JPS6190486A - Short pulse laser device of discharge excitation type - Google Patents

Short pulse laser device of discharge excitation type

Info

Publication number
JPS6190486A
JPS6190486A JP21284384A JP21284384A JPS6190486A JP S6190486 A JPS6190486 A JP S6190486A JP 21284384 A JP21284384 A JP 21284384A JP 21284384 A JP21284384 A JP 21284384A JP S6190486 A JPS6190486 A JP S6190486A
Authority
JP
Japan
Prior art keywords
cathode
discharge
dielectric
laser device
pulse laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21284384A
Other languages
Japanese (ja)
Other versions
JPH0344429B2 (en
Inventor
Takeo Haruta
春田 健雄
Hitoshi Wakata
若田 仁志
Yukio Sato
行雄 佐藤
Haruhiko Nagai
治彦 永井
Hajime Nakatani
元 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21284384A priority Critical patent/JPS6190486A/en
Priority to US06/782,568 priority patent/US4686682A/en
Priority to DE19853588088 priority patent/DE3588088T2/en
Priority to EP93100578A priority patent/EP0542718B1/en
Priority to DE19853588118 priority patent/DE3588118T2/en
Priority to EP94114362A priority patent/EP0637106B1/en
Priority to DE19853588137 priority patent/DE3588137T2/en
Priority to EP93100550A priority patent/EP0543795B1/en
Priority to DE3587852T priority patent/DE3587852T2/en
Priority to EP85112484A priority patent/EP0177888B1/en
Priority to CA000492327A priority patent/CA1259122A/en
Publication of JPS6190486A publication Critical patent/JPS6190486A/en
Publication of JPH0344429B2 publication Critical patent/JPH0344429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0385Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0384Auxiliary electrodes, e.g. for pre-ionisation or triggering, or particular adaptations therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Abstract

PURPOSE:To enable the increase in stability and reliability and the lead-out of large-diameter laser beams by a method wherein the cathode is a conductor having a plurality of apertures, and the cathode and a dielectric are arranged in adhesion, thus generating creeping discharge over the dielectric surface. CONSTITUTION:The cathode 24 is a conductor having a plurality of apertures 25, and the cathode 24 and the dielectric 12 are arranged in adhesion. An auxiliary electrode 14 is arranged so as to be present on the back of the cathode 24 and opposed to the cathode 24 via dielectric 12. Therefore, the throw-in power of reserve discharge and the thickness of a reserve discharge space can be treated as independent factors, and reserve discharge of high throw-in power density over said electric surface is enabled; thereby, uniform glow discharge can be obtained over large widths of the main discharge. As a result, it is possible to increase in diameter of the laser beam and in output, and the electrode structure is simplified. Besides, the heat dissipation of said cathode is facilitated, and this device becomes durable to laser oscillation of high-speed repetition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2気体レーザのうち、放電励起型短パルスレー
ザを対象とするものであって、特に七の[極構造に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to discharge-excited short-pulse lasers among two-gas lasers, and particularly relates to the seven-pole structure.

〔従来の技術〕[Conventional technology]

レーザ発振1に得るために汀、レーザ媒質中で空間的に
均一な放電全行うことが必要条件である。
In order to obtain laser oscillation 1, it is necessary to perform a spatially uniform discharge in the laser medium.

ところが、エキシマレーザやTKACO黛レーザなどの
短パルスレーザに右いてげ、その動作圧力が数気圧とい
う面圧である九め、放電が収束しtアークになり易い。
However, when using short pulse lasers such as excimer lasers and TKACO lasers, the operating pressure of which is a surface pressure of several atmospheres, the discharge tends to converge and become a t-arc.

これを防ぐため、主放電に先立って予め主放電領域に均
一に電子の種をばらまいておく予備電離を行うことが通
例となっている。
In order to prevent this, it is customary to perform preliminary ionization to uniformly disperse electron seeds in the main discharge region in advance of the main discharge.

以下、第7図〜第10因をもとに従来の技術について説
明する。
Hereinafter, the conventional technology will be explained based on FIGS. 7 to 10 factors.

第7因汀1例えば(佐藤他、エレクトロ二クス二8月号
、 5a1p(19ss)) 1どに示されているty
v予備電離方式エキシマレーザvPr1tを示す断面図
であり、図において、(1)は高電圧電源、(2)はキ
ャパシター、(31rsi[抵抗141Hコイ/’16
1i*ヤバシター、 (6a)、 (6’b)は予備電
離ピン、(7Iげギャップ。
7th factor 1 For example (Sato et al., Electronics August issue, 5a1p (19ss)) ty shown in 1.
It is a sectional view showing v pre-ionization type excimer laser vPr1t, in which (1) is a high voltage power supply, (2) is a capacitor, (31rsi [resistance 141H coil/'16
(6a), (6'b) are pre-ionization pins, (7I gap).

(8)に陰極、(9)に陽極、(101a主放′R域、
 Btuげスイッチである。
(8) is a cathode, (9) is an anode, (101a main radiation R region,
It is a Btuage switch.

第8図汀、後述するような上記従来例の欠点を補うべく
改良された他の従来例であり1例えば(J、Lacha
mbre at &t、、工EKE Journal 
of QuantumE180trOniC#: vo
l Ql−9+ NO,4,4597(1973) 。
FIG.
mbre at &t,, Engineering EKE Journal
of QuantumE180trOniC#: vo
l Ql-9+ NO, 4, 4597 (1973).

M、Blancharcl It at、、 Jour
nal Of Applied 、Ph7−aica:
 vol 45. No、3.131)F (19)4
))などに示されているTKACOnレーザ装置を示す
断面図である。
M.Blancharcl It at,, Jour
nal Of Applied, Ph7-aica:
vol 45. No, 3.131)F (19)4
)) is a cross-sectional view showing the TKACON laser device shown in FIG.

但し、第8図のI!l!J路系は、第7図のものと同一
のものとじtため、これら文献例とは多少異なっている
。図において、α21は誘電体、f13はキャパシター
、Q41σ補助電極、呻はメツシュ陰極、uGは予m放
電域である。
However, I! in Figure 8! l! The J route system is the same as that shown in FIG. 7, so it is somewhat different from these literature examples. In the figure, α21 is a dielectric, f13 is a capacitor, Q41σ is an auxiliary electrode, O is a mesh cathode, and uG is a pre-discharge area.

第9図汀、上記第8図の変形例であって1例えば(Y、
Pan at az、、  The Review o
f ScientificInstruments: 
vox、 43. No、4.662p (19’72
) )に示されているTEAOO*レーザ装置の!極部
構造を示す断面図である。図において、aηけパイレッ
クスガラス管、C181げ導層、 DIは予備放電空間
、■げ鏑製給電部、仰げプラスチック支持台、■に絶縁
物である。
FIG. 9 shows a modification of FIG. 8, for example (Y,
Pan at az,, The Review o
f Scientific Instruments:
vox, 43. No, 4.662p (19'72
) of the TEAOO* laser device shown in )! FIG. 3 is a cross-sectional view showing the pole structure. In the figure, a is a Pyrex glass tube, C181 conductor layer, DI is a pre-discharge space, () is a power supply made of iron, a plastic support is raised, and (2) is an insulator.

第10図は第8図の畑の変形例であり、各f号は第8図
2よび第9因中のものと同一部分を示す。
FIG. 10 is a modification of the field in FIG. 8, and each number f indicates the same part as in factors 2 and 9 of FIG.

次に、これらの従来例の動作について説明する。Next, the operations of these conventional examples will be explained.

第7図において、為電圧w1源(りから供給される電荷
は、まずキャパシター(2)に蓄積される。次いで、ス
イッチ(1)1が導通状態になると、!?ヤノ(ジター
(2)からスイッチ(II)、さちにアースラインを介
して陽極(9)と予備電離ピン(6b)を!D予備電離
ビン(6a)、キャパシター(6)lコイル+41fc
経てキャノくジター(2)にもどるという[fiループ
によって、キャノくジター(2)に蓄積されていた電荷
に、キャノ(ジター(6)に移行される。この移行過程
の際に、予備電離ピン(6a)、 (6b)閾に設けら
れた微小なギャップI?+にぶいてアーク放1!が起こ
り、このアーク放電から紫外光が発生する。この紫外光
VCよって主放電球叫において党141埴が起こり(以
下、紫外光予備電離と称する)、主放電域+lotに1
0’−1a6個/cm’以上の電子が空間的に均一に供
給され、主放電の際に局部的にストリーマか成長するの
を押え、アーク放電管抑制する慟欧をする。一方、この
間にもキャパシター161への[荷の移行は進行してお
り。
In Fig. 7, the electric charge supplied from the voltage w1 source (ri) is first stored in the capacitor (2). Then, when the switch (1) becomes conductive, the electric charge is supplied from the jitter (2). Switch (II), then connect the anode (9) and pre-ionization pin (6b) via the ground line!D Pre-ionization bottle (6a), capacitor (6) l coil +41fc
The electric charge accumulated in the canonical jitter (2) is transferred to the canonical jitter (6) through the fi loop. During this transfer process, the pre-ionization pin (6a), (6b) Arc discharge 1! occurs across the minute gap I?+ provided at the threshold, and ultraviolet light is generated from this arc discharge. occurs (hereinafter referred to as ultraviolet light pre-ionization), and 1 in the main discharge area + lot.
0'-1a6 electrons/cm' or more are supplied spatially uniformly, suppressing the local growth of a streamer during the main discharge, and suppressing the arc discharge tube. Meanwhile, during this time, the load is still being transferred to the capacitor 161.

陰極(81と陽極(91の間の電圧に上昇している。や
がて、この電圧が破壊電圧に達すると、上記予備電離の
効果によって主放電域(1(I において空間的に均一
なパルス放電が得られる。
The voltage between the cathode (81) and the anode (91) increases. Eventually, when this voltage reaches the breakdown voltage, a spatially uniform pulse discharge occurs in the main discharge region (1 (I) due to the effect of pre-ionization. can get.

第8図の幼作は、予備を離郷を除いて、第7図と同様で
あるので、ここでけ予g1電離の動作機構を説明する。
Since the infant work shown in FIG. 8 is the same as that shown in FIG. 7 except for the preparation and departure, the operating mechanism of the preliminary g1 ionization will be explained here.

スイッチ1)1)が導通状態になるI21(pJにおい
ては、メック陰極線極弘と補助電極αIの間にはほとん
ど′シ位差が生じていないが、スイッチ(1)1が導通
状態と71!り、キャパシター(2)からキャパシター
(5)への1!荷の移行が始まると、メツシュm i 
J51と補助電憾(141との間に妬い電界か発生し、
予備放電空間cleにおいて誘電体(121を介した放
1tか起こる・(以下、この過程を気中予備放電と称す
る)。この故゛電より発生する紫外光は、上記第7因の
ようなアーク放電からのものよりも弱く、索外光子備電
離の効果も@まるか、この従来例の場合げ、むLろ予備
放電空間OGで生成し几電子の一部がメツシュ陰極呻2
通りぬけ主、*’*域+1(1の空間のうちメツシュ陰
極1)61の近傍に直置供給され、これが主放i!?空
間的に均一に起こさせる檀峨子となるという予備電に1
砿構が考えられている。
At I21 (pJ) when switch 1)1) is in a conductive state, there is almost no position difference between the MEC cathode ray pole and the auxiliary electrode αI, but when switch (1)1 is in a conductive state, 71! When the transfer of 1! load from capacitor (2) to capacitor (5) begins, mesh m i
A jealous electric field is generated between J51 and auxiliary electric field (141),
In the pre-discharge space cle, a discharge occurs via the dielectric (121) (hereinafter, this process is referred to as an air pre-discharge). It is weaker than that from electric discharge, and the effect of external photon ionization is also weaker.In this conventional example, some of the electrons generated in the preliminary discharge space OG are absorbed by the mesh cathode.
The main beam passing through is directly supplied near the *'* area +1 (mesh cathode 1 in 1 space) 61, and this is the main radiation i! ? 1 for the preliminary electric power that it becomes a Danga that causes it to wake up spatially uniformly.
A circular structure is being considered.

第9図はga図の変形で、補助g極を導線αりとして、
これをプラスチック支持台0で支えられたvg成体であ
るパイレックスガラスgar+中に配置し。
Figure 9 is a modification of the ga diagram, with the auxiliary g pole set as a conductor α,
This was placed in a VG adult Pyrex glass gar+ supported by a plastic support stand 0.

各4g1)1)を銅製の給電部翰に談合して同電位に保
持しているものである。また、陰極(8)は予備放電空
間四において気中予備放電が起こりやすいように、複数
の突起を設けた構造となっている。動作機構は上記第8
図のものと同様である。
Each of the 4g1) and 1) is held at the same potential by collocating them with a copper power supply wire. Further, the cathode (8) has a structure in which a plurality of protrusions are provided so that an air preliminary discharge can easily occur in the preliminary discharge space 4. The operating mechanism is the 8th above.
It is similar to the one shown in the figure.

第10図は第8図における誘電体a?と補助電極θ4を
ガラス管0秒と、その中に通され7+:専#I(+71
で置き換えたものであり、動作機構は上記第8図のもの
と同様である。
FIG. 10 shows the dielectric material a? The auxiliary electrode θ4 was passed through the glass tube for 0 seconds and 7+: Special #I (+71
The operating mechanism is the same as that shown in FIG. 8 above.

ところで、嬉8■ないし第10図に示した従来例におい
て、陰極]8)まtげメツシュ陰極a6)とガラス管0
7+またけ誘電体1)2’との間の距離(a下、予備放
電空間の厚みと称する)は、予備放電空間(lαまたは
Hに投入される電力に影響し、ま九それ自身が予備放電
空間05′1友は四の体積を決めるものであるから、結
果として上記陰極と平行な面で考え九単位面積当りの電
子数を決める1に要なファクターである。
By the way, in the conventional examples shown in Figs.
The distance between 7+straddling dielectric 1) and 2' (referred to as the thickness of the pre-discharge space under a) affects the power input to the pre-discharge space (lα or Since the discharge space 05'1 determines the volume of 4, as a result, it is an essential factor for determining the number of electrons per unit area when considered in a plane parallel to the cathode.

第8図の例においては、陽極(91とメツシュ陰極c1
61との距離に比べて、かな9小さい厚みの予備放電空
間t161が設けられているのが通常である。この予備
放電空間OfAの厚みの影響を定量的に観測し72:報
告例灯ないが、a下のような傾向があることは明らかで
ある。すなわち、上記予備放1)空関OQの厚みが薄く
なるほど、気中予備放電の開始電圧は小さくなり、上記
空間(+61への投入成力も小さくなってしまう。しt
がって、十分な予備1に離効果を得ようとする際には、
ある程度の予備放電空間間(+1)1の厚みt−設ける
必要がある。但し、予備放電に消賀される電力の主7f
1)1)に/jl賃さnる電力に対する割合は、極力少
なく押えておく方が、レーザの゛電力効率の点から社好
ましいので、上記予備放電空間(I81Lv厚みは、陽
極(91とメツシュ酸gustとの間の距離(a下、主
放電ギャップ長と称する)に比較すれば十分短かいもの
にとどめておく方が蓋ましいO 第9図2よび第1O図の央り例においても同様にガラス
fi171とIIJG [tll)もしくはメツシュ$
4a−との間にげ、予備放電空間四が設けられるような
構造となっている。
In the example of FIG. 8, the anode (91) and mesh cathode c1
Normally, a pre-discharge space t161 is provided which has a thickness smaller than the distance from the pre-discharge space t161. The influence of the thickness of this pre-discharge space OfA was quantitatively observed, and although there are no reported examples, it is clear that there is a tendency as shown below. That is, the above pre-discharge 1) As the thickness of the air barrier OQ becomes thinner, the starting voltage of the air pre-discharge becomes smaller, and the input force into the above-mentioned space (+61) also becomes smaller.
Therefore, when trying to obtain a separation effect with sufficient reserve 1,
It is necessary to provide a certain amount of pre-discharge space (+1) with a thickness t-. However, the main 7f of power dissipated in preliminary discharge
1) From the point of view of laser power efficiency, it is preferable to keep the ratio of power to 1) as low as possible. It is more likely to keep it sufficiently short compared to the distance between the main discharge gap length and the main discharge gap length. Similarly, glass fi171 and IIJG [tll) or mesh $
The structure is such that a preliminary discharge space 4 is provided between the discharge chamber 4a and the discharge chamber 4a.

次に、第8図ないし第10図に示した従来例の予備電離
機構について、さらに詳しく言及する。
Next, the conventional pre-ionization mechanism shown in FIGS. 8 to 10 will be described in more detail.

これらの従来例でけ第7uの従来例と異なフ、主放電?
空間的に均一に起こすための1電子倉主放電械(Iot
の空間全体に均一に供給するのでなく。
These conventional examples differ from the 7th conventional example in that the main discharge?
1 electronic warehouse discharge machine (IoT
rather than supplying it evenly throughout the space.

陰極の近傍にのみ供給している。この方式の有効性は次
のようIc説明される。すなわち、例えば(J、工、L
evatter et at、、 Journal o
f AppliecL Phy−eics: vol、
51. No、l、 210F (1980) )に4
告されているように、アーク放′4を抑制する罠めVc
ぽ。
Supplied only near the cathode. The effectiveness of this method is explained as follows. That is, for example (J, Eng, L
evatter et at,, Journal o
f AppliecL Phy-eics: vol.
51. No.l, 210F (1980)) to 4
As mentioned, the trap Vc that suppresses the arc emission '4
Po.

空間電荷電界の効果により局所的にストリーマが進展す
るのを防げば良いので、暎−近傍に1)毫子?供給して
尉けば、第6図に示すように種電子σ#極(9)に引っ
ばられて電子なだれtAt−形収する一g、やがて電子
なだれ一同志がオーバラップすることにより空間電荷電
界の局所的な勾配全収り除き、ストリーマの暴走を防ぐ
ことかできるのである。
Since it is sufficient to prevent the streamer from developing locally due to the effect of the space charge electric field, it is necessary to prevent the streamer from developing locally. As shown in Figure 6, as shown in Figure 6, an electron avalanche is attracted by the seed electron σ# pole (9) and collects in the form of an electron avalanche tAt-. By completely eliminating the local gradient of the electric field, it is possible to prevent the streamer from running out of control.

したがって、陰極と平行な而で考えた単位面状当りの種
電子の教?、できるだけ多く供給した方が予ば電離効果
が大きいことになる。
Therefore, what is the theory of seed electrons per unit plane considering parallel to the cathode? , the ionization effect will be greater if as much as possible is supplied.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように構成されている従来の放電@起型短パルス
レーザ装置r!、それぞれ次のような問題点があった。
The conventional discharge @starting short pulse laser device configured as above! , each had the following problems.

g’y図に示し九装置け、゛主電極+81 、 +91
の両側から紫外光によって予備′d1j![?行う構造
であり、紫外光のfi透深さIcば@界がある九め、生
放′磁城(1のの幅を広げることができず1例えばエキ
シマレーザにおいては6〜8mm X 20〜25mm
 (!−言った長方形断面のレーザビームしか収り出す
ことができなかった。
The nine devices shown in the g'y figure are the main electrodes +81 and +91.
Preparation by ultraviolet light from both sides of 'd1j! [? It is a structure in which ultraviolet light has a fi penetration depth of Ic@ field, and since the width of the live radiation magnetic field (1) cannot be increased, for example, in an excimer laser, it is 6 to 8 mm x 20 to 25 mm.
(!-) I was only able to extract a laser beam with a rectangular cross section.

第8図に示した従来例は、上tの問題点fhla決する
ために考えられ7′l:構造であり、メツシュ省極弘の
背面から予備電線するため主1fl電域(l(ト)の鴫
を広げることが可能となっている。先述したようにこの
タイプのに米列でa1通常メツシュ暎補槽υが誘電体a
zからある距@rmして設けられている(M、Blan
charcl at at、 、 、70urna10
f Applied Phy−sica: VOl、 
45.  NO,3,131)F (1974)の例で
a3mrn )が、以下ば)、(ロ)のような問題点を
有する。
The conventional example shown in FIG. As mentioned earlier, in this type of column, a1 usually has a dielectric material a
It is provided at a certain distance @rm from z (M, Blan
charcl at at, , , 70urna10
f Applied Physica: VOl,
45. NO, 3, 131) In the example of F (1974), a3mrn) has the following problems: (b) and (b).

ピ) メツシュ陰極u51と誘電体1?の関の空間で生
成する電子の内、できる限り多くの電子をメツシュ陰極
9B+を通り向けて主放電域に供給した方か予備1)4
m効果の点で有利であることげ明らかである。
P) Metsch cathode u51 and dielectric 1? Of the electrons generated in the space between the two, as many electrons as possible are passed through the mesh cathode 9B+ and supplied to the main discharge area.
It is clear that this method is advantageous in terms of the m effect.

そこで、予備電1m!空関061の厚み全できるだけ錦
(。
So, 1m of backup electricity! The thickness of Kukan 061 is as brocade as possible.

すなわち予備電離空間061の体積を小さくしてやれば
、気中予備放電入力ごIIlが増し、メツシュ陰極04
に平行な平面で考え穴場合の単位面槓当りの生成電子数
を増すことになるし、生成しt電子がメツシュ陰4σシ
に遵するまでに分子との衝突により散乱される割合やイ
オンとの再結合に工りrf4威してしまう割合が謙少す
るので電管しい。しかしなから、従来例Vcヤいてすで
に説明し次ように、気中予備放電にふいて汀予備′−離
空間錘の厚み金薄くして、かつ投入電力を変らない(も
しくげ増丁)ようにすることは不可能である。
In other words, if the volume of the pre-ionization space 061 is made smaller, the air pre-discharge input will increase and the mesh cathode 04
The number of electrons generated per unit plane increases when the hole is considered in a plane parallel to The rate at which RF4 is used for recombination is low, so it seems like a tube. However, as already explained in the conventional example Vc, as follows, the thickness of the air reserve'-separate space weight is made thinner, and the input power remains unchanged (if the number of units is increased). It is impossible to do so.

(ロ) レーザのパルス発振を運いIfiり返しで行な
う際にげ埴極呻がイオンのf突により加熱されるため、
この熱の放牧が![l#どなる。メツシュ陰極ll6)
と誘電体1)21との間でa%窒間が狭く、はとんど対
流のない状態であるので、温度勾配に基づ〈熱@運しか
起こらない。したがってメツシュ陰極亀1と酵覗体12
’げ、でなるだけ近接した方が有利であるが、上述した
気中予備放電の投入電力の減少という関租が生ずる。
(b) When carrying the laser pulse oscillation and repeating Ifi, the ferrule is heated by the f collision of ions,
This heat grazing! [l# yell. mesh cathode ll6)
Since the space between the a% nitrogen and the dielectric 1) 21 is narrow and there is almost no convection, only heat flow occurs based on the temperature gradient. Therefore, the mesh cathode turtle 1 and the yeast body 12
Although it is advantageous to be as close to each other as possible, this comes at the expense of reducing the input power for the above-mentioned aerial preliminary discharge.

第10図の従来例においても同様の問題点がある。The conventional example shown in FIG. 10 also has similar problems.

第9図の例でけ、気中予備放電て生じた1子が供給され
易い形となっているが、陰極181の長手方向(紙面に
垂直な方向)にわたって陰[181の突起部とパイレッ
クスガラス管aηとtlE−に平行に保つコト、および
パイレックスガラス管口の中心に専@os’ltつすぐ
に通すことが事獲上電しく、鴎檀+JIIO長手方向に
おいて気中予備放電が起こりやすい所°と起こりにくい
所のむらが生じるという問題点や、#E極槽構造のもの
が複雑で製作が困峨であるという問題点があつt。
In the example shown in FIG. 9, the shape is such that the single molecule generated by the aerial preliminary discharge is easily supplied, but the projections of the cathode 181 and the Pyrex glass It is best to keep the tube aη and tlE- parallel to each other, and to pass it directly through the center of the Pyrex glass tube mouth, where air preliminary discharge is likely to occur in the longitudinal direction of the Odan + JIIO. There are problems in that unevenness occurs in places that are difficult to occur, and that the #E electrode tank structure is complex and difficult to manufacture.

この発≠灯、誘電体を介した放電を予備放電とする放電
励起型短パルスレーザ袋mにぶいて、促米の気中故醒で
agJり隨せなかった。予備電離空間の厚みというファ
クターと予備放電の投入4力というファクターと金それ
ぞれ独立なものとし。
When this light was emitted, agJ could not be achieved due to the aerial breakdown of the rice booster when it was applied to a discharge-excited short-pulse laser bag m which uses a discharge through a dielectric as a preliminary discharge. The factor of the thickness of the pre-ionization space, the four forces of input of the pre-discharge, and the gold are assumed to be independent.

それによって予備放tltを誘電体表面上のと(薄い厚
みの空間で発生させるという思想に基づいてなされたも
ので、A体的には簡易な電離構造で、かつ誘電体表面上
で、主放電域に対応する部分にわたって゛均一でシカ密
度の高い予備放電を発生させ。
This was done based on the idea that the preliminary discharge Tlt is generated on the dielectric surface (in a thin space), and the A-body has a simple ionization structure, and the main discharge is generated on the dielectric surface. Generate a uniform pre-discharge with high deer density over the corresponding area.

これにより安、巨性および信幀性が扁(、かつ大口径の
レーザビーム!−1iy、り出すことが可能な短](ル
スレーザfcit+得ることを目的とするものである。
As a result, the purpose is to obtain a laser beam fcit+ that is inexpensive, large-sized, and reliable, and has a large diameter.

〔問題点を解決する丸めの手段〕[Rounding method to solve problems]

この発明に係る放電励起型短パルスレーザ装置け、レー
ザ光軸方向を長手方向とし、相対向して配設された陰極
と陽極よりなる。主電極と、上記陰極の背面部に!EE
L、誘′シ体を介して上記陰極と対向する補助戒櫂と、
上記主tjdi間にパルス電圧を印加するパルス1)2
1)Mと、上記パルスl!l!回路の一部を形成するか
、ま九に上記パルスtgI烙とは独立したものであって
、上記補助成極と陰極の間に電圧を印加する回路とを備
える放電励起型短パルスレーザ袋置において、上記陰極
が151畝個の開孔部を有する4を体であj7、かつ上
記陰極と上&!訪電体とを密着させて配置し、上記肪酸
体表面に沿面放電を生成させることにより、上記主成極
間で発生する主放電の種となる電子を分布させるように
構成したものである。
The discharge-excited short-pulse laser device according to the present invention includes a cathode and an anode that are arranged opposite to each other, with the laser optical axis direction being the longitudinal direction. On the main electrode and the back of the above cathode! EE
L, an auxiliary receptacle facing the cathode via an attractant;
Pulse 1) 2 to apply pulse voltage between the above main tjdi
1) M and the above pulse l! l! A discharge-excited short-pulse laser device comprising a circuit that forms part of a circuit or is independent of the pulse TgI heat and applies a voltage between the auxiliary polarization and the cathode. , the cathode has 151 ridges of apertures, and the cathode and the upper &! The structure is such that electrons, which are the seeds of the main discharge generated between the main polarization regions, are distributed by arranging the current visiting body in close contact with the fatty acid body and generating a creeping discharge on the surface of the fatty acid body. .

〔作用〕[Effect]

このような陰極構代において汀、予1り放電σ誘電体(
I21の表面に沿つ友方向に形収されるため、放電の維
持電圧(ある沿面距離を放電させる際の放電場にかかる
電圧)σ、沿面距離によって決まり。
In such a cathode structure, a pre-discharge σ dielectric (
Since it is contained in the direction along the surface of I21, the discharge sustaining voltage (voltage applied to the discharge field when discharging over a certain creepage distance) σ is determined by the creepage distance.

予備放可部の厚みには依存しない。したがって。It does not depend on the thickness of the preliminary release part. therefore.

上記沿面距離を大抵〈とυ維持電圧を大きくすることに
より投入域力を増す一力、上記予備放′(部の厚みを薄
くすれば、極めて微少な体積に大きな故i1電力を投入
することが可能となり、放電電力密度の増大に伴って誘
電体表面の単位面積当りに生成する電子数が増加すると
共に予儲放電部の厚みか薄いことから、上記電子の主放
電9間への供給も有利になる。また、放電電力密fを著
しく高めれば、紫外光の発光彊(も強くなり、紫外光子
備電縞の効果も、かなりプラスされ、上:!i!、電子
数のさらなる増加にを与することになる。
Increasing the above creepage distance and increasing the υ maintenance voltage will increase the input power, and if the thickness of the preliminary discharge section is made thinner, it will be possible to input a large amount of power into an extremely small volume. As the discharge power density increases, the number of electrons generated per unit area of the dielectric surface increases, and since the pre-discharge part is thin, it is also advantageous to supply the electrons to the main discharge 9. In addition, if the discharge power density f is significantly increased, the ultraviolet light emission band becomes stronger, and the effect of ultraviolet photon charging stripes is also significantly increased. will be given.

また、これらの作用に加えて、陰極とII導電体全Ir
啜接触させているので、第8図および第10図に示し7
?、従来例に比べて陰極の放熱が容易であり、早匹繰り
返しのパルスレーザ発振にも酎えうる。
In addition to these effects, the cathode and II conductor are all Ir.
7 as shown in Figures 8 and 10.
? Compared to the conventional example, heat dissipation from the cathode is easier, and it can be used for rapid repeated pulsed laser oscillation.

さらに、第9図の従来例に比べると陰極構造が極めて簡
単となり、かつ予備放電空間の厚みも精度よく設定する
ことがで癒るという効果を得ることができる。
Furthermore, compared to the conventional example shown in FIG. 9, the cathode structure is extremely simple, and the thickness of the pre-discharge space can be set accurately to achieve the effect of healing.

〔実晦例〕[Actual example]

以下、この発−〇−実地例として、この発明をエキシマ
レーザに通用した場合全一にとり1図rもとに説明する
Hereinafter, as a practical example of this invention, a case where the present invention is applied to an excimer laser will be explained based on FIG.

第1図(7)、げ)はこの発明の一実瘤例に係る陰極部
を示すそれぞれ断面および平面図であり、B極部以外は
第8図に示す従来例と同一である。図において、CA4
げ複数個の開孔部(2)を有する導電体、すなわち陰極
であり、陰極(至)とvI4体ozとげ密着して配置さ
れてめる。また、補助電極a化1極@の背rfJf16
Vc存在し、vj成体azを介して陰極@と対向するよ
うに配置され、この例では誘電体tl?の内部に埋め込
まれている。ただし、陰極(至)の背面とけ陽極と対向
する面の裏rfJを言う。な劇、この例ではsit体1
2’にけアルミナを用い、陰極(至)はこのアルミナ(
121上にニッケルを5cメmの厚みでメツ中すること
により形成された導電膜である。開孔g@けエツチング
により形成されている。
FIG. 1 (7) is a cross-sectional view and a plan view, respectively, showing a cathode part according to an embodiment of the present invention, which is the same as the conventional example shown in FIG. 8 except for the B pole part. In the figure, CA4
The conductor has a plurality of openings (2), that is, the cathode, and the cathode and the vI4 body are placed in close contact with each other. In addition, the back of the auxiliary electrode a 1 pole @ rfJf16
Vc exists and is arranged to face the cathode @ via the vj adult az, and in this example, the dielectric tl? embedded inside. However, the back side of the cathode (to) refers to the back side rfJ of the surface facing the anode. A play, in this example, sit 1
2' Alumina is used, and the cathode (to) is made of this alumina (
This is a conductive film formed by depositing nickel on No. 121 to a thickness of 5 cm. The opening is formed by etching.

回路系としては48図に示し九従来例と陶様の容量移行
方式を用いた。従来例で説明したように2つのキャパシ
ターの間で容穢移行が行なわれ、主電極間の電圧が上昇
する間に、陰極@と補助電憾1)4との間に延圧が発生
し、第4図■、何1にそれ。
The circuit system is shown in Figure 48 and uses the nine conventional examples and Tou's capacity transfer method. As explained in the conventional example, a capacitance transfer occurs between the two capacitors, and while the voltage between the main electrodes increases, rolling pressure occurs between the cathode @ and the auxiliary electrode 1) 4, Figure 4 ■, what's that?

それ平面図およびth面図で示すように陰極@の開孔部
−1かつ誘電体U?の表面で沿面放電(至)が起こる。
As shown in the plan view and the th side view, the opening -1 of the cathode @ and the dielectric U? Creeping discharge occurs on the surface of the

この沿面放電ωは誘罐体0?表面に沿う方向に起こり、
その伸展距離げ放電ギャップにかかる電圧(これを以前
に維持電圧と定義した。陰極−と補助!thc極O引間
にがかる即加璽圧とa異なる。)によって定まる。し7
cがって維持電圧は1)9面放面放電間孔部@全塘めつ
〈丁まで高くすることができ。
Is this creeping discharge ω induced by 0? occurs along the surface,
The extension distance is determined by the voltage applied to the discharge gap (this was previously defined as the sustaining voltage, which is different from the instantaneous voltage applied between the cathode and the auxiliary !thc electrode). 7
Therefore, the sustaining voltage can be increased to 1) 9-plane surface discharge hole part @ all tang metsu.

陰極(至)の厚み(沿面放i1■の厚みにはソ対応する
)には依存しない。この結果1本実施例においては陰極
@の厚みを20μmKまで薄くシ、なおかつ十分な電力
を予備放i’it(本笑め例でげ沿面放電)に投入する
ことができる。下表ユに、この際のsa蹟条件の一例を
まとめると共に、第5図に放電状況の概略fr断面図で
示す。
It does not depend on the thickness of the cathode (which corresponds to the thickness of the creeping radiation i1). As a result, in this embodiment, the thickness of the cathode can be reduced to 20 μmK, and sufficient power can be input to the preliminary discharge (creeping discharge in this example). The table below summarizes an example of the sacrificial conditions at this time, and FIG. 5 shows a schematic fr sectional view of the discharge situation.

麦ユ この−合の予備放電のピーク電aは1.2A/cがであ
つ次、因よp明らがなようにフィラメント放電が全く混
在しない、きれいなグロー状放電が得られている。
The peak current a of the preliminary discharge in this case was 1.2 A/c, and as is obvious, a clean glow-like discharge was obtained with no filament discharge mixed in at all.

促米の放電励起型エキシマレーザの報告例においては、
主放電域餉の幅が主放電ギャップ長よりも小さい放電し
か優られていな−の#C対し、本実Net ff’l 
テt’s He バッファ中で主放電ギャップ長(ユ6
mm)の約1.5倍である22關の主放電域(]wの福
が痔られて忘り本発明による予備電離方式の有効性が示
される。
In the reported example of the discharge-excited excimer laser by Nakamai,
In contrast to #C, where only the discharge where the width of the main discharge area is smaller than the main discharge gap length is superior, the real Net ff'l
The main discharge gap length (Y6) in the buffer
The effectiveness of the pre-ionization method according to the present invention is demonstrated by the fact that the main discharge area (w) is approximately 1.5 times larger than the main discharge area (mm).

また、陰極@と肪電体赫が密着構造であるので、従来例
に比較して陰極@の熱放散が速(、速い繰p返しでレー
ザパルス発振を行なう際にも陰極@が赤熱されず、従来
のメツシュ′を極のように赤熱によるたるみゃ、うねり
に起因する主放電ギャップ長の不償いからアーク放@ 
flに発圧してしまうといった問題点を解決で!友。
In addition, since the cathode and the fat electrolyte are in close contact, heat dissipation from the cathode is faster than in conventional examples (the cathode does not become red hot even when laser pulse oscillation is performed with rapid repetition). , if the conventional mesh' sag due to red heat like a pole, the arc discharges due to the shortening of the main discharge gap length caused by waviness.
Solve the problem of generating pressure in fl! friend.

さらKff、 #E極aσ檎造が簡単であると共に、そ
の構造上、声m単位で陰極aの厚み、ひいてげ沿面子伽
放vlに)の厚みを襦度良く設定することができる。加
えて低米のように誘電体と陰極と14極の3つの空間的
配置′4r考える必要かなく、訪′1体と!S極、もし
くげ陰極と陽極の何れかの相対位置を設定しさえすれば
良く、製作上M利である。
In addition, the design is simple, and due to its structure, the thickness of the cathode a and the thickness of the cathode a and the thickness of the creeping surface vl can be easily set in units of m. In addition, there is no need to think about the three spatial arrangements of the dielectric, the cathode, and the 14 poles, just like in the case of low-cost rice! It is only necessary to set the relative position of either the S pole, the negative electrode, or the anode, which is advantageous in manufacturing.

第2図(7)、 G()はこの発明の他の実施例に係る
陰極部を示すそれぞれ新面および平dIJ図である。陰
極0として厚さl1m〜3mm (この例では100声
m)の金属メツシュを用い、?1助′It極04Iを誘
電体It?の表面で、@極(至)が!#されている面の
反対側の面に密着させt点を除けば、第1図(75,(
イ)に示す実施例と向−であり、同様の効果を奏する。
FIGS. 2(7) and 2(G) are new surface and flat dIJ views, respectively, showing a cathode portion according to another embodiment of the present invention. A metal mesh with a thickness of 1 m to 3 mm (100 m in this example) is used as the cathode 0. The dielectric It? On the surface of , @ pole (to)! Figure 1 (75, (
This embodiment is opposite to the embodiment shown in (a), and produces similar effects.

g3図σこの発明のさらに他の実施例に係る主dt極部
を示す断面図である。この実施例においては1例えばロ
ゴスキー型やチャン型に代表されるように、陰極■表面
近傍にヤける電界が陰極の中心部から週ざかるにつれて
徐々に緩和されるように、陰極@と!lI電導電?を#
衡(91方向に凸なる形状としており、隋極■噌部への
電界の集中によるアークの生成を防止することができる
Fig. g3 σ is a sectional view showing the main dt pole portion according to still another embodiment of the present invention. In this embodiment, as typified by the Rogowski type or Chang type, for example, the electric field near the surface of the cathode is gradually relaxed from the center of the cathode to the cathode @! lI electrical conductivity? of#
It has a convex shape in the 91 direction, which can prevent the generation of arcs due to concentration of electric field on the 91-axis direction.

LL第1図の実施例では回路系として容置移行型を用い
九が、これに限られるものではなく1LC反伝m、ブル
ームライン!!! e pys gなどであってもよい
し、また、沿面放電の回路系が主放電の回路系に組込1
れ九ものであっても両1!21v&が別別の独立したも
のであっても差し支えない。
LL In the embodiment shown in FIG. 1, a receptacle transfer type is used as the circuit system, but the circuit system is not limited to this. ! ! e pys g, etc., or the creeping discharge circuit system may be incorporated into the main discharge circuit system.
There is no problem even if both 1!21v& are different and independent.

また、陰極(至)としてアルミナにニッケルをメン中し
、エツチングによって開孔部@を作成し文例をi!1図
に示したが、もちろんこの!!l!法に限られるわけで
はなく1例えがパンチングメタルヲ誇電体a?上に接置
、屯しくけ圧着することも可能であるし、その他の方式
によっても何ら差し支えない・−!た、誘電体I?の材
料もアルミナに限られるわけではなく2他のセラミック
あるいはガラス等であってもよい。但し、誘電体1)2
1の誘を率は高いほど、またその厚みは薄いほど、沿面
放電(支)の投入゛成力を増すことになり好ましい。
In addition, as a cathode, nickel is added to alumina, and an opening is created by etching, and the example sentence is i! It is shown in Figure 1, but of course this! ! l! One example, which is not limited to law, is punching metal and hyperelectric body a? It is also possible to place it on top, attach it to the top and crimp it, and there is no problem with other methods as well. The dielectric I? The material is not limited to alumina, but may also be other ceramics, glass, or the like. However, dielectric material 1) 2
The higher the dielectric constant of 1 and the thinner the thickness, the more effective the injection of creeping discharge (support) becomes, which is preferable.

さらに、上記実施例で汀補助〔141を誘電体orに密
着させる構造としたが、場合によっては誘電体O7から
離して設置してもよい。但し、離して設置し7を場合F
!、補助”成極O(と肪、<体a?との間に無駄な放電
が投入されることになるので、上紀采市例のように、で
きるだけMW体azとぎ眉′させて用いる方が前ましい
。この際、N助電極−表面に紡′一体膜を形成させ尺構
造としてもよい。
Further, in the above embodiment, the structure is such that the bottom support 141 is brought into close contact with the dielectric body O7, but depending on the case, it may be installed away from the dielectric body O7. However, if 7 is installed at a distance,
! , Since unnecessary discharge will be injected between the auxiliary polarization O (and fat, <body a?), it is better to use the MW body az and eyebrows as much as possible, as in the case of Jokisaiichi. In this case, an integral spun film may be formed on the surface of the N auxiliary electrode to form a long structure.

また、上肥冥范例でげ開孔臼の形を円か1)4型メツシ
ユとしたが、もちろん本発明の主旨がらみて開孔(至)
の形に何ら劃1g1Iを設ける鳴のではない。
In addition, the shape of the hole-opening mortar in the above example was set as a circle or a 4-type mesh, but of course, in view of the spirit of the present invention, the hole-opening mortar was
It is not a sound that adds any part to the shape of .

また、沿酊放電伺に影響する構造因子として、開孔5(
4)の孔径があり、沿面放電ωの電力密度に関連するw
造因子として、陰極@の厚みがあるが、本発明のl!要
なポイントである、沿面放電(至)を予w1!i電とし
て用いることにより、開孔部@の孔傷(最大維持電圧を
決める因子でちる)と陰極(至)の厚み(予備放電空間
の#み?決める因子である)とを最適の予備電離効果を
与えるように、それぞれ独立に設定しうるという効果か
ら考えて、これらの2つの構造因子に何ら制限を設ける
もので汀ない。但し、陰極−に関してに、主放電時にイ
オンによる@撃を受けるため薄すぎると寿命の点で問題
があるので、1μm以上に必要であろうし、−刃厚すぎ
ると沿riJ故幇(至)の投入電力−Kが低くなると共
に、檀這子金主放1jl域に供給する妨げとなるので、
3mm g下が望ましい。さらに実用上げ、10prn
〜2mmのものを用いた方が好ましい。
In addition, as a structural factor that affects the creeping discharge depth, the aperture 5 (
4) has a hole diameter of w, which is related to the power density of creeping discharge ω.
The thickness of the cathode is a factor in the formation of the cathode, but the l! The important point, creeping discharge (towards), is predicted w1! By using it as an i-electron, the hole flaw in the opening (which is a factor that determines the maximum sustaining voltage) and the thickness of the cathode (which is a factor that determines the # of the pre-discharge space) can be optimized for pre-ionization. In view of the fact that they can be independently set so as to give the desired effect, there is no limit placed on these two structural factors. However, regarding the cathode, it will be bombarded by ions during the main discharge, so if it is too thin, there will be a problem in terms of life, so it will need to be 1 μm or more, and if the cathode is too thick, it will cause problems As the input power -K becomes lower, it also becomes a hindrance to supplying it to the 1jl area of the main power supply.
3mm g or less is desirable. Further practical use, 10prn
It is preferable to use one with a diameter of ~2 mm.

最後に、上記実施例ではエキシマレーザへの適用を例に
とり説明したが、もちろんTEAC!OIIレーザなど
他のレーザにも適用可能であることはいうまでもない。
Finally, although the above embodiment has been explained using an example of application to an excimer laser, of course TEAC! Needless to say, it is also applicable to other lasers such as OII lasers.

但し、エキ7マレーザにおいてa。However, in Ex 7 Male Laser a.

TICACO露レーザよりも放電が麺しく、主放電の福
も塾いものしか潜られていないのが現状である。
The current situation is that the discharge is more clumsy than that of the TICACO laser, and that the main discharge is only available to those who use it.

一方、主放電ギヤツブ長?大きくすることけ印加回圧を
大争〈せねばならないので、V&源谷量の点で限りがあ
り、レーザ出力を増すためにげ、どうしても主放電の幅
を広げたいという茨求があった。
On the other hand, the length of the main discharge gear? In order to increase the laser output, there was a great deal of competition over the applied circuit pressure, so there was a limit in terms of V and source voltage, and in order to increase the laser output, there was a strong desire to widen the width of the main discharge.

こうした背景から、不発−がエキシマレーザに与える影
響は峙に大きく、レーザ出力の増大、レーザビームの大
口径化を可能とするものである。
Against this background, a misfire has a considerable effect on an excimer laser, making it possible to increase the laser output and increase the diameter of the laser beam.

〔発明の動電〕[Electrodynamics of invention]

以上のように、この褪明によれば、陰極が複数個の開孔
部tVする41)体であり、かつ上記補槽と訪1を体と
ケ密庸させて配置し、上記訪゛成体表面に沿面放%Il
を生成させることにより、生Vt+Ji閾で発生する主
放電の種となる電子を分布させるように構成したので、
予備放電の投入電力と予備放電空間の厚みとを独立な因
子として収扱うことができ、上記i1′it体表面に投
入寛力密にの1%iい予備放@を行なわしめる仁とを可
能にしたものであゃ、これによって広い生成itsにわ
たって均一なグロー状放電f得ることができる。結果と
してレーザビームの大口径化セよび出力増加が可能にな
ると共に、電極構造の点でも簡易なものとなり、また上
記陰極の熱放散が楽になり、速い繰り返しのレーザ発振
にも耐えつるようになるなど、V−ザの信頼性向上とい
う効果も伴せて奏するものである。
As described above, according to this explanation, the cathode is a body with a plurality of openings tV, and the auxiliary tank and the body are arranged in close contact with the body, and the body is Creeping radiation %Il on the surface
By generating , the electrons that become the seeds of the main discharge generated at the raw Vt+Ji threshold are distributed.
The power input for pre-discharge and the thickness of the pre-discharge space can be treated as independent factors, making it possible to perform pre-discharge with a density of 1% on the surface of the above-mentioned body. With this, it is possible to obtain a uniform glow-like discharge f over a wide generation. As a result, it is possible to increase the diameter of the laser beam and increase the output, and the electrode structure is also simplified, making it easier to dissipate heat from the cathode and making it possible to withstand rapid repeated laser oscillations. This also has the effect of improving the reliability of the V-za.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(7)、ば)はそれぞれこの発明の一実綿例に係
る*+M部分を示す断面S2よび模式平面図、第2図(
7)、(イ)げそれぞれこの発明の他の夷N例に係る陰
極部分を示す断面図および模式平面図、第3図げこの発
明のさらに他の実残例に係る生電極部ケ示す断面図、第
4図■、げ)はそれぞれ沿面放電の様子?示す平面図お
よび断面図、嬉5図は第1図にその要部を示すこの発明
の一実施例による装置の主放電の様子を示すvh面図、
第6図は電子なだれの進展機構を説明する晩中図、第7
図、禰8図はそれぞれ便米の放電励起型短パルスレーザ
装置1tを示す断面図、@9図、第10図はそれぞれ従
来の放電励起型短パルスレーザ装置の主を極部を示すI
FrIfiegJテアル。 M Ic # vs テ、(81、Q5J 、 124
fl陰極、I91#−j陽極、(1zは誘1を体、04
)σ補助寛唖、(ハ)け一孔部、田げ沿面放電である。 なお、各図中向−符8a同−″!友汀相当部分を示す吃
のとする。
FIG. 1(7), b) is a cross section S2 and a schematic plan view showing the *+M portion of a cotton example of the present invention, and FIG.
7) and (a) are respectively a cross-sectional view and a schematic plan view showing a cathode portion according to another example of the present invention, and figure 3 is a cross-sectional view showing a live electrode portion according to still another example of the present invention. Figure, Figure 4 ■, Ge) are the appearance of creeping discharge respectively? 5 is a plan view and a cross-sectional view, and FIG.
Figure 6 is a midnight diagram explaining the evolution mechanism of an electron avalanche, Figure 7
Figures 8 and 8 are cross-sectional views showing a conventional discharge-excited short-pulse laser device 1t, and Figures 9 and 10 are cross-sectional views showing the main part of a conventional discharge-excited short-pulse laser device 1t, respectively.
FrIfiegJteal. M Ic # vs Te, (81, Q5J, 124
fl cathode, I91#-j anode, (1z is di-1, 04
) σ auxiliary clearance, (c) trenching discharge in the hole area, and field creeping discharge. It should be noted that in each figure, the reference numeral 8a indicates the corresponding portion.

Claims (6)

【特許請求の範囲】[Claims] (1)レーザ光軸方向を長手方向とし、相対向して配設
された陰極と陽極よりなる主電極と、上記陰極の背面部
に存在し、誘電体を介して上記陰極と対向する補助電極
と、上記主電極間にパルス電圧を印加するパルス回路と
、上記パルス回路の一部を形成するか、または上記パル
ス回路とは独立したものであつて、上記補助電極と陰極
の間に電圧を印加する回路とを備える放電励起型短パル
スレーザ装置において、上記陰極が複数個の開孔部を有
する導電体であり、かつ上記陰極と上記誘電体とを密着
させて配置し、上記誘電体表面に沿面放電を生成させる
ことにより、上記主電極間で発生する主放電の種となる
電子を分布させるように構成したことを特徴とする放電
励起型短パルスレーザ装置。
(1) A main electrode consisting of a cathode and an anode arranged opposite to each other with the laser optical axis direction as the longitudinal direction, and an auxiliary electrode located on the back side of the cathode and facing the cathode with a dielectric interposed therebetween. and a pulse circuit that applies a pulse voltage between the main electrodes, and a pulse circuit that forms part of the pulse circuit or is independent of the pulse circuit and applies a voltage between the auxiliary electrode and the cathode. In the discharge-excited short-pulse laser apparatus, the cathode is a conductor having a plurality of openings, and the cathode and the dielectric are arranged in close contact with each other, and the dielectric surface 1. A discharge-excited short-pulse laser device, characterized in that it is configured to distribute electrons that become the seeds of the main discharge generated between the main electrodes by generating a creeping discharge.
(2)陰極として1μm〜3mmの厚みを有する開孔性
金属板を用いる特許請求の範囲第1項記載の放電励起型
短パルスレーザ装置。
(2) A discharge-excited short-pulse laser device according to claim 1, in which a perforated metal plate having a thickness of 1 μm to 3 mm is used as a cathode.
(3)陰極として1μm〜3mmの厚みを有する金属メ
ッシュを用いる特許請求の範囲第1項記載の放電励起型
短パルスレーザ装置。
(3) A discharge-excited short pulse laser device according to claim 1, which uses a metal mesh having a thickness of 1 μm to 3 mm as a cathode.
(4)陰極は誘電体に形成された導電膜である特許請求
の範囲第1項記載の放電励起型短パルスレーザ装置。
(4) The discharge-excited short pulse laser device according to claim 1, wherein the cathode is a conductive film formed on a dielectric material.
(5)陰極表面近傍における電界が陰極中心部から遠ざ
かるにつれて徐々に緩和されるように、上記陰極と誘電
体を陽極方向に凸なる形状とした特許請求の範囲第1項
ないし第4項の何れかに記載の放電励起型短パルスレー
ザ装置。
(5) Any one of claims 1 to 4, wherein the cathode and dielectric are shaped to be convex toward the anode so that the electric field near the cathode surface is gradually relaxed as it moves away from the center of the cathode. A discharge-excited short pulse laser device according to claim 1.
(6)補助電極は誘電体の表面で陰極が密着されている
面の反対側の面に密着されているか、または上記導電体
の内部に埋め込まれている特許請求の範囲第1項ないし
第5項の何れかに記載の放電励起型短パルスレーザ装置
(6) The auxiliary electrode is in close contact with the surface of the dielectric material opposite to the surface to which the cathode is in close contact, or is embedded within the conductor. The discharge-excited short-pulse laser device according to any one of Items 1 to 9.
JP21284384A 1984-10-09 1984-10-09 Short pulse laser device of discharge excitation type Granted JPS6190486A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP21284384A JPS6190486A (en) 1984-10-09 1984-10-09 Short pulse laser device of discharge excitation type
US06/782,568 US4686682A (en) 1984-10-09 1985-10-01 Discharge excitation type short pulse laser device
DE19853588088 DE3588088T2 (en) 1984-10-09 1985-10-02 Discharge-excited laser for generating short pulses
EP93100578A EP0542718B1 (en) 1984-10-09 1985-10-02 Discharge excitation type short pulse laser device
DE19853588118 DE3588118T2 (en) 1984-10-09 1985-10-02 Discharge-excited laser for generating short pulses
EP94114362A EP0637106B1 (en) 1984-10-09 1985-10-02 Discharge excitation type laser device
DE19853588137 DE3588137T2 (en) 1984-10-09 1985-10-02 Discharge-excited laser device
EP93100550A EP0543795B1 (en) 1984-10-09 1985-10-02 Discharge excitation type short pulse laser device
DE3587852T DE3587852T2 (en) 1984-10-09 1985-10-02 Discharge excitation type short pulse laser device.
EP85112484A EP0177888B1 (en) 1984-10-09 1985-10-02 Discharge excitation type short pulse laser device
CA000492327A CA1259122A (en) 1984-10-09 1985-10-04 Discharge excitation type short pulse laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21284384A JPS6190486A (en) 1984-10-09 1984-10-09 Short pulse laser device of discharge excitation type

Publications (2)

Publication Number Publication Date
JPS6190486A true JPS6190486A (en) 1986-05-08
JPH0344429B2 JPH0344429B2 (en) 1991-07-05

Family

ID=16629254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21284384A Granted JPS6190486A (en) 1984-10-09 1984-10-09 Short pulse laser device of discharge excitation type

Country Status (1)

Country Link
JP (1) JPS6190486A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000403A1 (en) * 1986-06-30 1988-01-14 Kabushiki Kaisha Komatsu Seisakusho Gas laser
JPS63229777A (en) * 1987-03-18 1988-09-26 Mitsubishi Electric Corp Pulsed laser
JPH04221869A (en) * 1990-12-21 1992-08-12 Mitsubishi Electric Corp Excimer laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729355U (en) * 1971-04-26 1972-12-04
JPS4975093A (en) * 1972-10-17 1974-07-19
JPS5810872A (en) * 1981-07-14 1983-01-21 Toshiba Corp Manufacture of solar battery
JPS5848485A (en) * 1981-09-16 1983-03-22 Mitsubishi Electric Corp Pulse laser oscillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729355U (en) * 1971-04-26 1972-12-04
JPS4975093A (en) * 1972-10-17 1974-07-19
JPS5810872A (en) * 1981-07-14 1983-01-21 Toshiba Corp Manufacture of solar battery
JPS5848485A (en) * 1981-09-16 1983-03-22 Mitsubishi Electric Corp Pulse laser oscillator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000403A1 (en) * 1986-06-30 1988-01-14 Kabushiki Kaisha Komatsu Seisakusho Gas laser
JPS63229777A (en) * 1987-03-18 1988-09-26 Mitsubishi Electric Corp Pulsed laser
JPH04221869A (en) * 1990-12-21 1992-08-12 Mitsubishi Electric Corp Excimer laser

Also Published As

Publication number Publication date
JPH0344429B2 (en) 1991-07-05

Similar Documents

Publication Publication Date Title
Riege Electron emission from ferroelectrics-a review
US5054047A (en) Circuits responsive to and controlling charged particles
US5148461A (en) Circuits responsive to and controlling charged particles
US5123039A (en) Energy conversion using high charge density
US5153901A (en) Production and manipulation of charged particles
Bradley et al. Subpicosecond chronoscopy
US3886479A (en) Electrode systems for gas discharge devices particularly gas lasers
US5150067A (en) Electromagnetic pulse generator using an electron beam produced with an electron multiplier
US5014289A (en) Long life electrodes for large-area x-ray generators
JPH05266787A (en) Device capable of controlling shape of charged particle beam
US3184659A (en) Tunnel cathode having a metal grid structure
JPS6190486A (en) Short pulse laser device of discharge excitation type
US4388720A (en) External control of recombination rate for electron-ion recombination lasers
US5313138A (en) Electron gun modulated by optoelectronic switching
US4845365A (en) Process and apparatus for producing electrons using a field coupling and the photoelectric effect
US4403140A (en) Electron-beam shutter and shutter tube
Speirs et al. Identification of competing ionization processes in the generation of ultrafast electron bunches from cold-atom electron sources
JPS5944750A (en) Magnetically insulated ion diode
JPS594090A (en) Recombination laser
Massey et al. Nonlinear photoemission from organic cathodes excited by a pulsed near-ultraviolet laser
Riege Production of intense electron beams with ferroelectric materials
SU1047370A1 (en) Ion accelerator
JPH06325708A (en) X-ray generating device
Sudan et al. Field Emission from Vacuum‐Deposited Metallic Film and its Role in Electric Breakdown in Vacuum
Mesyats Physics of electron emission from ferroelectric cathodes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term