WO1982000185A1 - Vanne a rupture pour tuyau - Google Patents

Vanne a rupture pour tuyau Download PDF

Info

Publication number
WO1982000185A1
WO1982000185A1 PCT/SE1980/000185 SE8000185W WO8200185A1 WO 1982000185 A1 WO1982000185 A1 WO 1982000185A1 SE 8000185 W SE8000185 W SE 8000185W WO 8200185 A1 WO8200185 A1 WO 8200185A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
hose
sliding gate
space
Prior art date
Application number
PCT/SE1980/000185
Other languages
English (en)
Inventor
K Wiklund
Original Assignee
K Wiklund
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K Wiklund filed Critical K Wiklund
Priority to AU62210/80A priority Critical patent/AU530842B2/en
Priority to PCT/SE1980/000185 priority patent/WO1982000185A1/fr
Priority to JP55501788A priority patent/JPS5942190B2/ja
Publication of WO1982000185A1 publication Critical patent/WO1982000185A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/10Means for stopping flow from or in pipes or hoses
    • F16L55/1022Fluid cut-off devices automatically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/20Excess-flow valves
    • F16K17/22Excess-flow valves actuated by the difference of pressure between two places in the flow line
    • F16K17/24Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member

Definitions

  • This invention relates to a hose-break valve for pressure hoses or conduits with a surrounding protective hose or conduit and a pressure medium in a space between the pressure and protective hoses or conduits, said valve having a sliding gate which is movable along a valve housing between an open position and a closed position preventing throughflow through the valve and which is adapted to be actuated by said pressure medium to be held thereby in the open position against the action of a load- ing device yieldably actuating the sliding gate towards the open position and adapted to ' close the valve when the pressure of said pressure medium falls short of a lower limit value, so that the valve will prevent backflow of gas or liquid from an appliance located downstream of the valve upon leakage or break upstream of said valve.
  • a known hose-break valve of this type is described in the published Swedish patent application 7702588-0 and comprises a movable or displaceable sliding gate which is actuated not only by the pressure medium enclosed between the pressure conduit and the protective sleeve thereof, but also by a spring pressure opposed to the pressure of the pressure medium, the said two pressures maintaining the sliding gate in a position permitting ' liquid to pass through the valve when the said pressures counterbalance each other, i.e. when they are equal, but displacing the sliding gate in one or the other direction to close the liquid flow through the valve when one or the other pressure exceeds the opposed pressure, for instance upon break of the pressure conduit and/or its protective sleeve.
  • a small leakage in the pressure conduit or in the sleeve will cause the balanced position of the sliding gate to be displaced in one or the other direction from the open position of the valve, resulting in a partial throttling which may remain over a long period of time until so much pressure medium has leaked out that the valve will be fully closed.
  • Such long-term throttling of the flow through the valve may result in considerable loss of power.
  • the present invention therefore has for its object to obviate these shortcomings of the prior art hose-break valves operating with a pressure medium to actuate a sliding gate included in the valve.
  • the hose-break valve of the present invention is charac ⁇ terized by the features stated in the appended claims.
  • Fig. 1 is a longitudinal section of a portion of a first embodiment of the invention
  • Fig. 2 is a side view of a sleeve forming a valve housing in the first embodiment
  • Fig. 3 is a side view of a sliding gate in the first embodiment
  • Fig. 4 illustrates a tool attached to the valve for mounting the valve and for emergency release thereof
  • Fig. 5 is an exploded view of the details of a valve releasing or pressure relieving mechanism in the first embodiment
  • Fig. 6 illustrates a detail of the first embodiment of the invention
  • Figs. 7 and 8 illustrate alternative embodiments of the connection of the valve sliding gate to a protective sleeve surrounding the pressure conduit;
  • Fig. 9 illustrates a modified embodiment of the valve according to the invention.
  • Fig. 10 illustrates a longitudinal section of another embodiment of the present valve in open position
  • Fig. 11 illustrates a longitudinal section of a part of the valve of Fig. 10 in a partially closed position
  • Figs. 12 and 13 show a side view and an end view, respectively, of a valve housing in the valve shown in Fig. 10.
  • the valve comprises a sliding gate 1 which is slidable on a sleeve 2 forming the valve body or housing and provided at one end with an externally threaded connection 3 for connecting the valve to e.g. a hydraulic cylinder and provided at its other end with an internally threaded connection 4 which, as will appear from the drawings, is connected to a pressure hose 5 by means of a conventional hose coupling 6.
  • the sliding gate 1 which surrounds the valve sleeve 2 with a sliding fit, is sealed against the valve sleeve 2 by means of sealing rings 7 and is provided on its inner side with a circum ⁇ ferential groove 8 having a width at least equal to the outer distance 'between two rows of holes 10 and 11, respectively, provided in the sleeve 2 on either side of a wall 9 within said sleeve, the holes of each such row having a diameter which makes the total area of the holes of one row larger than the internal cross-sectional area of said sleeve 2.
  • the groove 8 over ⁇ lies the two rows of holes 10, 11, thereby enabling pressure medium, such as hydraulic fluid or pressure gas, to flow through the valve in one or the other direction.
  • the sliding gate 1 In this open position of the valve, the sliding gate 1 is held urged against the nut 12 by a pressurized pressure medium, such as a hydraulic fluid, a suitable gas or air, which is enclosed within the space 13 and which is under such a predetermined pressure that the pressure acts on the sliding gate 1 with a force at least equal to and preferably somewhat greater than the force exerted in the opposite direction by a pressure spring 17 mounted between the nut 12 and the sliding gate 1.
  • a pressurized pressure medium such as a hydraulic fluid, a suitable gas or air
  • the pressure hose 5 is shown to be vulcanized with its end 15 to an end socket 16 of the sliding gate 1.
  • the socket 16 preferably is provided with circumferential ridges serrated in cross- section in order to establish an entirely tight connection between the gate and the outer hose.
  • a tight connection between these members can be achieved also in some other manner, for instance by connecting the hose end 15 with the end socket 16 of the sliding gate by means of hose clips 50, as is shown in Fig. 9.
  • the pressure medium enclosed in the space 13 may be either a liquid or a gas, such as air.
  • the pressure medium enclosed within the space 13 also acts upon a rubber diaphragm 18 in a release or pressure relieving mechanism 19 disposed within the sliding gate 1.
  • a cover 20 screwed to said sliding gate clamps the rubber diaphragm 18 against a steel washer 23 which is supported by a shoulder 21 in the sliding gate and sealed there- against by means of an annular rubber seal 22.
  • the rubber diaphragm 18 is so dimensioned that it withstands at least the pressure required to maintain the valve in the position shown in Fig. 1 against the action of the spring 17, but ruptures at a predetermined pressure increase within th-. space 13, i.e. when a predetermined upper limit value of the pressure in the space 13 is exceeded.
  • the release mechanism 19 comprises, besides the said diaphragm, a pressure sleeve or tubular punch 26 displaceably mounted in the sliding gate underneath the diaphragm and provided with an external flange 25, said pressure sleeve or punch 26 having an external diameter not greater than the diameter of holes 28 provided both in the steel washer and in the cover and aligned with one another and with said pressure sleeve (see Fig. 5) . Furthermore, the pressure sleeve or punch 26 is formed at its end facing the diaphragm 18 with a knife-edge 24.
  • the pressure sleeve is yieldingly held against a cam surface 29 formed in the valve body 2 and having a crest 30 and an end stop 31 determining the other end position of the sliding gate.
  • the sliding gate portion 32 overlies the holes 11 with its seals 7 sealing against the valve body 2 on either side of said holes which thus are closed, whereby return flow of hydraulic fluid from e.g. a hydraulic cylinder (not shown) in the direction of the arrow 33 is prevented.
  • a hydraulic cylinder not shown
  • the cylinder or, rather, its piston is locked in position and unable to move.
  • OMPI hose 5 and the outer hose 14 should drop more or less slowly, the gate 1 will be urged by the pressure spring 17 to the left with respect to Fig- 1. Regardless of whether the sliding gate 1 moves slowly or rapidly from the end position shown in Fig. 1 into the other end position, the pressure sleeve 26 will be displaced radially outwardly by the cam 29 of the valve housing or body so that the knife-edge 24 of the pressure sleeve cuts or punches a hole in the diaphragm 18, thereby causing the pressure in the space 13 to drop more rapidly and thus the valve to close instantaneously every time this is required.
  • the cutting or punching operation effected by the pressure sleeve should take place as quickly- as possible after the sliding gate 1 has been set in motion by the pressure spring 17, during which motion the pressure sleeve 26 thus is guided by the cam 29 which, when the pressure sleeve 26 has passed the crest 30, permits the pressure spring 27 to displace the pressure sleeve 26 radially inwardly so that said sleeve can abut the end stop 31 and arrest the sliding gate in its other end position, i.e. the closed position of the valve.
  • the outer hose 14 shown in Fig. 1 exhibits the wavy shape which is shown in Fig. 6 and which permits an extension of the hose corre- sponding at least to the distance which the sliding gate has travelled.
  • the outer hose always strives to return to this wavy shape when it has been deformed.
  • the hose 14 will contribute in moving the sliding gate 1 from the open to the closed position. Furthermore, it is possible, within the scope of the invention, to " replace the pressure spring 17 by a tension spring built into the hose 14, or other tensioning member providing for rapid movement of the sliding gate 1 from open to closed position as soon as the pressure in the space 13 drops.
  • the above described embodiment of the arrangement causes a rapid pressure drop in the space 13 , not only when the diaphragm 18 ruptures, but also as soon as a leakage or break occurs in the outer hose 1 , and the valve according to the invention will therefore function also in such cases.
  • the pressure drop in this instance does not depend on a rupturing of the diaphragm but on the cutting of a hole in the diaphragm 18 when the pressure in the space 13 has fallen below a predetermined lower limit value and the sliding gate 1 has been moved a given distance towards the closed position. In the event a predetermined, maximally permissible pressure increase in the space 13 is exceeded, the diaphragm will rupture.
  • the hose-break valve according to the present invention will thus function satisfactorily regardless whether only the inner hose, only the outer hose, or both the inner hose and the outer hose should rupture, and also regardless of the sequence of such ruptures.
  • the tool illustrated in Fig, 4 can be used.
  • This tool has a fork-shaped end 35, a body 37 having a slot 36, and a portion 39 carrying a set screw 38, The tool is hooked with its fork-shaped end over the valve connection 3 and firmly pulled against the nut 12, where ⁇ upon, a stop screw 40 extending through the slot 36 is screwed into a threaded hole 41 in the sliding gate 1 which can then be moved into its end position by means of the set screw 38 opposite the stop screw 40, while ten- sioning the pressure spring 17 and/or the hose, and/or other tensioning member which may be built into the hose, whereupon pressure medium is introduced into the space 13 until the pressure required for maintaining the sliding gate in its position abutting the nut 12 has been reached.
  • the tool may be used also for emergency release of the
  • OMPI 3 provided around the periphery of the sliding gate 1.
  • Fig. 7 shows an alternative embodiment of the connection of the outer hose to the end sleeve 16 of the sliding gate
  • this alternative embodiment comprises a sleeve 43 movable relative to said sliding gate 1 and sealed thereagainst by means of a seal 42, said sleeve 43 serving to protect and support a jointing hose 46 which extends between the outer sleeve or hose 14 and the end sleeve 16 of the sliding gate and which, because the sleeve 43 is made for instance of steel, may be essentially thinner and more elastic and flexible than ' the outer sleeve or hose 14.
  • the jointing hose 46 is vulcanised to the outer sleeve or hose and to the end sleeve 16 at 4.5, while the sleeve 43 is secured to the jointing hose 46 by means of a clamp 44 or the like.
  • the jointing hose 46 is vulcanised to the end sleeve 16 and to the outer hose 14.
  • the embodiment according to Fig. 8 distin ⁇ guishes over the embodiment shown in Fig. 7 merely in that the jointing hose 46 is vulcanised to an intermediate sleeve 90 which in turn in vulcanised at 45 to the outer hose or sleeve 46, and in that the sleeve 43 is fixedly connected at its end facing the valve with the jointing hose 46, but is movable relative to said jointing hose at its other end which is sealed against the jointing hose by means of seals 47.
  • Fig, 8 shows the jointing hose in the open position of the valve, while Fig.
  • FIG. 7 shows the jointing hose 46 in the closed position of the valve.
  • the embodiment shown in Fig, 9 illustrates that it is also possible to dispose the sliding gate 1 movable within a steel casing comprising two portions 48, 49 of which the portion 48 is screwed onto the portion 49 ,
  • the rubber diaphragm 18 of- the axially disposed release or pressure relieving mechanism 19 is clamped against the shoulder 21 by means of a hollow nut 52 screwed into an opening 51 in the sliding gate 1.
  • the pressure sleeve or punch 26 which in this instance is provided with throughholes 53 for the pressure medij
  • OMPI is the case also in the embodiment ,shown in Fig, 5) is here actuated directly by the sliding gate 1.
  • a number of pressure springs 55 are disposed between -the portion 49 and the sliding gate 1.
  • the space 13 is supplied with pressure medium through a nipple 56.
  • the embodiment, illustrated in Figs, 10-13, of the hose-break valve according to the present invention possesses, like the embodiments previously described, a sliding gate 1 movably mounted on a valve body or housing 2.
  • the arrangement of the circumferential groove 8 of the sliding gate and the sealing rings 7, the rows of holes 10, 11 and the wall 9 of the valve housing is the same as in the embodiments previously described, except that the wall 9 also has a circumferential groove accommodating a sealing ring 60.
  • the sealing ring 60 seals against the inner side of the sliding gate portion 32 when the valve is in the closed position.
  • the valve housing has a narrower portion 62 with a bevelled face 63 at the end adjacent the row of holes 11.
  • the sliding gate 1 has at its end a corresponding inwardly directed, bevelled flange 64 which, when the sliding gate 1 is moved to the left with respect to Fig, 10, will engage the bevelled face 63 which serves as a stop , when the valve is fully closed.
  • the valve housing 2 has been extended to the -left with respect to Fig. 10 and thus has a cylindrical portion 65, a thicker portion 66 beyond said portion 65, and, beyond said thicker portion 66, a sealing portion 67 for the outer holes 14.
  • the portion 65 of the valve housing has two sealing rings 70 which are placed in grooves and seal against the inner side of the cylindrical bore provided in the sliding gate 1 and defining the cavity 69.
  • the sliding gate 1 has an external thread 72 with a screwed-on union nut 73 , the free end 74 of which is adapted to cooperate with the shoulder 75 between the portions 65 and 66 of the valve housing.
  • the surface 74 of the nut 73 normally is a short distance from the shoulder 75.
  • the nut 73 can be utilized for wholly or partly opening the valve by hand, if this should be necessary in the event of a hose-break.
  • the valve housing 2 shown in Figs. 10-13 has a filling nipple 56 which is screwed into a threaded hole 76 in the portion 66 and opens into one of the longitudinal bores 63 to permit filling of pressure medium into the space 13.
  • another bore 77 is pro ⁇ vided which opens into the other bore 68 but is provided at its inner end with a circumferential shoulder 78 against which a rupturable diaphragm 18 of elastomer or other suitable material is clamped by means of a nut 52 having a through hole 79.
  • the details 18, 52, 78-79 constitute a first pressure relieving device 19 which is adapted, when the pressure of the pressure medium within the space 13 exceeds a predetermined upper limit value, to relieve the pressure within said space by rupturing the diaphragm 18.
  • the pressure relieving device 19 may also be a safety valve having an adjustable limit value pressure. The essential thing is that, when the pressure of the pressure medium exceeds an upper limit value, the pressure within the space 13 will be relieved so that the spring 17 will move the sliding gate 1 into closed posi ⁇ tion.
  • the embodiment illustrated in Figs. 10-13 comprises a second pressure relieving device.
  • this second pressure relieving device is the punch 26 provided with a knife-edge 24 for punching a hole in the diaphragm 18.
  • this second pressure relieving device is formed by a hole 80 which is bored into the sliding gate 1 and has an opening 81 which, when the sliding gate 1 is in the fully open position shown in Fig. 10, lies between two sealing rings 32, 83 on the valve housing 2.
  • the arrangement is such that already a slight lowering of the pressure in the communicating spaces 13, 68, 69 causes the spring 17 to move the sliding gate 1 to the left so that, when the pressure of the pressure medium falls short of the lower limit value, the opening 81 in the sliding gate has moved past the sealing ring 82 for instance into the position shown in Fig. 11.
  • the play betv/een the valve housing 2 and the sliding gate 1 will then cause the pressure medium within the communicating spaces 13, 68, 69 to escape through the opening 81 and the hole 82 so that the pressure within these spaces will be lowered more quickly until the valve is in fully open position.
  • the speed at which the pressure within the spaces 13, 68, 69 is relieved can be determined by varying the relative diameters of the co ⁇ operating portions of the housing and the sliding gate.
  • the con ⁇ nection of the inner and outer hoses 5 and 17, respec- tively, with the valve housing 2 is somewhat different.
  • the inner hose 5 has been pushed over a clamping portion 84 on the valve housing, and a slotted inter ⁇ mediate sleeve 85 has been disposed around the hose e ⁇ so that said sleeve leaves a throughflow portion 86 to establish communication between the spaces 13 and 69.
  • the outer hose 14 has been pushed over the intermediate sleeve and the housing portion 68, whereupon two hose clamps 87 have been mounted for clamping the outer hose against the portion 67 and the inner hose against the portion 84 through the intermediary of the outer hose 14 and the sleeve 85.
  • the sliding gate 1 may well be made of steel and the valve housing 2 of brass or similar metal having a higher co ⁇ efficient of. linear expansion than the material of the sliding gate 1.
  • the hose-break valve may be connected with this portion 3 to a metal pipe in e.g. a gas supply system, in which case a fire and the possible destruction of the hoses 13 and 14 will cause the valve to be released so that the sliding gate 1 is moved to closed position, the flange 64 of said sliding gate engaging the bevelled face 63 of the valve housing. If the heat is so intense as to cause destruction of all sealing rings, the higher coefficient of linear expansion of the valve housing will cause the latter to expand into firm and gas-tight engagement with the inner side of the sliding gate 1 so that gas cannot escape from the metal supply pipe connected with the thread 3.
  • the hose-break valve according to the invention should be mounted at either end of a pressure hose.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Safety Valves (AREA)

Abstract

Une vanne a rupture pour tuyau comprend un corps de vanne (2) et un tiroir coulissant (1) mobile le long du corps et est connectee a un tuyau sous pression (5) qui est entoure d'une gaine protectrice (14), definissant un espace (13) rempli d'un milieu sous pression. Le tiroir coulissant (1) est sous l'action d'une part du milieu pressurise se trouvant dans l'espace (13) et d'autre part d'un dispositif de charge (17) agissant de maniere opposee au milieu. Un premier et un second dispositifs de reduction de la pression (19 et 80-82, respectivement) sont prevus pour fermer la vanne a l'aide du dispositif de charge (17) lorsque la pression du milieu de pression dans l'espace (13) depasse une valeur limite superieure et tombe en-deca d'une valeur limite inferieure, respectivement.
PCT/SE1980/000185 1980-07-04 1980-07-04 Vanne a rupture pour tuyau WO1982000185A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU62210/80A AU530842B2 (en) 1980-07-04 1980-07-04 Mass production unit for producing eggs of an insect
PCT/SE1980/000185 WO1982000185A1 (fr) 1980-07-04 1980-07-04 Vanne a rupture pour tuyau
JP55501788A JPS5942190B2 (ja) 1980-07-04 1980-07-04 ホ−ス−しや断弁

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOSE80/00185800704 1980-07-04
PCT/SE1980/000185 WO1982000185A1 (fr) 1980-07-04 1980-07-04 Vanne a rupture pour tuyau

Publications (1)

Publication Number Publication Date
WO1982000185A1 true WO1982000185A1 (fr) 1982-01-21

Family

ID=20339934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1980/000185 WO1982000185A1 (fr) 1980-07-04 1980-07-04 Vanne a rupture pour tuyau

Country Status (2)

Country Link
JP (1) JPS5942190B2 (fr)
WO (1) WO1982000185A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002988A1 (fr) * 1982-02-25 1983-09-01 Palmgren, Karl, Sievert Soupape de protection contre les ruptures de conduite pour une conduite ou tuyau a pression avec une conduite ou tuyau enveloppant protecteur

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075265A (ja) * 1983-09-29 1985-04-27 Shiyooman:Kk 即席みそ汁及びその製造法
JPH01120245A (ja) * 1987-11-02 1989-05-12 Toyo Seikan Kaisha Ltd ドライパック具だくさんスープ缶詰セット

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR534477A (fr) * 1921-01-11 1922-03-27 Compteur de fluides
FR2204777A2 (fr) * 1972-11-02 1974-05-24 Olivet Jacques
DE2360274A1 (de) * 1973-12-04 1975-06-12 Licentia Gmbh Zulaufschlauch mit selbstschliessendem sicherheitsventil
DE2227212B2 (de) * 1972-06-05 1977-05-26 Rudnicki, Adolf, 7144 Asperg Vorrichtung zur sicherung eines schlauchs gegen ausfliessen des versorgungsmediums bei bruch des schlauches
DE2823262A1 (de) * 1978-05-27 1979-12-06 Adolf Rudnicki Schlauchbruchsicherung
SE412946B (sv) * 1977-03-08 1980-03-24 Lundholm & Brennstroms Svets Slangbrottsventil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR534477A (fr) * 1921-01-11 1922-03-27 Compteur de fluides
DE2227212B2 (de) * 1972-06-05 1977-05-26 Rudnicki, Adolf, 7144 Asperg Vorrichtung zur sicherung eines schlauchs gegen ausfliessen des versorgungsmediums bei bruch des schlauches
FR2204777A2 (fr) * 1972-11-02 1974-05-24 Olivet Jacques
DE2360274A1 (de) * 1973-12-04 1975-06-12 Licentia Gmbh Zulaufschlauch mit selbstschliessendem sicherheitsventil
SE412946B (sv) * 1977-03-08 1980-03-24 Lundholm & Brennstroms Svets Slangbrottsventil
DE2823262A1 (de) * 1978-05-27 1979-12-06 Adolf Rudnicki Schlauchbruchsicherung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002988A1 (fr) * 1982-02-25 1983-09-01 Palmgren, Karl, Sievert Soupape de protection contre les ruptures de conduite pour une conduite ou tuyau a pression avec une conduite ou tuyau enveloppant protecteur
US4535804A (en) * 1982-02-25 1985-08-20 Regioninvest I Norr Ab Conduit-break valve for a pressure conduit or hose with a surrounding protective conduit or hose

Also Published As

Publication number Publication date
JPS5942190B2 (ja) 1984-10-13
JPS57500524A (fr) 1982-03-25

Similar Documents

Publication Publication Date Title
US4341235A (en) Device for connecting a pressure fluid source to a fluid motor
US4977927A (en) Free flow fitting
US5213128A (en) Pressure/temperature-activated pressure relief valve
US5690139A (en) Valve construction
AU630996B2 (en) Pressure limiting valve with teflon seal
KR0145456B1 (ko) 충전밸브를 구비한 가스스프링
US4413643A (en) Hose-break valve
KR920001237B1 (ko) 이중 블럭-벤트 밸브 장치
US4172468A (en) Pressure shock absorber for oxygen-regulator supply system
EP0050926B1 (fr) Vanne à manchon expansible
WO1982000185A1 (fr) Vanne a rupture pour tuyau
EP0013264B1 (fr) Valve de rupture de conduite
CA1092480A (fr) Soupape a commande par pression
US4000685A (en) Push/pull valve for two or three way operation
JPH0566378U (ja) 定流量弁付き逆止弁
US4522369A (en) Pilot-controlled safety valve
US2764997A (en) Accumulators
CA1146611A (fr) Arret de circulation par etranglement sur tuyau souple
US5865208A (en) Water release valve
US4193419A (en) Connector apparatus for pressurized lines
US4698999A (en) Pressure connector
EP2765471B1 (fr) Soupape de régulation de pression munie d'une soupape de sécurité, robinet et cylindre munis d'une telle soupape
US4378932A (en) Pressure responsive valve assembly
US4134429A (en) Hydraulic accumulator having an improved oil port seal
CN110656694A (zh) 一种可调式柔性截流装置

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU JP US

Kind code of ref document: A1

Designated state(s): AU JP US