WO2008055405A1 - A process for producing fiber of ultra high molecular weight polyethylene - Google Patents

A process for producing fiber of ultra high molecular weight polyethylene

Info

Publication number
WO2008055405A1
WO2008055405A1 PCT/CN2007/002906 CN2007002906W WO2008055405A1 WO 2008055405 A1 WO2008055405 A1 WO 2008055405A1 CN 2007002906 W CN2007002906 W CN 2007002906W WO 2008055405 A1 WO2008055405 A1 WO 2008055405A1
Authority
WO
Grant status
Application
Patent type
Prior art keywords
fiber
high
polar
group
polyethylene
Prior art date
Application number
PCT/CN2007/002906
Other languages
French (fr)
Chinese (zh)
Inventor
Panpan Hu
Xiulan You
Zhaofeng Liu
Original Assignee
Panpan Hu
Xiulan You
Zhaofeng Liu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR ARTIFICIAL THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR ARTIFICIAL THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR ARTIFICIAL THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Abstract

A process for producing fiber of ultra high molecular weight polyethylene, with flat cross-section and high cohesiveness, is disclosed. The process includes: distributing the powder of UHMW-PE into the solvent evenly; preparing an uniform mixed emulsion by properly untangling with a high shear; at the same time adding the polar polymer comprising polar groups, for example a carboxyl group, a carbonyl group, an ether group, or an ester group and so on; evenly distributing the polar polymer together with the polyethylene powder in the solvent to form an uniform mixed emulsion; forming a gel filament with the mixed emulsion by gel spinning method, then extracting, drying, and ultra drafting so as to obtain the said UHMW-PE fiber, with falt cross section, high strength and cohesiveness. By properly untangling, the swellability and dissolubility of the ultra high molecular weight polyethylene can be accelerated, while the polar polymer being evenly distributed therein can significantly improve the adhesive capacity of the fiber. The operations in the production method are easy, and furthermore, time, labor and cost can be saved. The section of the fiber is of a flat rectangle shape and the wall is thin and even, so the path for the solvent in the fiber diffusing out of the gel filament can be significantly shorten, and thus the efficiency of extraction and the uniformity of the fiber can be improved.

Description

一种超高分子量聚乙烯纤维的制备方法技术领域 Technical Field A method for preparing ultra high molecular weight polyethylene fibers

本发明涉及一种高分子量聚乙烯纤维的制备方法,具体涉及一种超高分子量聚乙烯纤维的制备方法。 The present invention relates to a method for preparing a high molecular weight polyethylene fibers, particularly relates to a method for preparing ultra high molecular weight polyethylene fibers. 背景技术 Background technique

超高分子量聚乙烯冻胶纺丝一超拉伸技术制备高强度、高模量聚乙烯纤维由荷兰DSM 公司于1979 年申请专利, 取得英国专利GB2042414 和GB2051667ο 随后美国Allied公司, 日本与荷兰联建的Toyobo— DSM公司。 Gel spinning of UHMWPE over a high tensile strength preparation technology, high modulus polyethylene fibers patented in 1979 by the Dutch company DSM, British Patent GB2042414 and obtain subsequent GB2051667ο Allied Corporation USA, Japan and Netherlands, build the Toyobo- DSM company. 日本Mitsui公司都实现了工业化生产。 Japanese company Mitsui have achieved industrial production. 1982年美国Allied公司取得了生产超高分子量聚乙烯纤维的工艺专利US4413110。 1982 Allied American company has made the production of ultra-high molecular weight polyethylene fiber technology patent US4413110. 中国纺织大学也取得了中国专利89107905和97106768。 China Textile University has also made China Patent 89107905 and 97106768.

超高分子量聚乙烯冻胶纺丝主要步骤为:将超高分子量聚乙烯加入合适的溶剂中搅拌溶解制成溶液,溶液由螺杆挤压机挤出,经喷丝孔成型,然后冷却、 萃取、干燥超倍拉伸,最终获得成品纤维。 Gel spinning of UHMWPE main steps: the ultrahigh molecular weight polyethylene added to a suitable solvent to make a solution dissolved with stirring, a solution extruded from a screw extruder through the spinneret orifices shaped, then cooled and extracted, dried over-fold stretched fiber finished product finally obtained. 超高分子量聚乙稀均一溶液的制备, 冻胶纤维超倍拉伸前用第二溶剂萃取冻胶纤维中所含的大量第一溶剂的工艺处理是获得高强高模纤维的关键。 Process large first solvent ultrahigh molecular weight polyethylene prepared homogeneous solution, gel times over the fiber before stretching was extracted with a second solvent contained in the gel fibers is critical to obtaining high strength and high modulus fibers.

随着聚乙稀分子量的提高,其分子尺寸庞大,大分子之间又存在相互缠结, 大分子之间缠结有利于提高纤维的可拉伸倍率得到高取向,使纤维达到高强度高模量。 With the increase of the molecular weight polyethylene, which is a large molecular size, and there is a correlation between the intertwined macromolecule, macromolecular entanglement between fibers may help to improve the draw ratio to obtain a highly oriented, to achieve high strength and high modulus fibers the amount. 但是高聚物中过多而强的大分子间缠结引起的各种粘弹性效果使得溶解变得复杂得多, 不利于溶解加工成型, 必需适当减少大分子间缠结。 However, the viscoelastic effect between the various polymer molecules in strong due to excessive entanglement becomes much more complex that is dissolved, is not conducive to dissolve molding process, it is necessary to reduce the proper entanglement between macromolecules. 通过热处理、 溶剂处理以及剪切处理都能改变缠结状态。 By heat treatment, solvent treatment and shear treatment can change the entangled state.

高聚物样品和低分子溶剂两者间分子量相差悬殊。 Between the two low molecular weight polymer sample and differences between the molecular weight of the solvent. 高分子链很长, 不易移动。 Polymer chain long enough to be immovable. 高分子键间的作用力很大又有大分子间的缠结, 高分子与低分子溶剂相接触初期高分子不会向溶剂中扩散。 Entanglement between macromolecules have great force between the molecular bonds, and low molecular weight polymer in contact with the initial solvent phase polymer does not diffuse into a solvent. 如果采用常规的溶解方法高聚物粉末很容易结团或因溶剂的不完全渗透而形成凝胶块, 无法制成均匀的溶液。 If the conventional method of dissolving the polymer powder or agglomerate is easy due to incomplete penetration of a solvent to form a gel block, not a homogeneous solution. 而且超高分子量聚乙烯大分子间缠结引起的粘弹性在搅拌时会产生韦森堡效应(爬杆现象)。 Further viscoelastic entangled ultrahigh molecular weight polyethylene due to stirring produces at Fort Wesson effect (phenomenon climbing pole) between macromolecules. 随着分子量的增加、聚合物浓度的提高和搅拌速度的加快, 韦森堡效应愈发明显,要制成均匀的溶液愈加困难。 With the increase in molecular weight increase and accelerate the speed of the stirring polymer concentration, Fort Wesson effects become more apparent, to prepare a homogeneous solution more difficult.

为此一些专利提出了多种解决方法,例欧洲专利EP0255618中提到使用经过加氢处理的煤油, 再经过精馏分离, 得到不含萘和联苯的沸点在180〜250 摄氏度的烃混合物, 再和超高分子量聚乙烯、 十氢萘, 在135摄氏度下, 搅拌数小时得到聚乙烯溶液。 Several patents proposed for this purpose various solutions, for example, European Patent No. EP0255618 mentioned hydrotreated kerosene, then isolated through distillation to give a hydrocarbon mixture having a boiling point of biphenyl and naphthalene in free 180~250 ° C, then UHMWPE and decahydronaphthalene at 135 ° C, the solution was stirred for several hours to obtain polyethylene. 聚乙烯溶液的浓度不大于50%。 Polyethylene solution concentration of not more than 50%.

日本专利JP59232123 中提到先将超高分子量聚乙烯和少量溶剂混合数分钟后加热, 并在搅拌的情况下不断加入溶剂, 最终制得溶液。 Japanese Patent JP59232123 first mentioned ultrahigh molecular weight polyethylene and a small amount of heating after mixing the solvent for several minutes, and stirring continued addition of a solvent, to prepare a final solution.

日本专利昭63-15838 中提到的实例中, 煤油分馏部分催化加氢后制成的溶剂中加入抗氧剂和聚乙烯后, 在140摄氏度下搅拌3小时后溶解, 生成重量百分比为10%的超高分子量聚乙烯溶液。 After the solvent prepared in Examples mentioned Japanese Patent No. Sho 63-15838, the catalytic hydrogenation of kerosene fractionation section polyethylene and antioxidant were added, after stirring for 3 hours at 140 ° C to dissolve, generating a 10% by weight UHMWPE solution. - 也有解决这一问题的方法是将溶解分解为溶涨再溶解两个过程。 - there are ways to solve this problem it is to dissolve decomposed into two swollen redissolved process. 中国专利970106768中提到它是以垸烃类溶剂在其相应的条件下进行适度溶涨, 制得超高分子量聚乙烯的悬浮液。 Chinese Patent No. 970106768 embankment It is mentioned hydrocarbon solvent swelling at moderate their respective conditions, to obtain a suspension of ultrahigh molecular weight polyethylene.

中国专利97101010提出了装有新型搅拌器挡板的预溶涨釜, 使粉状超高分子量聚合物预溶涨制得悬浮溶液,这是为了避免溶解搅拌时高分子量聚乙烯的爬杆现象。 Chinese Patent No. 97101010 proposes a stirrer equipped with a new pre-swelling baffle pot, powdered ultrahigh molecular weight polymer pre-swollen suspension was obtained, which is high molecular weight polyethylene in order to avoid the phenomenon of dissolution stirred climbing pole.

中国专利20041009607615超高分子量聚乙烯溶液的连续配制混合方法, 提出了采用静态混合器和短长径比螺杆连续配制混合超高分子量聚乙烯溶液。 Continuous preparation method of mixing a solution of ultrahigh molecular weight polyethylene Chinese Patent No. 20041009607615, ultrahigh molecular weight polyethylene, a hybrid solution using a static mixer length to diameter ratio and short continuous formulation. DSM公司CN85107352A提供了一个连续制备高分子聚合物均匀溶液的方法, 包括把细碎的高聚物和溶剂引入螺杆压出机内,而悬浮液和溶液都是在压出机内部形成的,操作温度保持在溶解温度以上,其机械剪切速度约为30〜2000秒- 1 CN85107352A DSM company provides a uniform solution method for continuously preparing a polymer comprising finely divided polymer and the solvent is introduced into screw extruder machine, and the suspensions and solutions are formed in the interior of the extruder, the operating temperature maintained at a dissolution temperature above which the mechanical shear rate of from about 30~2000 second --1. 该方法会破坏超高分子量聚乙烯的分子链, 降低分子量。 This method destroys the molecular chain ultrahigh molecular weight polyethylene, reduction in molecular weight.

上述专利虽然在溶剂及溶解工艺上进行了改进, 但仍存在生产设备复杂, 流程不稳定, 生产安全隐患及所获的纤维拉伸强度降低等问题。 Although the above patents is improved in the solvent and a solution process, but there are still complicated production equipment, reduce flow instability, and production safety hazards fiber tensile strength of the resulting problems.

冻胶纤维中含有大量第一溶剂必须用第二溶剂萃取除去纤维中的溶剂后再进行超倍拉伸, 才能得到高强高模纤维, 萃取过程的速度除与使用的第二溶剂和萃取工艺有关外, 还与溶剂扩散的路径有关。 Gel fiber contains a large number of times over a first solvent must be stretched after removal of the second solvent extraction with a solvent in the fiber, in order to obtain high strength and high modulus fibers, in addition to the speed of the extraction process with the second solvent extraction process used and the relevant , but also related to the diffusion path of the solvent. 萃取过程中纤维外层的溶剂优先从冻胶纤维中扩散出来。 Outer layer of fibers during the extraction solvent preferentially diffuse out of the gel fibers. 路径愈长扩散速度的差异愈大,现有方法制得的是园形截面聚乙烯的冻胶纤维, 从纤维截面看壁愈厚。 The longer the diffusion path difference greater speed, the conventional method is prepared circular cross-section fibers of polyethylene jelly, see the cross section of the fiber walls thicker. 差异愈大, 形成皮芯结构愈历害, 这种不均匀的结构影响纤维的超倍拉伸, 进而影响成品纤维的力学性能。 The larger the difference, the more skin-core structure is formed calendar harm, this uneven structure affects super times the fiber drawing, thereby affecting mechanical properties of the finished fibers. 目前, 己经提出的生产高密度聚乙烯异形纤维膜的专利有USP4115492、 USP5294338 , USP6436319 ZL200510049263 均采用熔融纺丝方法、 专利USP5695702及ZL95193838是热塑性中空纤维膜组件及制造方法。 At present, already proposed the production of profiled HDPE fiber membrane has Patent USP4115492, USP5294338, USP6436319 ZL200510049263 are melt spinning method, and USP5695702 Patent ZL95193838 thermoplastic hollow fiber membrane module and method of manufacture. 上述方法成本较高, 且得到的纤维结构均一性不理想。 The method of the above-described high cost, and uniformity of the obtained fiber structure is not ideal.

另外, 目前, 超高分子量聚乙烯冻胶纺丝通过超倍拉伸制备高强度、 高模量聚乙烯纤维已进入工业化生产。 Further, at present, UHMWPE gel spinning ultra-fold by preparing high tensile strength, high modulus polyethylene fiber has entered the industrial production. 检索到的聚乙烯冻胶紡丝相关专利EP0205960A EP0213208A US4413110、 WO01/73173A EP1746187A1等多对纺丝技术进行了改进。 Polyethylene retrieved jelly spinning RELATED EP0205960A EP0213208A US4413110, WO01 / 73173A EP1746187A1 like plurality of spinning technology improved. 在超高分子量聚乙烯冻胶纺丝过程中, 得到溶解均匀的高聚物溶液和均匀超倍拉伸是关键。 In the UHMWPE gel spinning process, to obtain a homogeneous polymer solution and dissolved uniformly stretched over the key times. 它们的均匀性是成品纤维性能稳定的先决条件。 They are stable uniformity of the finished fiber properties prerequisite.

另聚乙烯纤维因具有质轻柔软、 高强高模、 看紫外、 耐冲击、 耐海水腐蚀等优异性能, 可被广泛用于防切割手套、 防弹衣、 防弹头盔、 缆绳等多种领域中, 而在绝大部分情况下, 需要与丁腈橡胶、 聚氨酯、 环氧树脂等一种或多种基体进行复合使用。 Another result of having a light and soft polyethylene fibers, high strength and high modulus, UV see, impact resistance, resistance to seawater corrosion excellent performance, can be widely used in various fields cut resistant gloves, body armor, bulletproof helmets, rope and the like, and in most cases, using a composite of nitrile rubber, polyurethane, epoxy resin, etc. One or more matrix. 而聚乙烯纤维的表面惰性导致纤维与基体之间的界面粘接性较差, 已引起本领域技术人员的高度重视。 While the polyethylene fibers lead to an inert surface interface adhesion between fiber and matrix it is poor, has attracted great attention of those skilled in the art. 为了能够提高聚乙烯纤维与树脂基体间的界面粘接强度, 本领域技术人员采用了一系列的表面处理方法, 如通过表面接枝改性、 化学试剂侵蚀、 等离子体处理改性、 电晕放电处理、 光氧化表面改性处理等, 使纤维惰性表面层活化。 In order to improve the interfacial bonding strength between the polyethylene fibers and the resin matrix, the person skilled in series using a surface treatment method, such as by surface graft modification, a chemical agent attack, the modified plasma treatment, a corona discharge processing, photo-oxidation surface modification, so that the surface layer of an inert fibrous activated.

USP480136提供一种在纺丝过程中进行热引发完成聚乙烯纤维的表面硅烷化接枝反应, 并进行交联处理, 使纤维的粘接性能有所提高, 但不利于后序的超倍拉伸, 纤维的力学性能不理想, 在USP5039549 和USP5755913、 ZL03115300.3等专利中, 提出用等离子体、臭氧、 电晕放电或紫外辐照下, 将聚乙烯纤维表面的粘接性能, 但此法工序烦琐, 设备投入高, 且处理的最佳工艺条件很难掌握, 不易实现产业化。 USP480136 be provided a thermal initiator to complete the reaction of Silane grafted polyethylene fibers, and a crosslinking process in the spinning process, the adhesive properties of the fibers has increased, but is not conducive to subsequent times super tensile mechanical properties of the fibers is not satisfactory, in USP5039549 and USP5755913, ZL03115300.3 and other patent proposes the discharge plasma, ozone, corona, or ultraviolet radiation, the adhesive properties of the surface of the polyethylene fibers, but this method step cumbersome, high equipment investment, and the optimum conditions of treatment is difficult to grasp, not easy to achieve industrialization.

姜生等(超高分子量聚乙烯纤维粘合性能的研究, 玻璃钢/复合材料, 2004 (3): 47)提出了用铬酸、 高锰酸钾等强氧化性的化学试剂对聚乙烯纤维进行液相氧化表面处理, 由于该方法纤维长时间在强氧化性环境中浸泡, 在改善纤维浸润性的同时导致纤维力学性能的较大损失, 同时操作繁琐, 对设备要求严格, 废液的污染严重。 Jiang et Health (Research adhesive properties ultrahigh molecular weight polyethylene fiber, glass fiber reinforced / composite materials, 2004 (3): 47) proposed by chromic acid, potassium permanganate and other strong oxidizing chemicals polyethylene fibers liquid phase oxidation surface treatment, since this method the fibers long soak in a strong oxidizing environment, while improving the wettability of the fibers results in a large loss of mechanical properties of the fibers, while the complicated operation, the strict requirements of the equipment, serious pollution of the waste .

CN163544提出一种利用含极性聚合物的复合萃取剂对纺制的聚乙烯冻胶纤维进行萃取处理,在最大限度地保持纤维原有的强度的同时可提高纤维的表面粘接性能, 操作简单且不需要添加任何设备, 但该工艺在冻胶纤维松弛状态下处理效果显著, 而在实际生产的张紧萃取过程中, 极性聚合物是很难渗入冻胶纤维中而使其表面粘接性能改善效果不明显。 CN163544 proposed a composite extracting agent containing polar polymer polyethylene gel spun fiber was subjected to extraction treatment with, while maintaining maximum strength of the original fibers can improve the adhesion properties of the surface of the fiber, simple operation and without adding equipment, but the process is treated under relaxed state jelly fiber significant effect, whereas the tensioning of the extraction process in the actual production, it is difficult to penetrate the polar polymer in the gel fiber adhered to the surface performance improvement effect is not obvious. 发明内容 SUMMARY

本发明所要解决的技术问题在于克服现有生产超高分子量聚乙烯纤维的技术缺陷, 解决获得均一原料混合液, 及去除冻胶纤维中的第一溶剂的问题, 提供一种操作简单, 高效, 节约成本的高分子量聚乙烯纤维的制备方法。 The present invention solves the technical problem is to overcome disadvantages of the prior art production of ultrahigh molecular weight polyethylene fiber, raw material mixture to obtain a uniform solution, and the problem of removing the first solvent, gel fibers to provide a simple, efficient, the method of preparing fibers of high molecular weight polyethylene cost. 通过该方法制备的高分子量聚乙烯纤维具有高粘接性。 Produced by the high molecular weight polyethylene fiber which has a high adhesive property.

本发明所解决的技术问题可以采用以下技术方案来实现: 、 The technical problem solved by the invention can be achieved by the following technical solution:,

超高分子量聚乙烯纤维的制备方法, 其特征在于, 是将超高相对平均分子量100万一600万的聚乙烯粉末添加极性聚合物, 分散于溶剂中, 配制成均一的混合乳液, 采用冻丝紡丝法, 将混合乳液边搅拌边定量喂入螺杆挤出机进行快速溶胀、 溶解形成透明、 均一的纺丝原液, 通过喷丝板挤出, 经冷却、 凝固后形成纺丝, 然后经过萃取、 干燥、 超倍拉伸得到超高分子量聚乙烯纤维。 The method of preparing ultrahigh molecular weight polyethylene fiber, wherein the polar polymer is to add the ultrahigh molecular weight average 6,000,000 case 100 polyethylene powder, dispersed in a solvent to prepare a uniform emulsion mixture, using frozen yarn spinning process, the emulsion is mixed with stirring quantitative screw extruder fed quickly swells, dissolves to form a transparent, homogeneous spinning dope extruding through a spinneret, cooled, solidified form after spinning, after then , dried, ultra-fold stretched to give ultrahigh molecular weight polyethylene fibers.

在本发明的配制均一混合乳液过程中,将超高相对分子量100万一600万的聚乙烯粉末、 极性聚合物和溶剂按比例注入解缠设备中进行解缠, 形成均一混合乳液。 Uniformly mixed in the formulation process of the present invention is an emulsion, the ultrahigh molecular weight polyethylene powder 100 in case of 6,000,000, and a polar polymer solvent proportion injection unwrapping apparatus for unwrapping to form a homogeneous emulsion mixture.

上述均一混合乳液的百分比浓度为4%-60%。 The percentage of the concentration of the uniform emulsion mixture is 4% -60%.

上述极性聚合物为含有酯基、 羰基、 醚基的极性聚合物。 The polar polymer is a polar polymer containing ester group, a carbonyl group, an ether group. 所述含有酯基、 羰基、 醚基的极性聚合物为乙烯/乙烯乙酸酯共聚物、 聚丙烯酸酯类、 不同K 值的聚乙烯吡咯烷酮/乙烯乙酸酯共聚物、 聚氧乙烯聚合物中的一种或两种以上的混合。 The polar polymer containing ester group, a carbonyl group, an ether group, an ethylene / vinyl acetate copolymers, polyacrylates, polyvinylpyrrolidone of different K values ​​/ vinyl acetate copolymer, polyoxyethylene polymers of one or two or more mixed.

所述极性聚合物的添加重量分数相对于超高相对分子量100万一600万的聚乙烯粉末重量的1-10%。 The added polar polymer relative to the weight fraction of the polyethylene powder 1-10% by weight of ultrahigh molecular weight of 100 in case 6,000,000. 优选为2-8%。 Preferably 2-8%. 在上述解缠过程中, 可以加入硅油或其衍生物进行解缠。 In the above unwrapping process, silicone oil or a derivative thereof may be added unwrapping. 或者/和在凝固过程中加入硅油或其衍生物;其中加入硅油或其衍生物的量为超高分子暈聚乙烯纤维中含有硅油或其衍生物0.05-5wt%。 Or / and silicone oil was added in the solidification process or a derivative thereof; wherein the amount of the silicone oil or its derivative is added ultra high molecular weight polyethylene fiber containing a silicone oil halo or a derivative thereof 0.05-5wt%.

在上述解缠过程中, 还可加入抗氧化剂、 稳定剂、 染色剂、 阻燃剂中的一种或两种以上。 In the above unwrapping process, it may also be added an antioxidant, a stabilizer, a coloring agent, a flame retardant is one or two or more kinds.

在上述方法中,所述解缠设备可以提供至少1000秒以上的剪切速度。 In the above method, the unwrapping apparatus may provide at least a shear rate of 1000 seconds. 优选为1000-5000秒― 1 , 更优选为2000-4000秒所述解缠设备可以是高速分散机、 搅拌器、 胶体磨、 均质机、 文氏管中的一种或它们的组合。 Preferably 1000 to 5000 sec - 1, more preferably from 2000-4000 seconds unwrapping the device may be a high-speed dispersion machine, mixer, colloid mill, homogenizer, venturi one kind or a combination thereof.

在上述方法中,超高分子量聚乙烯相对平均分子量优选为4 00 万一6 00万。 In the above method, the relative average molecular weight of the ultrahigh molecular weight polyethylene is preferably from 400 in case of 600 million. 更优选为200万-500万。 More preferably from 200 million -500 million.

在本发明的配制均一混合乳液过程中,采用的溶剂为在常温下呈液体的溶剂, 可以是垸烃、 环垸烃、 芳香烃、 垸烃的衍生物、 环垸烃的衍生物、 芳香烃的衍生物中的一种以及两种以上的混合物。 Uniformly mixed in the formulation process of the present invention is an emulsion, the solvent employed is a liquid form at room temperature, the solvent may be a hydrocarbon embankment, cyclic derivatives embankment hydrocarbons, hydrocarbons embankment, embankment cyclic hydrocarbon derivative, an aromatic hydrocarbon one derivatives and mixtures of two or more.

在本发明的配制均匀溶液过程中,超高分子量聚乙烯和溶剂的公称浓度为l-50wt%。 In the preparation process of the present invention is a homogeneous solution, well ultrahigh molecular weight polyethylene and said solvent concentration of l-50wt%.

本发明采用的螺杆挤出机为单螺杆.、 双螺杆、 三螺杆、 四螺杆挤出机中的一种, 其螺杆挤出温度在超高分子量聚乙烯的溶解温度以上, 如螺杆挤出机的工作温度80-250°C o The present invention is employed in a screw extruder is a single screw., A twin-screw, triple-screw or four-screw extruder, the screw extruder at a temperature above the dissolution temperature of the ultrahigh molecular weight polyethylene, such as screw extruders the operating temperature of 80-250 ° C o

采用的双螺杆挤出机可以是^向或异向旋转的, 其螺杆的长径比为1: 30-65。 Using a twin screw extruder may be ^ or the counter-rotating, the screw length to diameter ratio of 1: 30-65.

在本发明中, 均一混合乳液在双螺杆挤出机中的停留时间为10-60分钟, 最好在20-40 分钟, 物料温度为50-280 °C, 挤出时溶液纺丝温度控制在140-280 °C。 In the present invention, the residence time of the emulsion uniformly mixed in a twin-screw extruder is 10-60 minutes, preferably 20-40 minutes, the batch temperature is 50-280 ° C, the spinning temperature was controlled at the extrusion 140-280 ° C. 最好在200-260 °C。 Preferably 200-260 ° C.

在本发明中, 螺杆挤出机采用的喷丝板上的喷丝孔为长方形孔, 其长宽比为4-20, 优选为5-15。 In the present invention, the nozzle hole spinneret screw extruder used is a rectangular hole, an aspect ratio of 4-20, preferably 5-15.

在本发明中, 乳液状混合液可直接喂入螺杆挤出机, 也可通过带搅拌的贮料筒喂入螺杆挤出机。 In the present invention, the emulsion mixture can be fed directly into the screw extruder, the barrel may be fed through the screw extruder with stirring reservoir. 采用的贮料筒是一个或两个以上。 A silo uses two or more.

在本发明的超倍拉伸过程中, 纤维的拉伸温度为80-130°C, 拉伸倍数在20 倍以上, 优选为30-60倍。 In the present invention, ultra-times stretching process, the stretching temperature of the fiber is 80-130 ° C, a stretching ratio of 20 times or more, preferably 30 to 60 times. 本发明相对于现有技术来说, 具有如下优点: The present invention relative to the prior art, has the following advantages:

1、 超高分子量聚乙烯纤维浸PU或丁腈手套, 由于柔软轻巧, 有耐腐蚀、 耐老化及防油渍的特性, 成为在现今市场上比较好的防切割手套。 1, ultrahigh molecular weight polyethylene fibers or nitrile gloves dipped PU, since soft, lightweight, have corrosion characteristics, anti-aging and anti-grease, cut-resistant gloves become better on the market today. 但由于聚乙烯的化学惰性, 与PU或丁腈胶粘接性能很差。 However, due to the chemical inertness of polyethylene, PU or butyronitrile with poor adhesive bonding properties. 本发明采用高剪切解缠超高分子量聚乙烯的同时, 添加含有酯基、 羰基、 醚基的极性聚合物, 能够使非常均匀地分散于超高分子量聚乙烯, 实现高粘接性聚乙烯纤维的制造, 不需要添加任何设备、 工艺简单。 The present invention employs a high shear unwrapping ultrahigh molecular weight polyethylene while polar polymers comprising adding an ester group, a carbonyl group, an ether group, can be made very uniformly dispersed in the ultrahigh molecular weight polyethylene, high adhesiveness poly fibers for producing ethylene, without adding equipment, simple process.

2、 超高分子量聚乙烯和适量极性聚合物混合乳液在双螺杆挤出机中进行高剪切快速溶胀、 完全溶解, 有利于降低聚合物的降解, 在改善纤维的粘接性能的同时, 不影响纤维的机械性能。 2, and the amount of ultrahigh molecular weight polyethylene polar polymer emulsion is mixed in a twin-screw extruder, high shear quickly swell, completely dissolved, help to reduce degradation of the polymer, while improving the adhesion properties of the fibers, It does not affect the mechanical properties of the fibers.

3、 在高剪切适度解缠超高分子量聚乙稀的同时, 添加适量含羧基, 羰基或酯基等极性侧基的碳链极性聚合物, 在不影响其断裂强度的前提下, 有效地提高了聚乙稀的粘结性能。 3, in a high shear moderate ultrahigh molecular weight polyethylene unwound simultaneously, a suitable amount of carbon chain polar polymer containing polar side groups of a carboxyl group, a carbonyl group or an ester group and the like, without affecting the strength of the fracture, effectively improve the bonding properties of polyethylene.

4、 本发明制备的超高分子量聚乙烯纤维断裂功大, 吸收能量能力较强, 在保证足够断裂强度的前提下, 尽可能提高断裂延伸, 即断裂强度与断裂延伸有一最佳匹配。 4, the preparation of ultrahigh molecular weight polyethylene fiber of the present invention is the work of fracture large, strong ability to absorb energy, to ensure a sufficient breaking strength premise maximize the elongation at break, i.e., the breaking strength and breaking elongation with a best match. 适合做防切割手套。 Suitable for cut resistant gloves. 本发明通过高剪切适度解缠实现超高分子量聚乙烯的快速溶胀、 溶解, 可以在确保纤维的断裂强度在30CN/dtex以上的前提下, 使其断裂功在30030CN, mm/dtex以上。 The present invention is appropriately wrapped solution by high shear rapid swelling of the ultrahigh molecular weight polyethylene, dissolved in ensuring the fiber breaking strength under the above premise dtex 30CN /, so that the work of fracture 30030CN, mm / dtex or more.

5、 防切割手套用纤维一般是单层使用, 要求其防切割性能好的同时, 要求手套平整且密度均勾, 这就对纤维的均一性提出较高的要求。 5, cut-resistant gloves are typically single layer fiber, which requires a good anti-cutting performance simultaneously, requires gloves are flat and the hook density, which raises higher requirements for the uniformity of the fibers. 目前超高分子量聚乙烯纤维的纤度和强度的CV值在8-10%, 本发明通过实现超高分子量聚乙烯的快速溶胀、溶解及在凝固液中添加表面活性剂和扁平丝结构设计, 有效控制超高分子量聚乙烯纤维的纤度和强度CV值4-6%之间。 Currently UHMWPE fiber fineness CV value and strength of 8-10%, by rapid swelling of the ultrahigh molecular weight polyethylene of the present invention, a surfactant is added and dissolved and the flat filaments in the coagulating liquid design, effective control UHMWPE fiber fineness and strength of between 4-6% CV values.

6、 本发明将超高分子量聚乙烯纤维制成扁平状结构, 使纤维的比表面积增大, 有利于凝固均匀, 缩短了纤维内溶剂扩散出冻胶纤维的路径, 提高了萃取速率, 节省萃取用的第二溶剂, 节减了成本, 从而^ "利于提高纤维的均一性和强度。 6, the present invention is made of ultrahigh molecular weight polyethylene fiber flat structure, specific surface area of ​​the fiber increases, facilitate uniform solidification, shortening the diffusion path of the fiber a solvent gel fiber to improve the rate of extraction, extraction saving the second solvent used, the cost savings, thereby ^ "help improve the uniformity and strength of the fibers.

7、 本发明通过适度解缠, 不但操作简单, 省时省力省成本, 而且溶解更为均匀。 7, the present invention is unwound by appropriate, not only simple, time-saving cost saving, and more uniform dissolution. 具体实施方式 detailed description

为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解, 下面结合具体实施方式, 进一步阐述本发明。 In order to achieve the technical means of the present invention, the creation of features, to achieve the purpose and effect readily apparent understanding, the following embodiment with reference to specific embodiments, further illustrate the present invention.

实施例1 Example 1

超高分子量聚乙烯(相对平均分子质量450万)粉末, 与90#溶剂白油在室温下以重量比为1 : 8分别输送入解缠釜中, 氮气保护下, 在剪切速度为2000 秒的作用下剪切10分钟, 得到均一的乳液状混合液, 喂入直径为25mm, 长径比为36的同向双螺杆挤出机,温度控制在250°C, 调节螺杆转速为35转/ 分钟。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million) powder and # 90 solvent white oil in a weight ratio of 1 at room temperature: 8 are conveyed into the unwrapping vessel, under nitrogen, at a shear rate of 2000 seconds 10 minutes shearing action to obtain a homogeneous emulsion mixture was fed to a diameter of 25mm, with an aspect ratio of the extruder 36 to a twin-screw, temperature controlled at 250 ° C, a screw speed of 35 rpm adjusted / minute. 挤出物经过滤、 喷丝板喷出冻胶丝后, 经萃取及超倍拉伸35倍, 得到超高分子量聚乙烯。 After the gel filaments extrudate discharged by filtration, spinneret, and the extracted ultra-fold stretched 35-fold, to give ultrahigh molecular weight polyethylene. 实施例2 Example 2

超高分子量聚乙烯(相对平均分子质量450万)粉末, 与90#溶剂白油在室温下以重量比为1: 8分别输送入解缠釜中, 同时加入EVA28190 (乙烯-醋酸乙烯共聚物, 醋酸乙烯含量为28%, 熔融指数为190), 加入量为聚乙烯粉末的4wt%, 氮气保护下, 在剪切速度为2000秒" 的作用下剪切10分钟, 得到均一的乳液状混合液,喂入直径为025mm,长径比为36的同向双螺杆挤出机, 温度控制在250°C, 调节螺杆转速为35转/分钟。 挤出物经过滤、 喷丝板喷出冻胶丝后, 经萃取及超倍拉伸35倍, 得到高粘接性超高分子量聚乙烯。 实施例3 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million) powder and # 90 solvent white oil in a weight ratio of 1 at room temperature: 8 unwrapping separately delivered into the kettle, while adding EVA28190 (ethylene - vinyl acetate copolymer, the vinyl acetate content of 28%, a melt index of 190), was added in an amount of 4wt% polyethylene powder, under nitrogen, at a shear rate of 2000 seconds "role sheared for 10 minutes to obtain a homogeneous emulsion mixture , feeding a diameter of 025mm, an extruder with an aspect ratio of 36 to a twin-screw, temperature controlled at 250 ° C, a screw speed of 35 rpm adjusted / min. the extrudate was filtered, the spinneret discharge jelly after the wire, by extraction and ultra-fold stretched 35 times to obtain a high adhesive ultrahigh molecular weight polyethylene. Example 3

超高分子量聚乙烯(相对平均分子质量450万)粉末, 与90#溶剂白油在室温下以重量比为1: 8分别输送入解缠釜中, 同时加入EVA28190 (乙烯-醋酸乙烯共聚物, 醋酸乙烯含量为28%, 熔融指数为190), 加入量为聚乙烯粉末的2wt%, 氮气保护下, 在剪切速度为2000秒的作用下剪切10分钟, 得到均一的乳液状混合液,喂入直径为Φ25ιηηι,长径比为36的同向双螺杆挤出机, 温度控制在250°C, 调节螺杆转速为35转/分钟。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million) powder and # 90 solvent white oil in a weight ratio of 1 at room temperature: 8 unwrapping separately delivered into the kettle, while adding EVA28190 (ethylene - vinyl acetate copolymer, 28% vinyl acetate content, melt index of 190), was added in an amount of 2wt% polyethylene powder, under nitrogen, at a shear rate of shear action 2000 seconds for 10 minutes to give uniform emulsion mixture, feeding diameter Φ25ιηηι, extruded with an aspect ratio of 36 to the twin-screw extruder, temperature controlled at 250 ° C, a screw speed of 35 rpm adjusted / min. 挤出物经过滤、 喷丝板喷出冻胶丝后, 经萃取及超倍拉伸35倍, 得到高粘接性超高分子量聚乙烯。 After the gel filaments extrudate discharged by filtration, spinneret, and the extracted ultra-fold stretched 35 times to obtain a high adhesive ultrahigh molecular weight polyethylene. 实施例4 Example 4

超高分子量聚乙烯(相对平均分子质量450万)粉末, 与90#溶剂白油在室温卡以重量比为1: 8分别输送入解缠釜中, 同时加入EVA1030 (乙烯-醋酸乙烯共聚物, 醋酸乙烯含量为10%, 熔融指数为30), 加入量为聚乙烯粉末的4wt%, 氮气保护下, 在剪切速度为2000秒— 1的作用下剪切10分钟, 得到均一的乳液状混合液, 喂入直径为Φ25πιιη, 长径比为36的同向双螺杆挤出机, 温度控制在250°C, 调节螺杆转速为35转/分钟。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million) powder and # 90 solvent white oil card in a weight ratio of 1 at room temperature: 8 are conveyed into the kettle unwrapping, while adding EVA1030 (ethylene - vinyl acetate copolymer, vinyl acetate content of 10%, a melt index of 30), was added in an amount of 4wt% polyethylene powder, under nitrogen, at a shear rate of 2000 seconds - action of a shearing for 10 minutes to give uniform emulsion mixture liquid fed diameter Φ25πιιη, extruded with an aspect ratio of 36 to the twin-screw extruder, temperature controlled at 250 ° C, a screw speed of 35 rpm adjusted / min. 挤出物经过滤、 喷丝板喷出冻胶丝后, 经萃取及超倍拉伸35倍, 得到高粘接性超高分子量聚乙烯。 After the gel filaments extrudate discharged by filtration, spinneret, and the extracted ultra-fold stretched 35 times to obtain a high adhesive ultrahigh molecular weight polyethylene. 实施例5 Example 5

超高分子量聚乙烯(相对平均分子质量450万)粉末, 与90#溶剂白油在室温下以重量比为1 : 8分别输送入解缠釜中, 同时加入聚丙烯酸酯, 加入量为聚乙烯粉末的4wt%, 氮气保护下, 在剪切速度为2000秒的作用下剪切10 分钟, 得到均一的乳液状混合液, 喂入直径为Φ25ιηπι, 长径比为36的同向双螺杆挤出机, 温度控制在250°C, 调节螺杆转速为35转/分钟。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million) powder and # 90 solvent white oil in a weight ratio of 1 at room temperature: 8 are conveyed into the kettle unwrapping, while adding a polyacrylate is added in an amount of polyethylene 4wt% of the powder, under nitrogen, at a shear rate of shear action 2000 seconds for 10 minutes to give uniform emulsion mixture was fed diameter Φ25ιηπι, extruded with an aspect ratio of 36 to a twin-screw machines, temperature controlled at 250 ° C, a screw speed of 35 rpm adjusted / min. 挤出物经过滤、 喷丝板喷出冻胶丝后, 经萃取及超倍拉伸35倍, 得到高粘接性超高分子量聚乙烯。 After the gel filaments extrudate discharged by filtration, spinneret, and the extracted ultra-fold stretched 35 times to obtain a high adhesive ultrahigh molecular weight polyethylene. 实施例ό . Example ό embodiment.

超高分子量聚乙烯(相对平均分子质量450万)粉末, 与90#溶剂白油在室温下以重量比为1: 8分别输送入解缠釜中, 同时加入聚氧乙烯, 加入量为聚乙烯粉末的4wt%, 氮气保护下, 在剪切速度为2000秒的作用下剪切10分钟, 得到均一的乳液状混合液, 喂入直径为25mm, 长径比为36的同向双螺杆挤出机, 温度控制在250°C , 调节螺杆转速为35转/分钟。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million) powder and # 90 solvent white oil in a weight ratio of 1 at room temperature: 8 are conveyed into the kettle unwrapping, while adding polyoxyethylene, polyethylene is added in an amount of 4wt% of the powder, under nitrogen, at a shear rate of shear action 2000 seconds for 10 minutes to give uniform emulsion mixture, the feed having a diameter of 25mm, with an aspect ratio of 36 twin-screw extruder machines, temperature controlled at 250 ° C, a screw speed of 35 rpm adjusted / min. 挤出物经过滤、 喷丝板喷出冻胶丝后, 经萃取及超倍拉伸35倍, 得到高粘接性超高分子量聚乙烯。 After the gel filaments extrudate discharged by filtration, spinneret, and the extracted ultra-fold stretched 35 times to obtain a high adhesive ultrahigh molecular weight polyethylene.

上述实施例2-6与末添加极性聚合物的实施例1所制得的超高分子量聚乙烯纤维的力学性能和粘接性能比较如表1所示。 2-6 of Example 1 prepared end of ultrahigh molecular weight polyethylene fibers added polar polymer mechanical properties and adhesion performance of the above-described embodiment Comparative Example As shown in Table 1. 表1 本发明制造朝高分子量聚乙烯纤维的力学性能和粘接强度 Table mechanical properties and adhesion strength to the invention for producing high molecular weight polyethylene fibers toward a

其中, 聚乙烯纤维粘结强度的测定方法如下: 将聚乙烯纤维穿过带有小孔的胶囊, 胶囊高度约7mm左右, 将环氧树脂和固化剂以4: 1的比例混合均匀后, 注入胶囊中, 固化48h后, 精确量取纤维在胶囊中的包埋深度L (mm), 采用拔出实验的方法用DXLL-20000 型强力仪测定纤维与环氧树脂的粘接性能。 Wherein the method for measuring adhesive strength polyethylene fibers as follows: polyethylene fibers through the capsule, the capsule having apertures about the height 7mm, the epoxy resin and hardener in a 4: 1 ratio mixed uniformly injected capsules, after curing 48h, the exact amount of fibers embedded in a capsule depth L (mm), measured by the method employed pull test fiber with the epoxy resin adhesive properties with DXLL-20000 type tensile strength tester. 夹距为200mm, 下降速度为50mm/min, 按下式计算纤维的拔出强度: 拔出强度=测试强度*7/L。 Chuck distance of 200mm, lowering speed of 50mm / min, the fiber pullout strength is calculated as follows: the pull-out strength = tested strength * 7 / L. 实施例7 Example 7

超高分子量聚乙烯(相对平均分子质量450万), 溶剂白油(70#)在室温下, 将上述聚乙烯和白油按公称浓度为10% (重量)分别注入解缠釜内,氮气保护下剪切5分钟,剪切速度3000秒,得到均一乳液状混合液输入贮料罐边搅泮边定量喂入双螺杆挤出机。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million), the solvent white oil (# 70) at room temperature, and shortening of the polyethylene according to a nominal concentration of 10% (by weight) were injected into the autoclave unwound, nitrogen shear for 5 minutes and a shear rate of 3000 seconds to obtain a homogeneous emulsion mixture feed input side quantitative holding tank while stirring Pan twin screw extruder. 挤出机直径25mm,L/D=45, 温度控制在250°C, 螺杆挤出机转速30rpm. 挤出物经过滤器箱体到计量泵被计量后从喷丝孔喷出, 然后入水浴经处¾后萃取、干燥, 超倍拉伸, 拉伸总倍数为40, 得到的纤维强度达到30cN/dtex, 模量在1000cN/dtex以上。 Extruder diameter of 25mm, L / D = 45, temperature controlled at 250 ° C, extruder screw speed of 30rpm. The extrudate discharged through a filter to the tank through the orifice after metering the metering pump, and then into a water bath via ¾ post-extraction, drying, super-fold stretching, stretching a total ratio of 40, to obtain the fiber strength reaches 30cN / dtex, modulus 1000cN / dtex or more. 实施例8 Example 8

超高分子量聚乙烯(相对平均分子质量500万), 溶剂白油(90#)在室温下, 将上述聚乙烯和白油按公称浓度为5% (重量)分别注入解缠釜内, 氮气保护下剪切5分钟,剪切速度3000秒― 1 , 得到均一乳液状混合液输入贮料罐边搅拌边定量喂入双螺杆挤出机。 Ultrahigh molecular weight polyethylene (average relative molecular mass 5,000,000), the solvent white oil (# 90) at room temperature, the polyethylene and mineral oil by a nominal concentration of 5% (by weight) were injected into the autoclave unwound, nitrogen shear for 5 minutes and a shear rate of 3000 seconds - 1, to obtain a uniform emulsion mixture enter holding tank with stirring quantitatively fed twin screw extruder. , 挤出机直径25mm,L/D=64, 温度控制在250°C, 螺杆挤出机转速50rpm. 挤出物经过滤器箱体到计量泵被计量后从喷丝板喷出, 然后入水浴经处理后萃取, 干燥, 超倍拉伸, 拉伸总倍数为40, 得到纤维强度达到28cN/dtex, 模量在900cN/dtex以上9实施例9 , An extruder diameter of 25mm, L / D = 64, temperature controlled at 250 ° C, extruder screw speed of 50rpm. The extrudate through a filter to a metering pump casing is discharged from the spinneret metered, and then into a water bath after treatment, dried, ultra-fold stretching, stretching a total ratio of 40, to obtain a fiber strength of 28cN / dtex, modulus 900cN / dtex or more Example 99

超高分子量聚乙烯(相对平均分子质量450万), 溶剂白油(90#)在室温下将上述聚乙烯和白油按公称浓度为5% (重量)分别注入解缠釜内, 加入0.2% (重量)抗氧化剂, 氮气保护下剪切5分钟, 剪切速度2000秒- 1 , 得到均一乳液状混合液输入贮料罐边搅拌边定量喂入双螺杆挤出机。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million), the solvent white oil (# 90) at room temperature and the polyethylene by shortening a nominal concentration of 5% (by weight) were injected into the autoclave unwound, 0.2% (wt) antioxidant, shear under a nitrogen atmosphere for 5 minutes and a shear rate of 2000 seconds - 1, to obtain a uniform emulsion mixture enter holding tank with stirring quantitatively fed twin screw extruder. 挤出机直径25mm,LD=(24), 温度控制在240°C, 螺杆挤出机转速50rpm。 Extruder diameter 25mm, LD = (24), temperature controlled at 240 ° C, extruder screw speed of 50rpm. 挤出物经过滤器箱体到计量泵被计量后从喷丝孔喷出,然后入水浴经处理后萃取干燥超倍拉伸, 拉伸总倍数为40, 得到的纤维强度达到28cN/dtex, 模量在900cN/dtex以上。 Super dried extrudate was extracted through a filter casing is discharged from the nozzle hole to the metering pump is metered, then times into the bath and treated after stretching, the total stretching multiple of 40, the resulting fiber strength reaches 28cN / dtex, modulus the amount 900cN / dtex or more. 实施例10 Example 10

超高分子量聚乙烯(相对平均分子质量500万), 溶剂白油(90#)在室温下将上述聚乙烯和白油按公称浓度为12% (重量)分别注入解缠釜内,氮气保护下剪切10分钟, 剪切速度2000秒, 得到均一乳液状混和液输入储料罐边搅拌边定量喂入双螺杆挤出机。 Ultrahigh molecular weight polyethylene (average relative molecular mass 5,000,000), the solvent white oil (# 90) at room temperature and shortening the polyethylene according to a nominal concentration of 12% (by weight) were injected into the autoclave unwound, under nitrogen sheared for 10 minutes and a shear rate of 2000 seconds to obtain a homogeneous emulsion mixture feed solution inlet reservoir tank fed with stirring quantitative twin screw extruder. 挤出机直径25mm,L/D=(24), 温度控制在250 Q C, 螺杆挤出机转速30rpm。 Extruder diameter of 25mm, L / D = (24 ), temperature controlled at 250 Q C, extruder screw speed of 30rpm. 挤出物经过滤器箱体到计量泵被计量后从喷丝孔喷出, 然后入水浴处理后萃取、干燥、超倍拉伸, 拉伸总倍数为40, 得到的纤维强度达到35cN/dtex, 模量在1050cN/dtex以上。 The extrudate through the filter into the housing after ejection from the nozzle orifice metering the metering pump is then extracted into a water bath, drying, super-fold stretching, stretching a total ratio of 40, to obtain the fiber strength reaches 35cN / dtex, modulus 1050cN / dtex or more. 实施例11 Example 11

超高分子量聚乙烯(相对平均分子质量450万), 溶剂白油(90#), 在室温下将白油按公称浓度为10% (重量)注入解缠釜内, 超高分子量聚乙烯以公称浓度为10%重量由螺旋推进器以0.5kg/Min速度加入解缠釜内, 氮气保护下边剪切边加入, 剪切速度1000秒得到均一乳液状混合液输入储料罐边搅拌边定量喂入双螺杆挤出机。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million), the solvent white oil (# 90), white oil press at room temperature a nominal concentration of 10% (wt) was injected into the autoclave unwound, ultrahigh molecular weight polyethylene to the nominal concentration of 10% by weight of the auger to 0.5kg / Min solution added at a rate within the autoclave wrapped, cut edge under nitrogen was added a shear rate of 1000 seconds to obtain a homogeneous emulsion mixture feed input side quantitative storage tank with stirring twin-screw extruder. 挤出机直径25mm,L/D=(24), 温度控制在250 Q C。 Extruder diameter of 25mm, L / D = (24 ), temperature controlled at 250 Q C. 螺杆挤出机转速30rpm。 Extruder screw speed of 30rpm. 挤出物经过滤器箱体到计量泵被计量后从喷丝孔喷出。 The extrudate metering pump to the tank through the filter is ejected from the nozzle orifice after dosing. 然后加入2%聚醚-环氧改性硅油的水浴经处理后萃取、干燥、超倍拉伸,拉伸总倍数为40, 得到的纤维强度达到30cN/dtex, 模量在1000cN/dtex以上。 After extraction of the epoxy-modified silicone treated water bath, dried, ultra-fold stretching, stretching a total ratio of 40, to obtain the fiber strength reaches 30cN / dtex, modulus 1000cN / dtex or more - and 2% of polyether. 实施例12 Example 12

超高分子量聚乙烯(相对平均分子质量450万), 溶剂白油(70#)在室温下将上述聚乙烯和白油按公称浓度为10% (重量)分别注入解缠釜内, 在氮气保护下剪切15分钟, 剪切速度1000秒得到均一乳液状混合液输入贮料罐, 边搅拌边定量喂入双螺杆挤出机。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million), the solvent white oil (# 70) at room temperature and the polyethylene by shortening a nominal concentration of 10% (by weight) were injected into the autoclave unwound, under nitrogen protection a shear for 15 minutes and a shear rate of 1000 seconds to obtain a homogeneous emulsion mixture enter holding tank while stirring quantitatively fed twin screw extruder. 挤出机直径25mm, LD=(24), 温度控制在250°C , 螺杆挤出机转速30rpm。 Extruder diameter 25mm, LD = (24), temperature controlled at 250 ° C, extruder screw speed of 30rpm. 挤出物经过滤器箱体到计量泵被计量后从喷丝孔喷出, 然后入水浴经处理后萃取干燥超倍拉伸, 拉伸总倍数为40,得到的纤维强度达到30cN/dtex, 模量在1000cN/dtex以上。 Super dried extrudate was extracted through a filter casing is discharged from the nozzle hole to the metering pump is metered, then times into the bath and treated after stretching, the total stretching multiple of 40, the resulting fiber strength reaches 30cN / dtex, modulus the amount 1000cN / dtex or more.

实施例13 - 超高分子量聚乙烯(相对平均分子质量450万), 溶剂白油(70#)在室温下将上述聚乙烯和白油按公称浓度为10% (重量)分别注入解缠釜内, 同时加入1% (重量) 环氧改性硅油, 氮气保护下剪切5分钟, 剪切速度3000秒― 1 , 得到均一乳液状混合液输入贮料罐, 边搅拌边定量喂入双螺杆挤出机。 Example 13 - ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million), the solvent white oil (# 70) at room temperature and the polyethylene by shortening a nominal concentration of 10% (by weight) solution were injected into the autoclave wound , while adding 1% (wt) epoxy-modified silicone oil under nitrogen atmosphere shear for 5 minutes and a shear rate of 3000 seconds - 1, to obtain a uniform emulsion mixture enter holding tank while stirring quantitatively fed twin screw extruder the machine. 挤出机直径25mm, IJD=(24), 温度控制在250°C , 螺杆挤出机转速50rpm。 Extruder diameter 25mm, IJD = (24), temperature controlled at 250 ° C, extruder screw speed of 50rpm. 挤出物经过滤器箱体到计量泵被计量后从喷丝孔喷出,然后入水浴经处理后萃取干燥超倍拉伸,拉伸总倍数为40,得到的纤维强度达到30cN/dtex,模量在1000cN/dtex 以上。 Super dried extrudate was extracted through a filter casing is discharged from the nozzle hole to the metering pump is metered, then times into the bath and treated after stretching, the total stretching multiple of 40, the resulting fiber strength reaches 30cN / dtex, modulus the amount 1000cN / dtex or more.

实施例14 Example 14

超高分子量聚乙烯(相对平均分子质量500万), 溶剂白油(90#)在室温下将上述聚乙烯和白油按公称浓度为12% (重量) 分别注入解缠釜内,氮气保护下剪切10分钟, 剪切速度2000秒,得到均一乳液状混合液输入储料罐边搅拌边定量喂入双螺杆挤出机。 Ultrahigh molecular weight polyethylene (average relative molecular mass 5,000,000), the solvent white oil (# 90) at room temperature and shortening the polyethylene according to a nominal concentration of 12% (by weight) were injected into the autoclave unwound, under nitrogen sheared for 10 minutes and a shear rate of 2000 seconds to obtain a homogeneous emulsion mixture enter the storage tank with stirring quantitatively fed twin screw extruder. 挤出机直径25mm,L/D=(24),温度控制在250°C, 螺杆挤出机转速30rpm。 Extruder diameter of 25mm, L / D = (24), temperature controlled at 250 ° C, extruder screw speed of 30rpm. 挤出物经过滤器箱体到计量泵被计量后从喷丝孔喷出, 然后加入1.5%环氧改性硅油的水浴, 经处理后萃取干燥超倍拉伸, 拉伸总倍数为40, 得到的纤维强度达到35cN/dtex, 模量在1050cN/dtex以上。 The extrudate through the filter into the housing after ejection from the nozzle orifice metering pump is metered, then the water bath was added 1.5% of epoxy-modified silicone oil, after extraction and drying the treated ultra-fold stretching, stretching a total ratio of 40, to give a fiber strength of 35cN / dtex, modulus 1050cN / dtex or more. 实施例15 Example 15

超高分子量聚乙烯(相对平均分子质量450万), 溶剂白油(90#)在室温下将上述聚乙烯和白油按公称浓度为10% (重量)分别注入解缠釜内,超高分子量聚乙烯以公称浓度为10%重量由螺旋推进器以0.5kg/Min速度加入解缠釜内, 氮气保护下边剪切边加入, 剪切速度1000秒, 得到均一乳液状混合液输入贮料罐, 边搅拌边定量喂入双螺杆挤出机。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million), the solvent white oil (# 90) at room temperature and the polyethylene by shortening a nominal concentration of 10% (by weight) were injected into the autoclave unwound, ultra high molecular weight polyethylene at a nominal concentration of 10% by weight of the auger to 0.5kg / Min speed unwrapping the autoclave was added, under nitrogen is added with shear, shear rate of 1,000 seconds to obtain a homogeneous emulsion mixture enter holding tank, stirring quantitatively fed twin screw extruder. 挤出机直径25mm,L/D=(24), 温度控制在250°C, 螺杆挤出机转速30rpm。 Extruder diameter of 25mm, L / D = (24), temperature controlled at 250 ° C, extruder screw speed of 30rpm. 挤出物经过滤器箱体到计量泵被计量后从喷丝孔喷出, 然后入加入2% (重量)聚醚-环氧改性硅油水浴经处理后萃取、 干燥、 超倍拉伸, 拉伸总倍数为30, 得到的纤维强度达到30cN/dte X , 模量在1000cN/dtex以上。 The extrudate through the filter into the housing after ejection from the nozzle orifice metering pump is metered, then the addition of 2% (by weight) Polyether - epoxy-modified silicone treated after water bath, dried, ultra-fold stretch, pull 30 a total ratio of stretch, strength of the obtained fiber reaches 30cN / dte X, modulus 1000cN / dtex or more. 实施例16 Example 16

超高分子*聚乙烯(相对平均分子质量450万), 溶剂白油, 配制成浓度为8%的均匀溶液定量喂入双螺杆挤出机, 挤出机直径25mm,L/D=(24), 温度控制在240°C, 螺杆挤出机转速30rpm。 * Ultra-high molecular polyethylene (average relative molecular mass of 4.5 million), white oil solvent to prepare a uniform solution quantitatively feed concentration of 8% by a twin screw extruder, an extruder diameter of 25mm, L / D = (24) , temperature controlled at 240 ° C, extruder screw speed of 30rpm. 挤出物经过滤器箱体到计量泵被计量后从具有长方形喷丝孔的喷丝板喷出, 长方形孔的长宽比为8。 The extrudate discharged from the cabinet through a filter having a rectangular spinneret orifice after metering the metering pump, an aspect ratio of the rectangular holes 8. 然后入水浴经处理后萃取, 千燥, 超倍拉伸, 拉伸总倍数为40, 得到的纤维强度达到30cN/dtex, 模量在1000cN/dtex以上。 After treatment was then extracted into a water bath, was dry, ultra-fold stretching, stretching a total ratio of 40, to obtain the fiber strength reaches 30cN / dtex, modulus 1000cN / dtex or more. 实施例17 Example 17

超高分子量聚乙烯(相对平均分子质量450万), 溶剂白油, 配制成浓度为12%的均匀溶液定量喂入双螺杆挤出机, 挤出机直径25mm,IJD=(24), 温度控制在250°C, 螺杆挤出机转速40rpm。 Ultrahigh molecular weight polyethylene (average relative molecular mass of 4.5 million), the solvent white oil, formulated to a concentration of quantitatively feeding a homogeneous solution of 12% twin screw extruder, an extruder diameter of 25mm, IJD = (24), temperature control at 250 ° C, extruder screw speed of 40rpm. 挤出物经过滤器箱体到计量泵被计量后从具有长方形喷丝孔的喷丝板喷出,长方形孔的长宽比为12。 The extrudate discharged from the cabinet through a filter having a rectangular spinneret orifice after metering the metering pump, an aspect ratio of the rectangular aperture 12. 然后入水浴经处理后萃取, 干燥, 超倍拉伸, 拉伸总倍数为40, 得到的纤维强度达到30cN/dtex, 模量在1000cN/dtex以上。 Into the bath and then after processing, dried, ultra-fold stretching, stretching a total ratio of 40, to obtain the fiber strength reaches 30cN / dtex, modulus 1000cN / dtex or more. 以上显示和描述了本发明的基本原理、主要特征和本发明的优点。 The above and described the principles of the invention, the main features and advantages of the present invention. 本行业的技术人员应该了解, 本发明不受上述实施例的限制, 上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进, 这些变化和改进都落入要求保护的本发明范围内。 The industry the art will appreciate, the present invention is not limited to the above embodiment, the above-described examples and embodiments described in the specification are only illustrative of the principles of the present invention, without departing from the spirit and scope of the present invention, the present invention also have the respective variations and modifications, changes and modifications which fall within the scope of the claimed invention. 本发明要求保护范围由所附的权利要求书及其等同物界定。 The scope of the invention as claimed by the appended claims and equivalents thereof defined.

Claims

权利要求 Rights request
1、 超高分子量聚乙烯纤维的制备方法, 其特征在于, 是将超高相对平均分子量100万一600万的聚乙烯粉末添加极性聚合物, 分散于溶剂中, 配制成均一的混合乳液, 采用冻丝纺丝法, 将混合乳液边搅拌边定量喂入螺杆挤出机进行快速溶胀、 溶解形成透明、 均一的纺丝原液, 通过喷丝板挤出, 经冷却、 凝固后形成纺丝,然后经过萃取、干燥、超倍拉伸得到超高分子量聚乙烯纤维。 1, method for preparing ultra high molecular weight polyethylene fiber, wherein by adding an average molecular weight of ultrahigh case 100 6000000 polar polymers polyethylene powder, dispersed in a solvent to prepare a uniform emulsion mixture, frozen using silk spinning process, the emulsion is mixed with stirring quantitative screw extruder fed quickly swells, dissolves to form a transparent, homogeneous spinning dope extruding through a spinneret, cooled, solidified form after spinning, then after extraction, drying, stretching over times to give ultrahigh molecular weight polyethylene fibers.
2、 根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 在配制均一混合乳液过程中, 将超高相对分子量100万一600万的聚乙烯粉末、极性聚合物和溶剂按比例注入解缠设备中进行解缠,形成均一混合乳液。 2. The method of preparing UHMWPE fiber according to claim 1, wherein, in the uniformly mixed during the emulsion preparation, the ultrahigh molecular weight polyethylene powder 100 in case 6,000,000, polar polymers and a solvent proportion injection unwrapping apparatus for unwrapping to form a homogeneous emulsion mixture.
3、 根据权利要求1或2所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 所述均一混合乳液的百分比浓度为4%-60%。 3, preparation of ultrahigh molecular weight polyethylene fiber of claim 1 or claim 2, wherein the concentration of uniformly mixing the emulsion percentage of 4% -60%.
4、 根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 所述极性聚合物为含有酯基、 羰基、 醚基的极性聚合物。 4, according to claim 1, wherein said ultra high molecular weight preparation of polyethylene fiber, wherein the polar polymer is a polar polymer containing ester group, a carbonyl group, an ether group.
5、 根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在-于, 所述含有酯基、 羰基、 醚基的极性聚合物为乙烯/乙烯乙酸酯共聚物、 聚丙烯酸酯类、 不同K值的聚乙烯吡咯烷酮/乙烯乙酸酯共聚物、 聚氧乙烯聚合物中的一种或两种以上的混合。 5, according to claim 1, wherein said ultra-high molecular preparing polyethylene fibers, characterized in - that said ester-containing group, a carbonyl group, an ether group is the polar polymer is an ethylene / vinyl acetate copolymer, polyacrylates, polyvinylpyrrolidone of different K-values ​​/ vinyl acetate copolymer, a polyoxyethylene polymer of one or two or more mixed.
6、 根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于,所述极性聚合物的添加重量分数相对于超高相对分子量100万一600万的聚乙烯粉末重量的1-10%。 6. The method of preparing UHMWPE fiber according to claim 1, wherein the polar polymer relative to the weight fraction of the added weight of the ultrahigh molecular weight polyethylene powder 100 in case of 6,000,000 1-10%. · ·
7、 根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于,所述极性聚合物的添加重量分数相对于超高相对分子量100万一600万的聚乙烯粉末重量的2-8%。 7. The method of preparing UHMWPE fiber according to claim 1, wherein the polar polymer relative to the weight fraction of the added weight of the ultrahigh molecular weight polyethylene powder 100 in case of 6,000,000 2-8%.
8、 根据权利要求2所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 在上述解缠过程中, 可以加入硅油或其衍生物进行解缠; 或者/和在凝固过程中加入硅油或其衍生物;其中加入硅油或其衍生物的量为超高分子量聚乙烯纤维中含有硅油或其衍生物0.05-5wt%。 8. The process according to ultrahigh molecular weight polyethylene fiber according to claim 2, wherein, in the above unwrapping process, silicone oil or its derivative may be added unwrapping; or / and added during the solidification of the silicone oil or a derivative thereof; wherein the amount of the silicone oil or its derivative is added ultrahigh molecular weight polyethylene fiber contains a silicone oil or a derivative thereof 0.05-5wt%.
9、 根据权利要求8所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 在上述解缠过程中, 还加入抗氧化剂、 稳定剂、 染色剂、 阻燃剂中的一种或两禾中以上。 9. The process according to ultrahigh molecular weight polyethylene fiber according to claim 8, wherein, in the above unwrapping process further added an antioxidant, a stabilizer, colorant, flame retardant or two in more than Wo.
10、根据权利要求2所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 所述解缠设备提供至少1000秒以上的剪切速度。 10. The process according to ultrahigh molecular weight polyethylene fiber according to claim 2, characterized in that the unwrapping apparatus provide at least a shear rate of 1000 seconds.
. . .
11、 根据权利要求10所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 所述解缠设备的剪切速度为1000-5000秒人 The method of preparing UHMWPE fiber 11, according to claim 10, characterized in that the unwrapping apparatus a shear rate of 1,000 to 5,000 seconds al
12、 根据权利要求10所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 所述解缠设备的剪切速度为2000-4000秒 12. The method of preparing UHMWPE fiber according to claim 10, characterized in that the unwrapping apparatus a shear rate of 2000 to 4000 seconds
13、根据权利要求2所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 所述解缠设备可以是高速分散机、 搅拌器、 胶体磨、 均质机、 文氏管中的一种或它们的组合。 13. The process according to ultrahigh molecular weight polyethylene fiber according to claim 2, characterized in that the unwrapping apparatus may be a high-speed dispersion machine, mixer, colloid mill, homogenizer, venturi in a species, or a combination thereof.
14、根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 所述超高分子量聚乙烯相对平均分子量为400万一600万。 14, according to claim 1, wherein said ultra high molecular weight preparation of polyethylene fiber, wherein the ultrahigh molecular weight polyethylene in case the relative average molecular weight of 400 6,000,000.
15、根据权利要求1所述的超高分子聚乙烯纤维的制备方法, 其特征在于, 所述超高分子量聚乙烯相对平均分子量为200万-500万。 15. The process according to ultrahigh molecular weight polyethylene fiber according to claim 1, wherein said ultrahigh molecular weight polyethylene the relative average molecular weight of 200 -500 million.
16、根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 在配制均一混合乳液过程中, 采用的溶剂为在常温下呈液体的溶剂, 是垸烃、 环烷烃、 芳香烃、 烷烃的衍生物、 环烷烃的衍生物、 芳香烃的衍生物中的一种以及两种以上的混合物。 16. The ultra high molecular weight according to claim 1 preparing a polyethylene fiber, wherein, in the uniformly mixed during the emulsion preparation, solvent is employed as a solvent liquid at ordinary temperature, embankment is a hydrocarbon, a cycloalkane, aromatics, paraffin derivatives, derivatives cycloalkane, an aromatic hydrocarbon derivatives thereof, and mixtures of two or more.
17、根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于,在配制均匀溶液过程中,超高分子量聚乙烯和溶剂的公称浓度为l-50wt%。 17, according to claim 1, wherein said ultra-high molecular preparing polyethylene fibers, characterized in that the homogeneous solution in the preparation process, known ultrahigh molecular weight polyethylene and said solvent concentration of l-50wt%.
18、根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 采用的螺杆挤出机为单螺杆、 双螺杆、 三螺杆、 四螺杆挤出机中的一种, 其螺杆挤出温度为80-250°C。 18. The method of preparing UHMWPE fiber according to claim 1, characterized in that the screw extruder used as a single-screw, twin-screw, triple-screw or four-screw extruder, which screw extrusion temperature of 80-250 ° C.
19、 根据权利要求18所述的超高分子量聚乙烯纤维的制备方法, 其特征在于,采用的双螺杆挤出机是同向或异向旋转的,其螺杆的长径比为1: 30-65。 19. The method of preparing UHMWPE fiber according to claim 18, wherein, using a twin-screw extruder or co-rotating, the screw length to diameter ratio of 1: 30 65.
20、 根据权利要求19所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 所述均一混合乳液在双螺杆挤出机中的停留时间为10-60分钟, 最好在20-40分钟, 物料温度为50-280°C, 挤出时溶液纺丝温度控制在140-280°C。 20. The process according to ultrahigh molecular weight polyethylene fiber according to claim 19, characterized in that the residence time of a homogeneous emulsion is mixed in a twin-screw extruder is 10-60 minutes, preferably 20-40 min, the mass temperature of 50-280 ° C, solution spinning temperature is controlled at 140-280 ° C during extrusion. 最好在200-260 °C。 Preferably 200-260 ° C.
21、 根据权利要求20所述的超高分子量聚乙烯纤维的制备方法,.其特征在于, 所述均一混合乳液在双螺杆挤出机中的停留时间为20-40分钟, 挤出时溶液纺丝温度控制在200-260°C。 21. The process according to ultrahigh molecular weight polyethylene fiber according to claim 20, which is characterized in that the residence time of a homogeneous emulsion is mixed in a twin-screw extruder is 20-40 minutes, when the spinning solution is extruded filament temperature controlled at 200-260 ° C.
22、根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 螺杆挤出机采用的喷丝板上的喷丝孔为长方形孔, 其长宽比为4-20。 22, according to claim 1, wherein said ultra-high molecular preparing polyethylene fiber, wherein the nozzle hole spinneret screw extruder used is a rectangular hole, an aspect ratio of 4-20.
23、根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 所述长宽比为5-15。 23. The ultra high molecular weight according to claim 1 preparing a polyethylene fiber, wherein the aspect ratio of 5-15.
24、根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于,所述乳液状混合液可直接喂入螺杆挤出机或通过带搅拌的贮料筒喂入螺杆挤出机。 24. The method of preparing UHMWPE fiber according to claim 1, wherein the emulsion mixture can be fed directly screw extruder or a feeding screw through a stirred silo extrusion machine.
25、根据权利要求1所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 在超倍拉伸过程中, 纤维的拉伸温度为80-130°C, 拉伸倍数在20倍以上。 25. The process according to ultrahigh molecular weight polyethylene fiber according to claim 1, wherein, in the ultra-fold stretching process, the stretching temperature of the fiber is 80-130 ° C, a stretching ratio of 20 times or more .
26、 根据权利要求25所述的超高分子量聚乙烯纤维的制备方法, 其特征在于, 在超倍拉伸过程中, 拉伸倍数为30-60倍。 26. The process according to ultrahigh molecular weight polyethylene fiber according to claim 25, wherein, in the ultra-fold stretching process, the stretching ratio is 30-60 times.
PCT/CN2007/002906 2006-11-08 2007-10-09 A process for producing fiber of ultra high molecular weight polyethylene WO2008055405A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN200610118076.X 2006-11-08
CN 200610118076 CN101235551B (en) 2006-11-08 2006-11-08 High-shearing ultra-high molecular weight polythene continuous dissolving spinning method
CN200610147424.6 2006-12-18
CN 200610147424 CN101205637A (en) 2006-12-18 2006-12-18 Method for preparing high-strength high-modulus superhigh molecular weight polyethylene flat fibre
CN 200710040678 CN101307509A (en) 2007-05-15 2007-05-15 Ultra-high molecular weight polyethylene fiber spinning method
CN200710040678.2 2007-05-15
CN200710043831.7 2007-07-16
CN 200710043831 CN101348944A (en) 2007-07-16 2007-07-16 Novel preparation of high bonding ultra-high molecular weight polyethylene fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12299205 US20100233480A1 (en) 2006-11-08 2007-10-09 Process for producing fiber of ultra high molecular weight polyethylene
EP20070816520 EP2080824B1 (en) 2006-11-08 2007-10-09 A process for producing fiber of ultra high molecular weight polyethylene
DE200760008600 DE602007008600D1 (en) 2006-11-08 2007-10-09 A process for the preparation of fibers of polyethylene with ultra high molecular weight

Publications (1)

Publication Number Publication Date
WO2008055405A1 true true WO2008055405A1 (en) 2008-05-15

Family

ID=39364173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002906 WO2008055405A1 (en) 2006-11-08 2007-10-09 A process for producing fiber of ultra high molecular weight polyethylene

Country Status (4)

Country Link
US (1) US20100233480A1 (en)
EP (1) EP2080824B1 (en)
DE (1) DE602007008600D1 (en)
WO (1) WO2008055405A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580159A (en) * 2012-03-13 2012-07-18 中国矿业大学 Process for preparing self-enhancement UHMWPE (Ultrahigh molecular weight polyethylene) acetabulum
US20120306109A1 (en) * 2009-11-26 2012-12-06 Ningbo Dacheng Advanced Material Co., Ltd. Method For Evenly Preparing Filament By Using High-Shearing Solution of Ultrahigh-Molecular-Weight Polyethylene

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747715B2 (en) 2007-06-08 2014-06-10 Honeywell International Inc Ultra-high strength UHMW PE fibers and products
US9365953B2 (en) 2007-06-08 2016-06-14 Honeywell International Inc. Ultra-high strength UHMWPE fibers and products
US8131483B2 (en) * 2010-05-07 2012-03-06 Testing Machines, Inc. Yarn entanglement strength tester
CN101956238B (en) 2010-08-24 2012-05-30 北京同益中特种纤维技术开发有限公司 Method for preparing ultrahigh molecular weight polyethylene fiber spinning solution
CN102534838B (en) * 2010-12-07 2014-09-03 北京同益中特种纤维技术开发有限公司 Ultra-high molecular weight polyethylene fiber spinning stock solution and preparation method thereof
CN103590130A (en) * 2013-10-11 2014-02-19 杭州翔盛高强纤维材料股份有限公司 Method for improving fluidity of ultra-high molecular weight polyethylene fiber spinning solution
US20150164158A1 (en) * 2013-12-13 2015-06-18 Honeywell International Inc. Protective overglove for glove-box gloves
CN104790050A (en) * 2014-03-28 2015-07-22 上海斯瑞科技有限公司 Preparing method for ultra-high molecular weight polyethylene fibers and washing device
WO2016089969A3 (en) * 2014-12-02 2016-08-25 Braskem America, Inc. Continuous method and system for the production of at least one polymeric yarn and polymeric yarn
CN104846446A (en) * 2015-05-22 2015-08-19 江苏神鹤科技发展有限公司 Crosslinked polyethylene fiber with ultrahigh molecular weight and dry preparation method for crosslinked polyethylene fiber

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US480136A (en) 1892-08-02 Shutter-bower
US4115492A (en) 1975-10-03 1978-09-19 The Dow Chemical Company Process for preparing microporous polyethylene hollow fibers
GB2042414A (en) 1979-02-08 1980-09-24 Stamicarbon Dry-spinning polymer filaments
GB2051667A (en) 1979-06-27 1981-01-21 Stamicarbon Preparing polyethylene filaments
US4413110A (en) 1981-04-30 1983-11-01 Allied Corporation High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore
JPS59232123A (en) 1983-06-16 1984-12-26 Agency Of Ind Science & Technol Production of solution of super-molecular weight polyethylene
CN85107352A (en) 1985-02-15 1986-10-01 斯塔米卡本公司(Dsm附属公司) Method of preparation of even high polymer solution coutinually
EP0205960A2 (en) 1985-06-17 1986-12-30 AlliedSignal Inc. Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
EP0213208A1 (en) 1985-02-15 1987-03-11 Toray Industries, Inc. Polyethylene multifilament yarn
JPS6315838A (en) 1986-07-08 1988-01-22 Nippon Petrochem Co Ltd Ultra-high molecular weight polyethylene solution
JPS6353283B2 (en) * 1984-11-19 1988-10-21 Ntn Toyo Bearing Co Ltd
US5039549A (en) 1989-10-17 1991-08-13 Allied-Signal Inc. Treatment of ultrahigh molecular weight polyolefin to improve adhesion to a resin
CN1056544A (en) * 1990-05-14 1991-11-27 中国纺织大学 Process for preparing high-strength and - modulus polyethylene fiber
US5294338A (en) 1990-11-28 1994-03-15 Mitsubishi Rayon Co., Ltd. Porous polyethylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous polyethylene hollow fiber membranes
CN1160093A (en) * 1997-01-02 1997-09-24 中国纺织科学研究院 Method and apparatus for continuous making superhigh molecula polyethylene fibre
US5695702A (en) 1994-07-01 1997-12-09 Millipore Corporation Thermoplastic hollow fiber membrane module and method of manufacture
US5755913A (en) 1996-12-06 1998-05-26 Liaw; Der-Jang Adhesive-free adhesion between polymer surfaces
WO2001073173A1 (en) 2000-03-27 2001-10-04 Honeywell International Inc. High tenacity, high modulus filament
US6436319B1 (en) 1999-04-27 2002-08-20 Agency For Technology And Standards Method of preparing hollow fiber-type separation membrane from high density polyethylene
CN1693544A (en) 2005-05-10 2005-11-09 东华大学 Method of improving surface cohesion performance of relative molecular weight polyethylene
EP1746187A1 (en) 2005-07-18 2007-01-24 DSM IP Assets B.V. Polyethylene multi-filament yarn

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230854A (en) * 1991-12-09 1993-07-27 Allied-Signal Inc. Method for removal of spinning solvent from spun fiber
JPH08245799A (en) * 1995-03-08 1996-09-24 Tonen Chem Corp Production of polyolefin solution
US6054086A (en) * 1995-03-24 2000-04-25 Nippon Petrochemicals Co., Ltd. Process of making high-strength yarns
EP1570118B1 (en) * 2002-12-10 2007-10-17 DSM IP Assets B.V. Process for making and process for converting polyolefin fibres
DK1699953T3 (en) * 2004-01-01 2012-09-24 Dsm Ip Assets Bv A process for the preparation of multi-filament yarn from polyethylene, high-performance

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US480136A (en) 1892-08-02 Shutter-bower
US4115492A (en) 1975-10-03 1978-09-19 The Dow Chemical Company Process for preparing microporous polyethylene hollow fibers
GB2042414A (en) 1979-02-08 1980-09-24 Stamicarbon Dry-spinning polymer filaments
GB2051667A (en) 1979-06-27 1981-01-21 Stamicarbon Preparing polyethylene filaments
US4413110A (en) 1981-04-30 1983-11-01 Allied Corporation High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore
JPS59232123A (en) 1983-06-16 1984-12-26 Agency Of Ind Science & Technol Production of solution of super-molecular weight polyethylene
JPS6353283B2 (en) * 1984-11-19 1988-10-21 Ntn Toyo Bearing Co Ltd
EP0213208B1 (en) * 1985-02-15 1991-10-30 Toray Industries, Inc. Polyethylene multifilament yarn
EP0213208A1 (en) 1985-02-15 1987-03-11 Toray Industries, Inc. Polyethylene multifilament yarn
CN85107352A (en) 1985-02-15 1986-10-01 斯塔米卡本公司(Dsm附属公司) Method of preparation of even high polymer solution coutinually
EP0205960A2 (en) 1985-06-17 1986-12-30 AlliedSignal Inc. Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
JPS6315838A (en) 1986-07-08 1988-01-22 Nippon Petrochem Co Ltd Ultra-high molecular weight polyethylene solution
EP0255618A2 (en) 1986-07-08 1988-02-10 Nippon Petrochemicals Co., Ltd. Ultra-high-molecular-weight polyethylene solution
US5039549A (en) 1989-10-17 1991-08-13 Allied-Signal Inc. Treatment of ultrahigh molecular weight polyolefin to improve adhesion to a resin
CN1056544A (en) * 1990-05-14 1991-11-27 中国纺织大学 Process for preparing high-strength and - modulus polyethylene fiber
US5294338A (en) 1990-11-28 1994-03-15 Mitsubishi Rayon Co., Ltd. Porous polyethylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous polyethylene hollow fiber membranes
US5695702A (en) 1994-07-01 1997-12-09 Millipore Corporation Thermoplastic hollow fiber membrane module and method of manufacture
US5755913A (en) 1996-12-06 1998-05-26 Liaw; Der-Jang Adhesive-free adhesion between polymer surfaces
CN1160093A (en) * 1997-01-02 1997-09-24 中国纺织科学研究院 Method and apparatus for continuous making superhigh molecula polyethylene fibre
US6436319B1 (en) 1999-04-27 2002-08-20 Agency For Technology And Standards Method of preparing hollow fiber-type separation membrane from high density polyethylene
WO2001073173A1 (en) 2000-03-27 2001-10-04 Honeywell International Inc. High tenacity, high modulus filament
CN1693544A (en) 2005-05-10 2005-11-09 东华大学 Method of improving surface cohesion performance of relative molecular weight polyethylene
EP1746187A1 (en) 2005-07-18 2007-01-24 DSM IP Assets B.V. Polyethylene multi-filament yarn

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIA G. ET AL.: "STUKING ON THE ADHESION OF UHMW-PE FIBER", CHINA SYNTHETIC FIBER INDUSTRY, no. 6, December 1995 (1995-12-01), pages 24 - 28, XP008100177 *
See also references of EP2080824A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120306109A1 (en) * 2009-11-26 2012-12-06 Ningbo Dacheng Advanced Material Co., Ltd. Method For Evenly Preparing Filament By Using High-Shearing Solution of Ultrahigh-Molecular-Weight Polyethylene
CN102580159A (en) * 2012-03-13 2012-07-18 中国矿业大学 Process for preparing self-enhancement UHMWPE (Ultrahigh molecular weight polyethylene) acetabulum

Also Published As

Publication number Publication date Type
DE602007008600D1 (en) 2010-09-30 grant
US20100233480A1 (en) 2010-09-16 application
EP2080824B1 (en) 2010-08-18 grant
EP2080824A4 (en) 2009-12-23 application
EP2080824A1 (en) 2009-07-22 application

Similar Documents

Publication Publication Date Title
Zheng et al. Preparation and characterization of chitosan/poly (vinyl alcohol) blend fibers
US4663101A (en) Shaped polyethylene articles of intermediate molecular weight and high modulus
US4551296A (en) Producing high tenacity, high modulus crystalline article such as fiber or film
US5032338A (en) Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution
US4584347A (en) Modified polyolefin fiber
US4455273A (en) Producing modified high performance polyolefin fiber
US4320081A (en) Process for the manufacture of fibres from poly-p-phenylene terephthalamide
US20050154093A1 (en) Solution containing cellulose dissolved in n-methylmorpholine-n-oxide and high tenacity lyocell multifilament using the same
CN101328626A (en) Method for continuously preparing regenerated cellulose fibre
CN1400342A (en) Production method of high strength polyethylene fibre and fibre
US6174601B1 (en) Bicomponent fibers in a sheath-core structure comprising fluoropolymers and methods of making and using same
CN1432077A (en) High tenacity, high modulus filament
Lee et al. Fiber formation and physical properties of chitosan fiber crosslinked by epichlorohydrin in a wet spinning system: the effect of the concentration of the crosslinking agent epichlorohydrin
US20060099419A1 (en) Method for producing cellulose fiber
CN101994161A (en) Method for preparing polytetrafluoroethylene superfine fiber
CN1590608A (en) Manufacturing method of high strength polyethylene fiber
US6949287B2 (en) Polytetrafluoroethylene fiber and method for manufacturing the same
CN101956238A (en) Method for preparing ultrahigh molecular weight polyethylene fiber spinning solution
CN1190137A (en) Continuous preparation of homogeneous solution of superhigh molecular weight polythene
WO2009098073A1 (en) Method and device for the production of molded bodies
US20040086591A1 (en) Multiple passage extrusion apparatus
CN101230501A (en) Method for preparing high-strength polyethylene fibre by employing blended melting of super high molecular weight polyethylene and low density polyethylene
US4166091A (en) Production of plexifilament strands
US2585499A (en) Production of shaped articles from acrylonitrile polymers
US20070231572A1 (en) High molecular weight poly(alpha-olefin) solutions and articles made therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE