, the correction data created during machine acceptance also apply only under the above-mentioned conditions.
  • the correction data sets (KT) required for the correction of the guide error are determined at several different temperatures (T 1 ... T n ) and stored in the computer of the coordinate measuring machine,
  • the coordinate measuring machine is surrounded by a heat-insulating encapsulation and air is blown into the encapsulation
  • the temperature is measured at a representative point and is used to select the current correction data set (T E ).
  • the heat-insulating encapsulation significantly reduces convection, heat conduction and heat radiation and thus also the change in temperature gradients in the machine.
  • a sufficiently high air throughput through the encapsulation and defined entry and exit points for the blown-in air mean that the existing temperature gradients only depend on the temperature T at a representative point and not on other, not measurable ambient conditions. This is the prerequisite for a reproducible dependency of the systematic machine errors on the measured temperature and allows correction data sets for different temperatures to be set up and used in the subsequent measuring operation.
  • the representative location the temperature of which is decisive for the selection of the correct correction data record, depends on the design of the coordinate measuring machine used and is determined experimentally for the machine type, for example. Alternatively, it is possible to measure the temperature of the air blown in at the air inlet point and then make a delayed selection based on this temperature value.
  • Fig. 1 is a perspective view of the
  • FIG. 2 is a block diagram to illustrate the processing of measured values in the computer of the coordinate measuring machine from FIG. 1;
  • 3 is an exemplary representation of a part of the data fields used for the measured value correction.
  • the coordinate measuring machine (1) shown in Fig. 1 is set up within a rectangular cabin (2), the side walls, floor and ceiling of which are made of heat-insulating material. On the front there is a sliding window (7) through which the workpieces can be fed and the measuring process can be observed.
  • a blower (3) is located above the cabin (2). This fan sucks in ambient air through a nozzle (4) and blows this air into the cabin, where it exits through the fins (6) at a defined point.
  • a temperature sensor (5) at a representative point on the coordinate measuring machine (1) is used to measure the temperature T E.
  • the temperature of the sucked-in air is changed step by step, for example between 18 ° C and 26 ° C, in steps of 2 ° C and kept constant at the respective value with the help of an upstream air conditioning device that is only required.
  • the temperature is measured using the temperature sensor (5) on the coordinate measuring machine.
  • the systematic machine errors are determined for each preset temperature, ie the translational and rotatori see guide errors of the three measuring axes x, y and z according to known measuring methods.
  • the data obtained in this way are stored in the memory (9) of the computer of the coordinate measuring machine designated by (4) in FIG. 2 for correcting the measurement results.
  • the blower (3) draws in the non-air-conditioned ambient air through the nozzle (4).
  • the thermal sensor (5) measures the temperature on the coordinate measuring machine and passes this measured value T E on to the computer (4) of the coordinate measuring machine.
  • the computer (4) selects the associated data record KT E from the data field stored in the memory (9) and corrects the coordinate measured values x, y and z taken from the scales (11, 12, 13) of the measuring machine (1) .
  • the corrected measured values x ', y', z ' are then shown on the display (10) of the computer.
  • the temperature at the measuring point lies between two temperatures for which correction data sets are stored, then a data set formed by interpolation from the adjacent correction data sets is expediently used by the computer.
  • the measuring point itself, to which the temperature sensor (5) is attached, was determined experimentally and corresponds in its time behavior, with which it follows temperature changes in the environment, to the time behavior which the supporting parts and guides relevant for the machine geometry have.
  • the method described above can also be combined with a correction method for the error which arises due to different scale temperature and the temperature of the workpiece to be measured, if this is described in the earlier application P 36 20 118.9 procedure and additionally determines the temperatures of the workpiece to be measured on the coordinate measuring machine and the scales of the coordinate measuring machine and uses them to correct the coordinate measured values to a level applicable to a fixed reference temperature of, for example, 20 ° C.
  • the combination of both correction methods is even particularly advantageous for production-related use of the coordinate measuring machine, since usually both error influences, undefined ambient temperatures and an undefined workpiece temperature, occur simultaneously.
  • the temperature sensors Tx, y, z necessary for carrying out the method described in the earlier application are attached to the scales (11, 12 and 13) of the coordinate measuring machine in FIG. 1.
  • the temperature of the workpiece or its deviation from the reference temperature is expediently determined, as explained in P 36 20 118.9, by means of a length measurement on a reference body (gauge block) of a defined length, which has passed through the manufacturing process together with the workpiece and has therefore assumed its temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

Dans le but de réduire l'incidence des fluctuations et des gradients de température, observés dans la zone de production, sur la précision de mesure d'un appareil de mesure de coordonnées qui y est implanté, on met ce dernier sous boîtier et on le règle à des conditions ambiantes définies grâce à un courant d'air insufflé dans le boîtier. Les ensembles de données nécessaires à une correction par ordinateur des erreurs de guidage sont établis, lors de la réception de l'appareil, pour plusieurs températures ambiantes différentes. En utilisation normale, on sélectionne l'ensemble de données de correction actuel en fonction de la température mesurée en un point représentatif et on l'utilise pour corriger les valeurs mesurées.
PCT/EP1987/000497 1986-09-19 1987-09-03 Procede pour reduire les influences thermiques sur les appareils de mesure de coordonnees WO1988002096A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863631825 DE3631825A1 (de) 1986-09-19 1986-09-19 Verfahren zur reduzierung von temperatureinfluessen auf koordinatenmessgeraete
DEP3631825.6 1986-09-19

Publications (1)

Publication Number Publication Date
WO1988002096A1 true WO1988002096A1 (fr) 1988-03-24

Family

ID=6309875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1987/000497 WO1988002096A1 (fr) 1986-09-19 1987-09-03 Procede pour reduire les influences thermiques sur les appareils de mesure de coordonnees

Country Status (4)

Country Link
EP (1) EP0285624A1 (fr)
JP (1) JPH01500853A (fr)
DE (1) DE3631825A1 (fr)
WO (1) WO1988002096A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065526A (en) * 1988-11-05 1991-11-19 Carl-Zeiss-Stiftung Probing device for a coordinate measuring apparatus
US5179786A (en) * 1991-04-22 1993-01-19 Shelton Russell S Measuring apparatus with temperature control
US5426861A (en) * 1993-04-19 1995-06-27 Advanced Metrological Development Method and apparatus for inspecting parts for dimensional accuracy outside a laboratory environment
US6532680B2 (en) * 1998-05-06 2003-03-18 Dr. Johannes Heidenhain Gmbh Flat sensor, arrangement for a flat sensor, and method for compensating for thermal deformations

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4436782B4 (de) * 1993-10-21 2006-05-04 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zur Vermessung von Prüflingen auf einem Koordinatenmeßgerät
JP3633788B2 (ja) * 1998-07-13 2005-03-30 株式会社ミツトヨ 測定装置
DE10138138A1 (de) 2001-08-09 2003-02-20 Zeiss Carl Korrektur des Temperaturfehlers bei einer Messung mit einem Koordinatenmessgerät
DE102004003864A1 (de) * 2004-01-26 2005-08-11 Carl Zeiss Industrielle Messtechnik Gmbh Meßsystem zum geometrischen Vermessen eines Werkstückes
DE202010012063U1 (de) * 2010-09-01 2011-12-06 Hermann Eiblmeier Messvorrichtung zum Vermessen eines Werkstücks
DE102013001250A1 (de) 2013-01-25 2014-08-14 Harry Schilling Verfahren zur Korrektur von physikalischen Effekten bei bildgebenden Verfahren
CN109855583B (zh) * 2018-11-16 2021-06-25 中国航发西安动力控制科技有限公司 三坐标测量机测量不确定度的确定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125812A (en) * 1981-01-30 1982-08-05 Mitsutoyo Mfg Co Ltd Measuring method of three-dimensional measuring machine and reference for this method
DE3325387A1 (de) * 1983-07-14 1985-01-31 Daimler-Benz Ag, 7000 Stuttgart Pruefnormal zur ueberpruefung von laengenmessgeraeten

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125812A (en) * 1981-01-30 1982-08-05 Mitsutoyo Mfg Co Ltd Measuring method of three-dimensional measuring machine and reference for this method
DE3325387A1 (de) * 1983-07-14 1985-01-31 Daimler-Benz Ag, 7000 Stuttgart Pruefnormal zur ueberpruefung von laengenmessgeraeten

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, band 6, Nr. 108 (P-123)(986), 18. Juni 1982, & JP, A, 5740602 (Mitsutoyo seisakusho K.K.) 6. Marz 1982 siehe die Zusammenfassung *
PATENT ABSTRACTS OF JAPAN, Band 6, Nr. 221 (P-153)(1099), 5. November 1982, & JP, A, 57125812 (Mitsutoyo Seisakusho K.K.) 5. August 1982 siehe die Zusammenfassung *
Werkstatt und Betrieb, Band 117, Nr. 9, September 1984, Carl Hansen Verlag, (Munchen, DE), H.J. NEUMANN et al.: "Fertigungsnaher Einsatz von CNC-Koordinaten-Messgeraten", seiten 573-578 siehe seiten 573-574 in der Anmeldung erwahnt *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065526A (en) * 1988-11-05 1991-11-19 Carl-Zeiss-Stiftung Probing device for a coordinate measuring apparatus
US5179786A (en) * 1991-04-22 1993-01-19 Shelton Russell S Measuring apparatus with temperature control
US5426861A (en) * 1993-04-19 1995-06-27 Advanced Metrological Development Method and apparatus for inspecting parts for dimensional accuracy outside a laboratory environment
US6532680B2 (en) * 1998-05-06 2003-03-18 Dr. Johannes Heidenhain Gmbh Flat sensor, arrangement for a flat sensor, and method for compensating for thermal deformations

Also Published As

Publication number Publication date
JPH01500853A (ja) 1989-03-23
EP0285624A1 (fr) 1988-10-12
DE3631825A1 (de) 1988-03-31

Similar Documents

Publication Publication Date Title
EP3240994B1 (fr) Détection d'écarts géométriques d'une commande de trajectoire dans un appareil de mesure de coordonnées ou dans une machine-outil
DE69908620T2 (de) Multidimensionales verfahren und system für statistische prozessteuerung
DE19821873C2 (de) Verfahren zum Verringern des Einflusses von Temperaturänderungen auf Industrieroboter
DE102011080242B4 (de) Industrielle Maschine
WO1988002096A1 (fr) Procede pour reduire les influences thermiques sur les appareils de mesure de coordonnees
DE19846597A1 (de) Verfahren zum Bestimmen der Meßunsicherheit einer Koordinatenmeßmaschine
DE102018200240B4 (de) Robotersteuerungsvorrichtung
DE102016116523B4 (de) Vibrationsanalysevorrichtung, die einen Zyklus der Werkzeugvibration in Bezug zum Werkstück berechnet
DE3620118C2 (de) Verfahren zur Bestimmung bzw. Korrektur des Temperaturfehlers bei Längenmessungen
DE102016101076B4 (de) Thermische Verschiebungskorrekturvorrichtung für eine Werkzeugmaschine
DE69204314T2 (de) Verfahren und Anordnung zur Bestimmung der linearen thermischen Ausdehnung von langgestreckten Körpern.
DE19653569C2 (de) Verfahren zur automatisierten Führung eines Richtprozesses
DE10312025A1 (de) Verfahren zur Kompensation von Fehlern der Positionsregelung einer Maschine, Maschine mit verbesserter Positionsregelung und Kompensationseinrichtung
DE69112162T2 (de) Verfahren und Vorrichtung zum Berechnen der thermischen Sensibilität.
DE69204873T2 (de) Vorrichtung zur Messung der Abmessung eines eines Körpers.
DE69123527T2 (de) Verfahren und Vorrichtung zum Berechnen der vorhergesagten mittleren thermischen Sensibilität
EP3835900B1 (fr) Procédé et dispositif d'essai de pièces
DE3518155A1 (de) Verfahren zur herstellung einer kunststoffolie mit geringer dickentoleranz
DE102020208567B4 (de) Kalibrieren eines Referenzkörpers für die Führungsfehlerermittlung einer Maschinenachse
DE10260909A1 (de) Mess- und Richtstation
DE102022109528A1 (de) Vorrichtung zum bestimmen von unregelmässigkeiten, verfahren zum bestimmen von unregelmässigkeiten, programm und system zum bestimmen von unregelmässigkeiten
DE102004003864A1 (de) Meßsystem zum geometrischen Vermessen eines Werkstückes
DE19735975C2 (de) Verfahren zur rechnerischen Vibrationsunterdrückung bei Koordinatenmeßgeräten sowie Koordinatenmeßgerät zur Durchführung des Verfahrens
EP1748278B1 (fr) Procédé de compensation de la dilatation thermique d'un objet et appareil de mesure de coordonnées mettant en oeuvre ce procédé
EP0735443B1 (fr) Réseau neuronal pour compenser une déviation de position dans une installation d'usinage de pièces

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987906177

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987906177

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1987906177

Country of ref document: EP