WO1986004936A1 - Polyethylene multifilament yarn - Google Patents

Polyethylene multifilament yarn Download PDF

Info

Publication number
WO1986004936A1
WO1986004936A1 PCT/JP1986/000049 JP8600049W WO8604936A1 WO 1986004936 A1 WO1986004936 A1 WO 1986004936A1 JP 8600049 W JP8600049 W JP 8600049W WO 8604936 A1 WO8604936 A1 WO 8604936A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
polyethylene
strength
less
multifilament yarn
Prior art date
Application number
PCT/JP1986/000049
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Nishikawa
Takehiko Miyoshi
Masaharu Mizuno
Kohtaroh Fujioka
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to DE8686901136T priority Critical patent/DE3682241D1/en
Publication of WO1986004936A1 publication Critical patent/WO1986004936A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/025Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2009Wires or filaments characterised by the materials used
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/201Polyolefins
    • D07B2205/2014High performance polyolefins, e.g. Dyneema or Spectra

Definitions

  • the present invention relates to a polyethylene multifilament yarn having a high strength and a low elastic modulus, preferably a high knot strength, and having substantially no sticking between single yarns.
  • a semi-dilute solution of ultra-high molecular weight polyethylene is extruded from a nozzle and cooled to form a gel-like yarn containing a solvent.
  • a method of removing the solvent by drying and then performing hot stretching or performing ripening stretching while removing the solvent is disclosed in Japanese Patent Application Laid-Open No. 55-107,506 and Japanese Patent Application Laid-Open No. 56-540. No. 8 and Japanese Unexamined Patent Application Publication No. Sho 59-216169-2 to 216914.
  • each single yarn spun from a solution and gelled by cooling is in a swollen state containing a large amount of solvent, so that it is a common spinning method.
  • the gelled single yarn is in a state where the solution is simply supercooled, especially in the part that has not crystallized. This is considered to be one of the factors that cause sticking between single yarns when the single yarns are bundled.
  • the multifilament yarn obtained by the above-mentioned conventional method is mechanically separated into single yarns, it is considered possible to obtain a multifilament yarn without sticking between single yarns. Separation of the fibers greatly reduces the strength and elastic modulus, so it is considered impossible in the industry to obtain a polyethylene multifilament yarn with high strength and high elasticity without sticking between single yarns. Have been.
  • an aromatic polyamide fiber has a knot strength of only 62 d, even though its strength is as high as 22 ⁇ d, and no knot can be formed even with carbon fiber (strength of 29 ⁇ PZ d). Disclosure of the invention
  • An object of the present invention is to provide a polyethylene multifilament yarn having high strength, high elastic modulus, and preferably high knot strength, which is suitable as an industrial fiber material and has substantially no sticking between single yarns. is there.
  • An object of the present invention is to comprise a polyethylene having a weight-average molecular weight of 700,000 or more, a single-fiber fineness of 3 d or less, a single-fiber strength of 4 or more, and a single-filament initial elastic modulus of 1200 or more Zd.
  • the long-period structure is not recognized in the small-angle X-ray scattering measurement, and the height of the dispersion peak of ta ⁇ ⁇ in the dynamic viscoelasticity measurement is 0.0 ⁇ 7 or less.
  • the value at a temperature of 10 ° C. of 60% or more was achieved, and was achieved by a polyethylene multifilament yarn having substantially no sticking between single yarns.
  • an object of the present invention is to provide a polyethylene multifilament yarn having a knot strength of a single yarn of 15 Zd or more in addition to the above characteristics, or a polyethylene multifilament yarn having the above characteristics obtained by a gel wet spinning method. This has been achieved even more conveniently.
  • the polyethylene in the present invention can be copolymerized with a small amount of other alkene or ethylene such as propylene, butylene, pentene, hexene, 4-methylpentene or the like in a small amount within a range not impairing the effects of the present invention.
  • One or more vinyl monomers are copolymerized. May be ours.
  • polyethylene multifilament yarn of the present invention may be composed of a mixture of polyethylene and a small amount of a polyalkene other than polyethylene.
  • the weight average molecular weight of the polyethylene in the present invention must be 700,000 or more, preferably 200,000 or more, and more preferably 300,000 or more.
  • the single filament strength of the obtained multifilament yarn should be at least 40? It is necessary to use polyethylene having a weight average molecular weight of 700,000 or more.
  • the single-filament fineness of the polyethylene multifilêtr in the present invention must be 3 cl or less, preferably 1.5 d or less, and more preferably ⁇ d or less.
  • the single yarn fineness In general, the lower the fineness, the higher the strength. Therefore, to achieve a single yarn strength of 40 gf Zd or more, the single yarn fineness needs to be 3 d or less, and preferably ⁇ d or less.
  • the single-filament strength of the multifilament yarn in the present invention must be 40 d or more, preferably at least, more preferably at least S0 ⁇ Zci, more preferably at least 70-d.
  • the initial modulus of the single yarn of the multifilament yarn in the present invention must be at least 1,200? / Cl, preferably at least 1,500 ⁇ / d, more preferably at least 1,800 Zd, and still more preferably at least 2000 SP ZCI. There is.
  • the initial elastic modulus of a single yarn is less than ⁇ 200 SP / d, it will be necessary to use a large amount of it when producing a product with the same performance, and a large amount of energy will be required for transportation and other industries. It is not suitable as a fiber material for use.
  • the fiber has a long-period structure in this small-angle X-ray scattering measurement. Indicates a large difference.
  • the molecular chains in the fiber are not substantially completely extended.
  • the fiber has a single yarn strength of 40 or more, and the initial elastic modulus of the single yarn does not become 1200 g / d or more.
  • the height of the dispersion peak of ta ⁇ 3 (peak around 100 ° C.) in the dynamic viscosity measurement is 0.017 or less, preferably 0.03 or less, and more preferably 0.03 or less. It must be 0.01 ° or less, and the value of dynamic elastic modulus E at 100 ° C is 60 ° ⁇ Zd or less. Above, preferably it should be 1 OOO ⁇ Zd or more.
  • the height of the Ta ⁇ ⁇ dispersion peak (peak at around 130 ° C) reflects the quantitative ratio of the amorphous part. There are few parts.
  • Electrodynamic modulus E 1 decreases as the temperature increases from low to high. However, the higher the degree of crystallinity and orientation, that is, the higher the integrity of the fiber structure, the higher the value at high temperatures.
  • a fiber whose a ⁇ 3 dispersion peak height is greater than 0.013 or whose dynamic elastic modulus E at 100 ° C is less than 600 ⁇ ⁇ has a crystallinity and orientation degree of Low and incomplete fiber structure. Therefore, such a fiber has a single yarn strength of 40 ⁇ Zd or more and an initial elastic modulus of the single yarn of not more than 120 ⁇ / d.
  • the multifilament yarn in the present invention must be substantially free from inter-single yarn adhesion.
  • substantially no adhesion between single yarns as used herein means that the adhesion between single yarns per O of multifilament yarn is less than 2 places. If the multifilament yarn has substantially inter-single yarn cohesion, the yarn will not be pliable, resulting in a drastic decrease in the strength utilization rate during ripening and insufficient adhesion to the resin. It is unsuitable as an industrial fiber material.
  • the knot strength of the single yarn of the multifilament yarn in the present invention is ⁇ 5? It is preferably at least Zd. Nodule In industrial fiber applications (fishing lines, ropes, etc.) that require a high knot strength, the fiber strength cannot be fully utilized. •
  • the novel polyethylene multifilament yarn in the present invention is provided, for example, by the following novel production method.
  • Dissolve polyethylene having a weight average molecular weight of 700,000 or more in a solvent and prepare a solution containing ⁇ to 8% by weight of polyethylene.
  • This solution is extruded from a nozzle having a plurality of holes through a layer of air or an inert gas atmosphere into a spinning bath made of a coagulant or a spinning bath made of a cooling agent in the upper layer and a coagulant in the lower layer. After soaking, it is further passed through an extraction bath containing an extractant to extract the solvent from the yarn.
  • the yarn containing the extractant is vibrated while blowing a turbulent gas onto the yarn, and the yarn is dried in a state in which the yarns do not adhere to each other.
  • the single yarn fiber becomes 3 d or less, and the single yarn strength. Is stretched at a ratio sufficient to at least 4.0 ⁇ d and the initial elastic modulus of the single yarn to at least 1200-Zd.
  • Characteristic of such a novel production method is a dry-wet spinning method (a method in which a polymer solution is extruded through a layer of air or an inert atmosphere into a spinning bath composed of a coagulant) or a gel wet-spinning method (a polymer solution is air- or spin-dried).
  • a dry-wet spinning method a method in which a polymer solution is extruded through a layer of air or an inert atmosphere into a spinning bath composed of a coagulant
  • a gel wet-spinning method a polymer solution is air- or spin-dried
  • a solvent for polyethylene one that satisfies conditions such as long solubility, easy oil removal with an extractant, and a boiling point higher than the temperature during dissolution or spinning, such as decalin, paraffin oil, Tetralin, white kerosene and the like are preferably used.
  • the concentration of the polyethylene solution the lower the molecular weight of the polyethylene, the lower the concentration condition is selected.
  • an appropriate solution is selected from the viewpoints of uniformity of dissolution, discharge stability during spinning, spinnability, and spinning during stretching.
  • the concentration is chosen to be the viscosity.
  • the polyethylene concentration is less than ⁇ % by weight, not only is the productivity inferior, but also the coagulated yarn is soft, the running of the yarn becomes unstable, and the yarn is susceptible to disturbance, which is not preferable because of lack of uniformity.
  • the higher the polyethylene concentration the higher the productivity.
  • the concentration exceeds 8% by weight, the viscosity of the solution is increased due to the increase of the entanglement (Entang Ieme ⁇ ⁇ ) of the polyethylene molecules in the solution. If the concentration is too high and the concentration is not appropriate, the uniformity during dissolution will be poor, the spinnability will be reduced during spinning, and the draw ratio will not be sufficiently high during drawing after removing the solvent, and only low physical properties will be obtained. It is not preferable because it cannot be performed.
  • the polyethylene dissolution temperature during the solution preparation and the solution temperature during the spinning are approximately the same, and the temperature varies depending on the molecular weight of the polyethylene, but an appropriate temperature condition is approximately in the range of 20 to 250. Is set. For example, when using polyethylene having a weight average molecular weight of 200,000 and spinning from a solution having a polyethylene concentration of 3%, about 170 ° C is appropriate.
  • the solution is pumped from a multi-hole nozzle through a layer of air or inert gas atmosphere into a spin bath consisting of a coagulant or a lower one with a coolant or a spin bath consisting of a coagulant.
  • the inert gas is a gaseous substance at normal temperature that does not solidify a polyethylene fibrous solution extruded from a nozzle or cause a chemical reaction with the fibrous solution, and nitrogen is mainly used. .
  • the passing distance of the gas atmosphere layer is less than 3 meters, the liquid level of the spinning bath comes into contact with the nozzle due to fluctuations in the liquid level of the spinning bath, and the yarn breaks. May occur.
  • the solvent may evaporate slightly from the extruded fibrous solution in this gaseous atmosphere layer, but most of the solvent is the coagulant in the spinning bath and the subsequent extractant in the extraction bath. It is extracted and removed.
  • the coagulant is one that does not dissolve or swell polyethylene at the coagulation temperature to prevent sticking between single yarns, and has good compatibility with the solvent and room temperature.
  • the volatile one is selected.
  • acetones such as methanol
  • alcohols such as ethanol, methylene chloride, trifluoride trifluoride
  • an azeotropic mixture of methylene chloride and trichloride trifluoride are used.
  • the cooling agent When a spinning bath in which the upper layer is composed of a cooling agent and the lower layer is composed of a coagulant is used as the spinning bath, the cooling agent preferably has a lower specific gravity than the coagulant and is immiscible with the solvent. What If the fibrous liquid is rapidly coagulated, the surface structure of the coagulated yarn becomes coarse, and the physical properties of the drawn yarn obtained from this coagulated yarn are reduced. Therefore, it is preferable that the fibrous liquid is formed into a gel thread before being brought into contact with the coagulant to prevent rapid coagulation. Therefore, the cold S3 agent is preferably one that is immiscible with the solvent and one that forms a gel thread in the cooling layer. As such a coolant, water is most suitable in terms of safety, economy, and the like. Any liquid having the above characteristics can be used.
  • the depth and temperature of the cooling layer vary depending on the spinning temperature, the discharge rate, and the like, but preferably the depth and temperature are sufficient to cool the fibrous solution below the gel point.
  • the depth of the cooling layer is 3 to 3 mm, and the temperature of the cooling layer is 0 to 40 ° C.
  • the gel yarn formed in the cooling layer in the upper layer is solidified and a part of the solvent is extracted to form a solidified yarn.
  • the thread shape is separated and travels, so that the surface of the single yarn is solidified while the single yarn is being separated, and a coagulated yarn is formed.
  • the yarn in order for the yarn to separate and travel in the solidified layer, it is preferable that the yarn also runs separately in the cooling layer, and for that purpose, it is preferable to set the depth of the cooling layer to an appropriate range.
  • the coagulant used for the coagulation layer those having a higher specific gravity than the coolant, having good compatibility with the solvent, and being volatile at room temperature are selected.
  • methylene chloride, trifluoride trifluoride, tetrafluoride dichloride, azeotropic mixture of methylene chloride and trichloride trifluoride, and the like are used.
  • a compound obtained by mixing a solvent with the above compound or mixture can be used as a coagulant.
  • the depth and temperature of the coagulation layer vary depending on the spinning temperature, discharge rate, coagulability of the coagulant, etc., but the surface layer of the yarn substantially forms while the gel yarn formed in the cooling layer is running separately. A depth and temperature sufficient to set is preferred.
  • the temperature of the solidified layer is appropriate between 0 and 4 CTC.
  • the yarn coagulated in the spinning bath is then sent to an extraction bath, where the extractant removes residual solvent in the coagulated yarn.
  • Any extractant can be used as long as it has the ability to remove the residual solvent in the coagulated yarn, and the same coagulant as described above can be used. Further, two or more kinds of extractants can be used. For example, after extracting with the first extractant, it is possible to extract with the second extractant.
  • the yarn from which the residual solvent has been extracted in the extraction bath is then sent to a drying step, where the yarn is vibrated while being blown with turbulent gas and dried.
  • turbulent gas By blowing the turbulent gas, each single yarn is in a state where the beans are not in close contact with each other and is dried in that state, so that sticking between the single yarns can be avoided.
  • the gas used as the turbulent gas may be any gas at room temperature that does not cause a chemical reaction with the polymer and the extractant, but usually air or nitrogen is used. It is.
  • the pressure and flow rate of the turbulent gas to be blown are preferably a pressure and flow rate sufficient to prevent the individual yarns from being in close contact with each other.
  • the single yarn is separated from the surface of the single yarn of the fibrous solution of polyethylene that has passed through the gas atmosphere layer. It is important to coagulate with a coagulant in the interim to form coagulated yarn and to dry the yarn out of the extraction bath in a state where the yarn is not adhered by vibrating while turbulent gas is blown onto the yarn. It is.
  • the dried yarn is subjected to a tension maturation treatment at a temperature of 70 ° C to 130 ° C.
  • the yarn that has been subjected to the strain-ripening treatment has a single yarn strength of at least 40 ⁇ € at 125 to 150 ° C and a single yarn having an initial elastic modulus of ⁇ 200 g Zcl or more.
  • Stretch at a sufficient magnification In this case, the stretching is preferably performed in two or more stages, and more preferably in three or more stages.
  • the stretching speed of the portion up to about 10 times may be high, but it is preferable that the subsequent stage of stretching is repeatedly stretched at a relatively low speed.
  • the stretching region is set to be as long as possible. For example, when stretching is performed using a mature plate, it is preferable to use two or more hot plates.
  • the polyethylene multifilament yarn of the present invention is mainly composed of stretched molecular crystals, has a high structural integrity, and therefore has a single yarn strength of 40 Sf / d or more. It has an elastic modulus of 200 3 Zd or more.
  • the preferred polyethylene multifilament yarn of the present invention has a knot strength of 15 Zd or more, and thus has high strength and high elasticity. Fibers with high knot strength, while having a high modulus, are generally very specific because their properties are generally in conflict with each other.
  • the tensile strength, initial elastic modulus, dynamic viscoelasticity, and small-angle X-ray scattering of the raw yarn were measured under the following conditions. Measurement conditions for tensile strength and initial elastic modulus
  • the long period was calculated from the position of the interference point (or interference line) on the meridian of the small-angle X-ray scattered image using the formula of B “agg.
  • the interference point on the meridian (or interference line) No long period structure was found. Judgment of sticking between single yarns
  • Direct-melting high-density polyethylene having a weight-average molecular weight of 300,000 was dissolved in decalin at a temperature of about 70 ° C. to prepare a 3.0% by weight solution.
  • the solution pore diameter in the ⁇ 7 5 e C ⁇ , after passing through only the air atmosphere layer distance 5 ⁇ from the nozzle holes of 1 5, Ru acetone Tona spinning containing 2 0% of the decalin in 2 0 Extruded into the bath and allowed to solidify.
  • the total discharge rate from the nozzle was 3 OccZ min, and the solidified yarn was collected and collected at 7.5771 / min.
  • the yarn was subsequently passed through an extraction bath made of acetone at 2 ° C. to extract decalin remaining in the yarn and dried while vibrating in a turbulent air stream at room temperature. Thereafter, the yarn was heat-treated at a constant length by a heating roll at 90 ° C and wound up by a winder. The obtained yarn had substantially no sticking between the single yarns, and had a good de-ironing property. Next, the wound yarn was fed at a low speed and stretched repeatedly. Table 1 shows the drawing conditions and the properties of the obtained drawn yarn.
  • Table 2 shows the drawing conditions and the properties of the obtained drawn yarn.
  • a linear high-density polyethylene having a weight average molecular weight of 3,000,000 was dissolved in decalin at a temperature of 17 CTC to prepare a 3.0% by weight solution.
  • This solution was passed through an air atmosphere layer at a distance of 5 halls from a nozzle with a hole diameter of 15 holes at 175 ° C at a temperature of 175 ° C, and then extruded into water at 20 ° C to form a gel by cooling and gelling. Articles were formed.
  • the total discharge from the nozzle was 3 Occ, and the gel yarn was collected and collected at 7,57 7 ,.
  • the r-dispersion peak of t an 3 is 0, ⁇ ⁇ 9, and ⁇
  • a straight-lined high-density polyethylene having a weight average molecular weight of 220,000 was dissolved in decalin at a temperature of 170 to prepare a 3.5% by weight solution. This solution was spun, extracted, dried and heat-treated in a fixed length in the same manner as in Examples 1 to 4, and the obtained system was stretched under the conditions shown in Table 3 below.
  • the single yarn fineness of the drawn yarn was 1. ⁇ d, and the strength and initial elastic modulus were 63 s ⁇ Zd and 2040?, Respectively.
  • Example ⁇ Using the same solution as in Example ⁇ , extrude from a nozzle with a hole diameter of 0.5 female and 30 holes into an air layer, and then push the air ⁇ ⁇ for a distance of 5 fibers After passing through, the mixture was cooled and gelled in a two-layer spinning bath composed of water in the upper layer and trifluoride trichloride in the lower layer, and then solidified.
  • the total discharge rate from the nozzle was 3 Occ / min, and the solidified thread was collected and collected in 7.5 minutes.
  • the upper layer was 70% thick and the lower layer was trichloroethane trifluoride. The thickness was 250 5.
  • the coagulated yarn was subsequently passed through an extraction bath consisting of ethane trichloride ethane at 10 to extract decalin remaining in the yarn, and then dried and heat-treated in the same manner as in Example II. After the heat treatment, continuous stretching was performed at ⁇ 30 ° C. and then wound up with a winder.
  • This multi-stage drawn yarn was drawn in the same manner as in Example 5.
  • the single yarn fineness of the drawn yarn is 0.71 d, and the single yarn strength is 57? / d, the initial modulus was ⁇ 700 Sf Z cl.
  • No long-period structure was observed in small-angle X-ray scattering, and the dispersion peak height at tan 0 was 0.0 ⁇ 0, and the value of E 1 at 10 ⁇ ° C was ⁇ 250 if / d. . No sticking between single yarns was observed.
  • Linear high-density polyethylene having a weight-average molecular weight of 40,000 is dissolved in white kerosene at a temperature of 18 CTC to obtain a 5.0% by weight solution.
  • the solution is passed through a nozzle having a pore diameter of 1 mm and a pore number of 0. After being extruded into the air layer and passed through the air layer for a distance of about 0, a two-layer structure composed of trifluoride trichloride containing water in the upper layer and 30% white kerosene in the lower layer Cooling in the spinning bath After coagulation, the coagulated yarn was solidified and bundled to obtain a coagulated yarn.
  • the spin bath temperature is 9.
  • the thickness of the upper layer was 100
  • the thickness of the lower layer was 200 mm.
  • the total discharge rate from the nozzle was 3 Occ / min.
  • the thread was picked up in 15 Z minutes.
  • the two-stage stretched yarn was continuously stretched in two stages at a yarn feeding speed of ⁇ m. (At the second stage stretching temperature of 143, stretching ratio 3.5 times, third stage stretching temperature ⁇ 45, stretching ratio ⁇ .4 times)
  • the single yarn fineness of the obtained stretched yarn is 15 d.
  • the yarn strength was 56 ⁇ d
  • the initial elastic modulus was 1,6003 Zci
  • no long-period structure was observed in small-angle X-ray scattering
  • the tan S dispersion peak height was 0.0 ⁇ 1, 100 ° C.
  • the value of ⁇ ⁇ ⁇ ⁇ at was 130 ⁇ Z d. No sticking between single yarns was observed.
  • the two-stage drawn yarn obtained in the same manner as in Example 9 was drawn 2.5 times at a feeding speed of ⁇ minute and a drawing temperature of ⁇ 40 ° C. (Total stretching ratio 20 times)
  • the single yarn fineness of the drawn yarn was 1.0 d, the single yarn strength was 423 Zd, and the initial elastic modulus was ⁇ 23 ⁇ ⁇ Zcl.
  • Small angle No long-period structure was observed in X-ray scattering, and the ⁇ -dispersion peak height of tan 3 was 0.0 ⁇ 6, and the value of E 1 at 10 ⁇ ° C was 7 ⁇ 0 ⁇ d. No single-system adhesion was observed 0
  • the polyethylene multifilament yarn of the present invention has extremely high strength. ⁇ It has a high modulus of elasticity and has virtually no sticking between single yarns. Extremely useful as a fiber material

Abstract

Novel polyethylene multifilament yarn having high strength and high modulus and being substantially free from cohesion between single yarns is provided by a novel process which comprises employing a dry-wet spinning or gel-wet spinning method, drying single yarns containing an extractant separately from each other by vibrating them using a turbulent air flow, and heat-treating them under tension at temperatures in a specific range before drawing.

Description

明 細 書  Specification
ポリエチレンマルチフィラメントヤーン  Polyethylene multifilament yarn
技 術 分 野  Technical field
本発明は髙強度および髙弾性率、 好ましくはさらに髙 結節強度を有し、 かつ実質的に単糸間こう着のないポリ エチレンマルチフイラメン卜ヤーンに関する。  The present invention relates to a polyethylene multifilament yarn having a high strength and a low elastic modulus, preferably a high knot strength, and having substantially no sticking between single yarns.
背 景 技 術  Background technology
近年、 各種の産業用織維素材として、 これを使用する 製品の省エネルギー化、 髙機能化に対応するため、 軽く、 強度が髙く、 弾性率の髙ぃ截維が望まれている。  In recent years, various types of industrial textile materials have been desired to be light, strong, and have a low elastic modulus in order to respond to energy savings and functionalization of products that use them.
このような髙強度、 髙弾性率繊維を製造する方法とし て、 超高分子量のポリエチレンの準希薄溶液をノズルか ら押出し、 冷 ¾πして、 溶剤を含有したゲル状糸条を形成 させた後、 乾燥によって脱溶剤し、 その後熱延伸を施す か、 あるいは脱溶剤させつつ熟延伸を施す方法が特開昭 5 5— 1 0 7 5 0 6号公報、 特開昭 5 6— Ί 5 4 0 8号 公報、 および特開昭 5 9— 2 1 6 9 1 2〜 2 1 6 9 1 4 号公報等に開示されている。  As a method for producing such a high-strength, high-modulus fiber, a semi-dilute solution of ultra-high molecular weight polyethylene is extruded from a nozzle and cooled to form a gel-like yarn containing a solvent. A method of removing the solvent by drying and then performing hot stretching or performing ripening stretching while removing the solvent is disclosed in Japanese Patent Application Laid-Open No. 55-107,506 and Japanese Patent Application Laid-Open No. 56-540. No. 8 and Japanese Unexamined Patent Application Publication No. Sho 59-216169-2 to 216914.
しかし、 これらの方法によってポリエチレンマルチフ イラメン 卜ヤーンを製造すると、 脱溶剤中に単糸間こう 着が生じるため、 単糸間こう着のあるマルチフィラメン 卜ヤーンしか得られない。  However, when a polyethylene multifilament yarn is produced by these methods, adhesion between single yarns occurs during solvent removal, so that only a multifilament yarn with single yarn adhesion is obtained.
マルチフィラメン トヤーン中に単糸間こう着があると、 糸条のしなやかさがなく、 加撚時の強力利用率が大幅に 低下したり、 樹脂との複合体としての使甩にあっては樹 脂との接着性が不十分となるなどの問題が生じるため、 上記方法で得られるポリエ レンマルチフィラメン卜ャ ーンは産業用繊維素材として用いるには不適当である。 If multifilament yarn is stuck between single yarns, the yarn will not be pliable and the strength utilization rate during twisting will be significantly reduced, or the resin will not be used as a composite with resin. Polyethylene multifilament yarn obtained by the above method is unsuitable for use as an industrial fiber material because of problems such as insufficient adhesion to fats.
この単糸間こう着を防ぐ方法として、 溶剤を含有した ゲル状糸条を抽出浴に導き、 抽出剤を用いて脱溶剤した 後、 乾燥し、 熱延伸する方法が特開昭 5 8— 5 2 2 8号 公報に開示されている。  As a method of preventing the sticking between single yarns, a method of introducing a solvent-containing gel-like yarn into an extraction bath, removing the solvent using an extractant, drying, and hot stretching is disclosed in JP-A-58-5. No. 228 discloses this.
しかしながら、 この方法によってポリエチレンマルチ フィラメントヤーンを製造しても乾燥工程において単糸 間こう着が生じるため、 前記方法よりも若干単糸間こう 着は少ないもののやはり単糸間こう着のあるマルチフィ ラメン 卜ヤーンしか得られない。 それ故この方法で得ら れるポリエチレンマルチフィラメン トヤーンも産業甩繊 維素材として用いるには不適当である。  However, even if a polyethylene multifilament yarn is produced by this method, adhesion between single yarns occurs in the drying step. Therefore, although the adhesion between single yarns is slightly smaller than that in the above method, the multifilament having the adhesion between single yarns still exists. You can only get yarn. Therefore, the polyethylene multifilament yarn obtained by this method is also unsuitable for use as an industrial fiber material.
この単糸間こう着は、 紡糸に用いる溶液のポリマー濃 度が低くなるほど著しくなる。 繊維の強度、 弾性率を高 めるためには分子量の大きなポリマーを用い、 できるだ け低いポリマ一濃度の溶液を紡糸する必要があるので、 高い機械的特性のマルチフィラメントヤーンを得ようと すればよけいこの単糸間こう着が大きな問題になってく る α  This sticking between single yarns becomes more significant as the polymer concentration of the solution used for spinning becomes lower. In order to increase the strength and elastic modulus of the fiber, it is necessary to use a polymer with a high molecular weight and spin a solution with the lowest possible polymer concentration, so that a multifilament yarn with high mechanical properties can be obtained. The adhesion between the single yarns of the baker is becoming a major problem α
この単糸間こう着の発生原因については定かではない が、 溶液から紡糸して冷却によりゲル化した各単糸は、 溶剤を多量に含んだ膨潤状態にあるため、 通常の紡糸方 法のように上記単糸を集束すると、 お互いに密着して寄 り添った状態となり、 単糸間こう着が生じると考えられ 事実ゲル化した単糸は、 特に結晶化していない部分に おいては、 溶液を単に過冷却したような状態にあり、 こ のことが単糸の集束時に単糸間こう着を生ぜしめる一因 となっていると考えられる。 Although the cause of the sticking between the single yarns is not clear, each single yarn spun from a solution and gelled by cooling is in a swollen state containing a large amount of solvent, so that it is a common spinning method. When the single yarns are bundled together, In this case, the gelled single yarn is in a state where the solution is simply supercooled, especially in the part that has not crystallized. This is considered to be one of the factors that cause sticking between single yarns when the single yarns are bundled.
また、 他の原因としては、 乾燥工程に入る前のマルチ フイラメン卜が単糸間に溶剤を含有しているため乾燥時 に高温となった溶剤によって単糸の表層が溶解しこれが 単糸間こう着を生ぜしめることも考えられる。  Another cause is that since the multifilament before entering the drying process contains a solvent between the single yarns, the surface layer of the single yarn is dissolved by the solvent that has become hot during drying and this is It is also conceivable to produce clothes.
前記の従来方法によって得られたマルチフィラメン ト ヤーンを機械的に単糸に分離すれば単糸間こう着のない マルチフィラメン トヤーンを得ることは可能であると考 えられるが、 機械的に単糸を分離すると強度、 弾性率が 大幅に低下することから、 当業界で ·は高強度、 高弾性率 を有する単糸間こう着のないポリエチレンマルチフイラ メン トヤーンを得ることは不可能と考えられてきた。  If the multifilament yarn obtained by the above-mentioned conventional method is mechanically separated into single yarns, it is considered possible to obtain a multifilament yarn without sticking between single yarns. Separation of the fibers greatly reduces the strength and elastic modulus, so it is considered impossible in the industry to obtain a polyethylene multifilament yarn with high strength and high elasticity without sticking between single yarns. Have been.
—方、 繊維の結節強度に言及すれば、 結節を必要とす る產業用繊維用途では結節強度が低いと繊維の強度を十 分生かすことは難しいが、 一般の高強度♦ 高弾性率織維 では、 結節強度を高くすることは難しい。  On the other hand, if we talk about the knot strength of fibers, it is difficult to make full use of the fiber strength if the knot strength is low in industrial fiber applications that require knots. Then, it is difficult to increase the nodule strength.
たとえば、 芳香族ポリアミド纖維では強度が 2 2 ^ノ d と高いにもかかわらず結節強度は 6 2ノ d しかなく、 炭素繊維 (強度 2 9 §P Z d ) に至っては結節を作ること すらできない。 発 明 の 開 示 For example, an aromatic polyamide fiber has a knot strength of only 62 d, even though its strength is as high as 22 ^ d, and no knot can be formed even with carbon fiber (strength of 29 §PZ d). Disclosure of the invention
本発明の目的は、 産業用纖維素材として好適な高い強 度、 高い弾性率および好ましくは高い結節強度を有する 実質的に単糸間こう着のないポリエチレンマルチフイラ メン卜ヤーンを提供することにある。  An object of the present invention is to provide a polyethylene multifilament yarn having high strength, high elastic modulus, and preferably high knot strength, which is suitable as an industrial fiber material and has substantially no sticking between single yarns. is there.
本発明の目的は、 重量平均分子量が 7 0万以上のポリ エチレンからなり、 単糸繊度が 3 d以下、 単糸強度が 4 以上、 単糸の初期弾性率が 1 2 0 0 3 Z d以上 であり、 かつ小角 X線散乱測定において長周期構造が認 められず、 かつまた動的粘弾性測定における t a η δの 了分散ピークの高さが 0. 0 Ί 7以下であり、 動的弾性率 Ε 一 の 1 0〇°Cでの値が 6 0 0 以上であって、 実 質的に単糸間こう着のないポリエチレンマルチフィラメ ン卜ヤーンによって達成された。  An object of the present invention is to comprise a polyethylene having a weight-average molecular weight of 700,000 or more, a single-fiber fineness of 3 d or less, a single-fiber strength of 4 or more, and a single-filament initial elastic modulus of 1200 or more Zd. And the long-period structure is not recognized in the small-angle X-ray scattering measurement, and the height of the dispersion peak of ta η δ in the dynamic viscoelasticity measurement is 0.0Ί7 or less. The value at a temperature of 10 ° C. of 60% or more was achieved, and was achieved by a polyethylene multifilament yarn having substantially no sticking between single yarns.
また本発明の目的は上記特性に加えて単糸の結節強度 が 1 5 Z d以上であるポリエチレンマルチフィラメン 卜ヤーンないしはゲル湿式紡糸法により得られた上記特 性を備えたポリエチレンマルチフィラメン トヤーンによ りさらに好都合に達成された。  Further, an object of the present invention is to provide a polyethylene multifilament yarn having a knot strength of a single yarn of 15 Zd or more in addition to the above characteristics, or a polyethylene multifilament yarn having the above characteristics obtained by a gel wet spinning method. This has been achieved even more conveniently.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明におけるポリエチレンは本発明の効果を損なわ ない範囲で少量のたとえば、 1 0モル%以下のプロピレ ン、 プチレン、 ペンテン、 へキセン、 4一メチルペンテ ンなどの他のアルケンあるいはエチレンと共重合しうる ビニルモノマー等の 1 種あるいは 2種以上が共重合され たちのであってちよい。 The polyethylene in the present invention can be copolymerized with a small amount of other alkene or ethylene such as propylene, butylene, pentene, hexene, 4-methylpentene or the like in a small amount within a range not impairing the effects of the present invention. One or more vinyl monomers are copolymerized. May be ours.
また、 本発明のポリエチレンマルチフィラメン トヤー ンはポリエチレンに少量のポリエチレン以外のポリ アル ケンを混合したものから構成されていてもよい。  Further, the polyethylene multifilament yarn of the present invention may be composed of a mixture of polyethylene and a small amount of a polyalkene other than polyethylene.
あるいはポリエチレンに少量のポリエチレン以外のポリ アルケンを混合したものであってちょい。 Or a mixture of polyethylene and a small amount of a polyalkene other than polyethylene.
本発明におけるポリエチレンの分子量は重量平均分子 量が 7 0万以上、 好ましくは 2 0 0万以上、 さらに好ま しくは 3 0 0万以上とする必要がある。  The weight average molecular weight of the polyethylene in the present invention must be 700,000 or more, preferably 200,000 or more, and more preferably 300,000 or more.
—般に重量平均分子量が高いほど繊維内部に分子鎮末 端等の欠陥部が少なくなり、 強度が高くなるので、 得ら れるマルチフィラメン トヤーンの単糸強度を 4 0 ? Z cl 以上とするには重量平均分子量 7 0万以上のポリエチレ ンを用いる必要がある。  In general, the higher the weight average molecular weight, the fewer the defects such as molecular tails inside the fiber and the higher the strength. Therefore, the single filament strength of the obtained multifilament yarn should be at least 40? It is necessary to use polyethylene having a weight average molecular weight of 700,000 or more.
本発明におけるポリエチレンマルチフィラメン トャ一 ンの単糸繊度は 3 cl以下、 好ましくは 1. 5 d以下、 さら に好ましくは Ί d以下とする必要がある。  The single-filament fineness of the polyethylene multifilamenter in the present invention must be 3 cl or less, preferably 1.5 d or less, and more preferably Ί d or less.
一般に繊度が低いほど強度は高くなるので、 単糸強度 を 4 0 gf Z d以上とするには単糸繊度を 3 d以下、 好ま しくは Ί d以下とする必要がある。  In general, the lower the fineness, the higher the strength. Therefore, to achieve a single yarn strength of 40 gf Zd or more, the single yarn fineness needs to be 3 d or less, and preferably Ίd or less.
本発明におけるマルチフィラメン トヤーンの単糸強度 は 4 0 d以上、 好ましくは 以上、 さらに 好ましくは S O ^ Z ci以上、 さらに好ましくは 7 0 ?ノ d以上とする必要がある。  The single-filament strength of the multifilament yarn in the present invention must be 40 d or more, preferably at least, more preferably at least S0 ^ Zci, more preferably at least 70-d.
単糸強度が 4 0 3 Z d未満であると同一の性能を有す る製品を作成する場合大量に使用する必要が生じ、 運搬 等のエネルギーを大量に必要とするため産業用繊維素材 として不適当である。 Same performance when the single yarn strength is less than 400 Zd It is necessary to use a large amount of products when producing such products, and it is unsuitable as an industrial fiber material because it requires a large amount of energy for transportation and the like.
本発明におけるマルチフィラメン トヤーンの単糸の初 期弾性率は 1 200 ?/cl以上、 好ましくは 1 500 ^ /d以上、 さらに好ましくは 1 800 Zd以上、 さら に好ましくは 2000 SP ZCI以上とする必要がある。  The initial modulus of the single yarn of the multifilament yarn in the present invention must be at least 1,200? / Cl, preferably at least 1,500 ^ / d, more preferably at least 1,800 Zd, and still more preferably at least 2000 SP ZCI. There is.
単糸の初期弾性率が Ί 200 SP /d未満であると、 同 —の性能を有する製品を作成する場合、 大量に使用する 必要が生じ、 運搬等のエネルギーを大量に必要とするた め産業用繊維素材としては不適当である。  If the initial elastic modulus of a single yarn is less than Ί200 SP / d, it will be necessary to use a large amount of it when producing a product with the same performance, and a large amount of energy will be required for transportation and other industries. It is not suitable as a fiber material for use.
本発明におけるマルチフィラメントヤーンには小角 X 線散舌し測定において長周期構造が認められてはならない, この小角 X線散乱測定において長周期構造が認められる 繊維は結晶部と非晶部との構造差が大きいことを示す。  In the multifilament yarn of the present invention, a long-period structure must not be observed in the small-angle X-ray scattering measurement.The fiber has a long-period structure in this small-angle X-ray scattering measurement. Indicates a large difference.
すなわち、 小角 X線散乱測定において長周期構造が認 められる繊維は繊維中で分子鎖が実質的に完全に伸びき つていない。  In other words, in the fiber in which a long-period structure is observed in the small-angle X-ray scattering measurement, the molecular chains in the fiber are not substantially completely extended.
それ故、 かかる繊維は単糸強度が 40 以上、 単 糸の初期弾性率が 1 200 g/d以上とならない。  Therefore, the fiber has a single yarn strength of 40 or more, and the initial elastic modulus of the single yarn does not become 1200 g / d or more.
本発明におけるマルチフィラメン トヤーンは動的粘弹 性測定における t a π 3のァ分散ピーク (一 Ί 30 °C付 近のピーク) の高さが 0.01 7以下、 好ましくは 0.0 Ί 3以下、 さらに好ましくは 0.01 〇以下である必要があ り、 動的弾性率 E 一 の 1 00°Cでの値が 60〇 ^ Z d以 上、 好ましくは 1 O O O ^Zd以上である必要がある。 動的粘弾性測定における t a η δのァ分散ピーク (一 1 30°C付近のピーク〉 の高さは非晶部分の量的割合を反 映しており、 このピーク高さが低いものほど非晶部が少 ない。 In the multifilament yarn according to the present invention, the height of the dispersion peak of ta π 3 (peak around 100 ° C.) in the dynamic viscosity measurement is 0.017 or less, preferably 0.03 or less, and more preferably 0.03 or less. It must be 0.01 ° or less, and the value of dynamic elastic modulus E at 100 ° C is 60 ° ^ Zd or less. Above, preferably it should be 1 OOO ^ Zd or more. In the dynamic viscoelasticity measurement, the height of the Ta η δ dispersion peak (peak at around 130 ° C) reflects the quantitative ratio of the amorphous part. There are few parts.
—方動的弾性率 E 一 は低温から高温になるに従って低 下するが、 結晶化度および配向度が高いほど、 すなわち 繊維構造の完全性の高いほど高温においても高い値を維 持する。  —Electrodynamic modulus E 1 decreases as the temperature increases from low to high. However, the higher the degree of crystallinity and orientation, that is, the higher the integrity of the fiber structure, the higher the value at high temperatures.
したがって、 動的粘弾性測定における!: a π 3のァ分 散ピーク高さが 0.01 3より大きいか、 または動的弾性 率 E 一 の 1 00 °Cでの値が 600 ^ ^未満である繊維 は、 結晶化度および配向度が低く、 繊維構造が不完全で ある。 それ故かかる繊維は単糸強度が 40 ^Zd以上、 単糸の初期弾性率が 1 20〇 ^/d以上とならない。  Therefore, in dynamic viscoelasticity measurement! A fiber whose a π 3 dispersion peak height is greater than 0.013 or whose dynamic elastic modulus E at 100 ° C is less than 600 ^ ^ has a crystallinity and orientation degree of Low and incomplete fiber structure. Therefore, such a fiber has a single yarn strength of 40 ^ Zd or more and an initial elastic modulus of the single yarn of not more than 120 ^ / d.
本発明におけるマルチフィラメン トヤーンには実質的 に単糸間こう着があってはならない。 ここでいう実質的 に単糸間こう着がないとは、 マルチフィラメン トヤーン 1 O あたり単糸間こう着が 2力所以下であることを意 味する。 マルチフィラメン トヤーンに実質的に単糸間こ う着があると、 糸条のしなやかさがなく、 加熟時の強力 利用率が大幅に低下したり、 樹脂との接着性が不十分と なるため、 産業用繊維素材として不適当である。  The multifilament yarn in the present invention must be substantially free from inter-single yarn adhesion. Substantially no adhesion between single yarns as used herein means that the adhesion between single yarns per O of multifilament yarn is less than 2 places. If the multifilament yarn has substantially inter-single yarn cohesion, the yarn will not be pliable, resulting in a drastic decrease in the strength utilization rate during ripening and insufficient adhesion to the resin. It is unsuitable as an industrial fiber material.
本発明におけるマルチフィラメン トヤーンの単糸の結 節強度は Ί 5? Z d以上であることが好ましい。 結節を 必要とする産業用繊維用途 (釣糸、 ロープ等) では、 結 節強度が低いと繊維の強度を十分生かすことができない。 • 本発明における新規なポリエチレンマルチフィラメン 卜ヤーンは、 たとえば、 次のごとき新規な製造方法によ り提供される。 The knot strength of the single yarn of the multifilament yarn in the present invention is Ί5? It is preferably at least Zd. Nodule In industrial fiber applications (fishing lines, ropes, etc.) that require a high knot strength, the fiber strength cannot be fully utilized. • The novel polyethylene multifilament yarn in the present invention is provided, for example, by the following novel production method.
重量平均分子量が 7 0万以上のポリエチレンを溶剤に 溶解し、 ポリエチレンを Ί 〜 8重量%含有する溶液を調 整する。 この溶液を複数の孔を有するノズルから空気ま たは不活性気体雰囲気層を介して、 凝固剤からなる紡糸 浴または上層が冷却剤で下層が凝固剤からなる紡糸浴に 押出し、 凝固糸条となした後、 さらに抽出剤からなる抽 出浴に通し、 糸条中から溶剤を抽出する。 次いで抽出剤 を含有する糸条に乱流気体を吹きつけつつ振動させて単 糸間を密着させない状態で乾燥する。 さらに、 乾燥糸条 を 7 0 °C〜 1 3 0 Cの温度で緊張熟処理した後、 Ί 2 5 °C〜 1 5 5 °Cで、 単糸織維が 3 d以下となり、 かつ単糸 強度が 4. 0 ^ d以上、 単糸の初期弾性率が 1 2 0 0 ? Z d以上となるに十分な倍率で延伸する。  Dissolve polyethylene having a weight average molecular weight of 700,000 or more in a solvent, and prepare a solution containing Ί to 8% by weight of polyethylene. This solution is extruded from a nozzle having a plurality of holes through a layer of air or an inert gas atmosphere into a spinning bath made of a coagulant or a spinning bath made of a cooling agent in the upper layer and a coagulant in the lower layer. After soaking, it is further passed through an extraction bath containing an extractant to extract the solvent from the yarn. Next, the yarn containing the extractant is vibrated while blowing a turbulent gas onto the yarn, and the yarn is dried in a state in which the yarns do not adhere to each other. Furthermore, after the dried yarn is subjected to strain ripening at a temperature of 70 ° C. to 130 ° C., at a temperature of 25 ° C. to 150 ° C., the single yarn fiber becomes 3 d or less, and the single yarn strength. Is stretched at a ratio sufficient to at least 4.0 ^ d and the initial elastic modulus of the single yarn to at least 1200-Zd.
かかる新規な製造方法において特徴的なのは、 乾湿式 紡糸方法 (ポリマー溶液を空気または不活性雰囲気層を 通して凝固剤からなる紡糸浴に押出す方法》 またはゲル 湿式紡糸方法 (ポリマー溶液を空気または不活性気体雰 囲気層を通して、 上層が冷却剤で下層が凝固剤からなる 紡糸浴に押出す方法〉 の採用、 抽出剤を含有する糸条を 乱気流で振動させて単糸間を密着させない状態で乾燥す ること、 および延伸前に特定温度範囲にて緊張熟処理を ]5¾ 9 しとである。 Characteristic of such a novel production method is a dry-wet spinning method (a method in which a polymer solution is extruded through a layer of air or an inert atmosphere into a spinning bath composed of a coagulant) or a gel wet-spinning method (a polymer solution is air- or spin-dried). Extrusion into a spinning bath in which the upper layer is made of a coolant and the lower layer is made of a coagulant through an active gas atmosphere layer>, and the yarn containing the extractant is vibrated by turbulent airflow and dried without causing the single yarns to adhere to each other. You And stretching and maturation treatment in a specific temperature range before stretching].
本発明のポリエチレンマルチフィラメン トヤーンの製 造方法について詳述すれば次のとおりである。  The method for producing the polyethylene multifilament yarn of the present invention is described in detail below.
ポリエチレンの溶剤としては溶解性の長いこと、 抽出 剤で油出されやすいことおよび沸点が溶解時あるいは紡 糸時の温度より高いことなどの条件を満足するもの、 た とえば、 デカリン、 パラフィンオイル、 テ 卜ラリン、 白 灯油等が好ましく用いられる。  As a solvent for polyethylene, one that satisfies conditions such as long solubility, easy oil removal with an extractant, and a boiling point higher than the temperature during dissolution or spinning, such as decalin, paraffin oil, Tetralin, white kerosene and the like are preferably used.
ポリエチレン溶液のポリエチレン濃度は、 ポリエチレ ンの分子量が大きいほど低い濃度条件が選ばれ、 しかも 溶解の均一性、 紡糸時の吐出安定性、 曳糸性および延伸 時の製糸性などの面から適切な溶液粘度となるように濃 度が選択される。 ただしポリエチレン濃度が Ί 重量%を 下まわると生産性に劣るばかりでなく凝固糸条が柔らか く、 糸条走行が不安定となって外乱を受けやすく均一性 に欠けるため好ましくない。  As the polyethylene concentration of the polyethylene solution, the lower the molecular weight of the polyethylene, the lower the concentration condition is selected.In addition, an appropriate solution is selected from the viewpoints of uniformity of dissolution, discharge stability during spinning, spinnability, and spinning during stretching. The concentration is chosen to be the viscosity. However, when the polyethylene concentration is less than を% by weight, not only is the productivity inferior, but also the coagulated yarn is soft, the running of the yarn becomes unstable, and the yarn is susceptible to disturbance, which is not preferable because of lack of uniformity.
またポリエチレン濃度が高い方が生産性は高いが、 8 重量%を超えると溶液中でのポリエチレン分子鎮のから み合い ( E n t a n g I e m e η ΐ ) が多くなることに 起因して溶液の粘度が高くなり、 適切でない濃度範囲に 至ると溶解時の均一性が劣ったり、 紡糸時に曳糸性が低 下するばかりか、 脱溶剤後の延伸時に延伸倍率が十分高 くならず、 低い物性しか得られないため好ましくない。  Also, the higher the polyethylene concentration, the higher the productivity. However, if the concentration exceeds 8% by weight, the viscosity of the solution is increased due to the increase of the entanglement (Entang Ieme η ΐ) of the polyethylene molecules in the solution. If the concentration is too high and the concentration is not appropriate, the uniformity during dissolution will be poor, the spinnability will be reduced during spinning, and the draw ratio will not be sufficiently high during drawing after removing the solvent, and only low physical properties will be obtained. It is not preferable because it cannot be performed.
強度、 初期弾性率を向上させるためには延伸倍率を高 くする必要があり、 より高分子量のポリエチレンを用い た希薄な溶液から紡糸するのが望ましいので、 重量平均 分子量が 2 0〇万以上のポリエチレンを用い、 ポリェチ レンの濃度が Ί 〜 7重量%の溶液から紡糸するのがさら に好適であり、 重量平均分子量が 3 0 0万以上のポリエ チレンを用い、 ポリエチレンの濃度が 2〜 5 %の溶液か ら紡糸するのがもつ とも好適である。 To increase strength and initial elastic modulus, increase the draw ratio. It is desirable to spin from a dilute solution using higher molecular weight polyethylene. Therefore, use polyethylene having a weight average molecular weight of 200,000 or more, and a polyethylene concentration of Ί to 7% by weight. Spinning from a solution is more preferable, and spinning from a solution having a weight average molecular weight of 300,000 or more and a polyethylene concentration of 2 to 5% is also preferable.
なお、 溶液作製時のポリエチレン溶解温度と紡糸時の 溶液温度はぼぼ同じく らいにするのが好ましく、 ポリエ チレンの分子量のよって異なるが、 大体 Ί 2 0〜 2 5 0 の範囲で適切な温度条件が設定される。 たとえば、 重 量平均分子量が 2 〇 0万のポリエチレンを用い、 ポリエ チレンの濃度が 3 %の溶液から紡糸する場合、 1 7 0 °C 程度が適当である。  In addition, it is preferable that the polyethylene dissolution temperature during the solution preparation and the solution temperature during the spinning are approximately the same, and the temperature varies depending on the molecular weight of the polyethylene, but an appropriate temperature condition is approximately in the range of 20 to 250. Is set. For example, when using polyethylene having a weight average molecular weight of 200,000 and spinning from a solution having a polyethylene concentration of 3%, about 170 ° C is appropriate.
上記溶液は、 複数の孔を有するノズルから空気または 不活性気体雰囲気層を介して凝固剤からなる紡糸浴また は上層が冷却剤で下層か'凝固剤からなる紡糸浴中へ押 す。 この不活性気体とはノズルから押出されたポリェチ レンの繊維状溶液を凝固させたり、 該繊維状溶液と化学 反応を生じさせたりしない常温で気体の物質を意味し、 窒素が主に使用される。  The solution is pumped from a multi-hole nozzle through a layer of air or inert gas atmosphere into a spin bath consisting of a coagulant or a lower one with a coolant or a spin bath consisting of a coagulant. The inert gas is a gaseous substance at normal temperature that does not solidify a polyethylene fibrous solution extruded from a nozzle or cause a chemical reaction with the fibrous solution, and nitrogen is mainly used. .
この気体雰囲気層の通過距離については特に制限はな いが、 3から 5 〇廳が適当である。  There is no particular limitation on the distance through which the gaseous atmosphere passes, but 3 to 5 restaurants are suitable.
気体雰囲気層の通過距離が 3顧未満であると、 紡糸浴 の液面変動によりノズルに紡糸浴の液面が接し、 糸切れ を生じることがある。 If the passing distance of the gas atmosphere layer is less than 3 meters, the liquid level of the spinning bath comes into contact with the nozzle due to fluctuations in the liquid level of the spinning bath, and the yarn breaks. May occur.
5 0厕を上まわるとノズルから押出された繊維状溶液 の安定走行が難しくなり、 わずかの糸ゆれによりこの気 体雰囲気層で単糸間こう着が生ずるなどの間題が生じや すくなるため好ましくない。 また、 この気体雰囲気層に おいて押出された繊維状溶液からわずかに溶剤が蒸発し てぬけることもあるが、 大半の溶剤は紡糸浴中の凝固剤 およびこれに続く抽出浴中の抽出剤で抽出除去される。  If it exceeds 50 °, it becomes difficult for the fibrous solution extruded from the nozzle to run stably, and problems such as sticking between single yarns in this gaseous atmosphere layer due to slight yarn skewing tend to occur. Not preferred. Also, the solvent may evaporate slightly from the extruded fibrous solution in this gaseous atmosphere layer, but most of the solvent is the coagulant in the spinning bath and the subsequent extractant in the extraction bath. It is extracted and removed.
上記気体雰囲気層を通過したボリエチレンの繊維状溶 液の単糸表面を紡糸浴中で単糸が分離されている間に凝 固剤により凝固せしめて凝固糸条を形成させるとこの凝 固糸条を通常の紡糸方法のように集束させても単糸間こ う着は起こらない。 そのため紡糸浴としては凝固剤から なる紡糸浴または上層が冷却剤で下層が凝固剤からなる 紡糸浴が用いられる。 紡糸浴として凝固剤からなる紡糸 浴を用いる場合には凝固剤としては、 単糸間こう着を防 ぐため凝固温度において、 ポリエチレンを溶解あるいは 膨潤させないもので、 かつ溶剤と相溶性がよく、 室温で 揮発性のものが選ばれる。 たとえば、 ァセ 卜ン類ゃメタ ノール、 エタノールのようなアルコール類、 塩化メチレ ン、 三塩化三フッ化工タン、 および塩化メチレンと三塩 化三フッ化工タンの共沸混合物等が使用される。  When the surface of the single yarn of the fibrous solution of polyethylene passed through the gas atmosphere layer is coagulated with a coagulant while the single yarn is separated in the spinning bath to form a coagulated yarn, the coagulated yarn is formed. Even if the fibers are bundled as in the ordinary spinning method, the cohesion between the single yarns does not occur. For this reason, a spin bath composed of a coagulant or a spin bath composed of a coolant in the upper layer and a coagulant in the lower layer is used as the spin bath. When a spinning bath made of a coagulant is used as the spinning bath, the coagulant is one that does not dissolve or swell polyethylene at the coagulation temperature to prevent sticking between single yarns, and has good compatibility with the solvent and room temperature. The volatile one is selected. For example, acetones such as methanol, alcohols such as ethanol, methylene chloride, trifluoride trifluoride, and an azeotropic mixture of methylene chloride and trichloride trifluoride are used.
紡糸浴として上層が冷却剤で下層が凝固剤からなる紡 糸浴を用いる場合には、 冷却剤としては凝固剤よりも比 重が低く、 溶剤と非混和性のものが好ましい。 なんとな れば繊維状液体を急激に凝固させると、 凝固糸の表面構 造が粗となり、 この凝固糸から得られる延伸糸の物性が 低くなる。 それ故繊維状液体を凝固剤に接させる前にゲ ル糸条としておき、 急激な凝固を防止しておくのが好ま しい。 そのため冷 S3剤としては溶剤と非混和性のもので あって、 冷却層でゲル糸条を形成させるものが好ましい かかる冷却剤としては安全性、 経済性などの面から水 が最も適当であるが、 上記の特徴を有する液体であれば 何でも使用できる。 When a spinning bath in which the upper layer is composed of a cooling agent and the lower layer is composed of a coagulant is used as the spinning bath, the cooling agent preferably has a lower specific gravity than the coagulant and is immiscible with the solvent. What If the fibrous liquid is rapidly coagulated, the surface structure of the coagulated yarn becomes coarse, and the physical properties of the drawn yarn obtained from this coagulated yarn are reduced. Therefore, it is preferable that the fibrous liquid is formed into a gel thread before being brought into contact with the coagulant to prevent rapid coagulation. Therefore, the cold S3 agent is preferably one that is immiscible with the solvent and one that forms a gel thread in the cooling layer. As such a coolant, water is most suitable in terms of safety, economy, and the like. Any liquid having the above characteristics can be used.
冷却層の深さおよび温度は紡糸温度、 吐出量などによ つて異なるが、 繊維状溶液がゲル化点以下に冷卸される に十分な深さおよび温度が好ましい。  The depth and temperature of the cooling layer vary depending on the spinning temperature, the discharge rate, and the like, but preferably the depth and temperature are sufficient to cool the fibrous solution below the gel point.
通常、 冷却層の深さとしては 3〜 3 〇 が適切であり 冷却層の温度としては 0〜 4 0 °Cが適切である。  Normally, the depth of the cooling layer is 3 to 3 mm, and the temperature of the cooling layer is 0 to 40 ° C.
下層部の凝固層では、 上層部の冷却層で形成されたゲ ル糸条の凝固および部分的な溶剤の抽出が行われ、 凝固 糸条が形成される。 この凝固層で、 糸状は分離走行する ので単糸が分離されている間に単糸表面が凝固し、 凝固 糸条が形成されるので単糸間こう着が防止できる。  In the solidified layer in the lower layer, the gel yarn formed in the cooling layer in the upper layer is solidified and a part of the solvent is extracted to form a solidified yarn. In the solidified layer, the thread shape is separated and travels, so that the surface of the single yarn is solidified while the single yarn is being separated, and a coagulated yarn is formed.
なお、 凝固層で糸条が分離走行するためには冷却層で も糸条が分雛走行していることが好ましく、 そのために は冷却層の深さを適切な範囲としておくことが好ましい 下層部の凝固層に用いられる凝固剤としては、 冷却剤 より比重が高く、 溶剤と相溶性がよく、 室温で揮発性の ものが選ばれる。 たとえば、 塩化メチレン、 三塩化三フッ化工タン、 四 塩化ニフッ化工タン、 塩化メチレンと三塩化三フッ化工 タンの共沸混合物等が使用される。 In addition, in order for the yarn to separate and travel in the solidified layer, it is preferable that the yarn also runs separately in the cooling layer, and for that purpose, it is preferable to set the depth of the cooling layer to an appropriate range. As the coagulant used for the coagulation layer, those having a higher specific gravity than the coolant, having good compatibility with the solvent, and being volatile at room temperature are selected. For example, methylene chloride, trifluoride trifluoride, tetrafluoride dichloride, azeotropic mixture of methylene chloride and trichloride trifluoride, and the like are used.
また、 凝固剤として上記化合物または混合物に溶剤を 混合したあのも使用可能である。  Further, a compound obtained by mixing a solvent with the above compound or mixture can be used as a coagulant.
凝固層の深さおよび温度は紡糸温度、 吐出量、 凝固剤 の凝固能などによって異なるが、 冷却層で形成されたゲ ル糸条が分離走行している間に糸条表面層が実質的に凝 固するだけの深さおよび温度が好ましい。  The depth and temperature of the coagulation layer vary depending on the spinning temperature, discharge rate, coagulability of the coagulant, etc., but the surface layer of the yarn substantially forms while the gel yarn formed in the cooling layer is running separately. A depth and temperature sufficient to set is preferred.
通常、 凝固層の温度は 0〜 4 CTCが適切である。  Normally, the temperature of the solidified layer is appropriate between 0 and 4 CTC.
紡糸浴で凝固した糸条は次いで抽出浴に送られ、 抽出 剤により凝固糸条中の残存溶剤が抽出される。  The yarn coagulated in the spinning bath is then sent to an extraction bath, where the extractant removes residual solvent in the coagulated yarn.
抽出剤としては凝固糸条中の残存溶剤を油出する能力 のあるものであれば何でもよく、 前記した凝固剤と同じ ものが使用できる。 また、 抽出剤としては二種以上のも のを使用することが可能であり、 たとえば、 第 1 抽出剤 で抽出した後、 第 2抽出剤で抽出することができる。  Any extractant can be used as long as it has the ability to remove the residual solvent in the coagulated yarn, and the same coagulant as described above can be used. Further, two or more kinds of extractants can be used. For example, after extracting with the first extractant, it is possible to extract with the second extractant.
抽出浴で残存溶剤を抽出された糸条は次いで乾燥工程 に送られ、 糸条に乱流気体を吹きつけられつつ振動させ られて乾燥される。 乱流気体を吹きつけられることによ り、 各単糸はお豆い密着しない状態となり、 その状態で 乾燥されていくため、 単糸間のこう着を回避することが できる。 この乱流気体として用いられる気体はポリマー および抽出剤と化学反応を起こさない常温で気体のもの であれば何でもよいが、 通常は空気または窒素が用いら れる。 The yarn from which the residual solvent has been extracted in the extraction bath is then sent to a drying step, where the yarn is vibrated while being blown with turbulent gas and dried. By blowing the turbulent gas, each single yarn is in a state where the beans are not in close contact with each other and is dried in that state, so that sticking between the single yarns can be avoided. The gas used as the turbulent gas may be any gas at room temperature that does not cause a chemical reaction with the polymer and the extractant, but usually air or nitrogen is used. It is.
また、 吹きつける乱流気体の圧力、 流量は各単糸がお 互い密着しない状態となるに十分な圧力、 流量が好まし い。  Further, the pressure and flow rate of the turbulent gas to be blown are preferably a pressure and flow rate sufficient to prevent the individual yarns from being in close contact with each other.
以上述べたように実質的に単糸間こう着のないポリェ チレンマルチフィラメントヤーンを得るためには、 気体 雰囲気層を通過したポリエチレンの繊維状溶液の単糸表 面を単糸が分離されている間に凝固剤により凝固せしめ て凝固糸条を形成させることおよび抽出浴から出た糸条 に乱流気体を吹きつけつつ振動させて単糸を密着させな い状態で乾燥することが重要な点である。  As described above, in order to obtain a polyethylene multifilament yarn having substantially no sticking between single yarns, the single yarn is separated from the surface of the single yarn of the fibrous solution of polyethylene that has passed through the gas atmosphere layer. It is important to coagulate with a coagulant in the interim to form coagulated yarn and to dry the yarn out of the extraction bath in a state where the yarn is not adhered by vibrating while turbulent gas is blown onto the yarn. It is.
乾燥された糸条に引き続き 7 0 °C〜 1 3 0 °Cの温度で 緊張熟処理を施す。  The dried yarn is subjected to a tension maturation treatment at a temperature of 70 ° C to 130 ° C.
この熟処理温度範囲ではポリエチレンの結晶化が進み 易く、 ラメラ結晶が成長する。 その際非晶部分の分子類 が結晶内に取り込まれ、 分子鎮のからみ合いの数が減少 すると思われる。 このように乾燥糸条の熱処理で分子鎮 のからみ合いの数を減少させることによって分子鎮はよ り引き伸ばされ易くなり、 伸びきり鎮結晶を形成させ易 い。  In this ripening temperature range, crystallization of polyethylene is apt to proceed, and lamellar crystals grow. At that time, the molecules of the amorphous part are taken into the crystal, and the number of entanglements of the molecular chains is thought to decrease. As described above, by reducing the number of entanglements of the molecular chains by the heat treatment of the dried yarn, the molecular chains are more easily stretched, and the stretched crystals are easily formed.
緊張熟処理された糸条を次の工程において 1 2 5 C〜 1 5 5 °0で単糸強度が少なく とも 4 0 ^ €!単糸の初期 弾性率が Ί 2 0 0 g Z cl以上となるに十分な倍率で延伸 する。 この場合延伸は好ましくは 2段以上、 さらに好ま しくは 3段以上の多段で行う。 また、 延伸前段 (倍率に してほぼ 1 0倍までの部分〉 の延伸速度は大きく とって もよいが、 延伸の後段は比較的低い速度で繰り返し延伸 するのが好ましい。 また、.延伸領域はできるだけ長く と るようにし、 たとえば熟板を用いて延伸する場合、 2 以上の熱板を使用することが好ましい。 In the next step, the yarn that has been subjected to the strain-ripening treatment has a single yarn strength of at least 40 ^ € at 125 to 150 ° C and a single yarn having an initial elastic modulus of Ί200 g Zcl or more. Stretch at a sufficient magnification. In this case, the stretching is preferably performed in two or more stages, and more preferably in three or more stages. In addition, before stretching Then, the stretching speed of the portion up to about 10 times may be high, but it is preferable that the subsequent stage of stretching is repeatedly stretched at a relatively low speed. Further, the stretching region is set to be as long as possible. For example, when stretching is performed using a mature plate, it is preferable to use two or more hot plates.
このように後段になるにしたがって低い延伸速度で、 しかも長い頜域においてじっ く り延伸することで、 分子 鎮がラメラ結晶からときぼぐされ、 伸びきつた状態で再 結晶化される。  In this way, by stretching slowly at a lower stretching speed in a later stage and in a longer region, the molecular chains are loosened from the lamella crystal and recrystallized in a stretched state.
以上述べたように本発明のポリエチレンマルチフイラ メン 卜ヤーンは伸びきつた分子鎮結晶を主体に構成され、 構造の完全性が高く、 したがって 4 0 Sf / d以上の単糸 強-度、 Ί 2 0 0 3 Z d以上の弾性率を有してい.る。  As described above, the polyethylene multifilament yarn of the present invention is mainly composed of stretched molecular crystals, has a high structural integrity, and therefore has a single yarn strength of 40 Sf / d or more. It has an elastic modulus of 200 3 Zd or more.
また、 構造との関係は明らかではないが、 本発明の好 ましいポリエチレンマルチフィラメン トヤーンは騖くべ きことに 1 5 Z d以上の結節強度を有しており、 この ように高強度 ♦ 高弾性率を有していながら結節強度が高 い繊維は両特性が 2律背反の関係にあるのが一般である のできわめて特異的である。  Although the relationship with the structure is not clear, the preferred polyethylene multifilament yarn of the present invention has a knot strength of 15 Zd or more, and thus has high strength and high elasticity. Fibers with high knot strength, while having a high modulus, are generally very specific because their properties are generally in conflict with each other.
次に実施例により本発明を具体的に説明するが、 本発 明はこれに限定されるものではない。  Next, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
なお、 原糸の引張強度、 初期弾性率、 動的粘弾性、 小 角 X線散乱は次の条件で測定した。 引張強度、 初期弾性率測定条件 The tensile strength, initial elastic modulus, dynamic viscoelasticity, and small-angle X-ray scattering of the raw yarn were measured under the following conditions. Measurement conditions for tensile strength and initial elastic modulus
測定雰囲気 20 C、 相対湿度 65 %  Measurement atmosphere 20 C, relative humidity 65%
東洋ボールドウィン社製  Toyo Baldwin
テンシロン U TM— 4引張試験機 試 料 単糸 250纖  Tensilon U TM—4 Tensile tester Sample Single yarn 250 Fiber
引 張 速 度 30〇顧/分  Tensile speed 30 minutes / minute
初期弾性率 強伸度曲線の原点における傾きから 求めた  Initial elastic modulus Calculated from the slope at the origin of the strong elongation curve
動的粘弾性測定条件  Dynamic viscoelasticity measurement conditions
東洋ボールドウィン (株〉  Toyo Baldwin Co., Ltd.
D D V - Π型  D D V-Π type
振 動 数 1 1 0 HZ  Frequency 1 1 0 HZ
昇 温 速 度 3°CZ分 .  Heating rate 3 ° CZ min.
小角 X線散乱 (写真法〉 測定条件  Small-angle X-ray scattering (photography) Measurement conditions
理学電機社製 R u— 200型  Model Ru—200 manufactured by Rigaku Corporation
X 線 源 C u Κ α線 ( N i フ ィルター使用) X 線 出 力 5〇 K V、 50mA  X-ray source Cu Κ α-ray (using Ni filter) X-ray output 5〇 K V, 50mA
スリ ツ 卜系 0.3 mm Φ  Slit type 0.3 mm Φ
カメラ半径 400廳  Camera radius 400
露 出 時 間 Ί 2〇分  Exposure time Ί 2 minutes
フ イ ノレ ム K'o d a k D E F- 5  File No.K'o dak D E F-5
長周期は小角 X線散乱像の子午線上の干渉点 (あるい は干渉線) の位置から B「 a g gの式を用いて求めた。 子午線上の干渉点 (あるいは干渉線〉 の現れないちのは 長周期構造が認められないとした。 単糸間こう着の有無判定 The long period was calculated from the position of the interference point (or interference line) on the meridian of the small-angle X-ray scattered image using the formula of B “agg. The interference point on the meridian (or interference line) No long period structure was found. Judgment of sticking between single yarns
未延伸糸または延伸糸を長手方向に肉眼観察し、 単糸 間こう着が 2力所 / 1 〇 以下のものを実質的に単糸間 こう着なし、 2力所 〇 より多いものを単糸間こう 着ありと判定した。  Visually observe the undrawn yarn or drawn yarn in the longitudinal direction, and if the sticking between single yarns is less than 2 places / 1 〇, there is practically no sticking between single yarns; if more than 2 places 単It was determined that there was intercalation.
実施例 Ί 〜 4 Example Ί ~ 4
重量平均分子量が 3 0 0万の直鎮状高密度ポリエチレ ンをデカリンに Ί 7 0 Cの温度で溶解し、 3. 0重量%溶 液を調整した。 この溶液を Ί 7 5 eCで孔径 Ί 雕、 孔数 1 5のノズルから 5顺の距離だけ空気雰囲気層を通過させ た後、 2 0での 2 0 %のデカリンを含むアセトンからな る紡糸浴へ押出し、 凝固させた。 ノズルからの総吐出量 は 3 O c c Z分であり、 凝固した糸条は 7. 5 771 /分で集束 して引き取った。 Direct-melting high-density polyethylene having a weight-average molecular weight of 300,000 was dissolved in decalin at a temperature of about 70 ° C. to prepare a 3.0% by weight solution. The solution pore diameter in the Ί 7 5 e C Ί雕, after passing through only the air atmosphere layer distance 5顺from the nozzle holes of 1 5, Ru acetone Tona spinning containing 2 0% of the decalin in 2 0 Extruded into the bath and allowed to solidify. The total discharge rate from the nozzle was 3 OccZ min, and the solidified yarn was collected and collected at 7.5771 / min.
前記糸条を引き続き 2 〇°Cのアセ トンからなる抽出浴 を通し、 糸条中に残存するデカリ ンを抽出して、 室温の 空気の乱流中で振動させながら乾燥した。 その後糸条を 9 0 °Cの加熱ロールにより定長熱処理し、 ワインダ一で 巻き取った。 得られた糸条には実質的に単糸間のこう着 がなく、 解鐡性は良好であった。 次に巻き取った糸条を 低い速度で給糸して繰り返し延伸した。 第 1 表に延伸条 件および得られた延伸糸の特性を示す。  The yarn was subsequently passed through an extraction bath made of acetone at 2 ° C. to extract decalin remaining in the yarn and dried while vibrating in a turbulent air stream at room temperature. Thereafter, the yarn was heat-treated at a constant length by a heating roll at 90 ° C and wound up by a winder. The obtained yarn had substantially no sticking between the single yarns, and had a good de-ironing property. Next, the wound yarn was fed at a low speed and stretched repeatedly. Table 1 shows the drawing conditions and the properties of the obtained drawn yarn.
なお、 延伸工程においても単糸間のこう着は発生して いなかった。 as No sticking between the single yarns occurred in the stretching step. as
Figure imgf000020_0001
Figure imgf000020_0001
6W)00/98df/XDd 9£6W>/98 ΟΛ\ 実施例 5〜7 6W) 00 / 98df / XDd 9 £ 6W> / 98 ΟΛ \ Examples 5 to 7
実施例 1〜4と同じ溶液を用い、 同様の紡糸を行った がノズルは孔径が.0.5簾、 孔数 30で、 総吐出量を 20 ccZ分とした。 次に続く抽出、 乾燥、 定長熟処理も同様 に行ったが、 熟処理後、 連続して 1 40° ( で 1段延伸を 行ってからワインダ一で巻き取った。 この 1段延伸糸を 低い給糸速度でさらに延伸した。 この場合も単糸間のこ う着がなく、 解繊性に優れた延伸糸が得られた。  The same spinning was performed using the same solution as in Examples 1 to 4, but the nozzle had a hole diameter of .0.5, the number of holes was 30, and the total discharge amount was 20 ccZ. Subsequent extraction, drying and constant-length ripening treatments were performed in the same manner, but after the ripening treatment, they were continuously drawn in a single stage at 140 ° (), and then wound up with a winder. The yarn was further drawn at a low yarn feeding speed, and in this case, there was no stiffening between the single yarns, and a drawn yarn excellent in defibrating property was obtained.
第 2表に延伸条件および得られた延伸糸の特性を示す。 Table 2 shows the drawing conditions and the properties of the obtained drawn yarn.
2 施 例 0 D ί2 Example 0 D ί
※ 延 伸 の 給 糸 速 度 (mz分) 1 1 1 延 伸 ιπη. S (し) * Yarn feeding speed (mz) 1 1 1 Elongation ιπη. S
m 2 段 \ 4 Δ 14 ϋ I 40 第 ¾ 1 ϋ 1 ϋ 140  m 2 steps \ 4 Δ 14 ϋ I 40 1st ϋ 1 ϋ 140
4 段 I 40  4-stage I 40
 What
延 伸 Nobu Nobu
Q Q  Q Q
1 tk ο ο 1 υ 1 tk ο ο 1 υ
2 Ο Q Q h . ο . U · Ο ο Ί ο 1. ο 1. ΔU Ο ο. Ο 1.ο 1. Δ
4 段 1 ά 4 steps 1 ά
irh I y Ϊ  irh I y Ϊ
卜 ー タ ル 延 伸 俋 QTotal extension 俋 Q
.4 . Ό 単 糸 繊 度 U. ί 1 ハ U. Ό Λ U π 強 度 ( 3/cl ) 0 J b ο 0 D 伸 度 (%) 4, Ό A ft 初 期 弾 性 率 (Sf/d) 1630 2040 1700 結 節 強 度 (9/d) 23 19 20 長 周 期 構 ja 観 測 さ れ ず m 左 同 左 4 Single yarn fineness U. ί 1 C U. Ό Λ U π strength (3 / cl) 0 J b ο 0 D elongation (%) 4, A ft Initial elastic modulus (Sf / d) 1630 2040 1700 Nodule strength (9 / d) 23 19 20 Long period structure ja Not observed m Left Same as left
Ί 00 °Cにおける E一 ( 9/ ) 1140 1560 1210 ァ分敗の t a n aピーク高さ 0.0 Ί 2 0.006 0.0 Ί 0 一 E at 9 ° C (9 /) 1140 1560 1210 t a n Peak height of defeat 0.0 Ί 2 0.006 0.0 Ί 0
※ 第 2段目以降は連続延伸 * Continuous stretching after the second stage
比較例 1 Comparative Example 1
重量平均分子量が 300万の直鎖状高密度ポリエチレ ンをデカリンに 1 7 CTCの温度で溶解し、 3.0重量%溶 液を調整した。 この溶液を 1 75°Cで孔径 Ί廳、 孔数 1 5のノズルから 5廳の距離だけ空気雰囲気層を通過させ た後、 20°Cの水中へ押出し、 冷却ゲル化させて、 ゲル 状糸条を形成させた。 ノズルからの総吐出量は 3 Occノ 分であり、 ゲル状糸条は 7, 57ΠΖ分で集束して引き取つ た。  A linear high-density polyethylene having a weight average molecular weight of 3,000,000 was dissolved in decalin at a temperature of 17 CTC to prepare a 3.0% by weight solution. This solution was passed through an air atmosphere layer at a distance of 5 halls from a nozzle with a hole diameter of 15 holes at 175 ° C at a temperature of 175 ° C, and then extruded into water at 20 ° C to form a gel by cooling and gelling. Articles were formed. The total discharge from the nozzle was 3 Occ, and the gel yarn was collected and collected at 7,57 7 ,.
前記ゲル状糸条を引き続き 2〇°Cのアセ トンからなる 抽出浴を通し、 糸条中に残存するデカリ ンを抽出した後、 各単糸が集束した状態で乾燥し、 ワインダ一で巻き取つ た。 この糸条を下記の条件で 2段延伸した。 強度は 46 ? Z dで、 初期弾性率は Ί 320 ^ dであった。  After passing the gel-like yarn through an extraction bath made of acetone at 2 ° C to extract decalin remaining in the yarn, the single yarn is dried in a bundled state and wound up with a winder. I got it. This yarn was drawn in two steps under the following conditions. Strength is 46? At Z d, the initial modulus was Ί320 ^ d.
また、 t a n 3の r分散ピークは 0. Ο Ί 9であり、 Ί Also, the r-dispersion peak of t an 3 is 0, Ο Ί 9, and Ί
00 °Cにおける E " は 880 Sf Z dであった。 E "at 00 ° C was 880 Sf Z d.
袷糸速度 ( Z分〉 延伸温度 C〉 延伸倍率 第一段目 0.2 1 35 20 第二段目 0.2 1 45 2.5 得られた糸条には単糸間のこう着が多くあり、 きれい に解繊することができなかった。  Lined yarn speed (Z min.) Stretching temperature C> Stretching ratio First stage 0.2 1 35 20 Second stage 0.2 1 45 2.5 The obtained yarn has a large amount of sticking between single yarns and is finely defibrated. I couldn't.
また、 上記紡糸方法で得られた、 紡糸浴から出たゲル 状糸条を 60 °Cで乾燥させたところ単糸間のこう着が著 しく、 全く解繊することができなかった。  When the gel-like yarn obtained from the spinning bath and obtained by the above-mentioned spinning method was dried at 60 ° C, the adhesion between the single yarns was remarkable, and the fiber could not be defibrated at all.
また、 この乾燥糸条を上記延伸条件で延伸したところ、 得られた糸条には単糸間こう着が無数にあり、 全く解纖 することができなかった。 When the dried yarn was stretched under the above stretching conditions, The resulting yarn had countless single yarn adhesions and could not be unwound at all.
実施例 8  Example 8
重量平均分子量が 2 20万の直鎮状高密度ポリエチレ ンをデカリンに 1 70での温度で溶解し、 3.5重量%溶 液を調整した。 この溶液を実施例 1 〜 4と同様に紡糸、 抽出、 乾燥、 定長熱処理し、 得られた系条を次の第 3表 の条件で延伸した。  A straight-lined high-density polyethylene having a weight average molecular weight of 220,000 was dissolved in decalin at a temperature of 170 to prepare a 3.5% by weight solution. This solution was spun, extracted, dried and heat-treated in a fixed length in the same manner as in Examples 1 to 4, and the obtained system was stretched under the conditions shown in Table 3 below.
第 3 表  Table 3
Figure imgf000024_0001
延伸糸の単糸繊度は 1. Ί dであり、 強度および初期弾 性率は各々 63 s^ Zd、 204 0 ? であった。
Figure imgf000024_0001
The single yarn fineness of the drawn yarn was 1. Ίd, and the strength and initial elastic modulus were 63 s ^ Zd and 2040?, Respectively.
また、 小角 X線散乱において長周期構造は認められず、 t a n 3の了分散ピーク高さが 0.009、 Ί 00 °Cにお ける E の値は Ί 7 20 ^ dであった この延伸糸に おいても単糸間のこう着は認められず、 鐡性の良好な マルチフィラメン トヤーンであった。  In addition, no long-period structure was observed in the small-angle X-ray scattering, the tan 3 dispersion peak height was 0.009, and the value of E at Ί00 ° C was Ί720 ^ d. However, there was no adhesion between the single yarns, and it was a multifilament yarn with good ironability.
実施例 9  Example 9
実施例 Ί と同じ溶液を用い、 孔径 0.5雌、 孔数 30の ノズルから空気層へ押出し、 該空気曆を 5纖の距離だけ 通過させた後、 上層が水、 下層が三塩化三フッ化工タン で構成された 2層構造の紡糸浴中で冷却、 ゲル化させた 後、 凝固させた。 ノズルからの総吐出量は 3 O cc/分で あり、 凝固した糸状は 7. 5 分で集束して引き取った 上層の水の厚さは 7 0卿、 下層の三塩化三フッ化エタ ンの厚さは 2 5 0厕であつた。 Using the same solution as in Example Ί, extrude from a nozzle with a hole diameter of 0.5 female and 30 holes into an air layer, and then push the air だ け for a distance of 5 fibers After passing through, the mixture was cooled and gelled in a two-layer spinning bath composed of water in the upper layer and trifluoride trichloride in the lower layer, and then solidified. The total discharge rate from the nozzle was 3 Occ / min, and the solidified thread was collected and collected in 7.5 minutes. The upper layer was 70% thick and the lower layer was trichloroethane trifluoride. The thickness was 250 5.
前記凝固糸条を引き続き 1 0での三塩化三フッ化エタ ンからなる抽出浴を通し、 糸条中に残存するデカリンを 抽出した後、 実施例 Ί と同様な方法で乾燥、 定長熱処理 を行い、 熱処理後連続して Ί 3 0 °Cで Ί 段延伸を行って からワインダ一で巻き取った。  The coagulated yarn was subsequently passed through an extraction bath consisting of ethane trichloride ethane at 10 to extract decalin remaining in the yarn, and then dried and heat-treated in the same manner as in Example II. After the heat treatment, continuous stretching was performed at Ί30 ° C. and then wound up with a winder.
この 段延伸糸を実施例 5 と同様な方法で延伸した。 延伸糸の単糸繊度は 0. 7 1 dであり、 単糸強度は 5 7 ? / d、 初期弾性率は Ί 7 0 0 Sf Z clであった。 また小角 X線散乱において長周期構造は認められず、 t a n 0の 了分散ピーク高さが 0. 0 Ί 0、 1 0〇 °Cにおける E 一 の 値は Ί 2 5 0 if / dであった。 また、 単糸間のこう着は 見られなかった。  This multi-stage drawn yarn was drawn in the same manner as in Example 5. The single yarn fineness of the drawn yarn is 0.71 d, and the single yarn strength is 57? / d, the initial modulus was Ί700 Sf Z cl. No long-period structure was observed in small-angle X-ray scattering, and the dispersion peak height at tan 0 was 0.0 Ί 0, and the value of E 1 at 10 〇 ° C was Ί 250 if / d. . No sticking between single yarns was observed.
実施例 Ί 0 Example Ί 0
重量平均分子量 4 〇 0万の直鎖状高密度ポリエチレン を白灯油に 1 8 CTCの温度で溶解し、 5. 0重量%溶液と し、 該溶液を孔径 1 厕、 孔数 Ί 0のノズルから空気層へ 押出し、 該空気層を Ί 0臓の距離だけ通過させた後、 上 層が水、 下層が 3 0 %の白灯油を含有する三塩化三フッ 化工タンで構成された 2層構造の紡糸浴の中で冷却、 ゲ ル化させた後、 凝固させ、 集束して凝固糸条を得た。 紡 糸浴の温度は 9。Cであり、 上層 (水) の厚さは 1 00顧、 下層 (三塩化三フッ化工タン〉 の厚さは 200厕であつ た。 ノズルからの総吐出量は 3 Occ/分であり、 凝固糸 条は 1 5 Z分で引き取った。 Linear high-density polyethylene having a weight-average molecular weight of 40,000 is dissolved in white kerosene at a temperature of 18 CTC to obtain a 5.0% by weight solution. The solution is passed through a nozzle having a pore diameter of 1 mm and a pore number of 0. After being extruded into the air layer and passed through the air layer for a distance of about 0, a two-layer structure composed of trifluoride trichloride containing water in the upper layer and 30% white kerosene in the lower layer Cooling in the spinning bath After coagulation, the coagulated yarn was solidified and bundled to obtain a coagulated yarn. The spin bath temperature is 9. C, the thickness of the upper layer (water) was 100, and the thickness of the lower layer (trichloride trichloride) was 200 mm.The total discharge rate from the nozzle was 3 Occ / min. The thread was picked up in 15 Z minutes.
前記凝固糸条を引続き 5 Cの三塩化三フッ化工タンか らなる抽出浴を通し、 糸条に残存する白灯油を抽出した 後、 実施例 1 と同様な方法で乾燥、 定長熟処理を行い、 熟処理後連続して Ί 3 CTCで 8倍の 1段延伸を行ってか らワインダ一で巻き取った。  After the coagulated yarn was passed through an extraction bath made of trifluoride trichloride at 5 C to extract white kerosene remaining on the yarn, drying and constant-ripening were performed in the same manner as in Example 1. After ripening, it was continuously stretched 8 times at 倍 3 CTC and wound up with a winder.
この Ί段延伸糸を給糸速度 Ί mノ分で連続して 2段延 伸を行った。 ( 2段目の延伸温度 1 43で、 延伸倍率 3. 5倍、 3段目の延伸温度 Ί 45 、 延伸倍率 Ί.4倍〉 得 られた延伸糸の単糸繊度は 15 dであり、 単糸強度は 5 6 ^ d、 初期弾性率は 1 6003Zciであった。 また、 小角 X線散乱において長周期構造は認められず、 t a n Sのァ分散ピーク高さが 0.0 Ί 1、 1 00 °Cにおける Ε 一 の値は 1 30〇 Z dであった。 また単糸間こう着は 見られなかった。  The two-stage stretched yarn was continuously stretched in two stages at a yarn feeding speed of Ί m. (At the second stage stretching temperature of 143, stretching ratio 3.5 times, third stage stretching temperature 延伸 45, stretching ratio Ί.4 times) The single yarn fineness of the obtained stretched yarn is 15 d. The yarn strength was 56 ^ d, the initial elastic modulus was 1,6003 Zci, and no long-period structure was observed in small-angle X-ray scattering, and the tan S dispersion peak height was 0.0 Ί 1, 100 ° C. The value of に お け る at was 130〇 Z d. No sticking between single yarns was observed.
実施例 1 1 Example 1 1
実施例 9と同じ方法で得られた Ί段延伸糸を給糸速度 Ί 分、 延伸温度 Ί 40°Cで 2.5倍延伸した。 ( 卜一 タル延伸倍率 20倍)  The two-stage drawn yarn obtained in the same manner as in Example 9 was drawn 2.5 times at a feeding speed of Ί minute and a drawing temperature of Ί40 ° C. (Total stretching ratio 20 times)
延伸糸の単糸繊度は 1.0 dであり、 単糸強度は 423 Zd、 初期弾性率は Ί 23〇 ^ Zclであった。 また小角 X線散乱において長周期構造は認められず、 t a n 3の ァ分散ピーク高さが 0.0 Ί 6、 1 0〇°Cにおける E 一 の 値は 7 Ί 0 ^ dであった。 また単系間こう着は見られ なかつた 0 The single yarn fineness of the drawn yarn was 1.0 d, the single yarn strength was 423 Zd, and the initial elastic modulus was Ί23〇 ^ Zcl. Small angle No long-period structure was observed in X-ray scattering, and the α-dispersion peak height of tan 3 was 0.0Ί6, and the value of E 1 at 10〇 ° C was 7Ί0 ^ d. No single-system adhesion was observed 0
産業上の利用可能性  Industrial applicability
本発明のポリエチレンマルチフィラメン トヤーンはき わめて高強度 ♦ 高弾性率を有しかつ実質的に単糸間こう 着がないためしなやかで加熱時の強力利用率の低下など がなく、 各種産業用繊維素材としてきわめて有用である  The polyethylene multifilament yarn of the present invention has extremely high strength. ♦ It has a high modulus of elasticity and has virtually no sticking between single yarns. Extremely useful as a fiber material

Claims

求 の 範 囲 Range of request
1. 重量平均分子量が 70万以上のポリエチレンからな り、 単糸繊度が 3 d以下、 単糸強度が 40 以上 単糸の初期弾性率が 1 200 以上であり、 かつ 小角 X線散乱測定において長周期構造が認められず、 かつまた動的粘弾性測定における t a n のァ分散ピ ークの高さが 0,0 Ί 7以下であり、 動的粘弾性率 E 請  1. Made of polyethylene with a weight-average molecular weight of 700,000 or more, single-fiber fineness of 3 d or less, single-fiber strength of 40 or more, single-filament initial elastic modulus of 1,200 or more, and long length in small-angle X-ray scattering measurement No periodic structure was observed, and the height of the peak of dispersion of tan in the dynamic viscoelasticity measurement was 0,0 Ί 7 or less.
の 1 00°Cでの値が 600 以上であって、 実質 的に単糸間こう着のないポリエチレンマルチフィラメ ン 卜ヤーン。  The polyethylene multifilament yarn having a value at 600 ° C. of at least 600 and substantially having no sticking between single yarns.
2. 単糸の結節強度が Ί 5 SPZcl以上である請求の範囲 第 Ί項記載のポリエチレンマルチフィラメン トヤーン 2. The polyethylene multifilament yarn according to claim 1, wherein the knot strength of the single yarn is Ί5 SPZcl or more.
3. 単糸強度が Ί.5 d以下、 単糸強度が 50 ^Zd以上 単糸の初期弾性率が 1 5〇 0? Zd以上であり、 かつ 動的粘弾性測定における 1: a π 3のァ分散ピークの高 さが 0.0 Ί 3以下であり、 動的粘弾性率 E一 の 1 00 °Cでの値が Ί 000 ^ d以上である請求の範囲第 Ί項記載のポリエチレンマルチフィラメン トヤーン。3. Single yarn strength Ί.5 d or less, single yarn strength 50 ^ Zd or more Single yarn initial elastic modulus 15〇0? Is not less than Zd, and the height of the a dispersion peak of 1: a π 3 in the dynamic viscoelasticity measurement is 0.0 測定 3 or less, and the value of the dynamic viscoelasticity E at 100 ° C is C000 4. The polyethylene multifilament yarn according to claim 3, which is not less than ^ d.
4. ゲル湿式紡糸法により得られたことを特徵とする請 求の範囲第 1〜3項に記載のポリエチレンマルチフィ ラメン 卜ヤーン。 4. The polyethylene multifilament yarn according to any one of claims 1 to 3, which is characterized by being obtained by a gel wet spinning method.
PCT/JP1986/000049 1985-02-15 1986-02-06 Polyethylene multifilament yarn WO1986004936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8686901136T DE3682241D1 (en) 1985-02-15 1986-02-06 POLYAETHYLENE MULTIFILAMENT YARN.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2619385 1985-02-15
JP60/26193 1985-02-15

Publications (1)

Publication Number Publication Date
WO1986004936A1 true WO1986004936A1 (en) 1986-08-28

Family

ID=12186653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1986/000049 WO1986004936A1 (en) 1985-02-15 1986-02-06 Polyethylene multifilament yarn

Country Status (3)

Country Link
EP (1) EP0213208B1 (en)
DE (1) DE3682241D1 (en)
WO (1) WO1986004936A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667749A (en) * 1995-08-02 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for the production of fibers and materials having enhanced characteristics
JP2011506787A (en) * 2007-12-17 2011-03-03 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE spinning method, UHMWPE multifilament yarn produced thereby and use thereof
JP2015507704A (en) * 2011-12-14 2015-03-12 ディーエスエム アイピー アセッツ ビー.ブイ. Ultra high molecular weight polyethylene multifilament yarn

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205960B1 (en) * 1985-06-17 1990-10-24 AlliedSignal Inc. Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
AU642154B2 (en) * 1989-09-22 1993-10-14 Mitsui Chemicals, Inc. Molecular orientation articles molded from high-molecular weight polyethylene and processes for preparing same
EP1193335B1 (en) * 1998-06-04 2003-10-15 DSM IP Assets B.V. High-strength polyethylene fiber and process for producing the same
US6448359B1 (en) 2000-03-27 2002-09-10 Honeywell International Inc. High tenacity, high modulus filament
CN100342926C (en) 2002-12-11 2007-10-17 帝斯曼知识产权资产管理有限公司 Surgical soft tissue mesh
RU2495969C2 (en) 2004-01-01 2013-10-20 ДСМ АйПи ЭССЕТС Б.В. Method of complex thread from high-quality polyethylene
EP1771213B1 (en) * 2004-07-27 2010-04-28 DSM IP Assets B.V. Elongated surgical repair product based on uhmwpe filaments
EP1746187A1 (en) 2005-07-18 2007-01-24 DSM IP Assets B.V. Polyethylene multi-filament yarn
WO2008055405A1 (en) 2006-11-08 2008-05-15 Panpan Hu A process for producing fiber of ultra high molecular weight polyethylene
EP2112259A1 (en) 2008-04-22 2009-10-28 DSM IP Assets B.V. Abrasion resistant fabric
US8870504B2 (en) 2008-06-23 2014-10-28 Dsm Ip Assets B.V. Cargo net
WO2010106143A1 (en) 2009-03-20 2010-09-23 Dsm Ip Assets B.V. Net for aquaculture
AU2010240905B2 (en) 2009-04-23 2016-08-11 Dsm Ip Assets B.V. Compressed sheet
EP2459784B1 (en) 2009-07-27 2013-05-01 DSM IP Assets B.V. Polyolefin member and method of manufacturing by using an antifoaming agent
EP2462275B1 (en) 2009-08-04 2016-06-29 DSM IP Assets B.V. Coated high strength fibers, strands and ropes and method of manufacturing the same
ES2421626T3 (en) 2009-08-06 2013-09-04 Dsm Ip Assets Bv Surgical repair item based on an HPPE material
MX2012004256A (en) 2009-10-12 2012-05-29 Dsm Ip Assets Bv Method for the manufacturing of a low shrinkage flexible sheet.
US10100461B2 (en) 2009-11-13 2018-10-16 Dsm Ip Assets B.V. Monofilament or multifilament HPPE yarns
EP2513915A1 (en) 2009-12-17 2012-10-24 DSM IP Assets B.V. Electrical cable
WO2011138286A1 (en) 2010-05-06 2011-11-10 Dsm Ip Assets B.V. Article comprising polymeric tapes
WO2012004392A1 (en) 2010-07-08 2012-01-12 Dsm Ip Assets B.V. Ballistic resistant article
WO2012013738A1 (en) 2010-07-29 2012-02-02 Dsm Ip Assets B.V. Ballistic resistant article
EP2614331B1 (en) 2010-09-08 2015-12-16 DSM IP Assets B.V. Multi-ballistic-impact resistant article
CN103314460B (en) 2010-11-18 2016-08-24 帝斯曼知识产权资产管理有限公司 Flexible generator
PL2649122T3 (en) 2010-12-10 2017-02-28 Dsm Ip Assets B.V. Hppe member and method of making a hppe member
WO2012080317A1 (en) 2010-12-14 2012-06-21 Dsm Ip Assets B.V. Material for radomes and process for making the same
EP2652190B1 (en) 2010-12-14 2016-04-27 DSM IP Assets B.V. Tape and products containing the same
EP2481847A1 (en) 2011-01-31 2012-08-01 DSM IP Assets B.V. UV-Stabilized high strength fiber
BR112013021774A2 (en) 2011-02-24 2016-10-18 Dsm Ip Assets Bv multistage drawing process for drawing elongated polymeric objects
EP2681035B1 (en) 2011-03-04 2018-07-18 DSM IP Assets B.V. Geodesic radome
JP5892352B2 (en) 2011-03-22 2016-03-23 ディーエスエム アイピー アセッツ ビー.ブイ. Inflatable radome
JP6175705B2 (en) 2011-04-12 2017-08-09 ディーエスエム アイピー アセッツ ビー.ブイ. Shut-off system
WO2012139934A1 (en) 2011-04-13 2012-10-18 Dsm Ip Assets B.V. Creep-optimized uhmwpe fiber
JP6044004B2 (en) 2011-05-10 2016-12-14 ディーエスエム アイピー アセッツ ビー.ブイ. Yarn, method for producing yarn, and product containing yarn
EP2726656A1 (en) 2011-06-28 2014-05-07 DSM IP Assets B.V. Aquatic-predator resistant net
CN103732814B (en) 2011-08-18 2018-02-23 帝斯曼知识产权资产管理有限公司 Abrasion resistant yarn
CN103828124A (en) 2011-09-12 2014-05-28 帝斯曼知识产权资产管理有限公司 Composite radome wall
EA028763B1 (en) 2011-11-21 2017-12-29 ДСМ АйПи АССЕТС Б.В. Polyolefin fiber
US9623626B2 (en) 2012-02-28 2017-04-18 Dsm Ip Assets B.V. Flexible composite material and use hereof, process for making a flexible composite material
EP2794258B1 (en) 2011-12-19 2018-03-21 DSM IP Assets B.V. Flexible composite material and use hereof, process for making a flexible composite material
AU2013220376B2 (en) 2012-02-16 2017-03-02 Dsm Ip Assets B.V. Process to enhance coloration of UHMWPE article, the colored article and products containing the article
WO2013128006A2 (en) 2012-03-01 2013-09-06 Dsm Ip Assets B.V. Method and device for impregnating a rope with a liquid material
EA027794B1 (en) 2012-03-12 2017-09-29 ДСМ АйПи АССЕТС Б.В. Umbilical
LT2828333T (en) 2012-03-20 2016-10-10 Dsm Ip Assets B.V. Polyolefin fiber
EP2834398A1 (en) 2012-04-03 2015-02-11 DSM IP Assets B.V. Polymeric yarn and method for manufacturing
ES2639758T3 (en) 2012-06-11 2017-10-30 Dsm Ip Assets B.V. Endless shaped article
US9896798B2 (en) 2012-07-17 2018-02-20 Dsm Ip Assets B.V. Abrasion resistant product
CN104737458A (en) 2012-10-11 2015-06-24 帝斯曼知识产权资产管理有限公司 Wireless power transfer system
WO2014056982A1 (en) 2012-10-11 2014-04-17 Dsm Ip Assets B.V. Offshore drilling or production vessel
US10370781B2 (en) 2013-11-12 2019-08-06 Dsm Ip Assets B.V. Abrasion resistant fabric
WO2015086627A2 (en) 2013-12-10 2015-06-18 Dsm Ip Assets B.V. Chain comprising polymeric links and a spacer
DE112015000483A5 (en) * 2014-01-24 2016-11-10 Oerlikon Textile Gmbh & Co. Kg Process and plant for the production of staple fibers
PT3164549T (en) 2014-07-01 2020-11-03 Dsm Ip Assets Bv Structures comprising polymeric fibers
KR20170049535A (en) 2014-09-16 2017-05-10 디에스엠 아이피 어셋츠 비.브이. Space frame radome comprising a polymeric sheet
US9834872B2 (en) 2014-10-29 2017-12-05 Honeywell International Inc. High strength small diameter fishing line
US11242625B2 (en) 2015-05-28 2022-02-08 Dsm Ip Assets B.V. Hybrid chain link
KR20180015135A (en) 2015-05-28 2018-02-12 디에스엠 아이피 어셋츠 비.브이. Polymer chain link
CA2984055A1 (en) 2015-05-28 2016-12-01 Dsm Ip Assets B.V. Hybrid chain link
EP3202702A1 (en) 2016-02-02 2017-08-09 DSM IP Assets B.V. Method for bending a tension element over a pulley
CA3028272A1 (en) 2016-07-01 2018-01-04 Dsm Ip Assets B.V. Multilayer hybrid composite
CN110892098B (en) 2017-07-14 2022-11-04 帝斯曼知识产权资产管理有限公司 Uniform filled yarn
CN110892099B (en) 2017-07-14 2022-11-29 帝斯曼知识产权资产管理有限公司 Uniform filled yarn
US20210088313A1 (en) 2017-12-18 2021-03-25 Dsm Ip Assets B.V. Ballistic-resistant curved molded article
AU2018387007A1 (en) 2017-12-18 2020-06-18 Avient Protective Materials B.V. Ballistic-resistant molded article
CN111788344A (en) 2018-03-01 2020-10-16 帝斯曼知识产权资产管理有限公司 Wear-resistant fabric
JP7315145B2 (en) 2018-03-06 2023-07-26 ディーエスエム アイピー アセッツ ビー.ブイ. Osteoconductive fibers, medical implants containing such osteoconductive fibers, and methods of manufacture
CN113490516B (en) 2019-03-01 2022-11-08 帝斯曼知识产权资产管理有限公司 Method for preparing composite biological textile and medical implant comprising composite biological textile
WO2020178227A1 (en) 2019-03-01 2020-09-10 Dsm Ip Assets B.V. Medical implant component comprising a composite biotextile and method of making
WO2022049038A1 (en) 2020-09-01 2022-03-10 Dsm Ip Assets B.V. A polyurethane composite sheet, a method of making such composite sheet, and use thereof in making a medical implant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS59216912A (en) * 1983-05-20 1984-12-07 Toyobo Co Ltd Production of polyethylene fiber having high strength and modulus of elasticity
JPS59216913A (en) * 1983-10-22 1984-12-07 Toyobo Co Ltd Polyethylene fiber having high strength and modulus of elasticity
JPS60239509A (en) * 1984-05-04 1985-11-28 Toray Ind Inc Production of high-strength and high-modulus polyolefin based fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product
JPS59216912A (en) * 1983-05-20 1984-12-07 Toyobo Co Ltd Production of polyethylene fiber having high strength and modulus of elasticity
JPS59216913A (en) * 1983-10-22 1984-12-07 Toyobo Co Ltd Polyethylene fiber having high strength and modulus of elasticity
JPS60239509A (en) * 1984-05-04 1985-11-28 Toray Ind Inc Production of high-strength and high-modulus polyolefin based fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0213208A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667749A (en) * 1995-08-02 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for the production of fibers and materials having enhanced characteristics
JP2011506787A (en) * 2007-12-17 2011-03-03 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE spinning method, UHMWPE multifilament yarn produced thereby and use thereof
JP2015507704A (en) * 2011-12-14 2015-03-12 ディーエスエム アイピー アセッツ ビー.ブイ. Ultra high molecular weight polyethylene multifilament yarn
JP2018028169A (en) * 2011-12-14 2018-02-22 ディーエスエム アイピー アセッツ ビー.ブイ. Ultra high molecular weight polyethylene multifilament yarn

Also Published As

Publication number Publication date
EP0213208A1 (en) 1987-03-11
EP0213208B1 (en) 1991-10-30
EP0213208A4 (en) 1988-09-28
DE3682241D1 (en) 1991-12-05

Similar Documents

Publication Publication Date Title
WO1986004936A1 (en) Polyethylene multifilament yarn
KR860000202B1 (en) Process for producing high tenacity,high modulus crystalling thermoplastic article and novel product fibers
US5534205A (en) Method for preparing polybenzoxazole or polybenzothiazole fibers
JPS6385107A (en) Production of filament high in modulus and tensile strength
JPH04308220A (en) Manufacture of cellulose article
JPH1181035A (en) Formed product of polyolefin
JPWO2009028590A1 (en) High-productivity high-strength polyethylene fiber, precursor thereof, and method for producing the precursor
JP3734077B2 (en) High strength polyethylene fiber
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JP7176850B2 (en) Sea-island composite fiber bundle
JPS6241341A (en) High speed stretching of gel fiber
JPH0246688B2 (en)
JPS61215708A (en) Production of multifilament yarn
JPH07238416A (en) Production of high-strength polyethylene fiber
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
JPH064923B2 (en) Manufacturing method of high strength and high modulus polyacrylonitrile fiber
JP3161546B2 (en) Method for producing high strength, low shrinkage polyester fiber
JP2730193B2 (en) Polyamide monofilament and method for producing the same
JPH02210013A (en) Dry and wet spinning process
JP3849852B2 (en) Nonwoven fabric and filter
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JPS6147809A (en) Production of high-strength and high-modulus polyolefin based fiber
US3377329A (en) High melting polyolefin filamentary materials
JPS61282417A (en) Polyethylene multifilament yarn
JPH02229208A (en) Production of multifilament yarn

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

WWE Wipo information: entry into national phase

Ref document number: 1986901136

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986901136

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1986901136

Country of ref document: EP