WO1987005680A1 - Luminaire - Google Patents
Luminaire Download PDFInfo
- Publication number
- WO1987005680A1 WO1987005680A1 PCT/DK1987/000028 DK8700028W WO8705680A1 WO 1987005680 A1 WO1987005680 A1 WO 1987005680A1 DK 8700028 W DK8700028 W DK 8700028W WO 8705680 A1 WO8705680 A1 WO 8705680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- section
- reflector
- major axis
- ellipsoidal
- parabola
- Prior art date
Links
- 230000004313 glare Effects 0.000 claims abstract description 57
- 230000001681 protective effect Effects 0.000 claims abstract description 45
- 240000007839 Kleinhovia hospita Species 0.000 claims 1
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 229940020445 flector Drugs 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 32
- 229910052736 halogen Inorganic materials 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 238000005286 illumination Methods 0.000 description 7
- 238000010276 construction Methods 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- NSMXQKNUPPXBRG-SECBINFHSA-N (R)-lisofylline Chemical compound O=C1N(CCCC[C@H](O)C)C(=O)N(C)C2=C1N(C)C=N2 NSMXQKNUPPXBRG-SECBINFHSA-N 0.000 description 1
- 241000212342 Sium Species 0.000 description 1
- 239000004904 UV filter Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V17/00—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
- F21V17/02—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages with provision for adjustment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V14/00—Controlling the distribution of the light emitted by adjustment of elements
- F21V14/04—Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/0025—Combination of two or more reflectors for a single light source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/04—Optical design
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/04—Optical design
- F21V7/09—Optical design with a combination of different curvatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S8/00—Lighting devices intended for fixed installation
- F21S8/02—Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/04—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for filtering out infrared radiation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/06—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for filtering out ultraviolet radiation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2103/00—Elongate light sources, e.g. fluorescent tubes
Definitions
- This invention concerns a luminaire with -an at least partly essen ⁇ tially rotationally symmetrical reflector in one piece or split into va ⁇ rious pieces, said reflector comprising an ellipsoidal section, the ge ⁇ neratrix of which is a part of an ellipse and with the light emitting part of a lamp being arranged in the region at one focus of the ellipse, and wherein the ellipsoidal section of the reflector extends until a plane extending normal to the major axis of the ellipse in the region at the second focus of the ellipsoid.
- spherical luminaires in which the generatrix of the ellipsoidal section is essentially half of an ellipse, and where ⁇ in this section is continued by a spherical reflector with an exit open ⁇ ing.
- Such spherical luminaires are especially used for the illumination of predetermined areas where the surroundings should remain dark, and are generally satisfactory for this purpose.
- Such spherical luminaires are, because of their light emitting characteristics, not so well suited for a wide illumination of a room. Further, such spherical luminaires have the drawback that the radiation emitted from the point-shaped light source (e.g.
- a halogen incandescent lamp is reflected by the spherical reflector back onto the light source, thereby causing a further heating of the already thermally strained high-power light source. This effect is enhanced because of the rather enclosed design of these luminaires.
- a rotationally symmetrical reflector of which the- generatrix is part of an ellipse, wherein the reflector extends un- til a normal plane through the second focus of the generating ellipse. From a lumina ⁇ re equipped with only such a reflector, light rays are e- mitted at angles up to 90° from the major axis. This very wide light di ⁇ stribution is only slightly variable by varying the axes ratio of the generating -ellipse- and will in an -case- produce a strong-glare, and is therefore not suitable for illumination of rooms.
- the luminaire of the above described general kind being provided with a glare protective section, continuing the ellipsoidal section, and initially divergent re- lative to the lamp main axis at the region by said transverse plane.
- the invention makes it possible, through the use of an ellipsoidal section extending until the normal plane through the second focus, to produce a socalled basic radiation with a non-specific angular distribution, and then to restrict this ra ⁇ diation to a particular angular region by the use of a screening section extending from the ellipsoidal section and initially divergent relative to the major axis.
- a luminaire system is provided, wherein the luminance distribution is variable over a wide range with the same basic construction.
- the luminous distribution of the radiation emanating from the el- lipsoidal section of the reflector i.e. the socalled basic radiation
- This basic radiation is composed from a por ⁇ tion of direct radiation emanating from the ellipsoidal reflector sec- tion with no reflections within a relatively narrow angular region, and a reflected radiation portion emanating from the ellipsoidal section of the reflector after only one reflection, crossing the second focus of the ellipsoid and emanating within a wide angular region.
- This-. angular region extends cut to an angle of approximately 90° from the major axis of the lamp defined by the ellipsoidal section, as the second focus is located in essentially the same transverse plane perpendicular to the major axis as the end of the ellipsoidal section.
- the luminous parts of the lamp have finite dimensions, and because of manufacturing tolerances in the reflector, the reflected light rays within the basic radiation will exit the ellipsoidal section within a region around the second fo ⁇ cus.
- the glare protection section provided according to the invention, extending from the ellipsoidal section, and diverging from the ellipsoi ⁇ dal section relative to the major axis in the area of the transverse plane crossing the second focus of the ellipse, ensures that the basic radiation is screened, i.e. the angular region measured from the longi- tudinal axis of the lamp, within which the radiation will emanate from the luminaire, is limited by reflection without significant loss of light.
- the divergent start of the glare protective section ensures that no light rays within the basic radiation will be reflected backwards into the ellipsoidal section, where they could cause a reduced light output from the luminaire and cause a thermal strain of the lamp.
- the screening of the direct radiation portion presents no diffi ⁇ culties, since the screening requirements for the narrow direct radia ⁇ tion portion by the fulfilment of certain glare protection conditions, concerning the widespread reflected radiation portion of the basic ra- diation, largely will be met.
- a predetermined length (measured in the direction of the longitudinal axis of the lamp) of the glare protective section and possibly by using an aperture in the region by the trans ⁇ verse plane through the second focus of the ellipse, any glare restric ⁇ tion condition for the directly radiated portion can be satisfied even by an extreme, almost spherical, form of the ellipsoidal reflector sec ⁇ tion.
- the glare protective reflector section By the preferably essentially rotationally symmetrical form of the glare protective reflector section relative to the major axis of the el ⁇ lipsoidal section a particularly simple-attachment of the_glare protec- tive section to the ellipsoidal section is possible.
- the generatrix of the rotationally symmetrical glare protective section of the reflector is according to a preferred embodiment of the invention a part of a parabola, the focus of which is located in the region at the second focus of the ellipse, and the axis of which comprises an angle from the major axis, or it is essentially a -contour, having one point common with the said parabola located in that focal plane of the pa ⁇ rabola which is normal to the major axis, and having in any point of the contour a tangential inclination relative to the major axis, which is greater than or equal to the inclination of said parabola part in that point of the parabola which is located on the same normal to the major axis as the point on the contour.
- any focal ray i.e. any light ray within the reflected radiation portion, reflected in the glare pro ⁇ tective section will, in case of the parabola, exit parallel to the axis of the parabola.
- the angle comprised by the parabola axis relative to the major axis thus defines the limiting angle, above which no light rays can exit from the luminaire. It is, of course, understood that points on the contour and points on the parabola are described macrosco- pically.
- the reflector surface microstructure (roughness etc.) is not part of the consideration described.
- the inclination of the contour in the point located in the focal plane of the parabola perpen ⁇ dicular to the major axis defines the limiting angle.
- the tan ⁇ gential inclination of the contour is greater than that of the parabola, the glare condition will be satisfied by reflec ⁇ tion anywhere in the glare protective section, since light rays reflect ⁇ ed within the glare protective section will exit with a narrow angle from the major axis, as would be the case with the corresponding inner imiting parabola.
- the glare protective section must have a certain length in the direction of the longitudinal lamp axis (i.e.
- the exit end must be at a given distance from the ellipsoidal section) to prevent light rays of the widespread reflected radiation portion of the basic radia ⁇ tion from exiting above the required limiting angle from the major, axis, and directly out of the luminaire (i.e. with no reflections in the glare protective section). This condition is easily met.
- the straight line, connecting an end point of the glare protective section adjacent the ellipsoidal section, and another end point of the glare protective section located oppositely relative to the major- axis, and distally from the ellipsoidal section will comprise an angle with the major axis,, which is larger than or equal to that of the axis of the parabola, corresponding to the limiting 5 parabola for defining the limiting angle.
- any focal ray reflected within the glare protective section will exit the luminaire with no further reflections.
- the maximum light output will be achieved by a preferred embodi ⁇ ment, wherein the axis of the parabola is situated at an angle from the
- the properties of the basic radiation can be modified by modifying the axes ratio of the ellipsoidal section.
- the radiation properties of the luminaire may though primarily and with unchanged basic construction be modified by the forming of the
- the reflector comprises at least two essentially rotationally symmetrical reflector parts, that are disconnectably connected, each of two reflector parts having at least one annular rim preferably located in a plane normal to the major axis, by which the reflector-parts may be interconnected.
- such embodiment facilitates the luminaire assembly in the housing and the change of light bulbs by a not easily accessibly mounted luminaire.
- a reflector part constituting part of the ellipsoidal section, has the form of a half ellipsoid
- the reflector could alternatively comprise reflector parts divided along the longitudinal lamp direction-, whereby also the manufacture of hollow bodies is avoided.
- An asymmetrical radiation distribution relative to the longitudi ⁇ nal lamp axis can be provided according to a preferred embodiment of the invention by providing the part of the reflector forming the glare pro ⁇ tective section with a recess within the glare protective section, and preferably arranging it rotatable relative to the ellipsoidal section.
- the part of the reflector forming the glare pro ⁇ tective section with a recess within the glare protective section, and preferably arranging it rotatable relative to the ellipsoidal section.
- Figure 1 shows the optical geometry of an embodiment by a schema- tical central longitudinal sectional view through the reflector
- figure 2 shows a reflector with the same ellipsoidal section as in figure 1, but with a narrower glare protective section
- figure 3 shows a section through a further embodiment of the lumi ⁇ naire according to the invention
- figure 4 shows a compact embodiment in a central longitudinal sec ⁇ tion
- figure 5 shows an embodiment for wall illumination.
- the luminaire shown in figure 1 comprises essentially a rotation- ally symmetrical reflector with an ellipsoidal section 1 with a major axis 4 and. a thereto attached glare protective section 2, and a halogen incandescent bulb 3, the luminous portion of which is situated in the region at the first focus F, of the ellipsoidal section 1.
- a rotation- ally symmetrical reflector with an ellipsoidal section 1 with a major axis 4 and. a thereto attached glare protective section 2, and a halogen incandescent bulb 3, the luminous portion of which is situated in the region at the first focus F, of the ellipsoidal section 1.
- a halogen incandescent bulb 3 the luminous portion of which is situated in the region at the first focus F, of the ellipsoidal section 1.
- the ellipsoidal section 1 extends until the plane 5 normal to the major axis 4 through the second focus F 2 of the ellipse.
- the ellipsoidal section 1 produces a basic radiation, the direct radiation portion of which emanates from the luminaire under a small angle ⁇ D (basic ray 1,).
- the glare protective section 2, which starts divergent relative to the major axis in the region at the normal plane 5, and which in this embodiment is also rotationally symmetrical, will not reflect any light rays back into the rotationally elliptical or ellipsoidal section 1. That would, besides loss of light, cause thermal, strain of the lamp 3.
- a parabola p with a parabola axis 6 inclined by the angle a and with a focus F located at the second focus F « of the ellipsoidal sec ⁇ tion as generatrix of the glare protective section will just meet this condition that all light rays of the basic radiation exiting through F 2 will exit the lamp with the angle defined by the parabola axis 6.
- a curve or contour k, diverging more than the limiting parabola p, used as generatrix for the glare protective section, will reflect all focal rays crossing F 2 (e.g. 1 2 ) within an angle limited by the range of the angle ⁇ . The glare condition is thus met.
- the ellipse ratio (major axis a relative to minor axis b) defines the distribution of the basic radiation, which is further influenced by the glare protective section 2. Greater axes ratios a:b cause a narrower basic radiation.
- the luminaire shown in figure 1 produces a rotationally symmetri ⁇ cal luminance distribution pattern, which is widespread, though within the limiting angle ⁇ equal to 45°.
- a substantially narrower luminance distribution (limiting angle a equal to 30°) may be produced by the same ellipsoidal section 1 as in figure 1.
- a such glare protec ⁇ tive section 2 is shown in figure 2.
- halogen incandescent lamps 4 (figure 1) also halogen metal vapour lamps 3' may be used, which will then be arranged in the luminaire as shown in figure 3.
- the bulb fixtures 7 are located outside the reflector in a lamp housing 8, carrying the reflector by fixtures 9, 10, and mounted to a ceiling panel 11.
- the lamp bulb 3' traverses the ellipsoidal section of the reflec ⁇ tor.
- the luminous part of the light bulb 3' is located in the region at the first focus F,.
- the glare protective section 2 is here frusto-coni- cal.
- the reflector comprises three disconnectably connected reflector parts la, lb, and 2a interconnected by bolts 13, guided in bushings 12. Annular rims 14, 15, and 16 permit a simple and secure connection of the reflector parts la, lb, and 2a. In the region at the normal plane through F 2 a UV-filter glas 17 is arranged. At this same place, but also at other places, infrared fil ⁇ ters or pure glasses may be arranged (not shown).
- the embodiment shown in figure 4 with a halogen incandescent lamp is particularly compact.
- the surfaces of the glare protective section 2 are displaced inwardly relative to the opening of the ellipsoidal sec ⁇ tion la, lb.
- a glas plate 17' may be arranged in the region at F 2 ⁇
- glare protective sections with recesses 18 are useful for particular purposes, such as the embodiment shown in figure 5, which is designed for wall illumination.
- the reflector part 2a of the glare pro ⁇ tective section is here rotatable (around the major axis 4) relative to the rest of the luminaire, so that the illumination may be directed to different walls by turning as wished.
- the reflectors shown may comprise pressed, eloxed and with magne ⁇ sium slightly alloyed aluminium. Obviously, the invention does not de ⁇ pend upon the particular choice of material in the reflector.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Un luminaire, muni d'un réflecteur à symétrie essentiellement rotative, comprend une section ellipsoïdale (1), dans le premier foyer (F1) de laquelle est située l'ampoule lumineuse (3) et qui s'étend au travers du second foyer (F2) jusqu'à un plan (5) normal à l'axe principal (4). Pratiquement tous les rayons lumineux provenant de cette section (1) servent de rayonnement de base. Dans le but de limiter la plage angulaire du rayonnement provenant de l'axe principal (4) en maintenant une sortie de forte lumière, une section de protection contre l'éblouissement (2) est disposée dans la région dudit plan normal (5), laquelle section s'étend dans un sens divergent dudit plan par rapport à l'axe principal (4). En variant le rapport des axes (a/b) de la section ellipsoïdale (1) et en formant de façon différente les sections de protection contre l'éblouissement (2), la configuration de distribution de la sortie de lumière peut être modifiée sur une plage étendue.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0067186A AT385343B (de) | 1986-03-14 | 1986-03-14 | Leuchte |
ATA671/86 | 1986-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1987005680A1 true WO1987005680A1 (fr) | 1987-09-24 |
Family
ID=3496752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK1987/000028 WO1987005680A1 (fr) | 1986-03-14 | 1987-03-13 | Luminaire |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0259470A1 (fr) |
AT (1) | AT385343B (fr) |
WO (1) | WO1987005680A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2657146A1 (fr) * | 1990-01-18 | 1991-07-19 | Dilouya Gilbert | Projecteur d'eclairage muni d'un occulteur-capteur de flux, notamment pour vehicules automobiles. |
DE4006769A1 (de) * | 1990-03-03 | 1991-09-05 | Wila Leuchten Gmbh | Leuchte fuer kompakt-leuchtstofflampen |
EP0994294A3 (fr) * | 1998-10-12 | 2003-01-22 | ERCO Leuchten GmbH | Dispositif d'éclairage pour la fixation sur une première paroi définissant une surface d'émission de lumière |
US7883236B2 (en) * | 2008-02-07 | 2011-02-08 | Lsi Industries, Inc. | Light fixture and reflector assembly for same |
CN102865552A (zh) * | 2011-07-08 | 2013-01-09 | 亿广科技(上海)有限公司 | 一种反射器及使用该反射器的发光系统及字节显示器 |
EP2772680A1 (fr) * | 2013-03-01 | 2014-09-03 | Legrand France | Appareillage électrique éclairant rotatif |
CN105042406A (zh) * | 2015-06-03 | 2015-11-11 | 深圳市西朗德光学有限公司 | 一种led灯聚光装置 |
WO2023131513A1 (fr) * | 2022-01-04 | 2023-07-13 | Signify Holding B.V. | Kit de luminaire |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE450660C (de) * | 1925-11-20 | 1927-10-07 | Heinrich Eckschlager | Scheinwerfer fuer Beleuchtungszwecke |
US1867502A (en) * | 1930-03-07 | 1932-07-12 | Karl A Edstrom | Light reflector |
US2340515A (en) * | 1940-06-03 | 1944-02-01 | Dietrich Friedrich Richard | Reflector for headlights |
FR893913A (fr) * | 1941-07-28 | 1944-11-14 | Perrot | Dispositif d'éclairage |
US3679893A (en) * | 1970-09-03 | 1972-07-25 | Sylvan R Schemitz And Associat | Luminaire reflector comprising elliptical and parabolic segments |
US3900727A (en) * | 1972-05-08 | 1975-08-19 | Hugo Hutz | Lamp with tubular bulb and reflector |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT233284B (de) * | 1961-05-29 | 1964-04-25 | Philips Nv | Metallreflektor und Verfahren zur Herstellung dieses Reflektors |
CH526071A (fr) * | 1968-08-21 | 1972-07-31 | Leon Perret Samuel | Réflecteur de projection et de réception de radiations |
DE2222529B2 (de) * | 1972-05-08 | 1976-12-23 | Leuchte mit einem rotationssymmetrischen reflektor und einer roehrenfoermigen lampe | |
DE2526773B2 (de) * | 1975-06-14 | 1977-12-22 | Zeiss Ikon Ag, 7000 Stuttgart | Reflektor aus eloxiertem aluminiumblech |
US4408266A (en) * | 1981-04-09 | 1983-10-04 | Ermes Sclippa | Optical system for airport semi-flush approach lights |
-
1986
- 1986-03-14 AT AT0067186A patent/AT385343B/de not_active IP Right Cessation
-
1987
- 1987-03-13 WO PCT/DK1987/000028 patent/WO1987005680A1/fr unknown
- 1987-03-13 EP EP87902072A patent/EP0259470A1/fr not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE450660C (de) * | 1925-11-20 | 1927-10-07 | Heinrich Eckschlager | Scheinwerfer fuer Beleuchtungszwecke |
US1867502A (en) * | 1930-03-07 | 1932-07-12 | Karl A Edstrom | Light reflector |
US2340515A (en) * | 1940-06-03 | 1944-02-01 | Dietrich Friedrich Richard | Reflector for headlights |
FR893913A (fr) * | 1941-07-28 | 1944-11-14 | Perrot | Dispositif d'éclairage |
US3679893A (en) * | 1970-09-03 | 1972-07-25 | Sylvan R Schemitz And Associat | Luminaire reflector comprising elliptical and parabolic segments |
US3900727A (en) * | 1972-05-08 | 1975-08-19 | Hugo Hutz | Lamp with tubular bulb and reflector |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2657146A1 (fr) * | 1990-01-18 | 1991-07-19 | Dilouya Gilbert | Projecteur d'eclairage muni d'un occulteur-capteur de flux, notamment pour vehicules automobiles. |
DE4006769A1 (de) * | 1990-03-03 | 1991-09-05 | Wila Leuchten Gmbh | Leuchte fuer kompakt-leuchtstofflampen |
EP0994294A3 (fr) * | 1998-10-12 | 2003-01-22 | ERCO Leuchten GmbH | Dispositif d'éclairage pour la fixation sur une première paroi définissant une surface d'émission de lumière |
US7883236B2 (en) * | 2008-02-07 | 2011-02-08 | Lsi Industries, Inc. | Light fixture and reflector assembly for same |
CN102865552A (zh) * | 2011-07-08 | 2013-01-09 | 亿广科技(上海)有限公司 | 一种反射器及使用该反射器的发光系统及字节显示器 |
EP2772680A1 (fr) * | 2013-03-01 | 2014-09-03 | Legrand France | Appareillage électrique éclairant rotatif |
FR3002792A1 (fr) * | 2013-03-01 | 2014-09-05 | Legrand France | Appareillage electrique eclairant rotatif |
CN105042406A (zh) * | 2015-06-03 | 2015-11-11 | 深圳市西朗德光学有限公司 | 一种led灯聚光装置 |
WO2023131513A1 (fr) * | 2022-01-04 | 2023-07-13 | Signify Holding B.V. | Kit de luminaire |
Also Published As
Publication number | Publication date |
---|---|
ATA67186A (de) | 1987-08-15 |
EP0259470A1 (fr) | 1988-03-16 |
AT385343B (de) | 1988-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4453203A (en) | Lighting fixture reflector | |
US6698909B2 (en) | Non-glaring, aesthetically pleasing lighting fixtures | |
US4420800A (en) | Reflector lamp with shaped reflector and lens | |
US4937714A (en) | Lighting system with halogen bulb | |
JPS6040850B2 (ja) | 照明装置 | |
NO168387B (no) | Indirekte speilende lysarmatur | |
US9804321B1 (en) | LED optics for bulbs and luminaires | |
US20090230833A1 (en) | Assembly of light-emitting units | |
US4041344A (en) | Ellipsoidal reflector lamp | |
US4420801A (en) | Reflector lamp | |
KR20020038603A (ko) | 카스케이드 파라볼라 반사기를 사용하는 수집 및 집속광학 시스템 | |
US5548182A (en) | Reflector lamp specifically adapted for combination with a reflector lamp-lamp luminaire or fixture | |
US3283142A (en) | Light reflectors | |
JPH0218801A (ja) | 照明器具 | |
US6786619B2 (en) | Reflector/refractor light control luminaire | |
US2826710A (en) | Reflector type lamp | |
WO1987005680A1 (fr) | Luminaire | |
NZ335289A (en) | Flood light or luminaire construction with at least three part parabolic sections with common focal line | |
US4988911A (en) | Lamp with improved photometric distribution | |
US4686612A (en) | Lamp reflector assembly | |
EP0237104B1 (fr) | Ampoule de lampe soufflée et lampe électrique pourvue d'une telle ampoule | |
GB2246854A (en) | Lamps and reflectors | |
US4788469A (en) | Multi-use lamp vessel and an incandescent lamp | |
US4750097A (en) | Lamp reflector assembly | |
JP3244837B2 (ja) | 照明器具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): DK FI JP NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |