WO1983000881A1 - Method of cooling metallic strip - Google Patents
Method of cooling metallic strip Download PDFInfo
- Publication number
- WO1983000881A1 WO1983000881A1 PCT/JP1981/000201 JP8100201W WO8300881A1 WO 1983000881 A1 WO1983000881 A1 WO 1983000881A1 JP 8100201 W JP8100201 W JP 8100201W WO 8300881 A1 WO8300881 A1 WO 8300881A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- strip
- temperature
- water
- jet
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/573—Continuous furnaces for strip or wire with cooling
Definitions
- the present invention relates to a method for cooling a metal plate subjected to discontinuous heat treatment, and particularly to a metal plate having a temperature of before and after moving vertically in a continuous furnace (hereinafter, referred to as a strip). In particular, it relates to a method of cooling a steel sheet.
- the annealed strip be cooled while maintaining its brilliancy and without causing undesired shape deformation.
- various cooling methods have conventionally been used. I came.
- OMPI An indirect cooling system that indirectly cools the strip, and the protective atmosphere gas is from a fin-bubble gas classifier.] 9 A cooled low-temperature atmosphere gas is converted to a high-temperature strip. Jet cooling system for forcibly cooling heated protective atmosphere gas
- Each of these methods is an excellent method that keeps the strip's light dazzling property and cools without undesired shape deformation during cooling. Therefore, it was not possible to increase the ripening rate of the cooling medium, so that the length of the cooling core for performing a predetermined temperature reduction in the strip was extremely long.
- the temperature of the heat transfer surface gradually decreases, and the collapse of the vapor film begins locally.??????????????Then, the temperature of the heat transfer surface decreases slightly earlier. Yes. That is, a transition boiling state is obtained.
- the collapsing vapor film spreads over the entire heat transfer surface.
- many bubbles are generated on the heat transfer surface, and the entire surface becomes a vigorous nucleate boiling state. This has the effect of disturbing the cooling water, so the temperature of the heat transfer surface drops rapidly.
- the heat transfer coefficient of the cooling water is the maximum in this temperature range. As the temperature of the heat transfer surface approaches the point at which the cooling effect saturates, the rise will gradually weaken and the temperature will drop below the saturation temperature.
- An object of the present invention is to provide a novel cooling method in which a strip is cooled without undesirable shape deformation as described above in water cooling of a vertically moving strip. With the goal .
- the present invention is particularly suitable for cooling a strip having a temperature of about 500 and before and after, and the shape after cooling needs to be subjected to shape adjustment later, and can be improved now.
- the gist of the present invention is to provide a method for rapidly cooling a continuously heat-treated metal strip (1) by liquid cooling under the following conditions:
- Coolant temperature is extremely important from the viewpoint of both strip shape and glitter. In other words, if the temperature is lower than the temperature of the cooling liquid by 60], the stripping is oxidized by the increase of the dissolved oxygen in the cooling liquid, and the glitter is impaired. After cooling, strips need to be pickled. On the other hand, when the coolant temperature is 90 ° or higher with respect to the boiling temperature, a stable vapor film cannot be formed because the temperature of the coolant is close to the boiling state, and especially in the transverse direction of the strip. The difficulty in uniform cooling causes undesirable deformation of the strip shape during cooling, resulting in poor transverse shape. Also, the cooling effect is insufficient.
- the liquid temperature of the cooling liquid used is limited to the boiling temperature of 60 to 9 hours.
- C As described above, when water cooling is used, 4 It is divided into two heat transfer areas. In this high temperature region, a film rising state in which a stable vapor film is formed is obtained, and f OMPI Next, as the temperature drops, the generation and collapse of the vapor film are repeated.
- a strip having a thickness of about 0.5 m is uniformly cooled in the transverse direction in a film boiling state where the temperature of the strip is about 500 to 40, The vapor film under this film boiling condition is stable.], It is very difficult to completely remove this by a submerged jet, and it is not effectively removed by a permanent jet.3 The fact that the shape becomes worse due to the uneven cooling of the strip, rather than the strip shape, the above-mentioned The membrane is actively held just before the start of the next stage.
- the transition boiling state described above shows the formation of a vapor film and its collapse repeatedly, with the lowest cooling uniformity in the four heat transfer regions. Therefore, in the present invention, in order to effectively avoid non-uniform cooling in this region, the jet water is jetted at high speed to the strip surface at the end of the membrane state immediately before the transition boiling state occurs, and the transition boiling is performed. Strip cooling in the state is eliminated as much as possible.
- the operating conditions may be changed.
- the temperature of the strip immersed in the coolant or the rubbing speed of the strip changes, and the film ends.
- the position and the start position of the transition vary in the longitudinal direction of the strip.
- jet nozzles that can be independently adjusted and turned on and off are provided in multiple stages on both sides of the strip, and the nozzle to be used is selected and used. It employs a method in which jet water is sprayed on the strip surface just before transition boiling.
- FIG. 1 is an explanatory view showing an example of an apparatus for performing the liquid cooling method of the present invention.
- FIG. 2 is a sectional view of an essential part of an embodiment of the apparatus for liquid cooling according to the present invention.
- FIG. 3 is a sectional view taken along the line AA of FIG.
- FIG. 4 shows the relationship between the immersion depth and the temperature of the cooling slab.
- the numbers in the figure indicate the line speed (mZ).
- FIG. 5 is a diagram illustrating the liquid cooling method of the present invention. In other words, this figure shows the relationship between the velocity of the jet impinging on the steel sheet, the temperature of the steel sheet at the jet impingement point, and the shape of the steel sheet. In the figure, black circles indicate poor shape, and white circles indicate good shape.
- Fig. 1 is an illustration of the whole heat treatment equipment including the heat treatment process.
- 2 indicates a heated zone
- 3 indicates a jet cooling zone
- 4 indicates a rear chamber.
- the strip 1 to be blunted is led into the furnace and heated to a predetermined temperature in the heated soak zone 2. Heated and soaked at that temperature. After heating and soaking, the strip is led to a jet-type cooling zone 3, where it is cooled by a low-temperature atmosphere gas]), and then enters the rear chamber 4.
- the strip 1 is led to the cooling water tank 11 in the turndown roll 5.
- FIG. 2 is a sectional view of an essential part of an embodiment of the apparatus for liquid cooling according to the present invention
- FIG. 3 is a sectional view taken along line AA.
- the cooling water tank 11 has a water level control to keep the cooling water (water temperature 6 to 90 ⁇ ) for cooling the strip 1 at a certain level. .
- the temperature of the cooling water is detected by the temperature detector 21 so that the water temperature becomes a constant temperature, and the flow control valve 13 of the replenishment water 12 and the steam are detected via the temperature controller 20. Water temperature control is being performed by operating the flow control valve 15 of 14.
- the circulating cooling water is taken out from the bottom of the water tank 11 and pressurized by the pump 16 to prevent foreign matter from entering during cooling water circulation and to prevent nozzle clogging.
- the water is passed through the front of the nozzle head and the front flow control valve 19 of each nozzle.
- the nozzle 9 has a plate-like flow with a uniform thickness in the transverse direction of the strip in order to uniformly remove the vapor film generated on both sides of the strip by liquid cooling. ⁇ Replace the uniform slit extending in the transverse direction with a slit. The diameter of the header tube is larger than that of the slit.
- the nozzles 9 are arranged at symmetric positions with respect to the immersion strip, and are provided in a plurality of stages in the vertical direction of the immersion.
- the jets ejected from nozzle 9 toward strip 1 are based on the relationship between the jet velocity in water and the internal pressure of the nozzle header. While adjusting the pressure gauge 18, operate the regulating valve 19 to determine the jet velocity.
- Fig. 4 shows the calculated values of the relationship between the temperature at various water levels and depths when the cooling tank was used at a water temperature of 80 and the temperature and speed of the strip were varied.
- Fig. 5 shows the relationship between the temperature of the strip at the point where the jet impinges from the nozzle and the strip impact velocity at the point where the jet impinges from the nozzle. It is about gender.
- the water depth at which the jet water with a water temperature of 80-C is jetted onto the strip with the temperature dropped to about 400 TC is about 200 fibres.]
- the strip impingement velocity of the jet was about 6.0 from Fig. 5. The above is necessary. Generally, straight line 30 in Fig. 5]) A high-speed jet (va) is required.
- the strip is cooled in the strip moving vertically from the turn-down roll. Start immersion in the liquid, cool the strip gently when running, and use the underwater nozzle just before the steam is generated on the strip surface.] 3 Strip traversal If the strip is cooled so as to form a uniform vapor film excision part in the direction, the shape defect does not occur at the immersion start strip temperature of about 500 ° C.
- the same effect can be obtained with an aqueous solution obtained by adding an additive to water or another liquid.
- the jet is further jetted into the strip in one or more stages after the removal by the jet. A good metal strip can be obtained.
- the processing conditions of the cooling device were set as shown in Table 1, and the cooling results were compared with the strip shapes after cooling and the surface oxidation judgment of the strips in both Comparative Examples 1 and 2. .
- the present invention can be used for an intermittent annealing line of a strip of a cold rolled thin plate, a blank plate, a stainless steel plate stainless steel plate, a magnetic plate, etc. .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Abstract
A cooling technique for a strip (1) such as a stainless steel plate or the like after continuous heat treatment. In recent years it has been considered to convert from gas jet cooling to water cooling, but water cooling causes a loss of gloss on the strip and distortion in the lateral direction. In the method of this invention a vapor layer on the surface of the high temperature strip is stably maintained during cooling by a violent boiling stage, and before this violent boiling stage is complete the vapor layer is removed by a water jet stream from nozzles. This method can be mainly used by the iron and steel industry in a continuous annealing line, and makes the later pickling unnecessary.
Description
明 細 書 Specification
発明の名称 Title of invention
金属ス ト リ ッ プの冷却方法 How to cool metal strips
技術分野 Technical field
本発明は違続熱処理された金属板の冷却方法に関 し、 特に 続炉内を垂直方向に移動する 5 0 0 X: 前 後の温度の金属板 ( 以下ス ト リ ッ プ と総称する ) 、 特に鋼板の冷却方法に関する も のであ る。 The present invention relates to a method for cooling a metal plate subjected to discontinuous heat treatment, and particularly to a metal plate having a temperature of before and after moving vertically in a continuous furnace (hereinafter, referred to as a strip). In particular, it relates to a method of cooling a steel sheet.
冃 冃
—殺に冷延薄板、 ブ リ キ原板、 亜鉛メ ツ キ原板、 ス テ ン レ ス鋼板、 電磁鐧板等はその製造プ ロ セ ス の 一部に於いて連続焼鈍される こ と は周知の逼 !) であ る —It is well known that cold rolled sheets, blank sheets of zinc, zinc plated sheets, stainless steel sheets, electromagnetic steel sheets, etc. are continuously annealed as part of the manufacturing process. Tight! )
この場合焼鈍された ス ト リ ッ プがその光輝性を保 持したま ま 、 かつ不所望の形状変形を伴わずに冷却 される こ とが重要で、 そのため従来か ら種々 冷却 方法が用い られて き た。 In this case, it is important that the annealed strip be cooled while maintaining its brilliancy and without causing undesired shape deformation.Therefore, various cooling methods have conventionally been used. I came.
その例を示せば、 For example,
2 重檮造にな っ た冷却装置の外部を水冷却 し、 内 部に保護雰囲気ガ スを逼入 し、 こ の保護雰囲気中を ス ト リ ッ プを通過せ しめる ウ ォ ータ ー ジャ ケ ッ ト方 式、 2 Water cooler that cools the outside of the cooling device which has become double-built, closes the protective atmosphere gas inside, and allows the strip to pass through this protective atmosphere. Ket method,
ス ト リ ッ プの上下又は両伺に冷却ハ。ィ プを接近配 置 しておき、 その中を空気又は水を流すこ と に よ ]? Cooling on top and bottom of the strip or on both sides. Keep the chips close together and let the air or water flow through them.]?
OMPI ヽ
ス ト リ ッ プを間接的に冷却する間接冷却方式、 保護雰囲気ガス を フ ィ ンチ ュー ブ式ガ スク ー ラ一 に よ ] 9 冷却された低温の雰囲気ガ スを、 高温ス ト リ ッ プに吹付けて冷却する加熱された保護雰囲気ガス を強制冷却する ジ エ ツ ト ク一 リ ン グ方式、 OMPI ヽ An indirect cooling system that indirectly cools the strip, and the protective atmosphere gas is from a fin-bubble gas classifier.] 9 A cooled low-temperature atmosphere gas is converted to a high-temperature strip. Jet cooling system for forcibly cooling heated protective atmosphere gas
等がある 。 Etc.
これらの方式はいすれ も ス ト リ ッ プ の光鐸性を保 つたま ま、 かつ冷却中に不所望の形状変形を伴なわ ず冷却する優れた方式であるが、 ス ト リ ッ プ冷却の ための冷媒の熟伝達率を大き く と る こ とができず、 そのためス ト リ ッ プに所定の降温を行 う 冷却帝の 長さが極めて長く る と う欠点があ った。 Each of these methods is an excellent method that keeps the strip's light dazzling property and cools without undesired shape deformation during cooling. Therefore, it was not possible to increase the ripening rate of the cooling medium, so that the length of the cooling core for performing a predetermined temperature reduction in the strip was extremely long.
例えば水冷却では 1 5 0 0 〜 3 5 0 0 k c aレ Zm 2時 TC の冷却能力を持っ ているが、 ジェ ッ ト 式冷却では 1 0 0 〜 2 0 0 kc a l/m2時:と約 1Z7.5〜: LZ35 の冷却 能力 しか持っていない。 したがつて ジ ヱ ッ ト 式冷却 で水冷と 同一 < .冷却効果を得よ う とすれぱ、 水冷に 比し、 熱処理ラ イ ン の冷却帯長を長 く と る必要があ 、 その上冷却帝の付帯設備と して プ ロ ヮ ー及びガ ス ク ー ラ ーカ '必須と ]?、 これらの ラ ン ニ ン ク、 コ ス ト も大き い。 For example, with water cooling has a cooling capacity of 1 5 0 0 ~ 3 5 0 0 kca Les Z m 2 o'clock TC, but in Jeffrey Tsu preparative cooling 1 0 0 ~ 2 0 0 kc al / m 2 o'clock: and Approximately 1Z7.5 ~: Has only the cooling capacity of LZ35. Therefore, it is necessary to increase the cooling zone length of the heat treatment line in comparison with water cooling in order to obtain the same cooling effect as that of water cooling with jet cooling. As ancillary facilities of the Emperor, the pro and gas crakers are “required”, and their ranks and costs are also large.
高温物侔の急速冷却に水が用い られる こ とは周知 の と お!) であ ]?、 例えば鉄銷業で も 熱延ス ト リ ッ プ 製造工程の冷却に水が用い られている 。
水に よ る冷却に よれぱ容易に 1 5 0 0 〜 3 5 0 0 k c a l/m2時 の高い熱伝導率が得 られ前記各冷却方 式に比較 して冷却帝の長さを著 し く 短 く'する こ とが でき る 。 It is well known that water is used for rapid cooling of high-temperature materials! For example, water is used for cooling in the hot-rolled strip manufacturing process even in the iron sales business. In Repa easily by the by that the cooling water 1 5 0 0 ~ 3 5 0 0 kcal / m high thermal conductivity of 2:00 was obtained the rather to markedly to the length of the cooling Emperor compared to the cooling scheme It can be 'short.'
それ故、 最近ではガスに よ る ジ ヱ ッ ト 式冷却から 水冷却への転換が行われ始めている 。 Therefore, recently, a shift from gas-based jet cooling to water cooling has begun.
水冷却に よ る場合、 高温か ら低温ま で冷却が進む 過程で一殺的に次の 4 つの領域を経る こ とは周知の 事実である 。 It is a well-known fact that in the case of water cooling, the process of cooling from high temperature to low temperature goes through the following four regions in the course of cooling.
す わち、 被冷却物体、 例えば髙温ス ト リ ッ プが 冷却水に浸される と瞬間的に伝熱面全面が安定な蒸 気膜に覆われ、 その後は蒸気膜を介 しての熱伝達が 行われる。 す わち膜漭騰の状態 と る。 In other words, when an object to be cooled, for example, a hot strip, is immersed in cooling water, the entire heat transfer surface is instantaneously covered with a stable vapor film, and thereafter, through a vapor film. Heat transfer takes place. That is, the film is in a state of rising.
伝熱面温度が次第に降下 し、 やがて蒸気膜の崩壊 が局部的に始ま ]? 、 その生成と崩壊を繰返えす不安 定 遷移域と ¾ るえめ、 伝熱面の温度の降下はやや 早 く る る 。 すなわち遷移沸腾の状態 と な る 。 The temperature of the heat transfer surface gradually decreases, and the collapse of the vapor film begins locally.?????????????????Then, the temperature of the heat transfer surface decreases slightly earlier. Yes. That is, a transition boiling state is obtained.
温度が更に下がる と崩繋蒸気膜は伝熱面全域ま で 拡が ]? 同時に多 く の気泡が伝熱面で発生 し、 全面で 激 しい核沸腾状態と な る。 これは冷却水を撩乱する 効杲を もっため、 伝熱面の温度は急激に降下する。 冷却水の熱伝達係数は こ の温度領域に於いて最大と ¾ る 。 伝熱面の ¾度が冷却効果が飽和する 度に近 づ く と ^騰は次第に弱ま 飽和温度以下に る と沸 As the temperature further decreases, the collapsing vapor film spreads over the entire heat transfer surface.] At the same time, many bubbles are generated on the heat transfer surface, and the entire surface becomes a vigorous nucleate boiling state. This has the effect of disturbing the cooling water, so the temperature of the heat transfer surface drops rapidly. The heat transfer coefficient of the cooling water is the maximum in this temperature range. As the temperature of the heat transfer surface approaches the point at which the cooling effect saturates, the rise will gradually weaken and the temperature will drop below the saturation temperature.
¾ ん
縢は 冷却水の 自然対流のみ となる 。 この 温度域では伝熱面の冷却速度は一段と緩慢とな る。 ¾ The daring is only the natural convection of the cooling water. In this temperature range, the cooling rate of the heat transfer surface becomes even slower.
こ の よ う に沸縢伝熱に於いては気泡や蒸気膜の影 響に よ つ て伝熱係数が大幅に変化するため、冷却速度 に差が生 じ、 結果と して、 ス ト リ ッ プの幅すなわち 横断方向で温度差を生 じ、 これに よ る熱応力のため ス ト リ ッ プが横方向で形状変形する原因と な ってい た。 As described above, in the heat transfer of boiling water, since the heat transfer coefficient is greatly changed by the influence of bubbles and vapor films, a difference is caused in the cooling rate, and as a result, the stream is removed. A temperature difference was generated in the width of the strip, ie, in the transverse direction, and the thermal stress caused the strip to deform in the transverse direction.
発明の開示 Disclosure of the invention
本発明は、垂直方向に移 »するス ト リ ッ プの水冷却 においてス ト リ ッ プが前述した如き不所望の形状変 形を伴わずに冷却される新規 ¾冷却方法を提供する こ とを 目的とする 。 An object of the present invention is to provide a novel cooling method in which a strip is cooled without undesirable shape deformation as described above in water cooling of a vertically moving strip. With the goal .
本発明は特に 5 0 0 で前後の温度のス ト リ ッ プの 冷却に好適な も ので、 冷却後の形状を後に形状調整 を施 こす必要が いま でに良好にする こ とができ る 。 The present invention is particularly suitable for cooling a strip having a temperature of about 500 and before and after, and the shape after cooling needs to be subjected to shape adjustment later, and can be improved now.
本発明の要旨は、 連続熱処理された金属ス ト リ ッ プ(1)を液体冷却に よ 急速冷却する方法において、 次の条件 : The gist of the present invention is to provide a method for rapidly cooling a continuously heat-treated metal strip (1) by liquid cooling under the following conditions:
(ィ) 冷却液の液温を該冷却液の沸騰温度の 6 0 い し 9 0 % に保つ こ と、 (B) maintaining the temperature of the coolant at 60 to 90% of the boiling temperature of the coolant;
(口) 高温を有する上記金属ス ト リ ッ プ(1)を上記冷 却液に浸漬した後、 金属ス ト リ ッ プ表面に、 冷却液 の膜涕腾に よ る安定蒸気厦を生成させ、 かっ
定蒸気膜を保持する こ と、 (Mouth) After the metal strip (1) having a high temperature is immersed in the cooling liquid, a stable steam chamber is formed on the surface of the metal strip by the film of the cooling liquid. , Ka Holding a constant vapor film,
及び as well as
H 上記金属ス ト リ ッ プにて上記膜沸騰温度域が 終了する直前に、 上記冷却液中に配置され且つス ト リ ツ プ表面に対向する ノ ズ ル(9)か ら上記安定蒸気膜 を除去 し得るに十分 噴流水をス ト リ ッ プ表面に噴 射する こ と、 H Immediately before the end of the film boiling temperature range in the metal strip, from the nozzle ( 9 ) disposed in the coolant and facing the strip surface, the stable vapor film is formed. Spraying sufficient water onto the strip surface to remove water,
に よ i? 金属ス ト リ ッ プを冷却する方法に あ る。 There is a way to cool the metal strip.
冷却液温はス ト リ ッ プ の形状及び光輝性の両面か ら極めて重要である 。 即ち冷却液の漭腾温度に対し て 6 0 よ ]? 低い場合には冷却液中の溶存酸素の増 加に よ ス ト リ ッ プの酸化が起 ]? 、 光輝性が損われ. この結果冷却の後にス ト リ ッ プの酸洗 ¾ どが必要と な る 。 一方、 冷却液温が沸腾温度に対 して 9 0 以 上の場合には冷却液の沸騰状態に近 く つ て安定な 蒸気膜の形成が出来ず、 特にス ト リ ッ プの横断方向 の均一冷却が困難と っ て冷却中にス ト リ ッ プ形状 の不所望の変形が起こ 、 横断方向の形状が悪 く な る 。 又冷却効杲も 不十分 と な る 。 Coolant temperature is extremely important from the viewpoint of both strip shape and glitter. In other words, if the temperature is lower than the temperature of the cooling liquid by 60], the stripping is oxidized by the increase of the dissolved oxygen in the cooling liquid, and the glitter is impaired. After cooling, strips need to be pickled. On the other hand, when the coolant temperature is 90 ° or higher with respect to the boiling temperature, a stable vapor film cannot be formed because the temperature of the coolant is close to the boiling state, and especially in the transverse direction of the strip. The difficulty in uniform cooling causes undesirable deformation of the strip shape during cooling, resulting in poor transverse shape. Also, the cooling effect is insufficient.
以上の理由に よ ]? 本発明では使用する冷却液の液 温を沸腾温度の 6 0 〜 9 ひ ^ に限定 したも のである c 既に説明 した如 く 水冷に よ る場合、 一殺的に 4 つ の熱伝達領域に分け られる。 こ の内高温度領域にお いては安定 蒸気膜が生成する膜谤騰状態が得 られ、 f OMPI
次いで温度降下につれて蒸気膜の生成 と崩壌を繰返 えす不安定 ¾遷移涕騰の状態の領域と る。 According to the present invention, the liquid temperature of the cooling liquid used is limited to the boiling temperature of 60 to 9 hours. C As described above, when water cooling is used, 4 It is divided into two heat transfer areas. In this high temperature region, a film rising state in which a stable vapor film is formed is obtained, and f OMPI Next, as the temperature drops, the generation and collapse of the vapor film are repeated.
本発明は ス ト リ ッ プの温度が 5 0 0 〜 4 0 程 度の膜沸騰状態の領域では板厚 0. 5 m前後のス ト リ ッ プは横断方向に均一冷却される こ と、 この膜沸騰 状態下の蒸気膜は安定であ ]?、 これを水中噴流に よ D完全に除去する こ とは非常に困難であ 、 永中噴 流に よ ]3効果的に除まてき ない と、 かえっ てス ト リ y プの不均一冷却 とな って形状が悪る く な る こ とに 着目 し、 ス ト リ ッ プ形状の観点か らむしろ上記の安 定 蒸気膜段階では蒸気膜を積極的に次段階開始直 前ま で保持する も のである 。 According to the present invention, a strip having a thickness of about 0.5 m is uniformly cooled in the transverse direction in a film boiling state where the temperature of the strip is about 500 to 40, The vapor film under this film boiling condition is stable.], It is very difficult to completely remove this by a submerged jet, and it is not effectively removed by a permanent jet.3 The fact that the shape becomes worse due to the uneven cooling of the strip, rather than the strip shape, the above-mentioned The membrane is actively held just before the start of the next stage.
- 一方、 上記の遷移沸騰状態についてみる と蒸気膜 の生成とその崩壤を繰返し、 4 つの熱伝達領域で冷 却の均一度が最も 低い。 そこで本発明では、 この領 域における不均一冷却を有効に回避する為に.遷移沸 騰状態が発生する直前の膜涕腾状態末期に噴流水を ス ト リ ッ プ表面に高速噴射し遷移沸腾状態でのス ト リ ッ プ冷却を極力排除する も のである 。 -On the other hand, the transition boiling state described above shows the formation of a vapor film and its collapse repeatedly, with the lowest cooling uniformity in the four heat transfer regions. Therefore, in the present invention, in order to effectively avoid non-uniform cooling in this region, the jet water is jetted at high speed to the strip surface at the end of the membrane state immediately before the transition boiling state occurs, and the transition boiling is performed. Strip cooling in the state is eliminated as much as possible.
と ころが実際の ¾続燒鈍操業においては操業条件 の変更に よ ]9 冷却液に浸漬されるス ト リ ッ プの温度 又はス ト リ ッ プの擦送速度が変化 し膜滂腾終了位置 及び遷移涕腾開始位置がス ト リ ッ プの長手方向で種 種変化する 。 こ の よ う な変化に対処 して所望の冷却 However, in the actual continuous annealing operation, the operating conditions may be changed.] 9 The temperature of the strip immersed in the coolant or the rubbing speed of the strip changes, and the film ends. The position and the start position of the transition vary in the longitudinal direction of the strip. To cope with such changes,
OMPI
を実現するために、 本発明では単独に流量調節及び ON-OFF 可能る噴流ノ ズル を ス ト リ ッ プ の両側に多 段に設けて、 この内'使用すべき ノ ズルを選択使用 し て遷移沸騰直前にス ト リ ッ プ表面に噴流水を噴射す る方式を採用する も のである 。 OMPI In order to achieve this, in the present invention, jet nozzles that can be independently adjusted and turned on and off are provided in multiple stages on both sides of the strip, and the nozzle to be used is selected and used. It employs a method in which jet water is sprayed on the strip surface just before transition boiling.
図面の簡単 ¾説明 Brief description of drawings
第 1 図は本発明の液体冷却法を実施する装置の一 例を示 した説明図である 。 FIG. 1 is an explanatory view showing an example of an apparatus for performing the liquid cooling method of the present invention.
第 2 図は本発明の液体冷却法の装置の一実施例の 要部断面図である 。 FIG. 2 is a sectional view of an essential part of an embodiment of the apparatus for liquid cooling according to the present invention.
第 3 図は第 2 図の A- A断面図である 。 FIG. 3 is a sectional view taken along the line AA of FIG.
第 4 図は浸漬深さ と冷却鐫板温度の関係を示 した 図である 。 図.中数字は ラ イ ン速度 (mZ分) を表わす。' 第 5 図.は本発明の液钵冷却法を説明する図である 。 す ¾わち噴流の鋼板への衝突流速、 噴流衝突点の鋼 板温度 と鋼板形状の関係を示 した図である 。 同図中 黒丸は形状不良、 白丸は形状良好を表わす。 Fig. 4 shows the relationship between the immersion depth and the temperature of the cooling slab. The numbers in the figure indicate the line speed (mZ). FIG. 5 is a diagram illustrating the liquid cooling method of the present invention. In other words, this figure shows the relationship between the velocity of the jet impinging on the steel sheet, the temperature of the steel sheet at the jet impingement point, and the shape of the steel sheet. In the figure, black circles indicate poor shape, and white circles indicate good shape.
次に本発明の冷却方法の実施に用いる装置の一実 施例を第 1 〜第 3 図に も とづいて詳钾に説明する。 Next, an embodiment of an apparatus used for carrying out the cooling method of the present invention will be described in detail with reference to FIGS.
第 1 図は熱処理工程を含む全体の熱処理設備の説 明図である。 Fig. 1 is an illustration of the whole heat treatment equipment including the heat treatment process.
図示される よ う に 2 は加熱均熱帯、 3 はジ ェ ッ ト 式冷却帯、 4 は後室を示す。 铙鈍さ れる ス ト リ ッ プ 1 は炉内に導かれ加熱均熱帯 2 で所定の温度ま で加
熱さ れそしてその温度で均熱される。 加熱及び均熱 を終えたス ト リ ッ プはジ エ ツ ト 式冷却帯 3 に導かれ、 そこで低温の雰囲気ガ ス に よ ]) 冷却され、 そ して後 室 4 に入る 。 As shown in the figure, 2 indicates a heated zone, 3 indicates a jet cooling zone, and 4 indicates a rear chamber. The strip 1 to be blunted is led into the furnace and heated to a predetermined temperature in the heated soak zone 2. Heated and soaked at that temperature. After heating and soaking, the strip is led to a jet-type cooling zone 3, where it is cooled by a low-temperature atmosphere gas]), and then enters the rear chamber 4.
次にタ ー ン ダ ウ ン ロ ー ル 5 で ス ト リ ッ プ 1 は冷却 水槽 1 1 に導かれる 。 Next, the strip 1 is led to the cooling water tank 11 in the turndown roll 5.
第 2 図は本発明の液体冷却法のための装置の一実 施例の要部断面図、 第 3 図は A-A断面図を示す。 FIG. 2 is a sectional view of an essential part of an embodiment of the apparatus for liquid cooling according to the present invention, and FIG. 3 is a sectional view taken along line AA.
冷却水槽 1 1 にはス ト リ ッ プ 1 を冷却する冷却水 ( 水温 6 ひ。〜 9 0 Ό ) を一定のレ ベ ル に維持でき る よ う 水位コ ン ト ロ ー ルを している 。 さ らに水温を一 定温度になる よ う 、 冷却水の温度を温度検出器 2 1 で検出 し自 »温度制御器 2 0 .を介して、 補充水 1 2 の流量制御弁 1 3 と蒸気 1 4 の流量制御弁 1 5 を操 作して水温コ ン ト ロ ー ルを している。 The cooling water tank 11 has a water level control to keep the cooling water (water temperature 6 to 90Ό) for cooling the strip 1 at a certain level. . In addition, the temperature of the cooling water is detected by the temperature detector 21 so that the water temperature becomes a constant temperature, and the flow control valve 13 of the replenishment water 12 and the steam are detected via the temperature controller 20. Water temperature control is being performed by operating the flow control valve 15 of 14.
循環冷却水は水槽 1 1 の底部か ら取出 し、 ポ ンプ 1 6 で昇圧 し、 冷却水が循環している途中に異物が 混入してノ ズル詰 ]? を起さない よ う 過器 1 7 を通 し、 それぞれのノ ズルヘ ッ ダ一前流量調整弁 1 9 前 へ通水される。 The circulating cooling water is taken out from the bottom of the water tank 11 and pressurized by the pump 16 to prevent foreign matter from entering during cooling water circulation and to prevent nozzle clogging. The water is passed through the front of the nozzle head and the front flow control valve 19 of each nozzle.
ノ ズル 9 は、 液体冷却に よ ス ト リ ッ プ両面に生 成 した蒸気膜を均一に除去するために、 ス ト リ ッ プ の横断方向に一様 厚さ を も つ板状流が得 られる よ ぅ 該横断方向に延在する一様なス リ ッ ト をス ト リ ッ 差換え
プ巾 よ 大き く 設けて お ]3、 ま たス リ ッ ト の隙間に 比べてヘ ッ ダー管径を大き く してい る 。 The nozzle 9 has a plate-like flow with a uniform thickness in the transverse direction of the strip in order to uniformly remove the vapor film generated on both sides of the strip by liquid cooling.な Replace the uniform slit extending in the transverse direction with a slit. The diameter of the header tube is larger than that of the slit.
ノ ズ ル 9 は浸漬ス ト リ ッ プに対 して左右対称の位 置に配置 して浸漬上下方向に複数段設けている 。 The nozzles 9 are arranged at symmetric positions with respect to the immersion strip, and are provided in a plurality of stages in the vertical direction of the immersion.
ノ ズ ル 9 か らス ト リ ッ プ 1 に向かって噴出させる 噴流は水中における噴流速度と ノ ズ ル へ ッ ダ一内圧 力の関係をあ らか じめ実験で も と めた結果に よ 圧 力計 1 8 をみな がら調整弁 1 9 を操作して噴流速度 を決める。 The jets ejected from nozzle 9 toward strip 1 are based on the relationship between the jet velocity in water and the internal pressure of the nozzle header. While adjusting the pressure gauge 18, operate the regulating valve 19 to determine the jet velocity.
冷却を終了 したス ト リ ッ プ 1 は リ ン ガ 一 ロ ー ル 6 で ( 第 1 図 ) 液切 J? を行ないデ レク タ ー ロ ー ル 7 を経て ド ラ イ ャ一 8 で完全に乾燥 して漦洗も形状調 整も する こ と な しに後続工程へ導かれる 。 以下、 本発明方法の特徵について詳 しく 説明'する 以下具体的条件の 1 例について説明する 。 第 4 図は水温 8 0 で の冷却タ ン ク を甩い、 ス ト リ ッ プの温度及び速度を種 々変えた場合の各種水面^ 深さ における温度の関係の計算値を示 し、 第 5 図は 冷却液中に質流ノ ズ ルを設け、 こ の ノ ズルか ら の噴 流が衝突する点のス ト リ ッ プの温度 と噴流のス ト リ ッ プ衝突流速の関係を形状性について整理 したも の で あ 。 Strip 1 after cooling is completed with ringer roll 6 (Fig. 1), draining J ?, director roll 7 and drainer 8 completely. It is guided to the subsequent process without drying and washing and shape adjustment. Hereinafter, the features of the method of the present invention will be described in detail. One example of specific conditions will be described below. Fig. 4 shows the calculated values of the relationship between the temperature at various water levels and depths when the cooling tank was used at a water temperature of 80 and the temperature and speed of the strip were varied. Fig. 5 shows the relationship between the temperature of the strip at the point where the jet impinges from the nozzle and the strip impact velocity at the point where the jet impinges from the nozzle. It is about gender.
例えば第 4 図において今 4 5 O X: の ス ト リ ッ プを For example, in Fig. 4, the strip of 45 O X:
3 0 I 分の速度で 8 0 X: の温水中に浸漬 した場合 When immersed in warm water of 80 X: at a speed of 30 I minutes
O PI O PI
差 -え
約 4 0 0 TC に温度降下したス ト リ ッ プに水温 8 0 -C の噴流水を噴射する水面下深さは約 2 0 0 纖であ ]? 、 この温度域において良好 形状を保っための噴流の ス ト リ ッ プ衝突流速は第 5 図から約 6. 0
以上が 必要である。 一般的には、 第 5 図の直線 3 0 よ ]) 高 速の噴流 (v a )が必要と な る。 Difference The water depth at which the jet water with a water temperature of 80-C is jetted onto the strip with the temperature dropped to about 400 TC is about 200 fibres.] To maintain a good shape in this temperature range The strip impingement velocity of the jet was about 6.0 from Fig. 5. The above is necessary. Generally, straight line 30 in Fig. 5]) A high-speed jet (va) is required.
以上本発明に よるス ト リ ッ プの液体冷却法および その装置に よれば、 タ ー ン ダ ウ ン ロ ールから垂直に 移動するス ト リ ッ プの冷却において、 ス ト リ ッ プを 液体に浸漬開始し走時は静かにス ト リ ッ プの冷却を 行ない、 蒸気ム ..ラがス ト リ ッ プ面上に生ずる直前に 水中ノ ズルに よ ]3 ス ト リ ッ プ横断方向に均一な蒸気 膜切除部を作る よ う ス ト リ ッ プを冷却をすれば、 浸 漬開始ス ト リ ッ プ温度 5 0 0 C前後で形状不良は起 らない。 According to the strip liquid cooling method and the apparatus according to the present invention, the strip is cooled in the strip moving vertically from the turn-down roll. Start immersion in the liquid, cool the strip gently when running, and use the underwater nozzle just before the steam is generated on the strip surface.] 3 Strip traversal If the strip is cooled so as to form a uniform vapor film excision part in the direction, the shape defect does not occur at the immersion start strip temperature of about 500 ° C.
以上述べた例では水について述べたが、 水に添加 物を加えた水溶液あるいは他の液体で も 同様の効果 が得 られる 。 又、 本発明におい て安定蒸気膜を噴流 に よ つ て除去後更に追加的に 1 段又は多段で噴流を ス ト リ ッ プに噴射する こ と に よ ]) 、 よ ]? —層形状の 良好な金属ス ト リ ッ プが得られる も のである 。 Although water has been described in the examples described above, the same effect can be obtained with an aqueous solution obtained by adding an additive to water or another liquid. Further, in the present invention, after the stable vapor film is removed by the jet, the jet is further jetted into the strip in one or more stages after the removal by the jet. A good metal strip can be obtained.
発明を実旌するための最良の形態 Best mode for carrying out the invention
厚さ 0. 5 、 板幅 9 7 0 〜 1 0 0 0 露 の軟鋼ス ト リ ッ プを苐 1 図、 第 2 図及び第 3 図に示 した連続焼 Mild steel strips with a thickness of 0.5 and a width of 970 to 100000 were subjected to the continuous firing shown in Fig. 1, Fig. 2 and Fig. 3.
OMPIOMPI
*
鈍工程でス ト リ ッ プ温度 5 0 0 C か ら 7 0 1C ま での 冷却工程の液体冷却に本発明を実施 した。 * The present invention was carried out in the liquid cooling be sampled Clip temperature 5 0 0 C or et 7 0 1C or in the cooling step in the blunt step.
冷却装置の処理条件を第 1 表の如 く 行い、 比較例 1 , 2 と と も に冷却後のス ト リ ッ プ形状、 ス ト リ ツ プ の表面酸化判定に よ 冷却結果を比毂 した。 The processing conditions of the cooling device were set as shown in Table 1, and the cooling results were compared with the strip shapes after cooling and the surface oxidation judgment of the strips in both Comparative Examples 1 and 2. .
第 1 表に見 られる よ う に本発明の液体冷却法とそ の装置を使用すれば均一冷却、 形状外観と も に良好
¾結果が得 られコ ン ハ。ク ト 急速冷却装置と して非 常に有効な も のである 。 これに対 して比較例 1 のも のは噴流衝突点のス ト リ ッ プ温度が高すぎ、 一方比 較例 2 の も のはス ト リ .ッ プへの噴流衝突流速が小さ すぎて、 いずれも形 不良が発生していた。 又、 本 発明例にお て水温 4 0 C、 水温 9 5 1C と した場合 には、 前者に於いては光輝性が失なわれ、 後者の場 合には形状が不良であった。 As can be seen from Table 1, the use of the liquid cooling method of the present invention and the apparatus provided uniform cooling and good shape and appearance. ハ The result is obtained. It is very effective as a rapid cooling device. On the other hand, in Comparative Example 1, the strip temperature at the jet impingement point was too high, whereas in Comparative Example 2, the jet impingement velocity on the strip was too low. In both cases, shape defects occurred. When the water temperature was set at 40 C and the water temperature was set at 951 C in the present invention example, the former lost the glittering property, and the latter used the poor shape.
産業上の利用可能性 Industrial applicability
本発明は冷延薄板、 ブ リ キ原板 、 亜经メ ツ キ原板 ス テ ン レ ス 、 電磁鎮等のス ト リ ッ プ^板の違続焼鈍 ラ イ ンに利用する こ と ができ る。 INDUSTRIAL APPLICABILITY The present invention can be used for an intermittent annealing line of a strip of a cold rolled thin plate, a blank plate, a stainless steel plate stainless steel plate, a magnetic plate, etc. .
REA OMPI 鶴
REA OMPI crane
Claims
1. 連続熱処理された金属ス ト リ ッ プ(1)を液体冷 却に よ ]? 急速冷却する方法において、 次の条件 : 1. Liquid cooling of continuously heat-treated metal strip (1)]? In the method of rapid cooling, the following conditions:
(ィ) 冷却液の液温を該冷却液の沸腾温度の 6 0 ¾い し 9 0 ^に保つ こ と、 (B) maintaining the temperature of the coolant at 60 to 90% of the boiling temperature of the coolant;
(口) 高温を有する上記金属ス ト リ ッ プ(1)を上記 冷却液に浸漬 した後、 金属ス ト リ ッ プ表面に、 冷却 液の膜沸騰に よ る安定蒸気膜を生成させ、 かっこの 安定蒸気膜を保持する こ と、 (Mouth) After immersing the metal strip (1) having a high temperature in the cooling liquid, a stable vapor film is formed on the surface of the metal strip by film boiling of the cooling liquid. Maintaining a stable vapor film
及び as well as
H 上記金属ス ト リ ッ プ て上記膜沸腾温度域 が終了する直前に、 上記冷却液中に配置され且つス ト リ ッ プ表面に対向する ノ ズル(9)か ら上記安定蒸気 膜を除去し得るに十分 ¾噴流水を ス ト リ ッ プ表面に 噴射する こ と、 H Immediately before the end of the film boiling temperature range due to the metal strip, the stable vapor film is removed from the nozzle ( 9 ) disposed in the cooling liquid and facing the strip surface.十分 Spray the jet water onto the strip surface,
に よ ]? 金属ス ト リ ッ プを冷却する方法。 How to cool metal strips?
•2. 金属ス ト リ ッ プ(1)が垂直方向に上記冷却液に 向かっ て下降移動 し、 5 0 0 前後の温度で上記冷 却液に浸漬される請求の範囲第 1 項記载の金属ス ト リ ッ プ冷却方法。 2. The metal strip (1) moves vertically downward toward the coolant and is immersed in the coolant at a temperature of about 500. Metal strip cooling method.
3. 上記安定蒸気膜を除去するノ ズル(9)か らの噴 流が上記ス ト リ ッ プ の横斬方向に延びるス リ ツ ト 状 である請求の範囲第 1 項記载の金属ス ト リ ッ プ冷却 方法。 一、 ,. 、 OMPI 3. The metal slot according to claim 1, wherein the jet from the nozzle (9) for removing the stable vapor film has a slit shape extending in the cross direction of the strip. Trip cooling method. One,,., OMPI
^ ん
^^
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1981/000201 WO1983000881A1 (en) | 1981-08-28 | 1981-08-28 | Method of cooling metallic strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1981/000201 WO1983000881A1 (en) | 1981-08-28 | 1981-08-28 | Method of cooling metallic strip |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1983000881A1 true WO1983000881A1 (en) | 1983-03-17 |
Family
ID=13734289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1981/000201 WO1983000881A1 (en) | 1981-08-28 | 1981-08-28 | Method of cooling metallic strip |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1983000881A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017043839A (en) * | 2015-08-24 | 2017-03-02 | Jfeスチール株式会社 | Water hardening device, continuous annealing equipment, and method for producing steel sheet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4917131B1 (en) * | 1970-07-03 | 1974-04-27 | ||
JPS5253712A (en) * | 1975-10-30 | 1977-04-30 | Nippon Kokan Kk <Nkk> | Equipment for continuous annealing containingoverage treatment |
JPS55110739A (en) * | 1979-02-19 | 1980-08-26 | Nippon Kokan Kk <Nkk> | Method for cooling strip steel in continuous annealing process |
JPS5684415A (en) * | 1979-12-13 | 1981-07-09 | Nippon Steel Corp | Steel belt cooling method |
-
1981
- 1981-08-28 WO PCT/JP1981/000201 patent/WO1983000881A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4917131B1 (en) * | 1970-07-03 | 1974-04-27 | ||
JPS5253712A (en) * | 1975-10-30 | 1977-04-30 | Nippon Kokan Kk <Nkk> | Equipment for continuous annealing containingoverage treatment |
JPS55110739A (en) * | 1979-02-19 | 1980-08-26 | Nippon Kokan Kk <Nkk> | Method for cooling strip steel in continuous annealing process |
JPS5684415A (en) * | 1979-12-13 | 1981-07-09 | Nippon Steel Corp | Steel belt cooling method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017043839A (en) * | 2015-08-24 | 2017-03-02 | Jfeスチール株式会社 | Water hardening device, continuous annealing equipment, and method for producing steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5200406B2 (en) | Steel strip cooling method | |
KR910004610B1 (en) | Method for producing non-aging hot-dip galvanized steel strip | |
CN109097534B (en) | Very thin precise stainless steel strip busbar bright annealing technology | |
KR850001290B1 (en) | Process for cooling a cold rolled steel strip | |
JPS609834A (en) | Method and device for cooling steel strip | |
US4052235A (en) | Method of preventing oxidation during water quenching of steel strip | |
WO1983000881A1 (en) | Method of cooling metallic strip | |
JPH0118974B2 (en) | ||
JP4331982B2 (en) | Steel strip cooling device | |
US3262822A (en) | Method for continuous quenching of aluminum strip | |
JPS5839210B2 (en) | Cooling method of steel strip during continuous annealing | |
JPS58120748A (en) | Continuous heat treatment installation for cold-rolled steel strip for working and high tensile cold-rolled steel strip | |
JPS5842254B2 (en) | Continuous annealing equipment | |
US4005744A (en) | Apparatus for continuous pickling of cast rod | |
JP4901276B2 (en) | Steel strip cooling device | |
JPS5950903A (en) | Continuous hot rolling device for steel plate | |
JPS5819728B2 (en) | Kouhan no Koukireikiyakuhouhou | |
JPS58120745A (en) | Continuous heat treatment for high tensile cold-rolled steel strip | |
JP2005146373A (en) | Cooling apparatus for steel strip | |
JPS57198218A (en) | Cooling method for continuously annealed steel strip | |
JP4537875B2 (en) | Steel strip cooling device | |
JPS63241123A (en) | Cooling method for steel strip | |
JPS58120743A (en) | Continuous heat treatment for high tensile cold rolled steel strip | |
JP2004337985A (en) | Water tank for water cooling of billet | |
JPH0234727A (en) | Method and device for cooling metallic strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): JP US |