WO1988000403A1 - Gas laser - Google Patents
Gas laser Download PDFInfo
- Publication number
- WO1988000403A1 WO1988000403A1 PCT/JP1987/000452 JP8700452W WO8800403A1 WO 1988000403 A1 WO1988000403 A1 WO 1988000403A1 JP 8700452 W JP8700452 W JP 8700452W WO 8800403 A1 WO8800403 A1 WO 8800403A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- discharge
- gas
- laser
- electrode
- main
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/038—Electrodes, e.g. special shape, configuration or composition
- H01S3/0385—Shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/036—Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/097—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
- H01S3/0971—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
Definitions
- the present invention relates to gas laser concealment, and more particularly to supply of gas between discharge electrodes and supply of discharge energy between discharge electrodes.
- Excimer lasers have been widely developed in recent years because of their ability to oscillate with high efficiency and high output. In particular, due to their non-coherent properties, photolithographic lasers have been developed. The use for such applications is drawing attention.
- one of the discharge electrodes ER constituting the main discharge circuit is normally the ground potential, and the other is the capacitor C of the charging circuit B, as shown in FIG. It is connected to the high-voltage DC power supply HV through 1 and the resistor R. Further, one end of a capacitor C2 for applying discharge energy is connected to one end of the discharge electrode ER, and the other end of the capacitor C2 connects a predetermined discharge gap with the other end of the discharge electrode ER.
- a contrast c are Setchimaki the arranged pre-electrodes P i, the charging circuit B of the co sweep rate on both sides of the capacitor C 1 is constituted by cyclic La Bokuro emissions such as pitch SW and Lee Ndaku data Nsu Are connected in parallel with the ground potential.
- Capacitor C 1 is charged on the 1st 2 — circuit. Then, when the switch SW is closed, the charge of C 1 is transferred to G 2 by the LG resonance due to the floating inductance in the circuit on the path of G 1 ⁇ SW— ⁇ 2 ⁇ ⁇ ⁇ ⁇ ⁇ 1. Is done.
- G 2 is charged by this charge transfer. Then, when the charging voltage of G2 becomes equal to or higher than the starting breakdown voltage of the laser material, a discharge occurs at the discharge electrode ER, and the discharge energy excites the laser material and induces laser light.
- the capacitor C 2 was arranged in the axial direction of the laser tube in many circuits, so the cross-sectional area of the main lightning main circuit M increased and the inductance increased, resulting in a decrease in the post-current.
- P became long, and circuit components deteriorated quickly.
- the present invention has been made in view of the above circumstances, and has as its object to improve the life of circuit components.
- Another object of the present invention is to reduce the gas circulation flow rate and reduce the burden on the gas circulation device.
- FIG. 1 is a cross-sectional view showing an example of the present invention
- FIG. 2 is a cross-sectional view showing a second embodiment of the present invention
- FIGS. 3 (a) and 3 (b) are drawings of the present invention.
- Exclusion of third implementation of invention Description of the main part of the laser device @, FIGS. 4 (a) to (d) show a modification of the first main discharge electrode of the device S, and FIG. 5 shows a modification of the gas supply unit.
- FIG. 6 is a diagram showing an equivalent circuit of a discharge circuit of the gas laser device.
- a capacitor that applies discharge energy to a discharge electrode is disposed outside the laser tube in a direction perpendicular to the discharge direction and perpendicular to the resonance direction of the laser light.
- One end is connected to the anode side of the discharge electrode, and the other end is connected to a spare electrode arranged with a predetermined discharge gap with respect to the cathode side of the discharge electrode.
- the distance between the discharge electrode and the capacitor can be reduced. Therefore, the discharge main circuit cross-sectional area as a whole decreases. As a result, the inductance becomes smaller, the post-current also becomes smaller, and the life of circuit components can be prolonged.
- a small hole is formed on one surface of a discharge portion of one of the main discharge electrodes, and a laser gas is emitted from the hole into a discharge region.
- the gas is directly injected into the discharge area from one main discharge electrode to the other main discharge electrode, so that the gas deteriorated by the discharge is efficiently blown. Discharge is performed very efficiently, and the laser Since it is not necessary to circulate the gas in the spare power gap, which does not affect the performance of the vehicle, the burden on the gas circulator is reduced.
- FIG. 5 is a new view showing the configuration of the discharge circuit according to the present invention, and shows a cross section of a plane orthogonal to the resonance direction of laser light.
- main electrodes 11 and 12 constituting a discharge electrode ER are arranged inside a laser tube 10.
- the upper main electrode 11 in the figure is the anode and the lower main electrode 13 is the cathode.
- the main electrode ⁇ 1 on the anode side is orthogonal to the laser light resonance direction (perpendicular to the paper).
- the laser electrode has an extension 13 extending in the direction perpendicular to the discharge direction of the discharge electrode ER on the wall side of the laser tube.
- One end of the discharge capacitor G 2 is connected to the extension 13. It is connected.
- the main electrodes 11 and 12 are provided on their opposing surfaces with a chang-type (chang: scientific instrument television, rev. Of Scientific Instruments vol. (Electrode shape reported on pages 405 to 407), and the main electrodes 12 are separated by a predetermined gap.
- the electrode 16 is connected between the main electrode 1 and the main electrode 11 as one wall, and the edge member 18 that forms the laser resonance chamber 17 with the main electrode 11 as one wall leaks the sealed gas in the laser resonance chamber ⁇ 7.
- the end opposite to the main electrode 12 is connected to the capacitor C 2 through the special member 9.
- the main electrode 12 serving as the cathode is open at both ends so that the sealed gas can flow into the laser resonance chamber 17, and is connected to the outside of the laser tube 10 through a pipe.
- the laser gas is fed from the continuous gas circulation and circulated to be recirculated, so that the laser tube 10 can be disposed separately from a vibration source such as an air supply fan.
- the main electrode 11 and the capacitor C2 can be connected with the shortest distance. For this reason, the inductance of the main electrodes 11 and 12 and the discharge main circuit including the spare electrode ⁇ 6, the capacitor ⁇ 3 and the laser gas is reduced.c As a result, the post-current becomes small, and the circuit components Deterioration can be suppressed.
- FIG. 2 is a sectional view showing a second embodiment of the present invention, in which a laser gas is branched from both sides of a main electrode 12 serving as an anode from the upper side of a laser tube 10 to the lower side thereof. It is configured to make it happen.
- the main electrode ⁇ 2 and the capacitor G2 are connected through a conductor (not shown).
- reference numeral 20 denotes a sealing member for hermetically sealing the sealed gas.
- FIG. 3 (a) is a cross-sectional view showing a third embodiment of the present invention.
- the first main discharge electrode (power source) 21 is formed in a plate shape and a large number of holes h are formed in the surface. And the laser gas is supplied into the discharge space through the hole h. Things.
- this device has a plate-shaped first main discharge electrode (power source) 21 (Fig. 3 (b)) having a large number of holes h formed on the surface and a first main discharge electrode opposed to the first main discharge electrode.
- a second main discharge electrode (anode) 22 of the chang type arranged in the manner described above, and a gas supply unit arranged on the back side of the first main discharge electrode 1 2 3, and gas discharge sections 24 a, 24 b disposed on both sides of the second main discharge electrode 22, and disposed near the gas supply section 23.
- a fluorinated krypton (KrF) gas is ejected from the gas supply unit 23 through the hole h of the first main discharge electrode 1 by a member flow fan (not shown) of the gas circulation device.
- the gas is excited (excimer) in a discharge portion 25 formed between the first and second main discharge electrodes, and emits a laser beam when it falls to a ground state.
- Excimer fell based ground state in those in so that the rapidly dissociated, returns to the circulation system again occupied thereby discharging gas outlet or al.
- Reference numeral 26 denotes a pre-ionization gap for uniform discharge and increasing efficiency.
- gas is supplied to the discharge section very efficiently, and gas is discharged through the gas discharge sections provided on both sides of the second main discharge electrode. Since only the gas that gives a bad effect to the air is blown away, the gas flow required for the set number of repetitions can be reduced to the minimum required degree.
- the shape of the gas supply holes provided in the first main discharge electrode is not limited to the hole shown in the embodiment, but also to the shape shown in FIG.
- a large number of rectangular slits S1 are arranged II at predetermined intervals perpendicular to the optical axis 0 ( ⁇ 50% aperture ratio)
- a large number of rectangular slits S2 are arranged obliquely with respect to the optical axis 0 at a predetermined interval (aperture ratio: 5096)
- a large number of trapezoidal slits S3 are arranged at predetermined intervals perpendicular to the optical axis 0 (aperture ratio: 50%).
- the width of S4 can be changed as appropriate between the center and the end (Fig. 4 (d)).
- the gas supply section 3 of the second main discharge electrode is composed of a reservoir 30 having a larger sectional area than the discharge surface of the electrode, as shown in FIG. Make sure that the laser gas blows out uniformly. At this time, in order to blow out the laser gas uniformly from the slit S, the total area a of the slit S needs to satisfy the following equation.
- the total opening area of the slit is determined according to the capacity of the reservoir.
- the shape of the main discharge electrode and the shape of the gas discharge portion and the like can be appropriately changed without being limited to the embodiment.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
A capacitor (C2) that gives discharge energy to discharge electrodes (11, 12) is disposed outside a laser tube (10) which is oriented at right angles with both the direction of discharge and a resonance direction of a laser beam. One end of the capacitor is connected to the anode side of the discharge electrode, and the other end thereof to a spare electrode (16) that is arranged on the cathode side of the discharge electrode maintaining a predetermined discharge gap. This makes it possible to reduce the posterior current after discharge has taken place and to prolong the life of the circuit components. In addition to the above-mentioned structure, a gas supply hole is formed over the discharge portion of one of the main discharge electrodes, and a laser gas is injected from the gas supply hole toward the other main discharge electrode. This enables discharge to take place very efficiently and the recycling rate of the laser gas to be minimized, and makes it possible to accomplish oscillation of a high repetitive number that has been so far impossible with the conventional devices.
Description
明 細 耋 ガス レーザ裝 E 技術分野 Technical Field of Gas Laser Equipment E
本発明は、 ガス レーザ装匿に係り 、 特にその放電電 極間へのガスの供給および放電電極間への放電工ネル ギ一の供給に関する。 The present invention relates to gas laser concealment, and more particularly to supply of gas between discharge electrodes and supply of discharge energy between discharge electrodes.
背景技術 Background art
エキシマ レーザは、 高効率、 高出力の発振が可能で あるこ とから近年広く 閒発が進められてきてお り 、 特 に 、 その非コ ヒ ー レン 卜 な性質からフ ォ 卜 リ ソ グラフ ィ 一等への利用が注目 されている。 Excimer lasers have been widely developed in recent years because of their ability to oscillate with high efficiency and high output. In particular, due to their non-coherent properties, photolithographic lasers have been developed. The use for such applications is drawing attention.
エキシマ レーザの放電回路 と しては、 通常第 6図に その等 ffi回路を示す如 く 、 放電主回路を構成する放電 電極 E Rは一方が接地電位、 他方が充電回路 Bのコ ン デ ンサ C 1 お よ び抵抗 R を通 じ て高電圧直流電源 H Vに接続されている。 ま た 、 放電電極 E Rの一方に は放電エネルギーを与えるコ ンデンサ C 2の一端が接 続されてお り 、 このコ ンデンサ C 2の他端は放電電極 E Rの他方と所定の放電ギヤ ッ プを有して配置された 予備電極 P i に接粽されている c 一方、 充電回路 Bの コ ンデンサ C 1 の両側にはサイ ラ 卜ロ ン等で構成され たスィ ッ チ S Wとイ ンダク タ ンス し とが接地電位との 間にそれぞれ並列接続されている。 As the excimer laser discharge circuit, one of the discharge electrodes ER constituting the main discharge circuit is normally the ground potential, and the other is the capacitor C of the charging circuit B, as shown in FIG. It is connected to the high-voltage DC power supply HV through 1 and the resistor R. Further, one end of a capacitor C2 for applying discharge energy is connected to one end of the discharge electrode ER, and the other end of the capacitor C2 connects a predetermined discharge gap with the other end of the discharge electrode ER. a contrast c are Setchimaki the arranged pre-electrodes P i, the charging circuit B of the co sweep rate on both sides of the capacitor C 1 is constituted by cyclic La Bokuro emissions such as pitch SW and Lee Ndaku data Nsu Are connected in parallel with the ground potential.
このような構成の放電回路において、 スィ ッ チ S W が開放の状態では、 H V→ R 1 → G 1 → L→接地雷位
88/00403 In a discharge circuit with this configuration, when the switch SW is open, HV → R1 → G1 → L → ground lightning 88/00403
一 2 — の轾路でコ ンデンサ C 1が充電される。 そこで、.スィ ツ チ S Wを閉じると、 G 1 → S W—〇 2→ Ρ ί →〇 1 の轾路で C 1 の電荷が回路内の浮遊イ ンダクタンスに よる L G共振によっ て G 2に移送される。 Capacitor C 1 is charged on the 1st 2 — circuit. Then, when the switch SW is closed, the charge of C 1 is transferred to G 2 by the LG resonance due to the floating inductance in the circuit on the path of G 1 → SW—〇 2 → ί ί → 〇 1. Is done.
する と、 この電荷移送によっ て G 2が充電される。 そ して、 G 2の充電電圧が レーザ物質の始縁破壊電圧 以上になる と、 放電電極 E Rで放電が起り 、 この放電 エネルギーによっ て レーザ物質が励起され、 レーザ光 が誘起される。 Then, G 2 is charged by this charge transfer. Then, when the charging voltage of G2 becomes equal to or higher than the starting breakdown voltage of the laser material, a discharge occurs at the discharge electrode ER, and the discharge energy excites the laser material and induces laser light.
このよう な放電回路では、 G 2 , E , P i および レーザ光物質を含む放電主回路 Mのイ ンダクタンスが 小さいほど放電開始後の事後電流は早く減衰し、 回路 部品へのス 卜 レスを小さ くするこ とができる という こ とがわかっ ている。 In such a discharge circuit, as the inductance of the discharge main circuit M including G 2, E, P i and the laser light material is smaller, the post-current after the start of the discharge is attenuated faster, and the stress to the circuit components is reduced. I know it can be done.
ところが、 従来の放電.回路の多 く はコンデンサ C 2 が レーザ管の軸方向に配置していたため、 故雷主回路 Mの断面積が大き くなつ てイ ンダクタ ンスが増加 し、 事後電流の減衰時 P が長く なり、 回路部品を早く劣化 させて しまう という問題がお っ た。 However, in the conventional discharge circuit, the capacitor C 2 was arranged in the axial direction of the laser tube in many circuits, so the cross-sectional area of the main lightning main circuit M increased and the inductance increased, resulting in a decrease in the post-current. However, there was a problem that P became long, and circuit components deteriorated quickly.
本発明は、 前記実情に鑑みてなされたもので、 回路 部品の寿命の向上をはかるこ とを目的とする。 The present invention has been made in view of the above circumstances, and has as its object to improve the life of circuit components.
また本発明は、 ガス循環流量を少なく し、 ガス循環 裝置への負担を低减するこ とを目的とする。 Another object of the present invention is to reduce the gas circulation flow rate and reduce the burden on the gas circulation device.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の一実旌例を示す断面図、 第 2図は 本発明の第 2の実施例を示す断面図、 第 3図 ( a ) お よび第 3図 ( b ) は、 本発明の第 3の実施倒のエキシ
マ レーザ装置の要部説明 @、 第 4 図 ( a 》 乃至 ( d ) は同裝 Sの第 1 の主放電電極の変形例を示す図、 第 5 図は、 ガス供給部の変形例を示す図、 第 6 図はガス レ 一ザ装鼴の放電回路の等価回路を示す図である。 FIG. 1 is a cross-sectional view showing an example of the present invention, FIG. 2 is a cross-sectional view showing a second embodiment of the present invention, and FIGS. 3 (a) and 3 (b) are drawings of the present invention. Exclusion of third implementation of invention Description of the main part of the laser device @, FIGS. 4 (a) to (d) show a modification of the first main discharge electrode of the device S, and FIG. 5 shows a modification of the gas supply unit. FIG. 6 is a diagram showing an equivalent circuit of a discharge circuit of the gas laser device.
発明の開示 Disclosure of the invention
そこで本発明では、 ガスレーザ装屢において 、 放電 電極に対 し放電エネルギーを与えるコ ンデンサを放電 方向 と直交 し、 かつ レーザ光の共振方向に直交する方 向の レーザ管外部に配置 し、 このコ ンデンサの一端は 放電電極の陽極側に 、 他端は放電電極の陰極側に対 し 所定の放電ギヤ ッ プを有 して配置された予備電極に接 続 したものである。 Therefore, in the present invention, in a gas laser device, a capacitor that applies discharge energy to a discharge electrode is disposed outside the laser tube in a direction perpendicular to the discharge direction and perpendicular to the resonance direction of the laser light. One end is connected to the anode side of the discharge electrode, and the other end is connected to a spare electrode arranged with a predetermined discharge gap with respect to the cathode side of the discharge electrode.
すなわちコ ンデンサを放電方向と直交 し、 かつ レー ザ光の t振方向に直变する方向のレーザ管外部に配置 するこ とによ り 、 放電電極とコ ンデンサとを桔ぷ距離 は小さ く な り 、 全体 と しての放電主回路断面積は減少 する。 これによ つ て 、 イ ンダク タ ンスが小さ く な つ て 事後電流も小さ く な り 、 回路部品の寿命を長く するこ とがでぎる。 That is, by disposing the capacitor outside the laser tube in a direction perpendicular to the discharge direction and perpendicular to the direction of the t-swing of the laser light, the distance between the discharge electrode and the capacitor can be reduced. Therefore, the discharge main circuit cross-sectional area as a whole decreases. As a result, the inductance becomes smaller, the post-current also becomes smaller, and the life of circuit components can be prolonged.
ま た、 本発明では上述のガスレーザ装置において、 一方の主放電電極の放電部分の一面に小さい穴をあけ、 この穴から放電領域に レーザガスを射出せ しめるよう に している。 Further, in the present invention, in the above-described gas laser device, a small hole is formed on one surface of a discharge portion of one of the main discharge electrodes, and a laser gas is emitted from the hole into a discharge region.
かかる構造によ り 、 ガスは、 1 方の主放電電極から 他方の主放電電極へと直接放電領璩に射出せしめられ るため、 放電によ り劣化 したガスを効率良く 吹きは ら う こ とができ極めて効率良く 放電が行なわれ、 レーザ
の性能に影響のない予備電鼸ギ ヤ ップ部分のガス循璨 を行なわなく てもすむため、 ガス循環装置の負担が鞋 減される。 With this structure, the gas is directly injected into the discharge area from one main discharge electrode to the other main discharge electrode, so that the gas deteriorated by the discharge is efficiently blown. Discharge is performed very efficiently, and the laser Since it is not necessary to circulate the gas in the spare power gap, which does not affect the performance of the vehicle, the burden on the gas circulator is reduced.
発明を実施するための最良の形態 以下、 本発明をより詳細に説明するために、 図面を 参照しつつ詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, in order to explain the present invention in more detail, the present invention will be described in detail with reference to the drawings.
第 Ί 図は本発明による放電回路構成を示す新面図で あ り 、 レーザ光の共振方向に直交する面の断面を表わ している。 図において、 レーザ管 1 0の内部には放電 電極 E Rを構成する主電極 1 1 と 1 2 とが配置されて いる 。 図の上側の主電極 1 1 は陽極、 下側の主電極 1 3は陰極となるもので、 陽極側の主電極 Ί 1 は、 レ 一ザ光の共振方向 (紙面に垂直な方向 ) に直交レ、 か つ放電電極 E Rの放電方向に直交する方向に延長され た延長部 1 3をレーザ管壁側に有 しており 、 この延長 ' 部 1 3に放電用のコ ンデンサ G 2の一端が接続されて いる。 ま た主電極 1 1 と 1 2はその対向面にチャング 型 ( chang : サイ アンティ フ ィ ッ クイ ンスツルメ ン 卜 レ ビ、ユー Rev ew of Scientific Instruments vol 4 4 ( 1 9 7 3 ) N o, 4. P 4 0 5〜 4 0 7にて報告さ れた電極形状 ) の故電電極 1 4と 1 5 とを有しており 、 主電極 1 2には所定のギ ャ ッ プを隔てて予備電極 1 6 は主電極 1 との間を艳辏する と共に、 主電極 1 1 を 1 つの壁面 とする レーザ共振室 1 7を作る艳縁部材 1 8に レーザ共振室 Ί 7内の封入ガスが漏れないよう に取付けられており 、 主電極 1 2 と反対側の端部は專 体 Ί 9を通じてコ ンデンサ C 2に接続されている。
こ こで 、 陰極劐 となる主電極 1 2 は レ ー ザ共振室 1 7 内に封入ガスを港流させ得るよう にその両端が開 放されており 、 レーザ管 1 0 の外部に配管を通じて接 続したガス循環装匿から レーザガスを送り込んで還流 させるこ とによ り 、 レーザ管 1 0を送気フ ァ ンなどの 振動源から隔離 して配置できるよう になつ ている。 FIG. 5 is a new view showing the configuration of the discharge circuit according to the present invention, and shows a cross section of a plane orthogonal to the resonance direction of laser light. In the figure, main electrodes 11 and 12 constituting a discharge electrode ER are arranged inside a laser tube 10. The upper main electrode 11 in the figure is the anode and the lower main electrode 13 is the cathode. The main electrode 陽極 1 on the anode side is orthogonal to the laser light resonance direction (perpendicular to the paper). The laser electrode has an extension 13 extending in the direction perpendicular to the discharge direction of the discharge electrode ER on the wall side of the laser tube. One end of the discharge capacitor G 2 is connected to the extension 13. It is connected. The main electrodes 11 and 12 are provided on their opposing surfaces with a chang-type (chang: scientific instrument television, rev. Of Scientific Instruments vol. (Electrode shape reported on pages 405 to 407), and the main electrodes 12 are separated by a predetermined gap. The electrode 16 is connected between the main electrode 1 and the main electrode 11 as one wall, and the edge member 18 that forms the laser resonance chamber 17 with the main electrode 11 as one wall leaks the sealed gas in the laser resonance chamber Ί 7. The end opposite to the main electrode 12 is connected to the capacitor C 2 through the special member 9. Here, the main electrode 12 serving as the cathode is open at both ends so that the sealed gas can flow into the laser resonance chamber 17, and is connected to the outside of the laser tube 10 through a pipe. The laser gas is fed from the continuous gas circulation and circulated to be recirculated, so that the laser tube 10 can be disposed separately from a vibration source such as an air supply fan.
この構成において、 コ ンデンサ C 2 は管軸と直交 し、 かつ放電方向と直交する方向に配置されるため、 主電 極 1 1 とコ ンデンサ C 2 とを最短距離で接続するこ と ができる。 このため、 主電極 1 1 , 1 2 予備電極 Ί 6 , コ ンデンサ Ί 3 およびレーザガスを含む放電主回路の イ ンダク タ ンスは減少する c この結果、 事後電流が小 さ く な り 、 回路部品の劣化を抑制するこ とができる。 In this configuration, since the capacitor C2 is arranged in a direction orthogonal to the tube axis and orthogonal to the discharge direction, the main electrode 11 and the capacitor C2 can be connected with the shortest distance. For this reason, the inductance of the main electrodes 11 and 12 and the discharge main circuit including the spare electrode Ί6, the capacitor Ί3 and the laser gas is reduced.c As a result, the post-current becomes small, and the circuit components Deterioration can be suppressed.
第 2 図は本発明の第 2 の実施例を示す断面図であ り 、 レーザガスを レーザ管 1 0 の上側から下側に向けて陽 極 となる主電極 1 2 の両側に分岐させて .還流させるよ う に構成 したものである。 この場合、. 主電極 Ί 2 とコ ンデンサ G 2 とは図示しない導体を通じて接続されて いる。 FIG. 2 is a sectional view showing a second embodiment of the present invention, in which a laser gas is branched from both sides of a main electrode 12 serving as an anode from the upper side of a laser tube 10 to the lower side thereof. It is configured to make it happen. In this case, the main electrode Ί2 and the capacitor G2 are connected through a conductor (not shown).
このよう な構成において ¾第 Ί 図に示 した実飽例 と 同様な効果が得られる。 In such a configuration, the same effect as the actual saturation example shown in FIG.
なお、 第 Ί 図, 第 2 図において、 2 0 は封入ガスを 気密封止するためのシール部材を表わ している。 In FIGS. 1 and 2, reference numeral 20 denotes a sealing member for hermetically sealing the sealed gas.
第 3 図 ( a ) は、 本発明の第 3 の実施例を示す断面 図であり 、 第 1 の主放電電極 《 力ソ ー ド ) 2 1 を平板 状に し表面に多数の孔 h を穿設 して 、 レーザガスをこ の孔 h を介 して放電空間内に供給するよう に構成 した
ものである。 FIG. 3 (a) is a cross-sectional view showing a third embodiment of the present invention. The first main discharge electrode (power source) 21 is formed in a plate shape and a large number of holes h are formed in the surface. And the laser gas is supplied into the discharge space through the hole h. Things.
すなわち、 この装置は表面に多数の孔 h の形成され た平板状の第 1 の主放電電極 ( 力 ソー ド 》 2 1 (第 3 図 ( b 》 ) と該第 1 の主放電電極に相対向 して配設さ れたチャング ( chang ) 型の第 2の主放電電極 ( ァノ ー ド 〉 2 2 と、 前記第 1 の主放電電極 1 の裏面側に配 設さ れたガス供狯部 2 3 と 、 前記第 2 の主放電電極 2 2の両側に配設されたガス排出部 2 4 a , 2 4 b と を具備してお り 、 ガス供給部 2 3 の近傍に配設された ガス循環装置の員流フ ァ ン ( 図示せず ) によってガス 供給部 2 3 から第 Ί の主放電電極 1 の孔 h を介 して弗 化ク リ プ ト ン ( K r F ) ガスが射出せ しめ られこの第 1 および第 2 の主放電電極間に形成される放電部 2 5 で前記ガスが励起 ( エキシマ ) 状態にされ、 基底状態 に落ちる ときに レーザ光を発するよう に したもので基 底状態に落ちたエキシマは急速に解離 し、 ガス排出部 か ら排出せ しめ られ再び循環装置に戻る。 In other words, this device has a plate-shaped first main discharge electrode (power source) 21 (Fig. 3 (b)) having a large number of holes h formed on the surface and a first main discharge electrode opposed to the first main discharge electrode. A second main discharge electrode (anode) 22 of the chang type arranged in the manner described above, and a gas supply unit arranged on the back side of the first main discharge electrode 1 2 3, and gas discharge sections 24 a, 24 b disposed on both sides of the second main discharge electrode 22, and disposed near the gas supply section 23. A fluorinated krypton (KrF) gas is ejected from the gas supply unit 23 through the hole h of the first main discharge electrode 1 by a member flow fan (not shown) of the gas circulation device. The gas is excited (excimer) in a discharge portion 25 formed between the first and second main discharge electrodes, and emits a laser beam when it falls to a ground state. Excimer fell based ground state in those in so that the rapidly dissociated, returns to the circulation system again occupied thereby discharging gas outlet or al.
2 6 は、 放電を一様化 し効率を上げるための予備電 離ギ ヤ ッ プでおる。 Reference numeral 26 denotes a pre-ionization gap for uniform discharge and increasing efficiency.
かかる装置では、 放電部に対して極めて効率良 く ガ スの供給がなされる上、 ガスの排出は、 第 2 の主放電 電極の両側に設けられたガス拂出部を介 して レーザ発 振に悪影罾を与える部分のガスのみを吹き払う よう に なされるため、 設定 した操り返し数に必要なガス流量 を必要最小陧度に低減するこ とができる。 In such a device, gas is supplied to the discharge section very efficiently, and gas is discharged through the gas discharge sections provided on both sides of the second main discharge electrode. Since only the gas that gives a bad effect to the air is blown away, the gas flow required for the set number of repetitions can be reduced to the minimum required degree.
なお、 第 1 の主放電電極に配設されるガス供給孔の 形状 と しては実施例に示 したよ う な孔の他、 第 4図
( a ) に示す如 く 、 光軸 0 に対 して垂直に所定の間隔 で矩形のス リ ッ 卜 S 1 を多数 II配列するよう に した ¾ の 《 開口率 5 0 % ) 、 第 4 図 ( b ) に示す如く 、 光軸 0 に対 して斜めに所定の間隔で矩形のス リ ッ 卜 S 2 を 多数翟配列するよう に したもの ( 開口率 5 0 96 ) 、 第 4 図 ( c 》 に示す如 く 、 光軸 0 に対 して垂直に台形状 のス リ ッ 卜 S 3 を所定の間隔で多数個配列 しするよう に したもの ( 開口率 5 0 % ) 、 ス リ ッ ト S 4 の幅を中 心と端部 とで変化させたもの ( 第 4 図 ( d ) ) 等、 適 宜変更可能である。 The shape of the gas supply holes provided in the first main discharge electrode is not limited to the hole shown in the embodiment, but also to the shape shown in FIG. As shown in FIG. 4A, a large number of rectangular slits S1 are arranged II at predetermined intervals perpendicular to the optical axis 0 (<< 50% aperture ratio), FIG. As shown in (b), a large number of rectangular slits S2 are arranged obliquely with respect to the optical axis 0 at a predetermined interval (aperture ratio: 5096), and FIG. As shown in (1), a large number of trapezoidal slits S3 are arranged at predetermined intervals perpendicular to the optical axis 0 (aperture ratio: 50%). The width of S4 can be changed as appropriate between the center and the end (Fig. 4 (d)).
ま た、 第 Ί の主放電電極のガス供給部 3 を第 5 図に 示す如 く 、 電極の放電面よ り も断面積の大きい リ ザー バ 3 0で構成 し 、 ス リ ッ ト S か らの レーザガスの吹き 出 しが均一 となるよう に してちょい。 この とき、 ス リ ッ 卜 S か ら均一に レーザガスを吹き出すためには、 ス リ ッ 卜 S の総面積 a は、 次式を篛たすよう にする必要 があ In addition, as shown in FIG. 5, the gas supply section 3 of the second main discharge electrode is composed of a reservoir 30 having a larger sectional area than the discharge surface of the electrode, as shown in FIG. Make sure that the laser gas blows out uniformly. At this time, in order to blow out the laser gas uniformly from the slit S, the total area a of the slit S needs to satisfy the following equation.
a a
0 . 4 ( ) 0. 4 ()
A A
A : リ サーバの断面積 A: Reservoir cross section
このよう に、 ス リ ッ ト の総開口面積は、 リ ザーパの 容垦に応じて決定される。 Thus, the total opening area of the slit is determined according to the capacity of the reservoir.
更に、 主放電電極の形状、 およびガス排出部等の形 状については、 実施例に限定されるこ とな く適宜変更 可能である。
Further, the shape of the main discharge electrode and the shape of the gas discharge portion and the like can be appropriately changed without being limited to the embodiment.
Claims
( 1 ) レーザ管内に相対向して配設せ しめ られた第(1) The first tube installed facing each other in the laser tube
1 および第 2 の放電電極 に レーザガスを射出せしめ、 レーザ発振を生ぜしめるよう に したガスレーザ装置に おいて、 In a gas laser device in which a laser gas is emitted to the first and second discharge electrodes to cause laser oscillation,
前記放電電極に対 し放電エネルギーを与えるコ ンデ ンサを放電方向と直交し、 かつ レーザ光の共振方向に 直交する方向の レーザ管外部に配置し、 このコ ンデン ザの一端は放電電極の陽極側に、 他端は放電電極の陰 極側に対し所定の放電ギ ヤ ッ プを有 して配置された予 備電極に接続 したこ とを特徴とするガス レーザ裝置。 A capacitor for applying discharge energy to the discharge electrode is disposed outside the laser tube in a direction orthogonal to the discharge direction and orthogonal to the resonance direction of the laser beam, and one end of the capacitor is connected to the anode of the discharge electrode. A gas laser device, characterized in that the other end is connected to a spare electrode arranged with a predetermined discharge gap with respect to the negative electrode side of the discharge electrode.
( 2 ) 前記第 1 の主放電電極の放電面全体に多数個 のガス供給孔を配設 し、 該ガス供給孔を介 して前記第 2 の主放電電極に向けて レーザガスを射出するよう に したこ とを特徴とする請求の範西第 ( 1 > ¾記載のガ ス レーザ装置。 (2) A large number of gas supply holes are provided on the entire discharge surface of the first main discharge electrode, and a laser gas is emitted toward the second main discharge electrode via the gas supply hole. The gas laser device according to claim 1 (1), characterized in that:
( 3 ) 前記ガス供給孔は、 光軸に沿 っ て等間隔で配 列されたス リ ッ 卜であるこ とを特徴とする請求の範囲 第 ( 2 ) 項記載のガスレーザ装置。 (3) The gas laser device according to (2), wherein the gas supply holes are slits arranged at regular intervals along an optical axis.
( 4 ) 前記各ス リ ッ ト は、 光軸に対 して垂直となる よう に配設されているこ とを特徴とする請求の範囲第 (4) Each of the slits is disposed so as to be perpendicular to an optical axis.
( 3 ) 項記載のガス レーザ装置。 The gas laser device according to (3).
( 5 ) 前記各ス リ ツ 卜 は、 光軸に対して所定の角度 を つよう に斜めに配設されていることを特街とする 請求の範囲第 ( 3 ) 項記載のガスレーザ装置。 (5) The gas laser device according to (3), wherein the slits are arranged obliquely so as to form a predetermined angle with respect to an optical axis.
( 6 ) 前記第 1 の主放電電極は、 背面に リ ザーパを 有しており 、 レーザガスは、 該リ ザーパから前記供給
孔を介 して射出せ しめられるよう に したこ とを特徴と する講求の範囲第 ( 2 ) 項記載のガス レーザ装置。
(6) The first main discharge electrode has a reservoir on a back surface, and the laser gas is supplied from the reservoir to the first main discharge electrode. The gas laser device according to item (2), which is characterized in that the gas laser is emitted through a hole.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61/153045 | 1986-06-30 | ||
JP15304486A JPS6344779A (en) | 1986-04-24 | 1986-06-30 | Gas laser system |
JP61/153044 | 1986-06-30 | ||
JP15304586A JPS639184A (en) | 1986-06-30 | 1986-06-30 | Discharge circuit for gas laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1988000403A1 true WO1988000403A1 (en) | 1988-01-14 |
Family
ID=26481779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1987/000452 WO1988000403A1 (en) | 1986-06-30 | 1987-06-30 | Gas laser |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1988000403A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7260134B2 (en) * | 2004-02-06 | 2007-08-21 | Coherent, Inc. | Dielectric coupled CO2 slab laser |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4949594A (en) * | 1972-05-08 | 1974-05-14 | ||
JPS5068789A (en) * | 1973-10-23 | 1975-06-09 | ||
JPS5783078A (en) * | 1980-09-18 | 1982-05-24 | Comp Generale Electricite | Gas laser |
JPS60187076A (en) * | 1984-03-07 | 1985-09-24 | Nec Corp | Gas laser device |
JPS6190486A (en) * | 1984-10-09 | 1986-05-08 | Mitsubishi Electric Corp | Short pulse laser device of discharge excitation type |
JPS6190485A (en) * | 1984-10-09 | 1986-05-08 | Mitsubishi Electric Corp | Pulse laser oscillator |
JPS6183069U (en) * | 1984-11-07 | 1986-06-02 | ||
JPS6194365U (en) * | 1984-11-26 | 1986-06-18 | ||
JPS6242474A (en) * | 1985-08-19 | 1987-02-24 | Nippon Kogaku Kk <Nikon> | Pre-ionization type excimer laser device |
JPS6281077A (en) * | 1985-10-03 | 1987-04-14 | Nippon Kogaku Kk <Nikon> | X-ray automatically preionizing, discharge type laser |
-
1987
- 1987-06-30 WO PCT/JP1987/000452 patent/WO1988000403A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4949594A (en) * | 1972-05-08 | 1974-05-14 | ||
JPS5068789A (en) * | 1973-10-23 | 1975-06-09 | ||
JPS5783078A (en) * | 1980-09-18 | 1982-05-24 | Comp Generale Electricite | Gas laser |
JPS60187076A (en) * | 1984-03-07 | 1985-09-24 | Nec Corp | Gas laser device |
JPS6190486A (en) * | 1984-10-09 | 1986-05-08 | Mitsubishi Electric Corp | Short pulse laser device of discharge excitation type |
JPS6190485A (en) * | 1984-10-09 | 1986-05-08 | Mitsubishi Electric Corp | Pulse laser oscillator |
JPS6183069U (en) * | 1984-11-07 | 1986-06-02 | ||
JPS6194365U (en) * | 1984-11-26 | 1986-06-18 | ||
JPS6242474A (en) * | 1985-08-19 | 1987-02-24 | Nippon Kogaku Kk <Nikon> | Pre-ionization type excimer laser device |
JPS6281077A (en) * | 1985-10-03 | 1987-04-14 | Nippon Kogaku Kk <Nikon> | X-ray automatically preionizing, discharge type laser |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7260134B2 (en) * | 2004-02-06 | 2007-08-21 | Coherent, Inc. | Dielectric coupled CO2 slab laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6466599B1 (en) | Discharge unit for a high repetition rate excimer or molecular fluorine laser | |
JPH10223955A (en) | Design of aerodynamic chamber for high pulse repetition rate excimer laser | |
US6654402B1 (en) | Corona preionization electrode unit for use in gas laser apparatus | |
JP2001168432A (en) | Gas laser emitting uv-rays | |
WO1988000403A1 (en) | Gas laser | |
JP3154584B2 (en) | Discharge excitation gas laser device | |
JPS6190485A (en) | Pulse laser oscillator | |
JPS5848487A (en) | Gas laser oscillator | |
JPS60178681A (en) | Gas laser device | |
Komi et al. | Compact, semi‐sealed‐off, high‐repetition‐rate XeCl laser with a surface‐wire‐corona preionization | |
JP3764257B2 (en) | Coaxial gas laser device | |
JP2002151768A (en) | Fluorine laser device for exposure | |
JP4450980B2 (en) | AC discharge gas laser oscillator | |
Sugii et al. | Compact, semi‐sealed‐off, high‐repetition‐rate transversely excited atmospheric‐pressure CO2 laser with a surface‐wire‐corona preionization | |
JPH10303487A (en) | Coaxial gas laser excitation method and coaxial gas laser device | |
JPS6344779A (en) | Gas laser system | |
JPH09214021A (en) | Gas laser device | |
JP2581377B2 (en) | Excimer laser device | |
JPH0631731Y2 (en) | Gas laser oscillator | |
JP4484144B2 (en) | Discharge excitation gas laser device | |
JPS6281078A (en) | Laser oscillator | |
JPH11112300A (en) | Discharge circuit for pulse laser | |
JPS62243379A (en) | Gas pulse laser | |
JPH04307776A (en) | Gas laser oscillation device | |
JPH05327087A (en) | Discharge stabilizing structure for laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR |