JPS6242474A - Pre-ionization type excimer laser device - Google Patents

Pre-ionization type excimer laser device

Info

Publication number
JPS6242474A
JPS6242474A JP18142485A JP18142485A JPS6242474A JP S6242474 A JPS6242474 A JP S6242474A JP 18142485 A JP18142485 A JP 18142485A JP 18142485 A JP18142485 A JP 18142485A JP S6242474 A JPS6242474 A JP S6242474A
Authority
JP
Japan
Prior art keywords
ionization
laser
main discharge
gas
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18142485A
Other languages
Japanese (ja)
Inventor
Shinichiro Kawamura
信一郎 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP18142485A priority Critical patent/JPS6242474A/en
Publication of JPS6242474A publication Critical patent/JPS6242474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Abstract

PURPOSE:To obtain an ultraviolet ray pre-ionization discharge type excimer laser of less laser gas contamination by spatially isolating the regions for generating ultraviolet rays for pre-ionization and the main discharge region. CONSTITUTION:Charges are stored in a storage capacitor 4 through a charging coil 5. When a switching device 6 becomes conductive, the stored charges move to a peaking capacitor 8 through the gap between electrodes 9a, 9b for generating ultraviolet rays for pre-ionization. At this time, the ultraviolet light emanating between the electrodes 9a, 9b penetrates through a glass tube 10 which is made of a material having a high transmittance in the ultraviolet region, pre-ionizing the laser gas between main discharge electrodes 1, 2. Since the glass tube 10 is completely isolated from the laser chamber LC, the dust due to the spark between the electrodes 9a, 9b does not mix into the laser chamber LC. Thus, the main discharge region A is completely isolated from the regions for generating ultraviolet rays for pre-ionization.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、予備電離式放電型エキシマレーザ−装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a pre-ionization discharge excimer laser device.

(発明の背景) 強力な紫外線光源として注目されている放電励起型エキ
シマレーザ−は、小型化に適しており、また比較的高い
ピーク出力を効率よく取り出せる特徴をもっていること
から、実用化に向けて盛んに開発されている。通常、エ
キシマレーザ−を発振させるには、数気圧程度のガス圧
力を必要とするので、主放電電極間にただ高電圧を印加
するだけではレーザーガスを放電励起することは困難で
ある。このため、主放電を起こす前に、主放電電極間に
あるガスを予備的に電離しておくことにより主放電が行
われ斗る領域に一様な電子密度分布の電離状態を形成さ
せてから、主放電を行なう方式がとられている。この予
備電離の方式には、(i)X線予備電離方式、(ii)
電子線予備電離方式(iii)DCIす放電子0ra7
rJ、離方式、(iv ) 紫’A’hl予備電離方式
などがあるが、以下の説明では(iv)の紫外線予備電
離方式による。
(Background of the Invention) Discharge-excited excimer lasers, which are attracting attention as powerful ultraviolet light sources, are suitable for miniaturization and are characterized by the ability to efficiently extract relatively high peak output, so they are being developed for practical use. It is being actively developed. Normally, to oscillate an excimer laser, a gas pressure of several atmospheres is required, so it is difficult to discharge and excite the laser gas simply by applying a high voltage between the main discharge electrodes. Therefore, before the main discharge occurs, the gas between the main discharge electrodes is preliminarily ionized to form an ionized state with a uniform electron density distribution in the area where the main discharge will occur. , a method is used in which main discharge is performed. This pre-ionization method includes (i) X-ray pre-ionization method, (ii)
Electron beam pre-ionization method (iii) DCI discharge electron 0ra7
rJ, separation method, (iv) purple 'A'hl pre-ionization method, etc., but the following explanation will be based on (iv) ultraviolet pre-ionization method.

紫外線の発生方法は、第2図に示すように、レーザーチ
ャンバー内の主放電電極1.2の近傍に設けた予備電離
用紫外線発生電極9aと9bの間に電圧を印加してスパ
ークを起こし、ここで発生する紫外線UVを利用するこ
とが最も容易で、広く用いられている。
As shown in FIG. 2, the ultraviolet rays are generated by applying a voltage between the preliminary ionization ultraviolet generating electrodes 9a and 9b provided near the main discharge electrode 1.2 in the laser chamber to generate a spark. Utilizing the ultraviolet rays generated here is the easiest and most widely used method.

また、第3図に示すように、一方の主放電電極1と予備
電離用紫外線発生電極9aとの間でスバ−クさせてもよ
い。
Alternatively, as shown in FIG. 3, sparks may be caused between one main discharge electrode 1 and the pre-ionization ultraviolet ray generating electrode 9a.

いずれにしても、一様な主放電を得るためには、予備電
離によって10”〜10’  (cm−’)以上の電子
密度を、主放電させたい領域に一様に分布させておく必
要があり、複数の予備電離電極で強いスパークを生じさ
せなければならない。しかし、予備電離用紫外線発生電
極間でのスパークは、強い久バッタリングを伴うので、
これによって多量の微塵状の不純物がレーザーガスを汚
染することになる。主放電電極間で起こす放電はグロー
放電であり、スパークによる粉塵発生は極めて少ない。
In any case, in order to obtain a uniform main discharge, it is necessary to uniformly distribute an electron density of 10'' to 10'(cm-') or more in the area where the main discharge is desired by preliminary ionization. However, sparks between the pre-ionization ultraviolet generating electrodes are accompanied by strong, long-lasting battering.
This results in a large amount of particulate impurities contaminating the laser gas. The discharge that occurs between the main discharge electrodes is a glow discharge, and the generation of dust due to sparks is extremely small.

よって、予備電離の為のスパークに伴うこのガス汚染が
レーザーの寿命を著しく短くする最大の原因である。ガ
ス汚染は、レーザー発振効率を低下させ、また放電を不
安定にするばかりでなく、レーザー出力窓、レーザーミ
ラー上に汚染物質が堆積し、レーザー出力の低下をもた
らす。特に、ノ\ロゲンガスを用いる希ガスハライドレ
ーザー、ハライドレーザーは、予備電離電極の消耗が激
しいので、この傾向が強い。堆積塵は、発振光により光
化学反応を起こし、容易に除去できない固着膜となるの
でレーザー窓やミラーを再研磨することが必要になる。
Therefore, this gas contamination caused by sparks for pre-ionization is the biggest cause of significantly shortening the life of the laser. Gas contamination not only reduces laser oscillation efficiency and makes discharge unstable, but also causes contaminants to accumulate on the laser output window and laser mirror, resulting in a decrease in laser output. This tendency is particularly strong in rare gas halide lasers and halide lasers that use halogen gas because the pre-ionization electrode is rapidly consumed. The accumulated dust causes a photochemical reaction by the oscillation light and becomes a fixed film that cannot be easily removed, so it is necessary to repolish the laser window and mirror.

レーザー窓やミラーを交換する手順は、(1)レーザー
ガスを排気し、レーザーチャンバーを真空にする。(2
)不活性ガスを充填し、再排気する。これを2〜3回繰
り返し、ハロゲンガスを完全に除去する。(3)不活性
ガスを大気圧よりも、やや高めの圧力に保ちながら、窓
やミラーをはずし、交換する。(4)再度、真空に引い
た後、不活性ガスを充填する。これを2〜3回繰り返し
、交換の際にレーザーチャンバー内に混入した空気やレ
ーザー窓、ミラーに吸着しているmff1水分を除去す
る。(5) (41の工程が終わったら再び真空に引き
、レーザーガスを充填する。レーザーガスのバッファガ
スとしてHeガスを用いている場合がほとんどなので、
上記の不活性ガスにN2ガスを用いることは純度を低下
させる懸念があり、高純度のHeガスを用いる。また、
レーザーガスが劣化していなくても、窓、ミラーの交換
には必ず、ガスの全か′ 入れ換えで必要となるので、高価なガスを排出しなけれ
ばならない。
The steps to replace the laser window and mirror are: (1) Exhaust the laser gas and evacuate the laser chamber. (2
) Fill with inert gas and re-evacuate. Repeat this 2 to 3 times to completely remove the halogen gas. (3) While keeping the inert gas at a pressure slightly higher than atmospheric pressure, remove and replace windows and mirrors. (4) After evacuating the chamber again, fill it with inert gas. Repeat this 2 to 3 times to remove air mixed into the laser chamber and mff1 moisture adsorbed on the laser window and mirror during replacement. (5) (After step 41 is completed, evacuate again and fill with laser gas. In most cases, He gas is used as a buffer gas for laser gas.
If N2 gas is used as the above-mentioned inert gas, there is a concern that the purity will be lowered, so high-purity He gas is used. Also,
Even if the laser gas has not deteriorated, replacing windows and mirrors always requires replacing the entire gas, which means expensive gas must be exhausted.

以上のように、従来の紫外線予備電離式放電型エキシマ
レーザ−は、スパークによって生じた粉塵がレーザーガ
ス汚染をもたらし、レーザー発振特性が低下する為、頻
繁に部品を交換する必要があるばかりでなく、部品の交
換作業が面倒であり、高価なガスを多量に必要とし、維
持コストが高いという欠点があった。
As mentioned above, in conventional ultraviolet pre-ionization discharge excimer lasers, the dust generated by the spark contaminates the laser gas and deteriorates the laser oscillation characteristics, which not only requires frequent parts replacement. However, the disadvantages are that the replacement of parts is troublesome, a large amount of expensive gas is required, and maintenance costs are high.

(発明の目的) 本発明は、これらの欠点を改善し、レーザーガス汚染の
少ない紫外線子O!電離式放電型エキシマレーザ−を得
ることを目的とする。
(Object of the Invention) The present invention improves these drawbacks and provides ultraviolet O! with less laser gas contamination! The purpose is to obtain an ionization discharge type excimer laser.

(発明の概要) 本発明は、予備電離の為の紫外線発生用電極を設ける場
所と、主放電電極を設ける場所とを空間的に隔離したこ
とを技術的要点としている。
(Summary of the Invention) The technical point of the present invention is that the location where the ultraviolet ray generation electrode for preliminary ionization is provided is spatially separated from the location where the main discharge electrode is provided.

(実施例) 第1a図及び第1b図は本発明の第1の実施例である。(Example) Figures 1a and 1b show a first embodiment of the invention.

第1a図はレーザーチャンバーLC内における主放電電
極1,2付近の光軸方向(紙面に垂直)に対して垂直な
断面図を示し、又第1b図は予備電離用紫外線発生電極
の構造を示す断面図を示す。端子3には、高電圧電源が
接続されており、ストレージキャパシター4には、チャ
ージングコイル5を通して、電荷が蓄えられる。サイラ
トロンやスパークギヤツブなどの大電流高速スイッチン
グ素子6 (以下、単にスイッチング素子と呼ぶ)のト
リガ一端子7に、トリガー信号を送ることにより、スイ
ッチング素子6は導通状態となり、ストレージキャパシ
ター4に蓄えられていた電荷は予備電離用紫外線発生電
極9a、9b間のギャップを通して、ピーキングキャパ
シター8に移行する。この時、予備電離用紫外線発生電
極間のギャップで生じたスパークが発する紫外光は、ガ
ラスチューブ10を透過して、主放電電極1゜2間のレ
ーザーガスを予備電離する。ここで、ガラスチューブI
Oは、例えば、石英製、フン化マグネシウム製、フッ化
カルシウム製、フッ化すチウム製などの紫外域で透過率
の高い材質でつくられる。また、ガラスチューブ10内
には、He。
Figure 1a shows a sectional view perpendicular to the optical axis direction (perpendicular to the plane of the paper) near the main discharge electrodes 1 and 2 in the laser chamber LC, and Figure 1b shows the structure of the ultraviolet ray generating electrode for pre-ionization. A cross-sectional view is shown. A high voltage power supply is connected to the terminal 3, and charges are stored in the storage capacitor 4 through a charging coil 5. By sending a trigger signal to the trigger terminal 7 of a high-current high-speed switching element 6 (hereinafter simply referred to as a switching element) such as a thyratron or spark gear, the switching element 6 becomes conductive and the energy is stored in the storage capacitor 4. The electric charge transferred to the peaking capacitor 8 passes through the gap between the ultraviolet ray generating electrodes 9a and 9b for pre-ionization. At this time, the ultraviolet light emitted by the spark generated in the gap between the ultraviolet generating electrodes for pre-ionization passes through the glass tube 10 and pre-ionizes the laser gas between the main discharge electrodes 1.degree. Here, glass tube I
O is made of a material with high transmittance in the ultraviolet region, such as quartz, magnesium fluoride, calcium fluoride, and stium fluoride. Moreover, He is contained in the glass tube 10.

Ar、Kr、Xeなどの放電用ガスが封入されており、
かつ該放電用ガスはチューブ内をコンプレッサーにより
高速に移動せしめる。ガラスチューブ10はレーザーチ
ャンバーLCとは完全に隔離されているので、予備電離
用紫外線発生電極間のギャップで生じたスパークによる
粉塵はレーザーチャンバーLC内には混入しない。さら
に、ガラした後に、再びガラスチューブ10内に循環す
る様に構成すればさらに良い。
It is filled with discharge gas such as Ar, Kr, and Xe.
Moreover, the discharge gas is moved at high speed within the tube by a compressor. Since the glass tube 10 is completely isolated from the laser chamber LC, dust caused by sparks generated in the gap between the preionization ultraviolet ray generating electrodes does not enter the laser chamber LC. Furthermore, it is even better if the material is configured so that it is circulated within the glass tube 10 again after being emptied.

以上の如く主放電領域Aと予備電離用紫外線発生領域B
とは完全に隔離されている。
As described above, the main discharge area A and the pre-ionization ultraviolet ray generation area B
is completely isolated from.

第4図は、本発明の第2の実施例であって、窓11によ
って、主放電領域Aと予備電離用紫外線発生領域Bとが
隔離されている。窓11の材質は、第1の実施例のガラ
スチューブ10と同じものがミックス、アクリルなどの
絶縁体が用いられる。
FIG. 4 shows a second embodiment of the present invention, in which a main discharge region A and a pre-ionization ultraviolet ray generation region B are separated by a window 11. The material of the window 11 is the same as that of the glass tube 10 of the first embodiment, or an insulating material such as acrylic is used.

予備電離用紫外線発生領域Bには第1の実施例と同じ放
電用ガスが封入されており、これを第1の実施例同様コ
ンプレッサーで循環し、フィルターで粉塵をトラップし
ても良い。
The same discharge gas as in the first embodiment is sealed in the pre-ionization ultraviolet ray generation region B, and as in the first embodiment, this may be circulated by a compressor and dust may be trapped by a filter.

第5図は、本発明の第3の実施例であって、紫外線発生
用スパークプラグ13には、ガスチューブ14が接続さ
れている。プラグ13の断面詳細図を第6図に示す。予
備電離用紫外線発生電極9a。
FIG. 5 shows a third embodiment of the present invention, in which a gas tube 14 is connected to a spark plug 13 for generating ultraviolet rays. A detailed cross-sectional view of the plug 13 is shown in FIG. Pre-ionization ultraviolet ray generating electrode 9a.

9bは、ガラスチューブ17をはさんで、絶縁体より成
る外枠18.19が螺合され、これらが一体的に固定さ
れている。20は、プラグの内側と起こし、ここで発生
した紫外線UVは、ガラスチューブ17.外枠18の開
口部21を通して主放電領域Aにあるレーザーガスを照
射し、予備電離する。また、スパークによって生じた粉
塵は、放電用ガスを矢印り方向に流すことにより、プラ
グ13の内壁を汚すことなしに除去できる。ガラスチュ
ーブ14をフィルターに接続し、該フィルターを介して
循環できる系にしておけば、予備電離プラグには常に清
浄な放電ガスが送り込まれる。
Outer frames 18 and 19 made of an insulator are screwed together with the glass tube 17 in between, and these are integrally fixed. 20 is placed inside the plug, and the ultraviolet rays generated here are transmitted through the glass tube 17. Laser gas in the main discharge area A is irradiated through the opening 21 of the outer frame 18 for preliminary ionization. Further, dust generated by the spark can be removed without staining the inner wall of the plug 13 by flowing the discharge gas in the direction of the arrow. By connecting the glass tube 14 to a filter and creating a system that allows circulation through the filter, clean discharge gas is always sent to the pre-ionization plug.

また、第7図に示すようにガラスチューブlOの表面ま
たは近傍に反射体21を設けることにより、紫外線発生
電極9a、9bで発生した紫外線UVが主放電電極方向
へ反射するようにすれば、予備電離が有効に行なえる。
Furthermore, as shown in FIG. 7, by providing a reflector 21 on or near the surface of the glass tube 10, the ultraviolet rays generated by the ultraviolet rays generating electrodes 9a and 9b are reflected toward the main discharge electrode. Ionization can be performed effectively.

第1図や第5図におけるガラスチューブ10゜17はス
パークで発生した紫外線を発散させ、主放電領域を一様
性よく照射することができる。
The glass tubes 10.degree. 17 in FIGS. 1 and 5 can diffuse ultraviolet rays generated by the spark and can uniformly irradiate the main discharge area.

(発明の効果) 本発明によれば、ガス劣化の主な原因である予備電離用
紫外線発生電極のスパークで生じた粉塵を空間的に主放
電領域と分離できるので、レーザーガスの寿命が延び、
高価なレーザーガスを有効に使用できる利点があるのみ
ならず、レーザー窓、レー、ザーミラーに及ぼす粉塵に
よる汚染を著しくう運b( 低憬することができるので、レーザー窓、ミラー交換に
要する手間と時間と費用を軽減できる。
(Effects of the Invention) According to the present invention, the dust generated by the spark of the ultraviolet generating electrode for pre-ionization, which is the main cause of gas deterioration, can be spatially separated from the main discharge region, thereby extending the life of the laser gas.
Not only does it have the advantage of effectively using expensive laser gas, but it also significantly reduces dust contamination on laser windows, lasers, and laser mirrors, reducing the time and effort required to replace laser windows and mirrors. It can save time and cost.

また、予備電離用紫外線発生領域には、ハロゲンガスを
含まない純粋不活性ガスのみしか存在しないので、スパ
ークによる電極の消耗は少なく、又不活性ガスを流して
おけば予備電離用紫外線が通るガラス部の汚れは殆んど
無視できる。
In addition, since only pure inert gas that does not contain halogen gas exists in the pre-ionizing ultraviolet ray generation area, there is little wear on the electrodes due to sparks, and if the inert gas is passed through the glass, the pre-ionizing ultraviolet rays can pass through. The dirt on the parts can be almost ignored.

更に、従来のレーザーでは、高繰り返し発振を行なう場
合循環ファンを用いて予備電離用紫外線発生領域と主放
電領域から放電後の劣化したレーザーガスを追い出し、
劣化していないレーザーガスを送り込む必要があるが、
繰り返し周波数を上げてゆ(と、発生する汚染物質の量
が急激に増し、循環ファンの回転速度を大きくしなけれ
ばならない。しかし、循環ファンの回転能力には制限が
あるので、最大繰り返し発振周波数は、従来50011
zが限度であった。しかし、本発明によれば、予備電離
で発生した汚染物質は、その絶対量が少ない上、主放電
領域には侵入しないので、循環ファンの回転速度を大き
くしなくても、操り返し発振周波数を大きくすることが
できるという効果を有する。
Furthermore, in conventional lasers, when performing high repetition oscillation, a circulation fan is used to drive out the deteriorated laser gas after discharge from the pre-ionization ultraviolet ray generation region and the main discharge region.
It is necessary to send laser gas that has not deteriorated, but
When the repetition frequency is increased, the amount of pollutants generated increases rapidly, and the rotational speed of the circulation fan must be increased. However, since the rotational capacity of the circulation fan is limited, the maximum repetition frequency is conventionally 50011
z was the limit. However, according to the present invention, the absolute amount of contaminants generated by pre-ionization is small and does not invade the main discharge area, so the oscillation frequency can be controlled without increasing the rotational speed of the circulation fan. It has the effect that it can be made larger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例、第2図、第3図は従来
の予備電離用紫外線発生電極の 構造を示す断面図、 第4図は本発明の第2の実施例・ 第5図は本発明の第3の実施例・ 第6図は紫外線発生用スパークプラグの断面図、第7図
は本発明の第4の実施例である。 (主要部分の符号の説明)
FIG. 1 shows a first embodiment of the present invention, FIGS. 2 and 3 are cross-sectional views showing the structure of a conventional ultraviolet ray generating electrode for pre-ionization, and FIG. 4 shows a second embodiment of the present invention. FIG. 5 shows a third embodiment of the present invention, FIG. 6 is a sectional view of a spark plug for generating ultraviolet rays, and FIG. 7 shows a fourth embodiment of the present invention. (Explanation of symbols of main parts)

Claims (1)

【特許請求の範囲】[Claims] 1、紫外線で主放電領域にあるレーザーガスを予備電離
し、その後に主放電を起こさせることによってレーザー
発振を得るエキシマレーザーにおいて、予備電離用紫外
線発生領域と主放電領域とを紫外線の透過可能な材料で
隔離することを特徴とする予備電離式エキシマレーザー
装置。
1. In excimer lasers that obtain laser oscillation by pre-ionizing laser gas in the main discharge region with ultraviolet rays and then causing main discharge, ultraviolet rays can pass through the pre-ionization ultraviolet generation region and the main discharge region. A pre-ionization excimer laser device characterized by isolation by a material.
JP18142485A 1985-08-19 1985-08-19 Pre-ionization type excimer laser device Pending JPS6242474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18142485A JPS6242474A (en) 1985-08-19 1985-08-19 Pre-ionization type excimer laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18142485A JPS6242474A (en) 1985-08-19 1985-08-19 Pre-ionization type excimer laser device

Publications (1)

Publication Number Publication Date
JPS6242474A true JPS6242474A (en) 1987-02-24

Family

ID=16100529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18142485A Pending JPS6242474A (en) 1985-08-19 1985-08-19 Pre-ionization type excimer laser device

Country Status (1)

Country Link
JP (1) JPS6242474A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636886A (en) * 1986-06-27 1988-01-12 Nec Corp Lateral excitation type laser apparatus
WO1988000403A1 (en) * 1986-06-30 1988-01-14 Kabushiki Kaisha Komatsu Seisakusho Gas laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636886A (en) * 1986-06-27 1988-01-12 Nec Corp Lateral excitation type laser apparatus
WO1988000403A1 (en) * 1986-06-30 1988-01-14 Kabushiki Kaisha Komatsu Seisakusho Gas laser

Similar Documents

Publication Publication Date Title
US4393505A (en) Gas discharge laser having a buffer gas of neon
RU2240636C2 (en) Narrow-band gas-doped gas laser
JPH05160491A (en) Pulsed gas discharge laser
US4876690A (en) Metal vapor laser apparatus
US20030034738A1 (en) High pressure electric discharge lamp
JPS6242474A (en) Pre-ionization type excimer laser device
JPS636886A (en) Lateral excitation type laser apparatus
US4905248A (en) Metal vapor laser apparatus
JP2792689B2 (en) Optical component protection method
JP4326172B2 (en) Low-pressure axial excitation type F2 laser device
US3783405A (en) Laser having means for defogging the optical cavity thereof
JP2874350B2 (en) Excimer laser equipment
JPH04237176A (en) Excimer laser device
JPH04211184A (en) Discharge excitation excimer laser device
JP2592821B2 (en) Gas laser device
JP2000077754A (en) Laser
JP2699894B2 (en) X-ray preionization discharge excitation gas laser apparatus and oscillation method thereof
JPS6281077A (en) X-ray automatically preionizing, discharge type laser
JPH0621546A (en) Pumping method of alkali halide ion excimer laser
JPS61168973A (en) Gas laser unit
Toth et al. A new VUV laser: gain studies of Cs2+ F-ionic excimer molecules photoexcited by laser produced plasmas
JPH04268778A (en) Discharge excitation excimer laser device
JPH04307776A (en) Gas laser oscillation device
JPS61176178A (en) Laser chamber of gas circulation system discharge type
JPH09298330A (en) Laser device