JPS61282417A - Polyethylene multifilament yarn - Google Patents

Polyethylene multifilament yarn

Info

Publication number
JPS61282417A
JPS61282417A JP12053885A JP12053885A JPS61282417A JP S61282417 A JPS61282417 A JP S61282417A JP 12053885 A JP12053885 A JP 12053885A JP 12053885 A JP12053885 A JP 12053885A JP S61282417 A JPS61282417 A JP S61282417A
Authority
JP
Japan
Prior art keywords
polyethylene
yarn
strength
elastic modulus
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12053885A
Other languages
Japanese (ja)
Inventor
Yutaka Nishikawa
西河 裕
Masaharu Mizuno
正春 水野
Kotaro Fujioka
藤岡 幸太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP12053885A priority Critical patent/JPS61282417A/en
Publication of JPS61282417A publication Critical patent/JPS61282417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the titled yarns having a high strength and elastic modulus and knot strength, by dry jet-wet spinning a solution of polyethylene having a sufficiently high molecular weight, coagulating the solution, extracting the solvent, drying the resultant filaments while vibrating the filaments with a turbulent air stream, heat-treating the resultant filament yarn and drawing the filament yarn under specific conditions. CONSTITUTION:Polyethylene having >=700,000, preferably >=2000,000 weight- average molecular weight is dissolved in a solvent, and the resultant solution in 1-8wt% concentration is dry jet-wet spun and coagulated. After extracting the solvent, the filaments are dried while blowing a turbulent air stream thereon, heat-treated at 80-110 deg.C under tension and drawn at a draw ratio to give >1.5-<=3.0 denier filament fineness and >=50g/d filament strength. Thus, the a aimed multifilament yarns >=1,500g/denier elastic modulus, >=0.013 height in gamma dispersion peak of tan delta, >=1,000g/denier value of dynamic elastic modulus (E') at 100 deg.C, >=15g/denier knot strength and no recongnized reflection showing a long period on the meridian line in the small-angle X-ray scattering pattern and gluing between filaments.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度・高弾性率でかつ高結び強度の特性を有
するポリエチレンマルチフィラメントヤーンF乙関する
ものであり、さらlこは高結節強度を有するポリエチレ
ンマμ六フイフメントヤーン管こ関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a polyethylene multifilament yarn having high strength, high elastic modulus, and high knot strength. The present invention relates to a polyethylene μ6 fiber yarn pipe having the following characteristics.

(従来技術〉 近年、超高分子量ポリエチレンから高強度・高弾性率ポ
リエチレン繊維を得る方法が特開昭5[1−522[1
号公報2特開昭55−10756号公報、特開昭56−
15408号公報、特開昭59−216912〜216
914号公報等に記載されている。
(Prior art) In recent years, a method for obtaining high-strength, high-modulus polyethylene fibers from ultra-high molecular weight polyethylene has been proposed in Japanese Patent Application Laid-open No. 5 [1-522 [1]
Publication No. 2 JP-A-55-10756, JP-A-56-
Publication No. 15408, JP 59-216912-216
It is described in Publication No. 914, etc.

これらの方法は、超高分子量ポリエチレンの準希J溶液
を紡糸し、冷却して一旦ゲ〃状糸条を形成させた後、乾
燥あるいは溶剤抽出・乾燥トこよう脱溶剤し、超延伸を
施すかあるいは脱溶剤と超延伸を同時に施すこと心より
高い強度と連性率を有するm維を製造するものである。
These methods involve spinning a semi-dilute J solution of ultra-high molecular weight polyethylene, cooling it to once form a gel-like yarn, then drying or solvent extraction, drying to remove the solvent, and ultra-stretching. It is possible to produce m-fibers having higher strength and interconnectivity by simultaneously applying desolvation and ultra-stretching.

このようにして得られるポリエチレン繊維は、その特性
故に高い強度と高い弾性案が要求される産業用繊維用途
、例えばロープ、スリング、各環ゴム補強材、各種樹脂
の補強材およびコンクリート補強材などに有用性が期待
さnでいる。
Due to its properties, the polyethylene fibers obtained in this way can be used for industrial fiber applications that require high strength and high elasticity, such as ropes, slings, ring rubber reinforcements, various resin reinforcements, and concrete reinforcements. I hope it will be useful.

しかるに、上記の一且ゲ〃状糸条を形成させる方法では
乾燥工程で単糸間のこう着が生じるとい5問題があり、
マルチフイフメントヤーンの製造には通さない。すなわ
ち、ゲル状糸条を乾燥する際あるいは乾燥させつつ延伸
を施す際に著しい単糸間のこう着が発生する。単糸間で
のこう着生起の原因については、詳細には判明していな
いが、溶液から紡糸して冷却によりゲル化した各単糸は
、溶剤を多量に含んだ膨潤状態にあって、しかもお互い
に密着して寄り添っているため、これを単に乾燥せしめ
て脱溶剤するだけでは著しいこう着が生じるものと考え
られる。事実ゲル化した単糸の特に結晶化していない部
分においては、溶液を単に過冷却したような状Oにあり
%単糸間での境目は実質的ζ存在しない。また、単に乾
燥心よって脱溶剤するのではなく、一旦溶剤を抽出剤に
より抽出し。
However, the above-mentioned method of forming a single-gauge-like yarn has problems such as sticking between the single yarns during the drying process.
Not suitable for multi-fiber yarn production. That is, when the gel-like yarn is dried or when it is stretched while being dried, significant sticking occurs between the single yarns. The cause of adhesion between single yarns is not known in detail, but each single yarn spun from a solution and gelled by cooling is in a swollen state containing a large amount of solvent. Since they are in close contact with each other, it is thought that significant adhesion would occur if they were simply dried to remove the solvent. In fact, especially in the non-crystallized portion of the gelled single fibers, the solution is simply supercooled, and there is virtually no boundary between the % single fibers. In addition, rather than simply removing the solvent by drying the core, the solvent is first extracted using an extractant.

続いて乾燥を施す方法をとれば、単糸間のこう着は若干
緩和されるものの、いまだ不十分である。
If a method of subsequent drying is used, the sticking between the single yarns can be alleviated somewhat, but it is still insufficient.

この単糸間こう着は、紡糸に用いる溶液のポリマー濃度
が低くなるほど著しい。強度、弾性率を高めるためlこ
は分子量の大きなポリマーを月い、できるだけ低いポリ
マー濃度のWr液を紡糸する必要があるので、高い機械
的特性のマルチフイフメントヤーンを得ようとすればよ
けいこの単糸聞こう着が大きな間Mになってくる。
This inter-filament adhesion becomes more pronounced as the polymer concentration of the solution used for spinning becomes lower. In order to increase the strength and elastic modulus, it is necessary to use a polymer with a large molecular weight and spin a Wr solution with the lowest possible polymer concentration, so it is necessary to obtain a multi-fiber yarn with high mechanical properties. This single thread will become M for a long time.

このようにして起こる単糸間のこう着は、加熱時の強力
利用率を低下させたり、糸条自体の強度を低下させたり
、さらには糸条のしなやかさを欠いたりするなどの問題
を招くため、前記のような期待される有用性があるにも
かかわらず、それらの特注を産業用繊維用途として十分
に発揮させるには不都合が多く、シかも工業的規模での
大量生産が著しく困難となっているのが英情である。
The sticking between single yarns that occurs in this way leads to problems such as lowering the strength utilization rate during heating, lowering the strength of the yarn itself, and even causing the yarn to lack flexibility. Therefore, despite the expected usefulness mentioned above, there are many inconveniences in making full use of these custom-made textiles for industrial textile applications, and it may be extremely difficult to mass-produce them on an industrial scale. What is happening is compassion.

一方、特開昭56−15408号公報の実施例Vにはい
わゆる乾式紡糸法と思われるものの記載があるが、この
方法ではあまり高い強度、弾性率は得られていない。さ
らEこ高分子量ポリエチレンの乾式紡糸では比較的高い
沸点の溶剤を用いる必要があり、溶剤を蒸発させるには
高い熱量が必要となる。例えば、吐出溶液流に溶剤の沸
点以上の温度の気体を吹きつけるとか、糸条がほぼ完全
會こ乾燥するまで著しく長い距離をとるなどの工業的生
産では考えられないような工程をとる・C要がある。
On the other hand, Example V of JP-A-56-15408 describes what seems to be a so-called dry spinning method, but this method does not provide very high strength and elastic modulus. Furthermore, dry spinning of high molecular weight polyethylene requires the use of a solvent with a relatively high boiling point, and a high amount of heat is required to evaporate the solvent. For example, processes that would be unimaginable in industrial production are used, such as blowing gas at a temperature higher than the boiling point of the solvent onto the discharged solution stream, or taking an extremely long distance until the yarn is almost completely dry. There is a point.

また、これらの従来方法で得られ・るポリエチレン繊維
の弾性率は最大で理論値の8096程度Yこ達している
ものの強度は理論的に計算される僅とは相当の隔たりが
ある。強度の理論値は研究者により異なるがg/6単位
tこして210〜750 g/Atこ相当し、その10
96から30%程度が達成されているにすぎない。従っ
てまだまだポリエチレン繊維を改質する余地が残されて
いる。
Further, although the elastic modulus of the polyethylene fibers obtained by these conventional methods reaches the theoretical value of about 8096 Y at maximum, the strength is considerably different from the theoretically calculated modulus. The theoretical value of strength varies depending on the researcher, but it is equivalent to 210 to 750 g/At (g/6 unit t), and 10
Only about 30% of the 96% has been achieved. Therefore, there is still room for modifying polyethylene fibers.

さらに、結節を必要とする産業用繊維用途では結節強度
が低いと繊維の強度を十分生かすことはできないが、一
般の高強度・高弾性率繊維では、結節強度を上げること
は難しい。たとえば芳香族ポリアミド繊維では強度が2
2g/iと高いにもかかわらず結節強度は6g/6しか
なく、炭素繊維(強度29 g/11 ) tこ至って
は結節を作ることすらできない。
Furthermore, in industrial fiber applications that require knots, if the knot strength is low, the strength of the fiber cannot be fully utilized, but it is difficult to increase the knot strength with general high-strength, high-modulus fibers. For example, aromatic polyamide fiber has a strength of 2
Although it is as high as 2 g/i, the knot strength is only 6 g/6, and carbon fiber (strength 29 g/11) cannot even form knots.

(発明が解決しようとする間萌点ン 産業用紘維素材はこれを使用する製品の省エネ々ギー化
、高機能化に対応するため軽く強度、弾性率の高いこと
が要求される。また用途によっては結節強度の高いこと
もli要な要求特性である。上述のようtこ従来のこの
種高強度・高弾性率繊維[こはいまだ改普されるべき多
くの余地が残されている。本発明のa題は、産業朋繊維
素材としてより好適な高い強度1弾性案および好ましく
は、高い結節強度を有する実質的に単糸開こう着のない
マルチフィラメントヤーンを禿供することにある。
(The industrial fiber material that the invention seeks to solve is required to be light, strong, and have a high modulus of elasticity in order to support the energy saving and high functionality of products that use it. In some cases, high knot strength is also an essential characteristic.As mentioned above, there is still a lot of room for improvement in this kind of conventional high-strength, high-modulus fibers. An object of the present invention is to provide a multifilament yarn with high strength and elasticity, preferably high knot strength, which is more suitable as an industrial textile material, and which is substantially free from monofilament sticking.

(問題点を解決するための手段および作用)本発明のか
かる課題は。
(Means and effects for solving the problems) This problem of the present invention is as follows.

(1)重量平均分子量70万以上のポリエチレンからな
り、単糸が1.5dを越え五〇1以下のm度、50 g
/σ以上の単糸強度。
(1) Made of polyethylene with a weight-average molecular weight of 700,000 or more, single fibers exceeding 1.5 d and 501 m or less, 50 g
Single yarn strength of /σ or more.

+ 500876以上の弾性率を有し、かつX線小角散
乱像トこおいて長周期を示す反射が認められず、かつま
た動的粘弾性測定Eこおけるtanδのr分散ピークの
高さがα013以下であり、動的弾性率E′の100℃
での値がjooOH/d以上であって、実質的に単糸間
こう着のないポリエチレンマルチフィラメントヤーン。
It has an elastic modulus of +500876 or more, and no long-period reflection is observed in the small-angle X-ray scattering image, and the height of the r dispersion peak of tan δ in the dynamic viscoelasticity measurement E is α013. and the dynamic elastic modulus E' is 100℃
A polyethylene multifilament yarn having a value of jooOH/d or more and substantially free from inter-filament sticking.

(2)  結節強度が15g/d以上である前記第1項
に記載のポリエチレンマルチフィラメントヤーン、 (3)  60 g/6以上の単糸強度、1800g 
/ 6以上の弾性率を有し%tanδのγ分散ピークの
高さが101以下である前記第1項または第2項に記載
のポリエチレンマルチフィラメントヤーン、 (4)  重量平均分子量が200万以上である前記第
1項から第3項に゛記載もポリエチレンマルチフィラメ
ントヤーン。
(2) The polyethylene multifilament yarn according to item 1 above, which has a knot strength of 15 g/d or more, (3) A single yarn strength of 60 g/6 or more, 1800 g.
/ The polyethylene multifilament yarn according to the above item 1 or 2, which has an elastic modulus of 6 or more and a γ dispersion peak height of % tan δ of 101 or less; (4) a weight average molecular weight of 2 million or more; Items 1 to 3 above also include polyethylene multifilament yarns.

(s)  70g/d以上の単糸強度、2000g/A
以上の弾性率を有する前記第1項から第4項に記載のポ
リエチレンマルチフィラメントヤーン、 あるいは、 (6)  前記第1項から第5項に記載の乾湿式紡糸ポ
リエチレンマルチフィラメントヤーン。
(s) Single yarn strength of 70g/d or more, 2000g/A
The polyethylene multifilament yarn according to the above items 1 to 4 having an elastic modulus of the above, or (6) the wet-dry spun polyethylene multifilament yarn according to the above items 1 to 5.

という新規なポリエチレンマルチフィラメントヤーンに
より達成された。
This was achieved using a new polyethylene multifilament yarn.

本発明の新規なポリエチレンマルチフィラメントヤーン
は実質的に分子鎖の伸びきった結晶からなり、若干含有
する非晶部分も配向が進んでいるため結晶部との構造差
が少なく繊維軸方向に長周期構造を有していない。長周
期構造を有する繊維では、X線小角散乱像において子午
線方向[こ長周期を示す反射が認められるが、本発明の
vA維ではこの反射が認められない。
The novel polyethylene multifilament yarn of the present invention is substantially composed of crystals with fully extended molecular chains, and the slightly contained amorphous portion is also highly oriented, so there is little structural difference from the crystalline portion, and the period is long in the fiber axis direction. It has no structure. In fibers having a long period structure, reflections indicating a long period in the meridian direction are observed in small-angle X-ray scattering images, but this reflection is not observed in the vA fibers of the present invention.

また、動的粘弾性測定におけるtanδのr分散ピーク
(−130℃付近のピーク]の高さは非晶部分の量的割
合を反映するが、このピークの低いものほど非晶部が少
ない。
Further, the height of the r-dispersion peak of tan δ (peak around −130° C.) in dynamic viscoelasticity measurement reflects the quantitative proportion of the amorphous portion, and the lower this peak is, the less the amorphous portion is.

一方動的弾性率Σ′は低温から高温になるに従って雪下
するが結晶化!および配向度が高いほど、すなわち−M
k構造の完全性の高いほど融点近くまで高い値を維持す
る。本発明の繊維はtanδのr分数ビーク烹さがll
013以下と著しく低い位を示すだけでなく、E′ が
100℃iこおいても1008g/d以上という高い僅
を保っている。なお、動的粘弾性の測定は次の条件で行
なった。
On the other hand, the dynamic elastic modulus Σ' decreases as the temperature increases from low to high, but it crystallizes! and the higher the degree of orientation, i.e. -M
The higher the integrity of the k structure, the higher the value maintained until close to the melting point. The fiber of the present invention has r fraction peak heat of tan δ
Not only does it exhibit a significantly low value of 0.013 or less, but it also maintains a high E' value of 1008 g/d or more even at 100°C. Note that the dynamic viscoelasticity was measured under the following conditions.

装  置 東洋ボー〃ドウイン(株)CDI/−[型振
動数 1101!z 昇温速庄 3℃/分 本発明のポリエチレンマルチフィラメントヤーンは以上
のよう[こ伸びきった分子鎖結晶を主体Eこ構成され、
構造の完全性が高く、従って50g/d以上の単糸強度
、1500H/d以上の弾性率を有し、tanδのγ分
散ピークの高さが101以下にあっては606/d以上
の単糸強度、+800g/’d以上の弾1率を有し、し
かも解繊性Iこ優れた全く新規な繊維である。
Equipment Toyo Bowdoin Co., Ltd. CDI/- [Model frequency 1101! The polyethylene multifilament yarn of the present invention has a heating rate of 3°C/min as described above.
If the structural integrity is high, and therefore the single yarn strength is 50 g/d or more, the elastic modulus is 1500 H/d or more, and the height of the tan δ γ dispersion peak is 101 or less, the single yarn is 606/d or more. It is a completely new fiber that has strength, a bullet modulus of +800 g/'d or more, and excellent fibrillation properties.

また、構造との関係は明らかではないが、本発明の好ま
しいポリエチレンマルチフィラメントヤーンは驚くべき
ことに15 g/d以上の結節強度を有しており、この
ように高強度・高弾性率を有していながら結節強度が高
い繊維は両特性が2律背反の関係にあるのが一般である
のできわめて特異的である。
Further, although the relationship with the structure is not clear, the preferred polyethylene multifilament yarn of the present invention surprisingly has a knot strength of 15 g/d or more, and thus has high strength and high elastic modulus. However, fibers with high knot strength are extremely specific because both properties are generally in a trade-off relationship.

本発明にかかる新規なポリエチレンマルチフィラメント
ヤーンは、例えば、次のごとき新規な製造方法により提
供される。
The novel polyethylene multifilament yarn according to the present invention is provided, for example, by the following novel manufacturing method.

重量平均分子量が70万以上のポリエチレンを溶剤に溶
解し、タリエチレンを1〜8重量%含有する浴液をTl
41iする。この溶液を複数の孔を有するノズルから空
気または不活性気体雰囲気層を介して凝固浴中に押し出
し、凝固糸条となした後さら[こ溶剤を抽出する。次い
で凝固・抽出糸条は乱流気体を吹きつけつつ振動させて
単糸間を否着させない状顔で乾燥する。さらに、乾燥糸
条を80℃〜110℃の温濱で緊8!熱処理した後、1
35℃〜145℃で、単糸繊度がt5αを越え五Oaと
なり、かつ単糸強度が少なくとも50 g/ことなるt
こ十分な倍率で延伸する。
Polyethylene with a weight average molecular weight of 700,000 or more is dissolved in a solvent, and a bath solution containing 1 to 8% by weight of tallyethylene is prepared as Tl.
41i. This solution is extruded into a coagulation bath through a nozzle having a plurality of holes through an atmosphere layer of air or an inert gas to form a coagulated thread, and then the solvent is extracted. Next, the coagulated and extracted threads are dried while being blown with turbulent gas and vibrated to prevent the single threads from becoming stuck together. Furthermore, dry the yarn at a temperature of 80°C to 110°C. After heat treatment, 1
At 35°C to 145°C, the single yarn fineness exceeds t5α and becomes 5 Oa, and the single yarn strength is at least 50 g/different t.
Stretch at a sufficient magnification.

かかる新規な製造方法において特徴的なのは、乾湿式紡
糸の採用、凝固・抽出糸条を乱気流で振動させて単糸間
な密着させない状顛で乾燥すること、および延伸前ンこ
特定温度範囲にで緊張熱処理を施すことである。
The characteristics of this new manufacturing method are that wet-dry spinning is used, the coagulated and extracted yarn is vibrated with turbulence and dried in a manner that prevents single yarns from coming into close contact with each other, and that the fibers are heated to a specific temperature range before drawing. This involves applying tension heat treatment.

かかる方法で得られるポリエチレンマルチフィラメント
ヤーンは実質的1;単糸間のこ511がなく、単糸wA
度が1.51を越えLOこ以下であって、50g/d以
上の単糸強度、1500E / eL以上の弾性率を有
し、かつX線小角散乱像において子午線上に長周期を示
す反射が認められず、かつまた動的粘弾性測定における
tanδのr分散ピークの高さがユ013以下となり、
動的弾性率]!8/ の100℃での儂が1000g/
改以上となり、しかも結節強度が15g/d以上となる
The polyethylene multifilament yarn obtained by this method is substantially 1; there is no thread 511 between the single yarns, and the single yarn wA
The fiber has a single fiber strength of 50 g/d or more, an elastic modulus of 1500 E/eL or more, and has a reflection that shows a long period on the meridian in a small-angle X-ray scattering image. It is not recognized, and the height of the r dispersion peak of tan δ in dynamic viscoelasticity measurement is less than 013,
Dynamic elastic modulus]! 8/ My weight at 100℃ is 1000g/
15 g/d or more, and the nodule strength is 15 g/d or more.

本発明のポリエチレンマルチフィラメントヤーンおよび
その製造方法について詳述すれば次のとおりである。
The details of the polyethylene multifilament yarn of the present invention and the method for producing the same are as follows.

本発明のポリエチレンマルチフィラメントヤーンを得る
ために使用するポリエチレンは分子量の高いものである
必要がある。すなわち、重量平均分子量が少なくとも7
0万、好ましくは少なくとも200万である。分子量の
低いポリマーを用いると得られる砿維内部に分子鎖末端
等の欠陥部が多くなるとともに高倍率延伸における変形
は分子鎖間のすべりが主体となるため延伸が強度向上に
有効にはたらかない。
The polyethylene used to obtain the polyethylene multifilament yarn of the present invention must have a high molecular weight. That is, the weight average molecular weight is at least 7.
00,000, preferably at least 2 million. When a polymer with a low molecular weight is used, there are many defects such as molecular chain ends inside the obtained fiber, and the deformation during high-magnification stretching is mainly caused by slipping between molecular chains, so stretching does not work effectively to improve strength. .

ここでいうポリエチレンとは、少量の例えば10モ/I
/96以下のプロピレン、ブチレン、ペンテン、ヘキセ
ン、4−メ千μペンテンなどの他のγμケンあるいはエ
チレンと共重合しうるビニμモノマー等の1種あるいは
2種以上が共重合されたものであってもよい。
Polyethylene here refers to a small amount of, for example, 10 mo/I
/96 or less, such as propylene, butylene, pentene, hexene, 4-methoxypentene, etc., or one or more vinylμ monomers that can be copolymerized with ethylene. It's okay.

また上記ポリエチレンの溶剤としては溶解性の良いこと
%事後の凝固工程で拍出され千すいことおよび沸点が溶
解時あるいは紡糸時の@度より高いことなどの条件を満
足するもの、例えば、デカリンおよび/または白灯油が
好ましく用いられる。
In addition, the solvent for the polyethylene mentioned above is one that satisfies the following conditions: it has good solubility, it is easily pumped out in the subsequent coagulation process, and its boiling point is higher than that at the time of dissolution or spinning, such as decalin and / or white kerosene is preferably used.

ポリエチレン溶液のボリニチレン!1度は、ポリエチレ
ンの分子量が大きいほど低い11に度条件が選ばれ、し
かも溶解の均一性、紡糸時の吐出安定性、曳糸性および
延伸時の製糸注などの面から適切な溶液粘度となるよう
に濃度が選択される。ただしポリエチレン濃度が1重量
%を下まわると生産性に劣るばかりでなく凝固糸条が柔
らかく、糸条走行が不安定となって外乱を受けやすく均
一性に欠けるため好ましくない。またポリエチレン一度
が高い方が生産性は高いが。
Borinylene in polyethylene solution! The higher the molecular weight of the polyethylene, the lower the 11 degree condition is selected, and the appropriate solution viscosity is selected from the viewpoints of uniformity of dissolution, discharge stability during spinning, threadability, and thread refining during drawing. The concentration is selected so that However, if the polyethylene concentration is less than 1% by weight, it is not preferable because not only is productivity poor, but the coagulated yarn is soft and the yarn running becomes unstable, susceptible to external disturbances, and lacks uniformity. Also, the higher the polyethylene content, the higher the productivity.

8重量%を超えると溶液中でのポリエチレン分子鎖のか
らみ合い(Entangle口entン が多くなるこ
とに起因して溶液の粘度が高くなり、適切でない濃度範
囲[こ至ると紡糸時に曳糸性が低下するばかりか、脱溶
剤後の延伸時に延伸倍率が十分上がらず、低いカゴしか
得られないため好ましくない。従ってポリエチレンRH
のポリエチレン濃度lよ1〜8重量%が好適である。
If it exceeds 8% by weight, the viscosity of the solution increases due to the entanglement of polyethylene molecular chains in the solution, resulting in an inappropriate concentration range [which leads to poor spinnability during spinning]. Not only does it decrease, but the stretching ratio does not increase sufficiently during stretching after solvent removal, and only a low cage can be obtained, which is undesirable.Therefore, polyethylene RH
A polyethylene concentration of 1 to 8% by weight is suitable.

強度、弾性率を向上させるためには延伸倍率を上げる必
要があり、より高分子量のポリエチレンを用いた希薄な
溶液から紡糸するのが望ましいので、重量平均分子量が
200万以上のポリエチレンを用い、ポリエチレンの濃
度が1〜5重量%の浴液かも紡糸するのがさらに好適で
あり1重量平均分子量が500万以上のポリエチレンを
用い、ポリエチレンの濃度が2〜35I5の溶液から紡
糸するのがもつとも好適である。
In order to improve strength and elastic modulus, it is necessary to increase the draw ratio, and it is desirable to spin from a dilute solution using polyethylene with a higher molecular weight. Therefore, using polyethylene with a weight average molecular weight of 2 million or more, It is more preferable to spin from a bath solution with a concentration of 1 to 5% by weight, and it is even more preferable to use polyethylene having a weight average molecular weight of 5 million or more and to spin from a solution with a polyethylene concentration of 2 to 35I5. be.

なお溶液伶裏時のポリエチレン溶解温度と紡糸時の溶液
fa度はほぼ同じくういにするのが好ましく、ポリエチ
レンの分子量によって異なり、大体150〜200’Q
の範囲で適切な温度条件が設定される。例えば、重量平
均分子量が200万のビリエチレンを用い、ポリエチレ
ンの濃度が596の溶液から紡糸する場合、170℃程
度が適当である。
It is preferable that the melting temperature of polyethylene at the time of solution dissolution and the degree of solution fa during spinning are approximately the same, and vary depending on the molecular weight of the polyethylene, approximately 150 to 200'Q.
Appropriate temperature conditions are set within this range. For example, when polyethylene having a weight average molecular weight of 2 million is used and spinning is performed from a solution having a polyethylene concentration of 596, a temperature of about 170°C is appropriate.

上記溶液は、複数の孔を有するノズルから空気または不
活性気体雰囲気層を介して凝固浴中に押し出す。この気
体雰囲気の通過距離については特に制限はないが、3〜
505mが適当であり、50Mを大きく上回るとノズル
から押し出された繊維状溶液の安定走行が難しくなり2
わずかの糸ゆれによりこの気体雰囲気中で単糸聞こう着
が生ずるなどの問題が生じ昌くなるため好ましくない。
The solution is forced through a multi-hole nozzle through a layer of air or an inert gas atmosphere into the coagulation bath. There is no particular limit to the distance through which this gas atmosphere passes, but
505 m is appropriate; if it greatly exceeds 50 m, it becomes difficult for the fibrous solution extruded from the nozzle to run stably.
This is not preferable because a slight yarn wobbling causes problems such as single yarn sticking in this gas atmosphere, resulting in unsteadiness.

また、この気体雰囲気中において押し出された繊維状溶
液かられずかに溶剤が蒸発してぬけることもあるが、大
半の溶剤は凝固浴およびこれに続く抽出浴で抽出除去さ
れる。
Although a small amount of solvent may evaporate from the extruded fibrous solution in this gas atmosphere, most of the solvent is extracted and removed in the coagulation bath and subsequent extraction bath.

本発明トこおいて凝固浴および抽出浴で使用される凝固
剤としては、単糸聞こう着を防ぐため、凝固温度におい
て、ポリエチレンを溶解あるいは膨潤させないもので、
かつ溶剤と相溶性が良く、室温で連発性のものが選ばれ
る。例えば。
In the present invention, the coagulant used in the coagulation bath and extraction bath is one that does not dissolve or swell the polyethylene at the coagulation temperature in order to prevent single filament sticking.
Also, one is selected that has good compatibility with the solvent and is continuous at room temperature. for example.

アセトン類やメタノール、エタノ−μのよ5なア/7:
I−/l/類などが挙げられる。特開昭58−5228
号公報に記載の方法では、抽出にポリエチレンの溶剤を
用いているため単糸間のこう着はさら[こ著しくなるも
のと考えられる。凝固浴および抽出浴の温度は用いる凝
固剤の凝固能や沸点などにより異なるが、通常は0〜4
0℃の範囲が適当である。
Acetones, methanol, ethanol, etc. 5/7:
Examples include I-/l/ and the like. Japanese Patent Publication No. 58-5228
In the method described in the above publication, since a polyethylene solvent is used for extraction, it is thought that the sticking between single fibers becomes even more severe. The temperature of the coagulation bath and extraction bath varies depending on the coagulation ability and boiling point of the coagulant used, but is usually 0 to 4.
A range of 0°C is suitable.

凝固浴で凝固した糸条は、次いで抽出浴く送られ、ここ
で残りの溶剤を抽出除去した後、乾燥する。また、抽出
剤を第二の抽出剤に置き換えてから乾燥することもある
。例えば、引火性の第一抽出剤を引火性の低い第二の抽
出剤に置き換えるなどである。
The yarn coagulated in the coagulation bath is then sent to an extraction bath, where the remaining solvent is extracted and removed, and then dried. Alternatively, the extractant may be replaced with a second extractant and then dried. For example, replacing a flammable first extractant with a second, less flammable extractant.

凝固糸条の乾燥Iこおいては、糸条に乱流気体を吹きつ
けつつ振動させて乾燥する。乱流中で各単糸は乱れた状
頷にあり、お互い密着しない状慇で乾燥されてい(ため
単糸間のこう着を回避することができる。
In drying the coagulated yarn I, the yarn is dried by blowing turbulent gas and vibrating it. In the turbulent flow, each single yarn is in a disordered state and is dried without being in close contact with each other (therefore, it is possible to avoid sticking between single yarns.

このようtこ用いる溶液のポリマー!1度が低い場合、
溶液をゲμ化させることな(直接凝固浴心厚いて単糸が
集束する前Iこ繊維表面を完全に凝固させることと、凝
固糸条を乾燥する際に単糸間を密着させない状態で乾燥
することにより初めて実質的心血糸間こう着のないマル
チフィラメントヤーンを得ることができる。
This is how you use a solution of polymers! If 1 degree is low,
The solution should not be gelatinized (direct coagulation bath is thick and the fiber surface should be completely coagulated before the single fibers are bundled), and when drying the coagulated yarn, the single fibers should not be in close contact with each other. By doing so, it is possible to obtain a multifilament yarn that is substantially free from inter-thread adhesion.

上記の紡糸方法、すなわちポリマーの溶液をノズ〃かも
気体雰囲気中を介して凝固浴に押し出す紡糸方法それ自
体はいわゆる乾一式紡糸法として公知の方法である。が
、斯る高分子量のポリエチレンを用い高強度、高弾性′
4A繊維の得られることはこれまで知られていなかった
ことである。
The above-mentioned spinning method, ie, the spinning method in which a polymer solution is extruded into a coagulation bath through a nozzle or a gas atmosphere, is itself known as the so-called dry spinning method. However, using such high molecular weight polyethylene, high strength and high elasticity
The ability to obtain 4A fibers was previously unknown.

本方法の紡糸ンこおいてはたとえ紡糸ドラフトを与えな
くとも溶液が凝固し凝固糸条な形成する際(こ収縮しよ
うとし、このため糸条に応力がかかる。従って空気ある
いは不活性気体雰囲気中の繊維状1g液および凝固中の
糸条は緊張状態にあり安定な糸道を形成する。また溶液
中の分子鎖はI!i維軸方向に若干配向し、結晶化する
ので繊維軸方向[こフメラ結晶のC軸配向も進む。
In the spinning chamber of this method, even if no spinning draft is provided, when the solution coagulates and forms solidified threads (this tends to shrink, stress is applied to the threads. The fibrous 1g solution and the coagulating thread are in a tension state and form a stable thread path.Moreover, the molecular chains in the solution are slightly oriented in the I!i fiber axis direction and crystallized, so that the fiber axis direction [ The C-axis orientation of the humeral crystals also progresses.

この配向は分子鎖をラメプ結晶中からときほぐすのに有
利な方向[こあるので後の延伸工程で分子鎖を引伸ばし
伸切り鎖結晶を成長させるのに有効トこはたらくものと
思われる。
This orientation is considered to be an advantageous direction for disentangling the molecular chains from the Ramep crystal, and is therefore effective in stretching the molecular chains in the subsequent stretching step to grow stretched-chain crystals.

特開昭58−5228号公報、特開昭55−10756
号公報、゛特開昭56−15409号公報、特開昭59
−216912〜216914号公報等tこ記載の一旦
ゲ〃状糸条な形成させる方法では凝固に伴5緊張がなく
糸道は不安定となりやすく、またゲルが相当量の溶剤を
含むため紡糸における分子鎖の配向が緩和されやすく後
の延伸が分子鎖を引伸ばし伸びきり鎖結晶を成長させる
の[こ有効−はたらかないと考えられる。
JP-A-58-5228, JP-A-55-10756
No. 56-15409, Japanese Patent Application Laid-Open No. 1983-15409
216912 to 216914, etc. In the method described in this paper, in which a gel-like yarn is formed once, there is no tension during coagulation, and the yarn path tends to become unstable. Also, since the gel contains a considerable amount of solvent, molecules of It is thought that the orientation of the chains is easily relaxed and the subsequent stretching stretches the molecular chains and causes the growth of fully extended chain crystals, which is not effective.

また、この方法では、柔らかいゲルがガイドやローツー
に触れると傷ついたり、溶剤が泰みだして糸条のむもζ
なりやすい等の外乱を多く受は易いという問題もある。
In addition, with this method, if the soft gel comes into contact with the guide or low two, it may be damaged, and the solvent may ooze out, causing the yarn to become thick.
There is also the problem that it is easily susceptible to many disturbances such as

さらにこの方法では前述のように単糸閲ンここう着が起
こりマルチフィラメントヤーンの製造には適さない。
Furthermore, this method is unsuitable for producing multifilament yarns, as single yarn breakage occurs as described above.

この方法に比較し本発明のマルチフィラメントヤーンを
得るための方法ではかかる欠点を有さず、かつ比較的低
い延伸倍率で高強度を達成することができる。
Compared to this method, the method for obtaining multifilament yarns of the present invention does not have such drawbacks and can achieve high strength at relatively low draw ratios.

凝固、抽出後、乾燥された糸条に引き続き60℃〜11
0℃の温度で緊張熱処理を施す。
After coagulation and extraction, the dried yarn is then heated to 60°C to 11°C.
A tension heat treatment is performed at a temperature of 0°C.

この熱処理温度範囲ではポリエチレンの結晶化が進み易
く、ラメラ結晶が成長するが非晶部分の分子鎖が結晶内
tこ取り込まれる時Eこからみ合いが一部ときほぐされ
その数が減少するものと思われる。このように乾燥糸条
の熱処理で分子鎖のからみ合いの数を減少させることに
よって分子鎖はより引き伸ばされ易くなり、伸びきり鎖
結晶を形成させ昌い。
In this heat treatment temperature range, polyethylene tends to crystallize and lamellar crystals grow, but when the molecular chains of the amorphous part are incorporated into the crystal, some of the entanglements are disentangled and the number of lamellar crystals is reduced. Seem. By reducing the number of molecular chain entanglements through heat treatment of the dry yarn in this manner, the molecular chains are more easily stretched, forming fully extended chain crystals.

緊張熱処理された糸条を次の工程において135℃〜1
45℃で単糸強度が少なくとも50 に5/dとなるに
十分な倍率まで繰り返し延伸する。この場合延伸は好ま
しくは3段以上。
In the next step, the tension heat-treated yarn is heated to 135℃~1
It is drawn repeatedly at 45°C to a sufficient magnification to give a single filament strength of at least 50.5/d. In this case, the stretching is preferably performed in three or more stages.

さらに好ましくは4段以上の多段で行なう。また延伸前
段(倍率にしてほぼ20倍までの部分ンの延伸速度は大
きくとってもよいが、延伸の後段は比較的低い速度(給
糸速度1 m7分以下)で繰り返し延伸するのが好まし
い、また延伸領域はできるだけ広くとるようにし、例え
ば熱板を用いて延伸する場合% 1m以上の熱板を使用
することが好ましい。
More preferably, it is carried out in multiple stages of four or more stages. In addition, the drawing speed in the first stage of stretching (up to approximately 20 times in terms of magnification) may be high, but in the second stage of stretching, it is preferable to repeatedly draw at a relatively low speed (yarn feeding speed of 1 m7 minutes or less). The area should be as wide as possible; for example, when stretching is performed using a hot plate, it is preferable to use a hot plate with a diameter of 1 m or more.

このように後段になるにしたがって低い延伸速度で、し
かも広い領域においてじつ(り延伸することで、分子鎖
がラメラ結晶からときほぐされ、伸びきった状態で再結
晶化される。
In this manner, the molecular chains are loosened from the lamellar crystals and recrystallized in the fully stretched state by gradually stretching at a lower stretching speed and over a wider area as the latter stages progress.

延伸後の機維はその単糸繊度がL5aを越え五OcL以
下、好ましくは1.54を越えλOa以下となるよう各
製糸条件を決定する必要がある。
It is necessary to determine each spinning condition so that the fiber after drawing has a single fiber fineness of more than L5a and less than 5OcL, preferably more than 1.54 and less than λOa.

一般に、製糸条件が同じ場合繊度が小さいほど強度は高
くなるがあまり繊度が小さすぎると最終製品に加工する
際毛羽が発生しやすいなど取り扱いの面で問題になった
り、製品使用中にも毛羽立ちしやすいため外観が著しく
損なわれる。
In general, when the spinning conditions are the same, the smaller the fineness, the higher the strength. However, if the fineness is too small, it may cause handling problems such as fuzzing when processed into the final product, or the product may fuzz during use. It is easily damaged, resulting in significant damage to the appearance.

本発明の嶽ルは上記の繊度範囲で506/d以上の単糸
強度および15006/iの弾性率が達成されしかも取
り扱いが容易である。
The yarn of the present invention achieves a single yarn strength of 506/d or more and an elastic modulus of 15006/i within the above-mentioned fineness range, and is easy to handle.

次に実施例により本発明を具体的に説明するが、本発明
はこれEこ限定されるものではない。
Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

なお、以下く示される糸物性は次の条件で測定した。The yarn physical properties shown below were measured under the following conditions.

糸サング/l/:単糸 試     長 : 250 顛 引張り速度H3O0a、7分 雰 囲 気:20℃、65%相対湿度 (5j!施例) 実施例1〜3 重量平均分子量が300万の直鎮状高密度ポリエチレン
を灯油に190℃の温度で溶解し、50重量%溶液を調
整した。この溶液を180℃で孔径1m、孔ek、20
のノズルから5藺の距離だけ空気雰囲気を通過させた後
、20℃の205!5の灯油を含むア七トンからなる凝
固浴へ押し出し、凝固させた。ノズμかもの聡吐出量−
は900C/分であり、凝固した糸条は7.5m/分で
引き取った。
Yarn sang/l/: Single yarn trial length: 250 Tensile speed H3O0a, 7 minutes Atmosphere: 20°C, 65% relative humidity (5j! Example) Examples 1 to 3 Straight yarn with a weight average molecular weight of 3 million A 50% by weight solution was prepared by dissolving high density polyethylene in kerosene at a temperature of 190°C. This solution was heated at 180°C with a pore size of 1 m and a hole ek of 20
After the air atmosphere was passed through the nozzle for a distance of 5 mm, it was extruded into a coagulation bath consisting of 7 tons of 205!5 kerosene at 20°C and coagulated. Noz μ Kamo Satoshi discharge amount -
was 900 C/min, and the coagulated yarn was drawn off at 7.5 m/min.

1記糸条を引き続き20℃のア七トンからなる抽出浴を
通し、糸条中[こ残存する灯油を抽出して、室温の空気
の乱流中で振動させながら乾燥した。その後糸条を90
℃の加熱ロー/L/lこより定長熱処理した後、連続し
て140℃で1段延伸を行なってからワインダーで巻き
取った。
1. The yarn was then passed through an extraction bath of 20 DEG C. to extract the remaining kerosene in the yarn, and dried under turbulent air at room temperature while being vibrated. After that, the yarn is 90
After heat treatment for a fixed length at 140° C., the film was continuously stretched in one stage at 140° C. and then wound up with a winder.

得られた糸条には東貿的遅単糸閲のこう着がなく、解繊
性は良好であった。次に巻き取った糸条をj m/分の
速度で給糸してさらに2段延伸した。第1表tこ延伸条
件および得られた延伸糸の特性を示す。なお、延伸工程
においても単糸間のこう着は発生していない。
The obtained yarn had no stagnation due to Tobo slow single yarn processing and had good fibrillation properties. Next, the wound yarn was fed at a speed of j m/min and further drawn in two stages. Table 1 shows the drawing conditions and the properties of the obtained drawn yarn. Incidentally, no sticking occurred between the single yarns even in the drawing process.

第  1  表 注) 第2段目以降は連続延伸 東施例4 実施例1,5と同じ溶液を用い、同様の紡糸を行なった
がノズμは孔径が1票、孔数10で、εヒ出量を60工
/分とした。次に続く抽出、乾燥、定長熱処理も同様で
あるが、!P!処理後ワイングーで巻き取った。得られ
た糸条には突貫的に凰糸間のこう着がなく、解繊性は良
好であった。次に巻き取った糸条を低い速度で給糸して
繰り返し延伸した。この場合も延伸工程においても単糸
間のこう着は発生していない、延伸条件および得られた
延伸糸の特性は次のとおりである。
Table 1 Note) From the second stage onwards, continuous stretching was carried out.Example 4 The same solution as in Examples 1 and 5 was used and the same spinning was carried out, but the nozzle μ had a hole diameter of 1, number of holes 10, and ε The output rate was 60 machin/min. The subsequent extraction, drying, and constant length heat treatment are similar, but! P! After processing, it was rolled up with wine goo. The obtained threads had no sudden sticking between the threads and had good fibrillation properties. Next, the wound yarn was fed at a low speed and repeatedly drawn. In this case as well, no sticking occurred between the single yarns during the drawing process.The drawing conditions and the properties of the obtained drawn yarn are as follows.

給糸速度(m/分ン 延伸温度(’C)  延伸倍率第
1段目   5      155   14第2段目
  ユ2142    五〇 t7gs段目  (L5    145   10延呻
糸特性 堆朱繊度         1.8電 強    度              75   
 g / 6゜伸    度            
    匂  %弾性率    2230  g/こ 結節強度         20   g/こ長 局 
期          W4測されず100℃ICおf
るE’      1800   i/dT分教の1赦
naピーク高さ    α006比較例1 重量平均分子量が500万の直鎖状高密度ポリエチレン
を灯油に19Q℃の温度で溶解し。
Yarn feeding speed (m/min) Drawing temperature ('C) Drawing ratio 1st stage 5 155 14 2nd stage Yu2142 50t7gs stage (L5 145 10 Drawing yarn characteristics Vermilion fineness 1.8 Electrical strength 75
g/6° elongation
Percent modulus of elasticity 2230 g/Nodule strength 20 g/Length
Period W4 was not measured and 100℃ IC of
E' 1800 i/dT peak height α006 Comparative Example 1 Linear high-density polyethylene having a weight average molecular weight of 5 million was dissolved in kerosene at a temperature of 19Q°C.

10重量%溶液を調整した。この溶液を180℃で孔径
1■、孔数20のノズルから5電の距離だけ空気雰囲気
を通過させた後、20℃の水中へ押し出し、冷却ゲル化
させて、ゲル状糸条な形成させた。ノズMからの総吐出
量は 90a−7分であワ、ゲル状糸条は7..5I!
17分で引き取った。
A 10% by weight solution was prepared. This solution was passed through an air atmosphere for a distance of 5 volts from a nozzle with a hole diameter of 1 mm and 20 holes at 180°C, and then extruded into water at 20°C, cooled, and gelled to form a gel-like thread. . The total discharge amount from the nozzle M was 90a-7 minutes, and the gel-like yarn was 7. .. 5I!
I picked it up in 17 minutes.

l記ゲμ状糸条を引き続き20℃のアセトンからなる抽
出浴を通し、糸条中に残存する灯油を抽出した後、各単
糸が集束した状むで乾燥し、ヮインダーで巻き取った。
The μ-shaped yarn was then passed through an extraction bath of acetone at 20° C. to extract the kerosene remaining in the yarn, and each single yarn was dried in a bundle and wound with a winder.

この糸条を2段で延伸したが1強度は436/dで1弾
性率は1270g/dであった。また、tanδのγ分
散ピーク高さはα019であり、100℃zおけるE′
は650g/dであった。なお、延伸の条件は次のとお
りである。
This yarn was drawn in two stages, and the 1-strength was 436/d and the 1-elastic modulus was 1270 g/d. In addition, the γ dispersion peak height of tan δ is α019, and E′ at 100°C
was 650 g/d. Note that the stretching conditions are as follows.

給糸速度(m/分) 延伸温度C℃)  延伸倍率第一
段目   5      155   12第二段目 
  12     145    4.2得られた糸条
t;は単糸間のこう着が多く、きれいに解繊することが
できなかった。
Yarn feeding speed (m/min) Stretching temperature C℃) Stretching ratio 1st stage 5 155 12 2nd stage
12 145 4.2 The obtained yarn t; had many stictions between single yarns and could not be defibrated neatly.

また、同様の紡糸で抽出工程を除き、ゲρ状糸条中のデ
カリンを60℃で乾燥させたところ単糸間のこう着が著
しく、全く解繊することができなかった。
Furthermore, when the decalin in the gelatinous filaments was dried at 60°C using the same method of spinning except for the extraction step, the single filaments were stuck together significantly and could not be defibrated at all.

比較例2 重量平均分子監が50万の直鎖状高密度ポリエチレンを
デカリンtこ170℃の温度で溶解し、五5重量%溶液
をv4!Iした。この/8液を実施例1〜3と同様に紡
糸し、得られた糸条を次の条件で延伸した。
Comparative Example 2 Linear high-density polyethylene with a weight average molecular weight of 500,000 was dissolved in decalin at a temperature of 170°C, and a 55% by weight solution was dissolved in v4! I did it. This /8 liquid was spun in the same manner as in Examples 1 to 3, and the obtained yarn was drawn under the following conditions.

給糸速度(m/分] 延伸温度(’C)  延伸倍率第
1段目  7.5     140    + 2第2
段目  (124422,5 第5段目  α2     145   2.0延伸糸
の単糸繊度は2.24dであり、強度および弾性率は各
々30g/d%870g/4と低い値であった。
Yarn feeding speed (m/min) Stretching temperature ('C) Stretching ratio 1st stage 7.5 140 + 2 2nd stage
Row (124422,5 5th row α2 145 2.0 The single yarn fineness of the drawn yarn was 2.24 d, and the strength and elastic modulus were each as low as 30 g/d% and 870 g/4.

(本発明の効果〕 以上説明したように、本発明のポリエチレンマμチフイ
ラメントヤーンはきわめて高強度・いため加轡時の強力
利用率の9下などがなく。
(Effects of the present invention) As explained above, the polyethylene multifilament yarn of the present invention has extremely high strength and does not have a tensile strength utilization rate of 9 or less during aging.

各種産業用1a維素材としてきわめて有用である。It is extremely useful as a 1a fiber material for various industries.

Claims (6)

【特許請求の範囲】[Claims] (1)重量平均分子量70万以上のポリエチレンからな
り、単糸が1.5dを越え3.0d以下の繊度、50g
/d以上の単糸強度、 1500g/d以上の弾性率を有し、かつ X線小角散乱像において長周期を示す反射 が認められず、かつまた動的粘弾性測定に おけるtanδのγ分散ピークの高さが 0.013以下であり、動的弾性率E′の 100℃での値が1000g/d以上であ って、実質的に単糸間こう着のないポリエ チレンマルチフィラメントヤーン。
(1) Made of polyethylene with a weight average molecular weight of 700,000 or more, single yarn has a fineness of more than 1.5 d and less than 3.0 d, 50 g
/d or more, a single fiber strength of 1500 g/d or more, and no long-period reflections observed in small-angle X-ray scattering images, and with a tan δ γ dispersion peak in dynamic viscoelasticity measurements. A polyethylene multifilament yarn having a height of 0.013 or less, a dynamic elastic modulus E' at 100° C. of 1000 g/d or more, and substantially free from inter-filament sticking.
(2)結節強度が15g/d以上である特許請求の範囲
第1項に記載のポリエチレンマル チフィラメントヤーン。
(2) The polyethylene multifilament yarn according to claim 1, which has a knot strength of 15 g/d or more.
(3)60g/d以上の単糸強度、1800g/d以上
の弾性率を有し、tanδのγ分散ピークの高さが0.
01以下である特許請求の範囲第1項または第2項に記
載のポリ エチレンマルチフィラメントヤーン。
(3) It has a single yarn strength of 60 g/d or more, an elastic modulus of 1800 g/d or more, and a tan δ γ dispersion peak height of 0.
01 or less, the polyethylene multifilament yarn according to claim 1 or 2.
(4)重量平均分子量が200万以上である特許請求の
範囲第1項から第3項に記載のポ リエチレンマルチフィラメントヤーン。
(4) The polyethylene multifilament yarn according to claims 1 to 3, which has a weight average molecular weight of 2 million or more.
(5)70g/d以上の単糸強度、2000g/d以上
の弾性率を有する特許請求の範 囲第1項から第4項に記載のポリエチレン マルチフィラメントヤーン。
(5) The polyethylene multifilament yarn according to claims 1 to 4, which has a single yarn strength of 70 g/d or more and an elastic modulus of 2000 g/d or more.
(6)特許請求の範囲第1項から第5項に記載の乾湿式
紡糸ポリエチレンマルチフィラメ ントヤーン。
(6) Wet-dry spun polyethylene multifilament yarn according to claims 1 to 5.
JP12053885A 1985-06-05 1985-06-05 Polyethylene multifilament yarn Pending JPS61282417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12053885A JPS61282417A (en) 1985-06-05 1985-06-05 Polyethylene multifilament yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12053885A JPS61282417A (en) 1985-06-05 1985-06-05 Polyethylene multifilament yarn

Publications (1)

Publication Number Publication Date
JPS61282417A true JPS61282417A (en) 1986-12-12

Family

ID=14788765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12053885A Pending JPS61282417A (en) 1985-06-05 1985-06-05 Polyethylene multifilament yarn

Country Status (1)

Country Link
JP (1) JPS61282417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508849A (en) * 2012-02-24 2015-03-23 ハネウェル・インターナショナル・インコーポレーテッド High toughness, high elastic modulus UHMWPE fiber and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615408A (en) * 1979-06-27 1981-02-14 Stamicarbon Filament with high modulus and strength and production
JPS58169521A (en) * 1982-03-19 1983-10-06 アライド・コ−ポレ−シヨン Coated elongated chain polyolefin fiber
JPS59216914A (en) * 1983-10-22 1984-12-07 Toyobo Co Ltd Production of polyethylene fiber having ultrahigh tenacity
JPS59216912A (en) * 1983-05-20 1984-12-07 Toyobo Co Ltd Production of polyethylene fiber having high strength and modulus of elasticity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615408A (en) * 1979-06-27 1981-02-14 Stamicarbon Filament with high modulus and strength and production
JPS58169521A (en) * 1982-03-19 1983-10-06 アライド・コ−ポレ−シヨン Coated elongated chain polyolefin fiber
JPS59216912A (en) * 1983-05-20 1984-12-07 Toyobo Co Ltd Production of polyethylene fiber having high strength and modulus of elasticity
JPS59216914A (en) * 1983-10-22 1984-12-07 Toyobo Co Ltd Production of polyethylene fiber having ultrahigh tenacity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508849A (en) * 2012-02-24 2015-03-23 ハネウェル・インターナショナル・インコーポレーテッド High toughness, high elastic modulus UHMWPE fiber and method for producing the same
US10450676B2 (en) 2012-02-24 2019-10-22 Honeywell International Inc. High tenacity high modulus UHMWPE fiber and the process of making

Similar Documents

Publication Publication Date Title
EP0213208B1 (en) Polyethylene multifilament yarn
JP3673401B2 (en) Polyolefin molded products
JP3708030B2 (en) Polyketone fiber, polyketone fiber twisted product and molded article thereof
CN1271257C (en) High-strength polyethylene fiber
JP3704015B2 (en) Polyketone fiber and method for producing the same
JPH02133605A (en) Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof
JP2001073224A (en) High-strength polyethylene fiber excellent in uniformity
JPH0663128B2 (en) Polyester fiber for reinforcing rubber structure and method for producing the same
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS61282417A (en) Polyethylene multifilament yarn
JPH0246688B2 (en)
JPS61215708A (en) Production of multifilament yarn
TW202200860A (en) Method for producing polyamide 4 fiber by using a wet spinning method without carrying out a procedure for removing residual components
JPH02210013A (en) Dry and wet spinning process
JPH08209444A (en) Highly strong and highly shrinkable polyamide fiber
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JP2730193B2 (en) Polyamide monofilament and method for producing the same
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
JPH0931748A (en) High-strength polyamide monofilament and its production
JPH02216211A (en) Production of improved poly-p-phenylene terephthalamide fiber
JPH0284504A (en) Polyvinyl alcohol fiber suitable as reinforcing material
JPH0532492B2 (en)
JP2002194617A (en) Method for producing polyester fiber for industrial material
JPH02229208A (en) Production of multifilament yarn
JP2004285497A (en) Method for producing low shrinkable polyester filament