WO1986000884A1 - Method of blending and molding mortars - Google Patents

Method of blending and molding mortars Download PDF

Info

Publication number
WO1986000884A1
WO1986000884A1 PCT/JP1985/000423 JP8500423W WO8600884A1 WO 1986000884 A1 WO1986000884 A1 WO 1986000884A1 JP 8500423 W JP8500423 W JP 8500423W WO 8600884 A1 WO8600884 A1 WO 8600884A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
water
mortar
ice
mixed
Prior art date
Application number
PCT/JP1985/000423
Other languages
English (en)
French (fr)
Inventor
Toshiro Suzuki
Original Assignee
Toshiro Suzuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP59160677A external-priority patent/JPS6149806A/ja
Priority claimed from JP60146273A external-priority patent/JPS627682A/ja
Application filed by Toshiro Suzuki filed Critical Toshiro Suzuki
Priority to KR1019860700165A priority Critical patent/KR870700224A/ko
Publication of WO1986000884A1 publication Critical patent/WO1986000884A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/46Arrangements for applying super- or sub-atmospheric pressure during mixing; Arrangements for cooling or heating during mixing, e.g. by introducing vapour
    • B28C5/468Cooling, e.g. using ice
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/003Methods for mixing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/06Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
    • C04B40/0683Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients inhibiting by freezing or cooling

Definitions

  • the present invention relates to a method of preparing a hydraulic cement composition (referred to as mortar) such as cement, mortar, concrete, etc., in which water required for a hydration reaction is supplied from granular ice. It concerns the molding method.
  • mortar a hydraulic cement composition
  • water required for a hydration reaction is supplied from granular ice. It concerns the molding method.
  • the strength of the hydraulic cement composition after curing is higher as the amount of water relative to the cement is smaller.
  • the strength becomes extremely high, ensuring not only compressive strength but also tensile strength, bending strength and shear strength. It is said to be done.
  • mixing mortars requires a certain level of spirit. That is, it is necessary that the bulk, fluidity, viscosity, and plasticity, which are related to the work difficulty before curing such as mixing, driving, molding, etc., are appropriate. It is customary to mix a considerably larger amount of water than is necessary for the hydration of the cement to ensure this spirit, and various admixtures are added to reduce the amount of water. However, when the minimum amount of water is required for hydration, the amount of water becomes extremely small. In this case, the strength after curing is not only the water cement ratio, but also the homogeneity of mixing of cement and aggregate, stirring and mixing during the hydration reaction are important, but this is also difficult. Mortars are added with water, stirred and mixed. However, there is a time limit for transporting raw mortars, and in some cases a retarder is used, but it is generally difficult to adjust the hydration reaction time.
  • the present invention is intended to solve the above-mentioned conventional problems by blending water in the form of granular ice.
  • the constitution of the gist of the present invention is to mix mortar with water required for the hydration reaction of cement (including a mixture of various admixtures) with soft ice and mix mortars.
  • This is a method for preparing mortars that melts grainy ice and hydrates the resulting water with cement.
  • mortars are prepared by mixing and stirring water without granular ice, and the mortar is pressurized and pressed in a dense state to form water and cement produced by melting of the granular ice. Can be hydrated to form high-strength mortars.
  • homogeneity is maintained by stirring and mixing water as ground grain ice, and hydration is achieved by lowering each mixed material. The effect is delayed, a small amount of water is evenly dispersed throughout the cement, and the workability of mixing and stirring is improved.
  • Melting of grainy ice can be done by natural, heating or pressurizing methods.
  • this molding method can convert a mortar with low water Z cement ratio, which uses water as granular ice, to a compact compact with a uniform, defect-free mortar and high strength due to the low water cement ratio. It is expressed in a molded article.
  • the melting time of ice depends largely on the temperature and ice size of the grain ice. Therefore, the time until the hydration reaction of the raw mortar can be controlled by appropriately selecting the temperature and the ice diameter. Grained ice can be sieved and used as needed to bring the ice diameter to a predetermined value.
  • the granular ice may be used by crushing ice blocks at a predetermined temperature, or may be used by deep-cooling granular ice to a predetermined temperature.
  • a kneading tank for mixing mortars or a mixer or storage tank for mixing and stirring can be equipped with a cooling device, or can be insulated with heat insulating material to control the melting rate of shattered ice.
  • the mortar may be made by mixing and stirring the cement and the fine aggregate first, then adding the granular ice and mixing and stirring, and further mixing and stirring the coarse aggregate as necessary.
  • a polymer such as rubber latex can be mixed, or a monomer can be mixed and polymerized inside the mortar to produce a polymer mortar.
  • water-soluble monomers such as metaacrylic acid and acrylonitrile and water in which a redox polymerization initiator is dissolved are frozen to form grain ice, and then mixed.
  • the mortar can be prepared by stirring, and the monomer can be polymerized in the mortar to produce a polymer mortar.
  • fiber reinforced mortar by mixing asbestos, carbon fiber, and metal fiber can be used, and metal powder such as iron powder can be used as aggregate.
  • the present invention Since the present invention has the above-described structure and mixes and mixes cement, aggregate and granular ice, they can be uniformly mixed and stirred. Wear.
  • the water used for the hydration reaction is obtained by melting granular ice, but may be used in an extremely small amount because it is homogeneously mixed and stirred.
  • the early strength and the crack prevention effect can be remarkably improved, and the early ⁇ shape can be realized.
  • Mortars are kept at a low temperature by the presence of grainy ice, so that the hydration reaction can be delayed and the time until casting can be shortened.
  • the delay time of the hydration reaction can be appropriately set by adjusting the temperature of each mixture. Therefore, for example, the time limitation of mortars made of concrete mixer plants can be relaxed and supplied to a wide area. Mortars with an extremely low water cement ratio can be blended, and, consequently, there is no drainage of water, which facilitates pressure molding and enables the production of solid, high-strength products.
  • the hydration reaction can be prepared by selecting the mixing order according to the condition of the outside air temperature.
  • Fig. 1 is a graph showing the correlation between the elapsed time and the temperature of the cement paste in Example 1
  • Fig. 2 is a graph showing the correlation between the water cement ratio and the compressive strength in Example 2
  • Fig. 3 is Example 3.
  • 4 is a correlation graph between the water / cement ratio of Example 4 and the compressive strength
  • FIG. 5 is a graph showing the age of the cement paste of Example 5.
  • dry harvest It is a correlation Darafu with contraction distortion.
  • the temperature is -2. c, — 2 6.
  • the relationship between the elapsed time and the temperature change of cement paste in which two types of grainy ice c were mixed with ordinary Portland cement was determined.
  • the obtained cement paste is filled in a cylinder of square plywood (thickness 9 cm) with a bottom of 7 cm x 7 cm and filled with a height of 12 cm (H) and a center of 5 cm () in height. Partial positions were taken as temperature measurement points.
  • the cement paste was adjusted using room temperature water at the same time as the grainy ice at two temperatures of -2 V and 126, and the elapsed time and its temperature change were determined.
  • Figure 1 shows.
  • a cement paste with a different water-nocement ratio mixed with grainy ice was prepared and cured in a sealed state to produce a hardened product (age 28 days).
  • the water-nocement ratio, compressive strength and bending The relationship with strength was determined, and the results are shown in the graph of Fig. 2.
  • Blend ice is usually mixed with Portland cement and mixed with water / cement.
  • the cement pastes with a ratio of 20% and 30% are prepared and cured to form a hardened material.
  • the relationship between the material age and the compressive strength and bending strength is determined. Shown in the figure. Type III is possible with rapid development of strength and short-term curing.
  • Mortar was prepared by mixing granular ice with cement and sand, and the relationship between the water / cement ratio and compressive strength and bending strength was determined.
  • a cured product having an extremely small shrinkage strain can be produced by using a low water / nocement ratio according to this blending method.
  • Example 6 Room temperature 15. In c, sand (Toyoura standard sand absolutely dry) cement (weight ratio 2: 1) was mixed and stirred in a mortar mixer for 3 minutes, and then ground granulated ice (water / cement ratio 20%). And mortar was prepared by mixing and stirring. This mortar is homogeneous, and the cured product obtained after sealing and curing for 28 days is Compressive strength 470 kg Zdi
  • the flexural strength was 59 kg / oi.
  • the flexural strength was 39 kgZdi.
  • the mortar according to this blending method was molded under pressure under the following conditions in a mold that can be pressurized and drained.
  • Mortar Grained ice Cement river sand (absolutely dry 2.5 m or less) • Weight ratio, 0.25 to 1.0 2.0 'Pressing: 100 kg kg ⁇ , a small amount of water Squeezed out.
  • the 7-day strength of the obtained cured product is
  • the compressive strength was 730 kg.
  • the 28-day strength of the obtained cured product is
  • the compressive strength was 144 4 kgZoi.
  • Pressure molding 100 kg / cni, a small amount of water was squeezed out.
  • the 28-day strength of the obtained cured product is
  • the compressive strength was 1190 kg / cri.
  • Weight ratios 0.2 1.0 and 1.0.
  • Pressure molding 100 kg / oi, squeeze a small amount of water.
  • the 28-day strengths of the two cured products obtained are as follows:
  • the compressive strength was 784 ( ⁇ , 1089 / ⁇ ) (Example 9)
  • a cured product was formed in a pressurized, undrained mold using a cement paste having a very low water / nocement ratio under the following conditions.
  • the compressive strength was 567 kgZcrf and 1005 kZoi.
  • the concrete used in this compounding method was cast into a mold using a knives to form a cured product.
  • Formwork A cylindrical formwork with a diameter of 10 cm and a height of 20 cm.
  • the 28'H strength of the obtained cured product was a compressive strength of 550.
  • the method of preparing and shaping the mortar of Kishiaki is not limited to concrete work and mortar work that have been mainly performed in the civil engineering and construction fields, as well as various concrete products or hydraulic properties. It can be widely used for products made of cement composition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

明 糊 モルタル類の調合方法および成形方法
技 術 分 野
この発明は水和反応に要する水を粒伏氷からう るセメ ン トぺ 一ス ト、 モルタル、 コ ンク リ ー ト等の水硬性セメ ン ト質組成物 (モルタル類という) の調合方法および成形方法に関するもの である。
背 景 技 術
水硬性セメ ン ト質組成物の調合に際してはセメ ン 卜 と水およ び必要に応じ砂、 砂利等の骨材を混合攪拌する。 そして水セメ ン ト比説によれば、 水硬性セメ ン ト質組成物の硬化後の強度は セメ ン トに対する水の量が少ない.ほど強度が大.となる。 そして 最近の説によればセメ ン トの水和作用に必要な最低水量近傍で 凝結硬化させることにより、 きわめて強度が大き く なり、 圧縮 強度のみならず、 引張強度、 曲げ強度、 剪断強度も確保される といわれている。
一方、 モルタル類の調合に際してはヮ一力ピリ ティが必要で ある。 すなわち、 調合、 打込み、 成形等硬化以前での作業難易 に関連する钦かさ、 流動性、 粘性、 可塑性が適当であるこ とが 必要である。 このヮ一力ピリ ティ確保のためセメ ン トの水和作 用に必要な水量よりかなり大量な水を混入するのが通例であり また水量を減らすため各種の混和剤を配合している。 しかし水 和作用に必要な最低水量となると水量が極端に少な く なるため ヮ一力ピリ ティ の確保が困難となる。 この場合硬化後の強度が 水セメ ン ト比だけでな く 、 セメ ン 卜 と骨材等の混合均質性、 水 和反応中の攪拌、 混合が重要であるがこれも実施が困難である またモルタル類は水を加えて攪拌、 混合すると水和反応が進 行するため生モルタル類の輪送には時間的な制約があり、 リ タ 一ダーを使用する例もあるが一般に水和反応時間の調節が困難 である。
その他モルタル類の調合に際しては早期脱型すなわち早強化 の問題、 加圧成形の容易化、 無収縮性の問題等があり従来は各 種混和剤の使用によって問題点を解消すベく種々の発明がなさ れているが経済的に、 あるいは县所とともに短所をもたらす等 の問題がある。
この発明は前記従来の問題点を解消するため水を粒伏氷の状 態で配合すべく したものである。
発 明 の 開 示
この発明の要旨とする構成はセメ ン ト (各種混和材を混入し たものを含む) の水和反応に必要とする水を粒伏氷となし攪拌 混合してモルタル類を調合し、 次いで前記粒伏氷を融解させ、 それによつて得られた水をセメ ン 卜と水和反応させるモルタル 類の調合方法である。 また、 この発明によれば、 水を粒伏氷と なし混合攪拌してモルタル類を調合し、 これを加圧し密実の伏 態において、 前記粒伏氷の融解によって生じる水とセメ ン トと を水和反応させて高強度のモルタル類を成形することもできる, この調合方法では水を粒伏氷として攪拌混合することにより 均質性を保持し、 各混合材料を低 とすることにより水和作用 を遅延させ、 少量の水をセメ ン ト全体に均等に分散させ、 かつ 混合攪拌の作業性を向上させたものである。 なお粒伏氷の融解 は自然、 加熱、 加圧等の手段が採用できる。
また、 この成形方法は、 水を粒状氷として用いた低い水 Zセ メ ン ト比のモルタルから、 均質で欠陥がない密実な成形体とな し、 低い水 セメ ン ト比による高強度を成形体において発現せ しめるものである。
氷の融解時間は粒伏氷の温度および氷径に大き く依存する。 このため、 温度および氷径を適宜選定して生モルタル類の水和 反応までの時間を制御できる。 氷径を所定の値にするため必要 に応じて粒伏氷をふるい分けして用いるこ ともできる。
この調合方法では生モルタル類の混練条件、 成形時の圧縮あ るいは締固め等の条件に応じ、 均質な混練が可能で、 欠陥がな く密実な硬化物が得られる範囲で粒状氷の添加量を減じ水ノセ メ ン ト比を低く 設定する。 .粒状氷は所定温度の氷塊を粉砕して 用いてもよいし、 粒状となした氷を所定の温度に深冷して用い てもよい。
モルタル類を混練する混練槽あるいは混合攪拌する ミ キサー 車あるいは貯蔵槽は冷却装置を取付けたり、 断熱材で断熱して 粒伏氷の融解速度を制御することもできる。
セメ ン ト と骨材および粒状氷を混合攪拌してモルタル類を調 合するには、 セメ ン ト、 骨材および粒伏氷を同時に混合して均 質に混合することができる。 また、 先ずセメ ン ト と細骨材を混 合攪拌し、 その後に粒状氷を入れて混合攪拌し、 必要に応じて さ らに粗骨材を混合攪拌し、 モルタル類をつく ってもよい。 また、 このモルタル類の調合方法では、 ゴムラテッ クス等の 重合体を混合したり、 あるいは単量体を混合しこれをモルタル 類の内部で重合せしめてボリ マ一モルタル類をつく るこ ともで きる。 例えば、 メ タアク リ ル酸、 アク リ ロニ ト リ ル等の水に溶 解する単量体およびレ ド ッ ク ス重合開始剤を溶解した水を氷結 して粒伏氷をなし、 これを混合攪拌してモルタル類を調合し、 モルタル内で単量体を重合せしめてポ リ マーモルタルをつ く る こ とができる。 また、 石綿, 炭素繊維, 金属繊維等を混入して 繊維補強モルタル類と したり、 骨材として鉄粉等の金属粉を用 いる こ と もでき る。
この発明は以上の構成からなり、 セメ ン ト、 骨材および粒状 氷を攪拌混合するので、 それらを均質に混合攪拌するこ とがで きる。 水和反応させる水は粒状氷を融解させたものであるが、 均質に混合攪拌されているのできわめて少量のものでよい。
そして後述する実験結果に示されるように圧縮強度、 および 曲げ強度が著しく 向上する。 さらに、 この成形方法によりモル タルを調合し、 圧縮成形するならば、 特に高い強度を発現する ことができる。 '
またこの調合方法によると早期強度、 亀裂防止効果の向上も 著しく早期脫型が可能となる。 粒伏氷の存在によつてモルタル 類が低温に維持されるので、 水和反応を遅延せしめ、 打設まで の時間を县く できる。 しかも、 各混合物の温度を調整すること により、 水和反応の遅延時間を適宜に設定することができる。 従って、 例えばコ ンク リ ー ト ミ キサープラン トでつく ったモル タル類の時間の制限を緩和し広範な地域への供給を可能にする, 特にこの発明ではいかなる水量に対してもヮ一力ピリティを 確保でき、 したがってきわめて低い水セメ ン ト比のモルタル類 の調合ができ、 延いては水の排出がないので加圧成形が容易と なり、 密実、 高強度の製品の製造が可能となる。 その他外気温 の状況に応じて混合順序を選択して水和反応を調製するこ とが できる。
また高分子材料とその硬化材料の水溶液を氷結させておく こ とにより調合を容易とする。
その他各種繊維、 金属粉の混入もヮ一力ピリ ティの確保、 粒 伏氷の混合時の低抵抗によりきわめて容易かつ均質化できる。
図面の簡単な説明
第 1図は実施例 1 のセメ ン トペース ト の経過時間と温度との 相関グラフ、 第 2図ば実施例 2の水 セメ ン ト比と圧縮強度と の相関グラフ、 第 3図は実施例 3の材令と圧縮強度との相関グ ラ フ、 第 4図は実施例 4の水/セメ ン ト比と圧縮強度との相関 グラフ、 第 5図は実施例 5 のセメ ン トペース トの材令と乾燥収 縮歪との相関ダラフである。
実施例の説明
以下、 実施例を挙げ、 より具体的にこの発明を説明する。 (実施例 1 )
温度が - 2 。c , — 2 6 。cの 2種の粒伏氷を、 普通ポル ト ラ ン ドセメ ン トに混合してなったセメ ン トペース 卜の経過時間と温 度変化の関係を求めた。
水/セメ ン ト比 3 0 %
混合攪拌時間 3分
得られたセメ ン トペース トを底面が 7 cm X 7 cmの正方形の合 板 (厚さ 9 « ) の筒体内に高さ 1 2 cm ( H ) 充瀵し、 高さ 5 cm ( ) の中央部分位置を温度測定点となした。
- 2 V , 一 2 6 での 2種の温度の粒伏氷と同時に比較例とし て室温の水を用いてセメ ン トペース トを調整し、 経過時間とそ の温度変化を求めその結果を第 1 図に示した。
粒伏氷の温度により、 セメ ン トペース トの水和反応に伴う温 度ピークまでの経過時間が異なり、 一 2 6 での氷を用いると 一 2 。cの場合に比べ硬時時間を大巾に遅延せしめることができる, (実施例 2 )
粒伏氷を混合した水ノセメ ン ト比が異なるセメ ン トペース ト を調製し、 密封養生して硬化物 (材令 2 8 日) をつく り、.その 水ノセメ ン ト比と圧縮強度および曲げ強度との関係を求め、 そ の結果を第 2図のグラ フに示した。
水/セメ ン ト比が 2 5 %以下のものは極めて高い圧縮強度お よび曲げ強度を発現する。 同時に水 セメ ン ト比が 2 5 %以下 であっても、 この方法によると緻密な硬化物を形成できるこ と が明かになつた。
(実施例 3 )
粒伏氷を普通ポル ト ラ ン ドセメ ン ト に混合して、 水/セメ ン ト比 2 0 %および 3 0 %のセメ ン ト ペース トを調製し、 密封養 生して硬化物をつく り、 その材令と圧縮強度および曲げ強度と の関係を求め、 その結果を第 3図に示した。 強度の発現が早く 短期間の養生で脫型が可能である。
(実施例 4 )
セメ ン ト、 砂に粒状氷を混合しモルタルを調製し、 その水/ セメ ン ト比と圧縮強度および曲げ強度の関係を求めた。
材料 セメ ン ト : 普通ポル ト ラ ン ドセメ ン ト
砂 : 富士川産砂 (粒径 2. 5 ™以下、 表乾)
粒伏氷 : アイ ススライサ一で破砕したもの
材令 2 8 日の水 Zセメ ン ト比と圧縮強度および曲げ強度の関 係は第 4図のグラフの通りであった。
このグラフによると、 水ノセメ ン ト比 2 5 %〜 3 0 %におい て緻密で、 高強度の硬化物を形成できることが明らかとなった, (実施例 5 )
この混合方法により、 水/セメ ン ト比 2 0 3 0 % , 4 0 % , 6 0 %のセメ ン トペース トをつく り、 その硬化物の材令と 収縮歪との関係を求めた。 その結果は第 5図のグラ フの通りで あった。 なお、 硬化物は直径 5 cm、 高さ 1 0 cmの シ リ ンダーで 室温 1 5 で、 相対湿度 6 0 %の条件下で収縮歪を測定した。
このグラ フで明らかなように、 この調合方法によ 低い水ノ セメ ン ト比とすることにより極めて小さな収縮歪の硬化物をつ く ることができる。
(実施例 6 ) . 室温 1 5 。c において、 砂 (豊浦標準砂絶乾) セメ ン ト (重 量比 2 : 1 ) をモルタルミ キサー中で 3分間混合攪拌し、 次い で粒伏氷 (水/セメ ン ト比 2 0 % ) を添加し、 混合攪拌してモ ルタルを調合した。 このモルタルは均質であり、 2 8 日密封養 生して得られた硬化物は 圧縮強度 4 7 0 kgZdi
曲げ強度 5 9 kg/oi であった。
これに対し、 上記と同一の条件下で、 先ずセメ ン ト と粒伏氷 をミ キサー中で 3分間混合攪拌し、 次いで砂を入れて混合攪拌 した場合は、 セメ ン ト ペース ト のみのかたまりが部分的に発生 し均質なモルタルは得られなかった。 このモルタルの 2 8 日密 封養生して得られた硬化物は
圧縮強度 2 5 0 kg/cni
曲げ強度 3 9 kgZdi であった。
(実施例 7 )
加圧して排水可能な型枠内で、 下記条件でこの調合方法によ るモルタルを加圧成形した。
モルタル : 粒伏氷 セメ ン ト 川砂 (絶乾 2. 5 m以下) • 重量比, 0. 2 5ノ 1. 0 2. 0 ' 加圧成形 : 1 0 0 0 kg Ζαί, .少量の水を絞り出した。
得られた硬化物の 7 日強度は
曲げ引張強度 1 1 6 kgZoi
圧縮強度 7 3 0 kgノ αί であった。
また、 同じ排水可能な型枠内で下記条件でこの調合方法にな るセメ ン ト ペース トを加圧成形した。
セメ ン トペース ト : 粒伏氷ノセメ ン ト
重量比, 0. 2 0 / 1. 0
加圧成形 : 8 4 0 kg/ d, 少量の水を絞り出した。
得られた硬化物の 2 8 日強度は
曲げ引張強度 2 5 4 kg/crf
圧縮強度 1 4 4 6 kgZoi であった。
(実施例 8 )
実施例 6 と同様の加圧、 排水可能な型枠内で下記条件で、 こ の調合方法になるモルタルを加圧成形した。 モルタル : 粒状氷ノセメ ン トノ鉄粉 * 1 /鉄粉 * 2
重量比, 0. 2 5 / 1. 0 / 1. 0 / 1. 0
* 1 ·.· 鐯物のバリからとった鉄粉であり、 1 2 «のふる いを通り、 0. 6 mのふるいで残ったもの。
* 2 ··· 铸物のバリからとった鉄粉であり、 0. 6 ι«のふる いを通り、 0. 2 3 amのふるいで残ったもの。
加圧成形 : 1 0 0 0 kg/ cni, 少量の水を絞り出した。
得られた硬化物の 2 8 日強度は
曲げ引張強度 2 8 3 kg /erf
圧縮強度 1 1 9 0 kg/cri であった。
また、 同様の型枠内で下記条件で の調合方法になるモルタ ルを加圧成形した。
モルタル : 粒状氷ノセメ ン トノ石綿
重量比, 0. 2 1. 0ノ 1. 0および .
0. 2 / 1. 0 / 0. 2 5
加圧成形 : 1 0 0 0 kg / oi, 少量の水を絞り出す。
得られた 2種の硬化物の 2 8 日強度はそれぞれ、
曲げ引張強度 1 5 6 kgZoi、 1 1 Q g/d
圧縮強度 7 8 4 (^、 1 0 8 9 / αήであった。 (実施例 9 )
加圧、 非排水型枠内で下記条件で非常に低い水ノセメ ン ト比 のセメ ン トペース トを用いて硬化物を形成した。
セメ ン ト ペース ト : 粒伏氷 * 1 ノセメ ン ト * 2
重量比, 0. 0 4 1. 0および
0. 0 7 5 / 1. 0
* 1 … 一 2 0 での氷をふるいにかけ、 0. 6 ™のふるいを 通った粒伏氷である。 この粒状氷は、 アイ ススライ サ一で破砕した氷を冷凍室で一 2 0 。c程度に深冷し 再度破砕してふるい分けしたものである。 * 2 … — 2 0 'c程度に深冷したセメ ン ト。
加圧成形 : 1 0 0 O kgZcrfで排水するこ とな く成形する。 得られた硬化物の 2 8 日強度はそれぞれ、
曲げ引張強度 1 3 9 kg/oi、 2 2 5 kg/αί
圧縮強度 5 6 7 kgZcrf、 1 0 0 5 k Zoiであった。
(実施例 1 0 )
この調合方法になるコ ンク リ 一 トを、 ノ ィ ブレーターを用い 'て型枠内に打設して硬化物を形成した。
コ ンク リ ー ト : 粒状氷ノセメ ン トノ砂 * 1 ノ砂利 * 2
重量比, 0. 3ノ 1. 0ノ 2. 0ノ 2. 0 混練方法… セメ ン トと砂をモルタルミ キサーで 1分間混 練した後に、 粒伏氷'を加えてモルタルミ キサー で約 3分間混練し、 砂利を加えて手練り した。 * 1 … 2. 5 '™以下表乾の砂。
* 2 … 1 0 ™以下表乾の砂利。
打設方法 :
型枠…直径 1 0 cm. 高さ 2 0 cmの円筒形型枠。
ノ ィ ブ レータ 棒柽 2 7 miの棒状バイ ブ レータ ー。 養生…密封養生。
得られた硬化物の 2 8' H強度は、 圧縮強度 5 5 0 であ つた。
産業上の利用可能性
この癸明のモルタル類の調合方法および成形方法は、 従来主 として土木、 建築分野で行われているコ ンク リ ー 卜工事、 モル タル工事は勿論、 種々のコ ンク リ ー ト製品あるいは水硬性セメ ン ト質組成物からなる製品に広く利用できる。

Claims

特許請求の範囲
(1) 水和反応に必要とする水を粒伏氷となし混合攪拌してモル タル類を調合し、 粒状氷の融解によって生ずる水とセメ ン トと を水和反応させることを特徴とするモルタル類の調合方法。
(2) セメ ン トと骨材および粒状氷を混合攪拌することを特徴と する特許請求の範囲第 1項のモルタル類の調合方法。
(3) 先ずセメ ン トと細骨材とを混合攪拌し、 次に粒状氷を入れ て混合攪拌し、 必要により さらに粗骨材を混合攪拌することを 特徴とする特許請求の範囲第 1項のモルタル類の調合方法。
(4) セメ ン トと骨材および粒伏氷を同時に混合攪拌することを 特徴とする特許請求の範囲第 1項のモルタル類の調合方法。
(5) 粒伏氷が単量体あるいは重合体を舍有する水を氷結させた ものからなることを特徴とする特許請求の範囲第 1項のモルタ ル類の調合方法。
(6) 骨材が繊維類または金属粉の一種類以上を舍む特許請求の 範囲第 1項のモルタル類の調合方法。
(7) 水和反応に必要とする水を粒伏氷となし混合攪拌してモル タル類を調合し、 これを加圧し密実の状態において前記粒状氷 の融解によって生じる水とセメ ン ト とを水和反応させて成形す ることを特徵とするモルタル類の成形方法。
PCT/JP1985/000423 1984-07-31 1985-07-26 Method of blending and molding mortars WO1986000884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019860700165A KR870700224A (ko) 1984-07-31 1985-07-26 몰탈류의 조합방법 및 성형방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP59160677A JPS6149806A (ja) 1984-07-31 1984-07-31 モルタル類の調合方法
JP59/160677 1984-07-31
JP60/146273 1985-07-03
JP60146273A JPS627682A (ja) 1985-07-03 1985-07-03 モルタル類の調合方法および成形方法

Publications (1)

Publication Number Publication Date
WO1986000884A1 true WO1986000884A1 (en) 1986-02-13

Family

ID=26477153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000423 WO1986000884A1 (en) 1984-07-31 1985-07-26 Method of blending and molding mortars

Country Status (6)

Country Link
US (1) US4762562A (ja)
EP (1) EP0191864A4 (ja)
AU (1) AU4672985A (ja)
CA (1) CA1241028A (ja)
NZ (1) NZ212912A (ja)
WO (1) WO1986000884A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422219A1 (en) * 1989-03-02 1991-04-17 YOKOYAMA, Ryosuke Method and apparatus for kneading flour
US5358676A (en) * 1990-05-18 1994-10-25 E. Khashoggi Industries Methods of manufacture and use for hydraulically bonded cement
US5637412A (en) * 1990-05-18 1997-06-10 E. Khashoggi Industries Compressed hydraulically bonded composite articles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164428A (en) * 1988-04-16 1992-11-17 Mitsui Kensetsu Kabushiki Kaisha Method for the production of fine grain ice and dry clathrate water for manufacturing of concrete/mortar, a method for the production of concrete/mortar by using fine grain ice or dry clathrate water and concrete/mortar products manufactured thereby
JPH01264803A (ja) * 1988-04-16 1989-10-23 Mitsui Constr Co Ltd コンクリート・モルタル製造用微粒状氷及びドライ状包接水の製造方法及び、それ等微粒状氷又はドライ状包接水を用いたコンクリート・モルタルの製造方法
GB9509424D0 (en) * 1995-05-10 1995-07-05 Beaumont David M "An improved product"

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535694B2 (ja) * 1972-11-07 1978-03-01

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB238615A (en) * 1924-05-21 1925-08-21 Arthur Mechelen Rogers A method of manufacturing cellular blocks or material for building and other purposes
DE2203618A1 (de) * 1971-02-15 1972-08-17 Tardieu, Andre, La Couronne (Frankreich) Verfahren zum Konditionieren von Beton und Mörtel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535694B2 (ja) * 1972-11-07 1978-03-01

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0191864A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422219A1 (en) * 1989-03-02 1991-04-17 YOKOYAMA, Ryosuke Method and apparatus for kneading flour
EP0422219A4 (en) * 1989-03-02 1991-08-28 Ryosuke Yokoyama Method and apparatus for kneading powder and kneading material
US5358676A (en) * 1990-05-18 1994-10-25 E. Khashoggi Industries Methods of manufacture and use for hydraulically bonded cement
US5637412A (en) * 1990-05-18 1997-06-10 E. Khashoggi Industries Compressed hydraulically bonded composite articles

Also Published As

Publication number Publication date
AU4672985A (en) 1986-02-25
NZ212912A (en) 1988-10-28
EP0191864A4 (en) 1987-01-10
CA1241028A (en) 1988-08-23
US4762562A (en) 1988-08-09
EP0191864A1 (en) 1986-08-27

Similar Documents

Publication Publication Date Title
CN101913840A (zh) 一种快硬高强灌浆料
WO1987000163A1 (en) Process for producing mortar and method for applying the same
US4088504A (en) Method of producing high strength cement conglomerates
WO1986000884A1 (en) Method of blending and molding mortars
JPH04507393A (ja) セメントの特質を持つ製品
JP4181224B2 (ja) セメント組成物並びにこれを用いたコンクリート及びコンクリート製品の製造方法
JP3550341B2 (ja) 可塑性注入材
CN115925305A (zh) 一种适用于再生混凝土的增强材料及其应用方法
JPS627682A (ja) モルタル類の調合方法および成形方法
JP3760630B2 (ja) 軽量コンクリート組成物及びその製造方法
JPS63272508A (ja) モルタル類の成形方法
JP3290171B2 (ja) ポーラスコンクリートの製造方法
JPH05116996A (ja) セメント混和材及びセメント硬化体の製造方法
JPS6358775B2 (ja)
JP3378965B2 (ja) セメント類硬化体の強度向上方法
JP2889096B2 (ja) 地下連続壁コンクリートの製法
JPH0549620B2 (ja)
JP4220781B2 (ja) セメント質の製造物のための低密度ケイ酸カルシウム水和物強度加速剤添加物
JP4220781B6 (ja) セメント質の製造物のための低密度ケイ酸カルシウム水和物強度加速剤添加物
JPS6270277A (ja) モルタル類の調合方法
JP3103195B2 (ja) コンクリート組成物
JPS6149806A (ja) モルタル類の調合方法
JPH01186306A (ja) 高強度セメントモルタル製品の製造方法
JPH0517195A (ja) スラツジ発生の少ない高強度混和材およびコンクリート遠心成型体の製造方法
JP2006168997A (ja) 高強度コンクリート成形体及び型枠投入物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR DK KR NO SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1985903710

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1985903710

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1985903710

Country of ref document: EP