WO1981000904A1 - Refrigeration process and device - Google Patents
Refrigeration process and device Download PDFInfo
- Publication number
- WO1981000904A1 WO1981000904A1 PCT/FR1980/000139 FR8000139W WO8100904A1 WO 1981000904 A1 WO1981000904 A1 WO 1981000904A1 FR 8000139 W FR8000139 W FR 8000139W WO 8100904 A1 WO8100904 A1 WO 8100904A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- tank
- tanks
- adsorption
- intended
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
- F25B27/002—Machines, plants or systems, using particular sources of energy using solar energy
- F25B27/007—Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B17/00—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
- F25B17/08—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
- F25B17/083—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt with two or more boiler-sorbers operating alternately
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- the invention relates to a new process for producing cold from a heat source; it also relates to an installation for the implementation of this process.
- the invention relates more particularly to a new refrigeration process produced from solar energy.
- absorption groups ammonia or lithium bromide, in which the coolant is absorbed with the release of heat by a liquid phase, to desorb at higher pressure under the action. of solar energy. After condensation at a temperature compatible with an available cold source, the refrigerant is expanded during the absorption phase which takes place at lower pressure. This relaxation causes vaporization and is accompanied by a production of cold.
- Lithium bromide groups have a relatively good coefficient of performance (COP), but they have the significant drawback of being difficult to regulate, because outside a fairly limited temperature range, lithium bromide crystallizes and thus no longer circulates.
- COP coefficient of performance
- the tanks operate alternately in adsorption, then in desorption.
- the heat is supplied by any source such as a hot water exchanger supplied by any means such as a solar collector, while during the adsorption phase, the heat is removed by an exchanger connected to a cold source, such as an air or water exchanger as the case may be.
- the heat from the solar collectors can optionally pass through storage so as to regularize the production.
- the evaporator is placed in a buffer tank to allow the storage of the frigories produced.
- the invention relates essentially to an appropriate installation.
- This refrigerating installation of the type comprising: - a heat source intended to heat a heating fluid,
- the invention also relates to a refrigeration process, in particular for the implementation of this installation.
- This refrigeration process in which:
- a refrigerant is vaporized by heating, previously fixed on an adsorbent compound
- this refrigerant is vaporized and adsorbed again on the body adsorbing the vapors thus relaxed, so that by this expansion, cold is produced, and in which, one operates with two tanks each containing an adsorbent compound, these two tanks working respectively and alternately in desorption and in adsorption.
- This process is characterized in that during the treatment, the tank working in adsorption is cooled by the passage of a coolant over the condenser.
- the operating cycle is reversed when each tank is close to its equilibrium point, that is to say when the adsorption and desorption phases have reached in each of the tanks the vicinity of the point of balance, - before reversing the cycle, we aim to equalize the temperatures between the two tanks.
- zeolites As adsorbent solid material, known compounds are used which have, on the one hand, a high adsorption capacity and, on the other hand, a low energy-absorbing value.
- activated carbon silica gels, activated aluminas.
- zeolites are successfully used which gives excellent results. As is known, these zeolites, natural or synthetic, are crystalline aluminosilicates whose silica content varies from one type to another. Preferably 13 X type zeolites are used.
- heating fluid water or a heat transfer fluid, also sometimes called thermal fluid, is advantageously used, such as mixtures of di-phenyl and qiphelynl oxide known under the name of "diphyl” and marketed under the names from Gtilliotherm, Dowtherms, etc ...
- FIG. 1 schematically represents an installation for implementing the invention.
- FIG. 2 shows such an installation operating in its first phase.
- Figure 3 shows the same installation in the next phase.
- FIG. 4 illustrates the intermediate phase of operation, one of the characteristics of the invention.
- FIG. 5 shows a tubular condenser evaporator capable of being implemented in the invention.
- - 1 denotes a heat source of any known type, in which in practice the temperature of the heating fluid is between 80 ° C and 150 ° C (in some cases, this temperature can even reach -20 ° C) ; this source 1 can either be recovery heat, or a solar collector such as for example a collector of the flat thermal type, under vacuum or not, with or without selective surface, or at concentration, for example of the parabolic or spherical type.
- a solar collector such as for example a collector of the flat thermal type, under vacuum or not, with or without selective surface, or at concentration, for example of the parabolic or spherical type.
- - 2 denotes a duct where the heating fluid circulates
- - 3 and 4 designate two tanks made of stainless steel or other material, resistant to vacuum and corrosion, each containing / a heat exchanger 5 and 6 where the heating or cooling fluid circulates;
- this exchanger is advantageously a coil of air conditioning fins, the interstices of which are filled with zeolite 7a or 7b;
- the zeolite 7 which is in the form of small sticks or better of balls, surrounds the tubes of the battery where circulates the heating fluid from 2 or cooling and the fins promote a rapid and uniform heat transfer between this fluid and the zeolite;
- - 8 designates a refrigerant circuit under vacuum, for example water vapor, connecting each tank, respectively 3 or 4 in order: firstly, to a first heat exchanger 9 serving as a condenser, for example of the tubular type shown in FIG.
- the pressure of the refrigerant is imposed by the choice of the desired condensation and evaporation temperatures.
- the zeolite 7b, contained in this tank 3 s e-heating in contact with the tubing of this exchanger 5 and therefore dries up.
- the heating fluid arrives at the valve 15, then returns to the heat source 1; then the cycle begins again.
- the water vapor desorbed from the zeolite 7b leaves the tank 3 by passing through the conduit 8, then passes through the valve 17, and from there on the condenser 9.
- the pressure of this water vapor at entry into 9 is around 75 millibars.
- the refrigerant then continues its course in the conduit 18 to the exchanger-evaporator 12 where it vaporizes. This causes the water contained in the storage tank 13 to cool.
- this refrigerant continues in the circuit 18 to the valve 16 which then brings it to the top of the tank 4.
- This water vapor is then adsorbed by the zeolite 7a contained in the tank 4.
- the conduit 19 which passes through this tank 4 is connected by the valve 1 4 to the exchanger 20, then by the valve 15 returns on the tank 4.
- the calories produced in 4 are thus removed during the adsorption phase of the zeolite.
- the cooling circuit During the desorption phase of the tank 3, the heating circuit goes from the heat source 1 to the valve 1 4, from there enters the tank 3, goes to the valve 15 and returns to the source 1.
- the refrigerant circuit starts from the tank 4, arrives at the valve 17, passes through the condenser 9, from there also passes through the evaporator 12, arrives at the valve 16 and enters the tank 4.
- valves 1 4 are switched on, 15, 16 and 17 and we reverse the circuit to work according to the second phase.
- valves 14, 15 are automatically switched as already said , 16 and 17 so as to reverse the cycle in order to avoid or stop the desorption phase at low efficiency (equilibrium point).
- the heating water circuit goes from the heat source 1 to the van; - ne 14 which returns it to the exchanger 6 of the tank 4, from there arrives at the second valve 15 and returns to heat source 1.
- the refrigerant circuit goes from the tank 4, arrives at the valve 17 which sends it to the condenser 9, enters the evaporator 12, from there returns to the valve 16 which returns it to the top of the tank 3.
- the cooling circuit is then established in the tank 3, therefore passes through the piping of the exchanger 5 of this tank, arrives at the valve 15 "passes through the exchanger 20 and through the valve 14 is returned to the head of the tank.
- the mass of zeolite is therefore used several times in the same day and therefore for a given cooling capacity, the mass of zeolite is much lower than in an intermittent system.
- FIG. 5 represents an exchanger of a known tubular type capable of being used at 9 and 12.
- This condenser consists of an inlet for refrigerant in the form of vapor 31 in a cylindrical enclosure 32 from which a multitude of pipes 33 arranged on either side of the underside of this cylinder 32 leave, said pipes 33 opening into a second cylinder 34 where the condensates of the vapors supplied at 31 are recovered.
- a pipe 35 takes the liquid formed and brings it to an intermediate storage member 36 before returning it to the normal circuit.
- the vertical pipes 33 are offset so as to facilitate the passage of water or cooling air.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
Refrigeration process wherein: an adsorbing compound is heated until evaporation and on which a refrigerating fluid has been adsorbed; the vapours so produced from the refrigerating fluid are condensed and the liquid so produced is stored; then, this refrigerating liquid is again vaporized and the vapours thus expanded are again adsorbed on the adsorbing body, so that said expansion produces cold; and wherein this is effected by means of two tanks (3, 4) containing an adsorbing compound (7), these two tanks (3, 4) working respectively and alternatively in desorption and adsorption, so as to allow for a continuous production of cold, characterized in that the tank working in the adsorption mode is cooled. There is also disclosed such a plant. Application: air conditioning.
Description
PROCEDE ET DISPOSITIF DE REFRIGERATIONMETHOD AND DEVICE FOR REFRIGERATION
L'invention se rapporte à un nouveau procédé pour la production de froid à partir d'une source de chaleur ; elle concerne également une installation pour la mise en oeuvre de ce procédé. L'invention vise plus particulièrement un nouveau processus de réfrigération produit à partir de l'énergie solaire.The invention relates to a new process for producing cold from a heat source; it also relates to an installation for the implementation of this process. The invention relates more particularly to a new refrigeration process produced from solar energy.
Il existe déjà plusieurs procédés permettant d'utiliser l'énergie solaire pour produire du froid. On a par exemple suggéré de faire appel à des groupes à absorption : à ammoniaque ou à bromure de lithium, dans lesquels le fluide réfrigérant est absorbé avec dégagement de chaleur par une phase liquide, pour dé- sorber à plus haute pression sous l'action de l'énergie solaire. Après condensation à une température compatible avec une source froide disponible, le fluide frigorigène est détendu au cours de la phase d'absorption qui se déroule à plus faible pression. Cette détente provoque une vaporisation et s'accompagne d'une pro-duction de froid.There are already several methods of using solar energy to produce cold. For example, it has been suggested to use absorption groups: ammonia or lithium bromide, in which the coolant is absorbed with the release of heat by a liquid phase, to desorb at higher pressure under the action. of solar energy. After condensation at a temperature compatible with an available cold source, the refrigerant is expanded during the absorption phase which takes place at lower pressure. This relaxation causes vaporization and is accompanied by a production of cold.
Ces installations font en général appel à des pompes et à d'autres organes qui, d'une part, augmentent le prix et, d'autre part, en limitent l'emploi dans les pays éloignés ou par du personnel non spécialisé. Les groupes à bromure de lithium ont un coefficient de performance (COP) relativement bon, mais ils présentent toutefois l'inconvénient notable d'être difficiles à réguler, car en dehors d'une plage de température assez limitée, le bromure de lithium se cristallise et ainsi ne circule plus.These installations generally use pumps and other devices which, on the one hand, increase the price and, on the other hand, limit their use in distant countries or by non-specialized personnel. Lithium bromide groups have a relatively good coefficient of performance (COP), but they have the significant drawback of being difficult to regulate, because outside a fairly limited temperature range, lithium bromide crystallizes and thus no longer circulates.
Récemment, on a proposé de remplacer le fluide. frigorigène des systèmes à absorption par un adsorbant solide tel qu'une zéolithe. Ainsi, pendant le jour, l'énergie fournie par le soleil permet la desorption de la zéolithe et le fluide frigorigène libéré est
stocké sous forme liquide dans un réservoir après condensation dans un échangeur. En revanche, pendant la nuit, la zéolithe peut à nouveau réadsorber le fluide frigorigène gazeux préalablement vaporisé dans 1 ' é-vaporateur, avec production simultanée de froid. Les avantages d'un tel système à adsorption solide par rapport à ceux à absorption liquide sont multiples.Recently, it has been proposed to replace the fluid. refrigerant for systems absorbed by a solid adsorbent such as a zeolite. Thus, during the day, the energy supplied by the sun allows the desorption of the zeolite and the released refrigerant is stored in liquid form in a tank after condensation in an exchanger. On the other hand, during the night, the zeolite can again re-adsorb the gaseous refrigerant previously vaporized in the e-vaporizer, with simultaneous production of cold. The advantages of such a solid adsorption system compared to those with liquid absorption are multiple.
Or, en règle générale, il est beaucoup plus intéressant de produire le froid pendant la journée, c'est à dire au moment où l'on en a le plus besoin. Cela est vrai aussi bien en climatisation qu'en conservation, bien qu'à un degré moindre. Malheureusement, à ce jour les systèmes de réfrigération fonctionnant sur ce principe d' adsorption solide ont un cycle intermittent : jour et nuit, qui en limite la portée pratique, sauf à utiliser des organes volumineux de stockage, ce qui alors augmente considérablement le coût de ces installations.However, as a general rule, it is much more interesting to produce cold during the day, that is to say at the time when it is most needed. This is true both in air conditioning and conservation, although to a lesser degree. Unfortunately, to date refrigeration systems operating on this principle of solid adsorption have an intermittent cycle: day and night, which limits its practical scope, except to use bulky storage organs, which then considerably increases the cost of these facilities.
Dans le brevet américain 3 , 270 , 512 de NASA, on a décrit un système de réfrigération, notamment pour engins spaciaux, comportant deux cuves contenant chacune un composé adsorbant, tel qu'un gel de silice, et travaillant alternativement en adsorption et en desorption. Ce dispositif qui ne peut fonctionner qu'aux rayonne-ments directs du soleil, a un cycle assez long et donc un rendement assez faible. Lorsque l'on désire utiliser cette installation au sol, le cycle dure une journée, ce qui est pratiquement incompatible avec une exploitation industrielle. L'invention pallie ces inconvénients. Elle concerne plus particulièrement un perfectionnement au procédé de réfrigération par adsorbants solides qui soit continu et qui ne nécessite qu'un entretien réduit et entraîne une faible consommation auxiliaire. Dans ce procédé, où l'on fait appel à deux cuves
contenant chacune un adsorbant solide (zéolithe ou autre) , lesdites cuves fontionnent alternativement en adsorption, puis en desorption. Toutefois, pendant la phase de désorption, la chaleur est fournie par une source quelconque telle qu'un échangeur à eau chaude alimenté par un moyen quelconque tel qu'un capteur solaire, alors que durant la phase d ' adsorption, la chaleur est évacuée par un échangeur raccordé à une source froide, telle qu'un échangeur à air ou à eau selon le cas. Dans une forme de réalisation, la chaleur provenant des capteurs solaires peut éventuellement transiter par un stockage de façon à régulariser la production.In US patent 3, 270, 512 of NASA, a refrigeration system has been described, in particular for spacecraft, comprising two tanks each containing an adsorbent compound, such as a silica gel, and working alternately in adsorption and in desorption . This device, which can only operate in direct sunlight, has a fairly long cycle and therefore a fairly low efficiency. When it is desired to use this installation on the ground, the cycle lasts one day, which is practically incompatible with industrial exploitation. The invention overcomes these drawbacks. It relates more particularly to an improvement to the refrigeration process by solid adsorbents which is continuous and which requires only reduced maintenance and results in low auxiliary consumption. In this process, where two tanks are used each containing a solid adsorbent (zeolite or other), said tanks operate alternately in adsorption, then in desorption. However, during the desorption phase, the heat is supplied by any source such as a hot water exchanger supplied by any means such as a solar collector, while during the adsorption phase, the heat is removed by an exchanger connected to a cold source, such as an air or water exchanger as the case may be. In one embodiment, the heat from the solar collectors can optionally pass through storage so as to regularize the production.
L' évaporateur, quant à lui, est placé dans une cuve tampon pour permettre le stockage des frigories produites.The evaporator is placed in a buffer tank to allow the storage of the frigories produced.
L'invention vise essentiellement une installation appropriée. Cette installation réfrigérante du type comportant : - une source de chaleur destinée à chauffer un fluide de chauffage,The invention relates essentially to an appropriate installation. This refrigerating installation of the type comprising: - a heat source intended to heat a heating fluid,
- un composé solide adsorbant ayant une grande capacité d ' adsorption, mais une faible énergie d' adsorption, - un fluide frigorigène adsorbé sur ledit compo-se solide adsorbant,- a solid adsorbent compound having a high adsorption capacity, but a low adsorption energy, - a refrigerant adsorbed on said solid adsorbent component,
- un condensateur destiné à liquéfier les vapeurs de fluide frigorigène produites sous l'effet de l'action du fluide de chauffage issu de la source de cha-leur sur le composé adsorbant saturé de fluide frigorigène,- a condenser intended to liquefy the refrigerant vapors produced under the effect of the action of the heating fluid from the heat source on the adsorbent compound saturated with refrigerant,
- un évaporateur destiné à vaporiser le liquide frigorigène produit,- an evaporator intended to vaporize the refrigerant produced,
- et deux cuves destinées à recevoir le composé adsorbant, ces deux cuves travaillant respectivement
l'une en desorption, l'autre en adsorption se caractérise en ce que lesdites cuves sont reliées, d'une part entre elles et d'autre part, par un jeu de vannes et de tuyauteries au condenseur et à l' évapora—teur.- And two tanks intended to receive the adsorbent compound, these two tanks working respectively one in desorption, the other in adsorption is characterized in that said tanks are connected, on the one hand to one another and on the other hand, by a set of valves and pipes to the condenser and to the evaporator .
L'invention concerne également un procédé de réfrigération, notamment pour la mise en oeuvre de cette installation. Ce procédé de réfrigération dans lequel :The invention also relates to a refrigeration process, in particular for the implementation of this installation. This refrigeration process in which:
- on vaporise par chauffage un fluide frigorigène préalablement fixé sur un composé adsorbant,- a refrigerant is vaporized by heating, previously fixed on an adsorbent compound,
- on condense les vapeurs ainsi produites et on stocke le liquide frigorigène produit,- the vapors thus produced are condensed and the refrigerant produced is stored,
- puis on vaporise ce liquide frigorigène et on adsorbe à nouveau sur le corps adsorbant les vapeurs ainsi détendues, de sorte que par cette détente, on produise du froid, et dans lequel, on opère avec deux cuves contenant chacune un composé adsorbant, ces deux cuves travaillant respectivement et alternativement en desorption et en adsorption. Ce procédé se caractérise en ce que pendant le traitement, on refroidit la cuve travaillant en adsorption par passage d'un fluide réfrigérant sur le condenseur. En pratique : - on inverse le cycle de fonctionnement lorsque chaque cuve est proche de son point d'équilibre, c'est-à-dire lorsque les phases d' adsorption et de desorption ont atteint dans chacune des cuves le voisinage du point d'équilibre, - avant l'inversion du cycle, on vise à égaliser les températures entre les deux cuves.- Then this refrigerant is vaporized and adsorbed again on the body adsorbing the vapors thus relaxed, so that by this expansion, cold is produced, and in which, one operates with two tanks each containing an adsorbent compound, these two tanks working respectively and alternately in desorption and in adsorption. This process is characterized in that during the treatment, the tank working in adsorption is cooled by the passage of a coolant over the condenser. In practice: - the operating cycle is reversed when each tank is close to its equilibrium point, that is to say when the adsorption and desorption phases have reached in each of the tanks the vicinity of the point of balance, - before reversing the cycle, we aim to equalize the temperatures between the two tanks.
Comme matière solide adsorbante, on utilise des composés connus ayant, d'une part, une grande capacité d' adsorption et, d'autre part, une faible valeur d'é-nergie d ' adsorption. On peut citer le charbon actif,
les gels de silice, les alumines activées. En pratique, on utilise avec succès les zéolithes qui donne d'excellents résultats. Comme on le sait, ces zéolithes, naturelles ou de synthèse, sont des aluminosilicates cristal- lins dont la teneur en silice varie d'un type à l'autre. On utilise de préférence des zéolithes de type 13 X.As adsorbent solid material, known compounds are used which have, on the one hand, a high adsorption capacity and, on the other hand, a low energy-absorbing value. We can mention activated carbon, silica gels, activated aluminas. In practice, zeolites are successfully used which gives excellent results. As is known, these zeolites, natural or synthetic, are crystalline aluminosilicates whose silica content varies from one type to another. Preferably 13 X type zeolites are used.
Comme fluide de chauffage, on utilise avantageusement de l'eau ou un fluide caloporteur, dénommé aussi parfois fluide thermique, tel que des mélanges de di-phényl et d'oxyde de qiphélynle connus sous le nom de "diphyl" et commercialisés sous les dénominations de Gtilliotherm, Dowtherms , etc...As heating fluid, water or a heat transfer fluid, also sometimes called thermal fluid, is advantageously used, such as mixtures of di-phenyl and qiphelynl oxide known under the name of "diphyl" and marketed under the names from Gtilliotherm, Dowtherms, etc ...
Comme fluide frigorigène en dépression, on utilise des fluides connus tels que l'eau, le methanol, l'ammo- niaque, etc.. On utilise de préférence la vapeur d'eau car pour une masse donnée de zéolithe, on traite ainsi plus de vapeur d'eau que de methanol. Ainsi pour une quantité donnée de frigories à produire, on aura besoin de moins de zéolithe avec de la vapeur d'eau qu'avec du methanol, ce qui avantageusement, diminue les dimensions des cuves. En outre, comme on le sait, ce liquide est maintenu en dépression pour permettre le déroulement du cycle qui s'effectue entre la pression d ' evaporation et celle de condensation. En conséquence, la pression de ce fluide est déterminée par les températures désirées pour ces deux phases de condensation et d ' evaporation.As refrigerant under vacuum, known fluids such as water, methanol, ammonia, etc. are used. Water vapor is preferably used because, for a given mass of zeolite, it is thus treated more water vapor than methanol. Thus for a given quantity of frigories to be produced, less zeolite will be needed with water vapor than with methanol, which advantageously reduces the dimensions of the tanks. In addition, as is known, this liquid is kept under vacuum to allow the cycle which takes place between the evaporation pressure and that of condensation. Consequently, the pressure of this fluid is determined by the temperatures desired for these two phases of condensation and evaporation.
La manière dont l'invention peut être réalisée et les avantages qui en découlent ressortiront mieux des exemples de réalisation qui suivent donnés à titre in— dicatif et non limitatif à l'appui des figures annexées. La figure 1 représente schématiquement une installation pour la mise en oeuvre de l'invention.The manner in which the invention can be implemented and the advantages which ensue therefrom will emerge more clearly from the exemplary embodiments which follow, given by way of indication and without limitation in support of the appended figures. FIG. 1 schematically represents an installation for implementing the invention.
La figure 2 montre une telle installation fonctionnant dans sa première phase. La figure 3 représente la même installation dans la phase suivante.
La figure 4 illustre la phase intermédiaire de fonctionnement, l'une des caractéristiques de l'invention.Figure 2 shows such an installation operating in its first phase. Figure 3 shows the same installation in the next phase. FIG. 4 illustrates the intermediate phase of operation, one of the characteristics of the invention.
La figure 5 montre un évaporateur condenseur tubu-laire susceptible d'être mis en oeuvre dans l'invention. En se référant aux figures :Figure 5 shows a tubular condenser evaporator capable of being implemented in the invention. Referring to the figures:
- 1 désigne une source de chaleur d'un type quelconque connu, dans lequel en pratique la température du fluide de chauffage est comprise entre 80°C et 150°C (dans certains cas, cette température peut même attein-dre 220°C) ; cette source 1 peut être soit de la chaleur de récupération, soit un capteur solaire tel que par exemple un capteur du type thermique plan, sous vide ou non, avec ou sans surface sélective, ou à concentration, par exemple du type parabolique ou sphé-rique ou cylindro-parabolique :- 1 denotes a heat source of any known type, in which in practice the temperature of the heating fluid is between 80 ° C and 150 ° C (in some cases, this temperature can even reach -20 ° C) ; this source 1 can either be recovery heat, or a solar collector such as for example a collector of the flat thermal type, under vacuum or not, with or without selective surface, or at concentration, for example of the parabolic or spherical type. rique or cylindro-parabolic:
- 2 désigne un conduit où circule le fluide de chauffage ;- 2 denotes a duct where the heating fluid circulates;
- 3 et 4 désignent deux cuves en acier inox ou autre matériau, résistant au vide et à la corrosion, chacune contenant/un échangeur de température 5 et 6 où circule le fluide de chauffage ou de refroidissement ; cet échangeur est avantageusement une batterie à ailettes de climatisation dont les interstices sont remplis de zéolithe 7a ou 7b ; la zéolithe 7 qui se présente sous forme de petits bâtonnets ou mieux de billes, entoure les tubes de la batterie où circule le fluide de chauffage issu de 2 ou de refroidissement et les ailettes favorisent un transfert de chaleur rapide et uniforme entre ce fluide et la zéolithe ; - 8 désigne un circuit de fluide frigorigène en dépression, par exemple de la vapeur d'eau, reliant chaque cuve, respectivement 3 ou 4 dans l'ordre : tout d'abord, à un premier échangeur thermique 9 servant de condenseur, par exemple du type tubulaire montré à la figure 5, refroidi soit par de l'eau,
soit par de l'air, qui passe dans une cheminée 10 où est placé ce condenseur, et est aspiré par un ventilateur 11 afin d'accélérer les échanges thermiques, puis en série, à un second échangeur 12 placé dans une cuve tampon 13 permettant de stocker l'eau froide ou la glace produite ; cet échangeur 12 servant d ' évaporateur et cette cuve 13 étant reliée par un jeu de vannes et de pompes appropriées à la centrale à régrigérèr ou de conditionnement d'air ; on prélève dans cette cuve de stockage 13, en soi connue, au fur et à mesure des besoins ;- 3 and 4 designate two tanks made of stainless steel or other material, resistant to vacuum and corrosion, each containing / a heat exchanger 5 and 6 where the heating or cooling fluid circulates; this exchanger is advantageously a coil of air conditioning fins, the interstices of which are filled with zeolite 7a or 7b; the zeolite 7 which is in the form of small sticks or better of balls, surrounds the tubes of the battery where circulates the heating fluid from 2 or cooling and the fins promote a rapid and uniform heat transfer between this fluid and the zeolite; - 8 designates a refrigerant circuit under vacuum, for example water vapor, connecting each tank, respectively 3 or 4 in order: firstly, to a first heat exchanger 9 serving as a condenser, for example of the tubular type shown in FIG. 5, cooled either by water, either by air, which passes through a chimney 10 where this condenser is placed, and is sucked in by a fan 11 in order to accelerate the heat exchanges, then in series, to a second exchanger 12 placed in a buffer tank 13 allowing store cold water or ice produced; this exchanger 12 serving as an evaporator and this tank 13 being connected by a set of valves and pumps suitable for the plant to be cooled or for air conditioning; it is taken from this storage tank 13, known per se, as and when required;
- 14, 15, 16 et 17 désignent des vannes multi-voies notamment trois voies.- 14, 15, 16 and 17 designate multi-way valves, in particular three ways.
Comme on le sait, la pression du fluide frigorigène est imposée par le choix des températures de condensation et d' evaporation désirées.As is known, the pressure of the refrigerant is imposed by the choice of the desired condensation and evaporation temperatures.
Cette installation fonctionne de la manière suivante :This installation works as follows:
PHASE I ; Cuve 3 en desorption - cuve 4 en adsorption (figure 2 )PHASE I; Tank 3 in desorption - tank 4 in adsorption (figure 2)
Le fluide de chauffage 2 issu : de la source de chaleur 1, par exemple un capteur solaire, arrive à la vanne 14 - puis de là pénètre dans l'échangeur 5 de la cuve 3. La zéolithe 7b, contenue dans cette cuve 3 s ' é-chauffe au contact de la tubulure de cet échangeur 5 et donc se dessèche. A la sortie de l'échangeur 5, le fluide de chauffage arrive à la vanne 15, puis retourne à la source de chaleur 1 ; puis le cycle recommence.The heating fluid 2 from: the heat source 1, for example a solar collector, arrives at the valve 14 - then from there enters the exchanger 5 of the tank 3. The zeolite 7b, contained in this tank 3 s e-heating in contact with the tubing of this exchanger 5 and therefore dries up. At the outlet of the exchanger 5, the heating fluid arrives at the valve 15, then returns to the heat source 1; then the cycle begins again.
La vapeur d'eau désorbée de la zéolithe 7 b quitte la cuve 3 en passant dans le conduit 8, puis passe ensuite à travers la vanne 17 , puis de là, sur le condenseur 9. A titre d'exemple, la pression de cette vapeur d'eau à l'entrée en 9 est de l'ordre de 75 millibars. Le liquide frigorigène continue ensuite son parcours dans le conduit 18 jusqu'à 1 ' échangeur-évaporateur 12
où il se vaporise. Cela provoque le refroidissement de l'eau contenue dans la cuve de stockage 13. Enfin, ce liquide frigorigène continue dans le circuit 18 jusqu'à la vanne 16 qui l'amène alors en tête de la cuve 4 . Cette vapeur d'eau est alors adsorbée par la zéolithe 7a contenue dans la cuve 4 . Comme l' adsorption est une réaction exothermique, il faut donc refroidir cette cuve 4. Pour ce faire, le conduit 19 qui traverse cette cuve 4 est connecté par la vanne 1 4 à l'échan-geur 20, puis par la vanne 15 revient sur la cuve 4 . On évacue ainsi les calories produites en 4 pendant la phase d' adsorption de la zéolithe.The water vapor desorbed from the zeolite 7b leaves the tank 3 by passing through the conduit 8, then passes through the valve 17, and from there on the condenser 9. For example, the pressure of this water vapor at entry into 9 is around 75 millibars. The refrigerant then continues its course in the conduit 18 to the exchanger-evaporator 12 where it vaporizes. This causes the water contained in the storage tank 13 to cool. Finally, this refrigerant continues in the circuit 18 to the valve 16 which then brings it to the top of the tank 4. This water vapor is then adsorbed by the zeolite 7a contained in the tank 4. As adsorption is an exothermic reaction, it is therefore necessary to cool this tank 4. To do this, the conduit 19 which passes through this tank 4 is connected by the valve 1 4 to the exchanger 20, then by the valve 15 returns on the tank 4. The calories produced in 4 are thus removed during the adsorption phase of the zeolite.
Sur les figures 2 et 3, on a représenté :In Figures 2 and 3, there is shown:
- en traits pleins larges, le circuit de chauffa- ge au moyen du fluide de chauffage issu de la source de chaleur 1 ,- in full solid lines, the heating circuit by means of the heating fluid coming from the heat source 1,
- en tirets réguliers, le circuit de fluide frigorigène,- in regular dashes, the refrigerant circuit,
- en pointillés, le circuit de refroidissement. Pendant la phase de desorption de la cuve 3, le circuit de chauffage va de la source de chaleur 1 à la vanne 1 4 , de là pénètre dans la cuve 3, va jusqu'à la vanne 15 et retourne à la source 1.- in dotted lines, the cooling circuit. During the desorption phase of the tank 3, the heating circuit goes from the heat source 1 to the valve 1 4, from there enters the tank 3, goes to the valve 15 and returns to the source 1.
Pendant ce temps, le circuit frigorigène part de la cuve 4, arrive à la vanne 17, traversé le conden seur 9, de là traverse également 1 ' évaporateur 12, arrive à la vanne 16 et pénètre dans la cuve 4 .During this time, the refrigerant circuit starts from the tank 4, arrives at the valve 17, passes through the condenser 9, from there also passes through the evaporator 12, arrives at the valve 16 and enters the tank 4.
En revanche, le circuit de refroidissement de la cuve 4 sort de cette cuve, arrive à la vanne 14 et traverse l'échangeur 20 et revient à cette cuve 4 .On the other hand, the cooling circuit of the tank 4 leaves this tank, arrives at the valve 14 and passes through the exchanger 20 and returns to this tank 4.
Lorsque la zéolithe 7b contenue dans la cuve 3 est presque sèche, c'est à dire lorsque la zéolithe est presque toute désorbée, et lorsque la zéolithe 7a contenue dans la cuve 4 est gorgée d'eau, alors on commute les vannes 1 4 , 15, 16 et 17 et on inverse le circuit
pour travailler selon la deuxième phase.When the zeolite 7b contained in the tank 3 is almost dry, that is to say when the zeolite is almost completely desorbed, and when the zeolite 7a contained in the tank 4 is saturated with water, then the valves 1 4 are switched on, 15, 16 and 17 and we reverse the circuit to work according to the second phase.
PHASE II ; Cuve 3 en adsorption - cuve 4 en desorptionPHASE II; Tank 3 in adsorption - tank 4 in desorption
(figure 3)(figure 3)
Lorsque, dans la cuve en cours de desorption, la teneur du gaz désorbé descend en dessous d'une certaine valeur qui peut être détectée par exemple par une élévation de la température dé la zéolithe, on commute comme déjà dit automatiquement les vannes 14 , 15, 16 et 17 de façon à inverser le cycle et ce, afin d'éviter ou d'arrêter la phase de desorption à faible rendement (point d'équilibre).When, in the tank during desorption, the content of the desorbed gas drops below a certain value which can be detected for example by an increase in the temperature of the zeolite, the valves 14, 15 are automatically switched as already said , 16 and 17 so as to reverse the cycle in order to avoid or stop the desorption phase at low efficiency (equilibrium point).
En pratique, cette inversion a lieu toutes les quinze minutes environ, de sorte que pour une puissance de frigorie donnée, on pourra considérablement di-minuer la quantité de zéolithe nécessaire. On a donc intérêt à avoir des cycles raisonnablement courts.In practice, this inversion takes place every fifteen minutes approximately, so that for a given cooling power, it will be possible to considerably reduce the amount of zeolite necessary. It is therefore beneficial to have reasonably short cycles.
Ce résultat est fondamental et constitue un progrès considérable et totalement inattendu par rapport aux techniques antérieures, notamment celle décrite dans le brevet américain 3, 270, 512 cité dans le préambule. En effet, si on adoptait ce système NASA au sol, on aurait un seul cycle par jour, alors qu'en revanche le dispositif de l'invention permet d'en avoir jusqu'à au moins une centaine environ. Ce progrès dans un rap-port de 1 à 100 est imprévu et considérable. En outre, à rendement égal, le volume de l'installation est considérablement réduit.This result is fundamental and constitutes considerable and totally unexpected progress compared to the prior techniques, in particular that described in American patent 3, 270, 512 cited in the preamble. Indeed, if we adopted this NASA system on the ground, we would have only one cycle per day, whereas on the other hand the device of the invention allows us to have up to at least a hundred or so. This progress in a ratio of 1 to 100 is unexpected and considerable. In addition, for equal performance, the volume of the installation is considerably reduced.
Toutefois, l'inversion du cycle est une opération brusque et la cuve qui était désorbée est chaude alors qu'elle devient adsorbante et devrait être froide et vice—versa. La compensation de ces températures provoque des pertes de chaleur, ce qui diminue le coefficient de performance (COP).However, reversing the cycle is an abrupt operation and the vessel which was desorbed is hot as it becomes adsorbent and should be cold and vice versa. The compensation of these temperatures causes heat losses, which decreases the coefficient of performance (COP).
Pour pallier cet inconvénient, on passe par une phase intermédiaire de courte durée (figure 4 ) au
cours de laquelle l'eau de refroidissement du circuit 19 de la cuve 4 passe également dans la cuve 3. Pour ce faire, on modifie les vannes 14 et 15 pour avoir un passage direct (par exemple par des vannes à quatre voies), de manière à ce que le fluide de refroidissement (l'eau) traverse les tuyauteries des deux échan-geurs 5 et 6 respectivement des deux cuves 3 et 4 comme indiqué par le circuit représenté en pointillés à la figure 4. Ainsi, le transfert d'une partie de la chaleur sensible d'une cuve à l'autre, atténue le délai pour, selon le cas, refroidir ou réchauffer la cuve. Cela augmente le coefficient de performance de 1 ' installation.To overcome this drawback, we go through an intermediate phase of short duration (Figure 4) during which the cooling water of the circuit 19 of the tank 4 also passes into the tank 3. To do this, the valves 14 and 15 are modified to have a direct passage (for example by four-way valves), so that the coolant (water) passes through the pipes of the two exchangers 5 and 6 respectively of the two tanks 3 and 4 as indicated by the circuit shown in dotted lines in Figure 4. Thus, the transfer of part of the sensible heat from one tank to the other reduces the delay for cooling or heating the tank, as the case may be. This increases the coefficient of performance of the installation.
Pendant la deuxième phase, le circuit de l'eau de chauffage va de la source de chaleur 1 jusqu'à la van;- ne 14 qui la renvoie dans l'échangeur 6 de la cuve 4 , de là arrive à la seconde vanne 15 et retourne à la source de chaleur 1.During the second phase, the heating water circuit goes from the heat source 1 to the van; - ne 14 which returns it to the exchanger 6 of the tank 4, from there arrives at the second valve 15 and returns to heat source 1.
Pendant ce temps, le circuit du fluide frigorigène va de la cuve 4, arrive à la vanne 17 qui l'envoie sur le condenseur 9, pénètre dans 1 ' évaporâteur 12, de là repasse sur la vanne 16 qui le renvoie en tête de la cuve 3.Meanwhile, the refrigerant circuit goes from the tank 4, arrives at the valve 17 which sends it to the condenser 9, enters the evaporator 12, from there returns to the valve 16 which returns it to the top of the tank 3.
En revanche, le circuit de refroidissement est alors établi dans la cuve 3, passe donc par la tuyauterie de l'échangeur 5 de cette cuve, arrive à la vanne 15» passe dans l'échangeur 20 et par la vanne 14 est renvoyé en tête de la cuve.On the other hand, the cooling circuit is then established in the tank 3, therefore passes through the piping of the exchanger 5 of this tank, arrives at the valve 15 "passes through the exchanger 20 and through the valve 14 is returned to the head of the tank.
Pendant le cycle, la masse de zéolithe est donc utilisée plusieurs fois dans la même journée et donc pour une puissance frigorifique donnée, la masse de zéolithe est beaucoup plus faible que dans un système intermittent.During the cycle, the mass of zeolite is therefore used several times in the same day and therefore for a given cooling capacity, the mass of zeolite is much lower than in an intermittent system.
Comme déjà dit, la figure 5 représente un échangeur d'un type tubulaire connu susceptible d'être utilisé
en 9 et 12. Ce condenseur se compose d'une arrivée de fluide frigorigène sous forme de vapeur 31 dans une enceinte cylindrique 32 d'où part une multitude de tuyauteries 33 disposées de part et d'autre du dessous de ce cylindre 32, lesdites tuyauteries 33 débouchant dans un second cylindre 34 où sont récupérés les condensats des vapeurs amenées en 31. Une tuyauterie 35 prélève le liquide formé et l'amène à un organe intermédiaire de stockage 36 avant de le renvoyer dans le circuit normal. Les tuyauteries verticales 33 sont décalées de manière à faciliter le passage de l'eau ou de l'air de refroidissement.As already said, FIG. 5 represents an exchanger of a known tubular type capable of being used at 9 and 12. This condenser consists of an inlet for refrigerant in the form of vapor 31 in a cylindrical enclosure 32 from which a multitude of pipes 33 arranged on either side of the underside of this cylinder 32 leave, said pipes 33 opening into a second cylinder 34 where the condensates of the vapors supplied at 31 are recovered. A pipe 35 takes the liquid formed and brings it to an intermediate storage member 36 before returning it to the normal circuit. The vertical pipes 33 are offset so as to facilitate the passage of water or cooling air.
Une telle installation présente de nombreux avantages par rapport aux solutions commercialisées à ce jour. On peut citer :Such an installation has many advantages over the solutions marketed to date. We can cite :
- possibilité de produire du' froid à la demande,- possibility of producing cold on demand,
- possibilité de produire du froid à partir d'un capteur solaire, même pendant la journée, c'est à dire pendant les heures où on en a le plus besoin, _ grâce à la phase intermédiaire de récupération de la chaleur et une utilisation optimum de la zéolithe, meilleur COP que le système intermittent,- possibility of producing cold from a solar collector, even during the day, that is to say during the hours when it is most needed, _ thanks to the intermediate phase of heat recovery and optimum use zeolite, better COP than the intermittent system,
- système relativement statique, donc investissement et entretien réduits et meilleure fiabilité. Outre les avantages considérables déjà cités par rapport au dispositif décrit dans le brevet américain 3,270,512 de NASA, cité dans le préambule, on peut ajouter également :- relatively static system, therefore reduced investment and maintenance and better reliability. In addition to the considerable advantages already mentioned compared to the device described in American patent 3,270,512 of NASA, cited in the preamble, one can also add:
- production de froid améliorée de moitié du fait de la phase intermédiaire,- cold production improved by half due to the intermediate phase,
- à puissance égale, réduction sensible de la quantité de composé adsorbant nécessaire.- at equal power, significant reduction in the amount of adsorbent compound required.
- utilisation au sol, sans exposition aux rayonnements directs du soleil, De la sorte, on peut utiliser ce type d' installa-
tion avec succès partout où l'on désire produire économiquement du froid, notamment pour la conservation et surtout pour la climatisation.
- use on the ground, without exposure to direct radiation from the sun. In this way, this type of installation can be used tion with success wherever you want to economically produce cold, especially for storage and especially for air conditioning.
Claims
1. Procédé de réfrigération dans lequel :1. A refrigeration process in which:
- on chauffe jusqu'à evaporation, un composé adsor bant , se présentant sous forme divisée, sur le- quel a été adsorbé un fluide frigorigène,an adsorberant compound, present in divided form, on which a refrigerant has been adsorbed, is heated until evaporation,
- on condense les vapeurs ainsi produites de fluide frigorigène et on stocke le liquide ainsi pro duit ,- the vapors thus produced of refrigerant are condensed and the liquid thus produced is stored,
- puis, on vaporise à nouveau ce liquide frigorigè ne et on adsorbe à nouveau sur le corps adsorbant les vapeurs ainsi détendues, de sorte que cette détente produise du froid,- then, this refrigerant is vaporized again and adsorbed again on the body adsorbing the vapors thus relaxed, so that this expansion produces cold,
- et dans lequel on opère, au moyen de deux cuves contenant le composé adsorbant, ces deux cuves travaillant respectivement et alternativement en desorption et en adsorption, caractérisé en ce que pendant le traitement, on refroidit la cuve travaillant en adsorption par passage d'un fluide réfrigérant à la fois sur le condenseur et sur ladite cuve.- And in which one operates, by means of two tanks containing the adsorbent compound, these two tanks working respectively and alternately in desorption and in adsorption, characterized in that during the treatment, the tank working in adsorption is cooled by passing a coolant both on the condenser and on said tank.
2. Procédé selon la revendication 1, caractérisé en ce que l'on inverse le cycle adsorption-désorption lorsque partie essentielle du composé adsorbant de la cuve désorbée est désorbé, c'est-à-dire lorsque chaque cuve est proche de son point d'équilibre.2. Method according to claim 1, characterized in that the adsorption-desorption cycle is reversed when the essential part of the adsorbent compound of the desorbed tank is desorbed, that is to say when each tank is close to its point d 'balanced.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que avant l'inversion du cycle, on égalise les températures entre les deux cuves.3. Method according to one of claims 1 and 2, characterized in that before the inversion of the cycle, the temperatures between the two tanks are equalized.
4 . Installation réfrigérante du type comportant : - une source de chaleur destinée à chauffer un fluide de chauffage,4. Refrigerating installation of the type comprising: - a heat source intended for heating a heating fluid,
- un composé solide adsorbant ayant une grande capacité d' adsorption et une faible énergie d' adsorption, - un fluide frigorigène adsorbé sur ledit composé solide adsorbant;- a solid adsorbent compound having a large adsorption capacity and a low adsorption energy, - a refrigerant adsorbed on said solid adsorbent compound;
- un condenseur destiné à liquéfier les vapeurs de fluide frigorigène produites sous l'effet de l' action du fluide de chauffage issu de la source de chaleur et traversant le composé adsorbant chargé de fluide frigorigène,- a condenser intended to liquefy the refrigerant vapors produced under the effect of the action of the heating fluid from the heat source and passing through the adsorbent compound charged with refrigerant,
- un évaporâteur destiné à vaporiser le liquide fri gorigène produit, - et deux cuves destinées à recevoir le composé adsorbant, lesdites cuves travaillant respectivement l'une en desorption, l'autre en adsorption, caractérisé en ce que lesdites cuves sont reliées d'une part entre elles et d'autre part, par un jeu de vannes et de tuyauteries à la fois, au condenseur et à l' évaporateur.- An evaporator intended to vaporize the fried liquid produced, - and two tanks intended to receive the adsorbent compound, said tanks working respectively one in desorption, the other in adsorption, characterized in that said tanks are connected by a part between them and on the other hand, by a set of valves and pipes at the same time, to the condenser and to the evaporator.
5. Installation selon la revendication 4 , caractérisée en ce qu'elle présente un moyen apte à commuter automatiquement les vannes reliant les cuves entre elles et au condenseur et à l' évaporateur.5. Installation according to claim 4, characterized in that it has a means capable of automatically switching the valves connecting the tanks to each other and to the condenser and to the evaporator.
6. Installation selon l'une des revendications 4 et 5 caractérisée en ce que l'échange thermique entre le composé adsorbant contenant le fluide frigorigène adsorbé et le fluide de chauffage s'effectue par passage de ce dernier dans une batterie de tuyauteries munie d'ailettes, ladite batterie étant placée dans la cuve et le composé adsorbant étant disposé contre le tube et entre les ailettes de façon à assurer le contact thermique. 6. Installation according to one of claims 4 and 5 characterized in that the heat exchange between the adsorbent compound containing the adsorbed refrigerant and the heating fluid is effected by passage of the latter in a battery of pipes provided with fins, said battery being placed in the tank and the adsorbent compound being placed against the tube and between the fins so as to ensure thermal contact.
7. Installation réfrigérante selon l'une des revendications 4 à 6, caractérisée en ce qu'elle comprend :7. Refrigerating installation according to one of claims 4 to 6, characterized in that it comprises:
- une source de chaleur destinée à chauffer un fluide de chauffage, - deux cuves reliées par un jeu de tuyauteries et de vannes à la source de chaleur contenant chacune :- a heat source intended to heat a heating fluid, - two tanks connected by a set of pipes and valves to the heat source each containing:
. un échangeur de température où circule ledit fluide de chauffage,. a temperature exchanger through which said heating fluid circulates,
. et un composé adsorbant destiné à adsorber un fluide frigorigène,. and an adsorbent compound intended to adsorb a refrigerant,
- un circuit de fluide frigorigène en dépression reliant chaque cuve : . tout d'abord à un premier échangeur thermique servant de condenseur pour le fluide frigorigè - ne , . ensuite, en série, à un second échangeur placé dans une cuve tampon destinée à stocker les fri - gories produites. - a vacuum refrigerant circuit connecting each tank:. first of all to a first heat exchanger serving as a condenser for the refrigerant,. then, in series, to a second exchanger placed in a buffer tank intended to store the produced frigories.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803049889 DE3049889A1 (en) | 1979-09-20 | 1980-09-19 | REFRIGERATION PROCESS AND DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7923872A FR2465970A1 (en) | 1979-09-20 | 1979-09-20 | METHOD AND DEVICE FOR REFRIGERATION IN THE PRESENCE OF A SOLID ADSORBENT SYSTEM |
FR7923872 | 1979-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1981000904A1 true WO1981000904A1 (en) | 1981-04-02 |
Family
ID=9230001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR1980/000139 WO1981000904A1 (en) | 1979-09-20 | 1980-09-19 | Refrigeration process and device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS56501330A (en) |
FR (1) | FR2465970A1 (en) |
WO (1) | WO1981000904A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0202662A1 (en) * | 1985-05-24 | 1986-11-26 | Ruhrgas Aktiengesellschaft | Process and apparatus for heat production |
EP0285651A1 (en) * | 1986-09-08 | 1988-10-12 | Samuel V Shelton | Dual solid adsorbent bed heat pump and method of operating such a heat pump. |
FR2619895A1 (en) * | 1987-08-28 | 1989-03-03 | Nishiyodo Air Conditioner | ADSORPTION REFRIGERATION SYSTEM |
FR2643704A1 (en) * | 1989-02-28 | 1990-08-31 | Nishiyodo Air Conditioner | METHOD OF IMPLEMENTING A REFRIGERATION APPARATUS BY ADSORPTION |
JP2014505854A (en) * | 2011-02-22 | 2014-03-06 | コール サステイナブル エナジー ソリューションズ ベー.フェー. | Adsorption compressor operating method and adsorption compressor used therefor |
CN112079407A (en) * | 2020-08-31 | 2020-12-15 | 李峰利 | Recovery purification treatment mechanism of organic matter waste liquid contains in industrial production |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2098623B (en) * | 1981-05-19 | 1985-02-27 | Exxon Research Engineering Co | Working fluid for heat pumps |
FR2539854A1 (en) * | 1983-04-22 | 1984-07-27 | Cetiat | ADSORPTION REFRIGERATION FACILITY ON SOLID ADSORBENT AND METHOD FOR ITS IMPLEMENTATION |
EP0158237B1 (en) * | 1984-04-07 | 1990-09-19 | Kali-Chemie Aktiengesellschaft | Process for using/storing energy |
DE3582224D1 (en) * | 1984-05-01 | 1991-04-25 | Tchernev Dimiter I | LOW HEAT SOURCE PUMP. |
FR2615602B1 (en) * | 1987-05-22 | 1989-08-04 | Faiveley Ets | PROCESS FOR PRODUCING COLD BY SOLID-GAS REACTION AND DEVICE RELATING THERETO |
FR2615601B1 (en) * | 1987-05-22 | 1989-11-10 | Faiveley Ets | DEVICE AND METHOD FOR PRODUCING COLD AND / OR HEAT BY SOLID-GAS REACTION |
FR2679632B1 (en) * | 1991-07-26 | 1997-12-12 | Faiveley Sa | INSTALLATION FOR PRODUCING COLD BY SOLID / GAS REACTION, THE REACTOR INCLUDING MEANS OF HEATING. |
AU9154691A (en) * | 1991-12-31 | 1993-07-28 | Tecnicas Empresariales Para La Comercializacion De Productos Ecologicos Y Medioambientales, S.L. (T.E.C.P.E.M.A.) | System and device for refrigeration by adsorption |
FR2701549A1 (en) * | 1993-02-12 | 1994-08-19 | Blaizat Claude | Rotating air-conditioner |
FR2704631B1 (en) * | 1993-04-27 | 1995-07-13 | Elf Aquitaine | REFRIGERATION AND HEATING DEVICE USING A SOLID SORBENT. |
CN113137780B (en) * | 2021-05-14 | 2022-11-18 | 上海理工大学 | Low-temperature refrigeration cold-storage system for efficiently utilizing solar energy |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB190905299A (en) * | 1908-03-05 | Potterat Henri | Improvements in Absorption Cold Producing Machines. | |
FR680894A (en) * | 1928-09-01 | 1930-05-07 | Gas Light & Coke Co | Improvements to refrigeration systems |
US1833901A (en) * | 1929-07-01 | 1931-12-01 | Frigidaire Corp | Refrigerating apparatus |
FR747191A (en) * | 1931-12-08 | 1933-06-12 | Siemens Ag | Device for heat transformation |
GB411522A (en) * | 1932-11-29 | 1934-06-08 | Siemens Ag | Improvements in or relating to absorption systems for cooling, heating and heat-exchange purposes |
US2024083A (en) * | 1931-11-21 | 1935-12-10 | Young Arthur Ephraim | Refrigeration system |
DE1800174A1 (en) * | 1968-07-15 | 1970-03-19 | G & E Zimmermann | Periodically working absorber cooling machine for refrigerated containers |
FR2377589A1 (en) * | 1977-01-17 | 1978-08-11 | Exxon France | HEAT PUMP |
US4138861A (en) * | 1977-03-24 | 1979-02-13 | Institute Of Gas Technology, A Nonprofit Corporation | Solid adsorption air conditioning apparatus and method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB385407A (en) * | 1931-11-21 | 1932-12-29 | Silica Gel Ltd | Improvements in or relating to refrigeration apparatus of the adsorption or absorption type |
-
1979
- 1979-09-20 FR FR7923872A patent/FR2465970A1/en active Granted
-
1980
- 1980-09-19 JP JP50214980A patent/JPS56501330A/ja active Pending
- 1980-09-19 WO PCT/FR1980/000139 patent/WO1981000904A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB190905299A (en) * | 1908-03-05 | Potterat Henri | Improvements in Absorption Cold Producing Machines. | |
FR680894A (en) * | 1928-09-01 | 1930-05-07 | Gas Light & Coke Co | Improvements to refrigeration systems |
US1833901A (en) * | 1929-07-01 | 1931-12-01 | Frigidaire Corp | Refrigerating apparatus |
US2024083A (en) * | 1931-11-21 | 1935-12-10 | Young Arthur Ephraim | Refrigeration system |
FR747191A (en) * | 1931-12-08 | 1933-06-12 | Siemens Ag | Device for heat transformation |
GB411522A (en) * | 1932-11-29 | 1934-06-08 | Siemens Ag | Improvements in or relating to absorption systems for cooling, heating and heat-exchange purposes |
DE1800174A1 (en) * | 1968-07-15 | 1970-03-19 | G & E Zimmermann | Periodically working absorber cooling machine for refrigerated containers |
FR2377589A1 (en) * | 1977-01-17 | 1978-08-11 | Exxon France | HEAT PUMP |
US4138861A (en) * | 1977-03-24 | 1979-02-13 | Institute Of Gas Technology, A Nonprofit Corporation | Solid adsorption air conditioning apparatus and method |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0202662A1 (en) * | 1985-05-24 | 1986-11-26 | Ruhrgas Aktiengesellschaft | Process and apparatus for heat production |
EP0285651A1 (en) * | 1986-09-08 | 1988-10-12 | Samuel V Shelton | Dual solid adsorbent bed heat pump and method of operating such a heat pump. |
EP0285651A4 (en) * | 1986-09-08 | 1989-01-26 | Samuel V Shelton | Dual solid adsorbent bed heat pump and method of operating such a heat pump. |
FR2619895A1 (en) * | 1987-08-28 | 1989-03-03 | Nishiyodo Air Conditioner | ADSORPTION REFRIGERATION SYSTEM |
FR2643704A1 (en) * | 1989-02-28 | 1990-08-31 | Nishiyodo Air Conditioner | METHOD OF IMPLEMENTING A REFRIGERATION APPARATUS BY ADSORPTION |
JP2014505854A (en) * | 2011-02-22 | 2014-03-06 | コール サステイナブル エナジー ソリューションズ ベー.フェー. | Adsorption compressor operating method and adsorption compressor used therefor |
US10132531B2 (en) | 2011-02-22 | 2018-11-20 | Cooll Sustainable Energy Solution B.V. | Method for operating an adsorption compressor and adsorption compressor for use in said method |
CN112079407A (en) * | 2020-08-31 | 2020-12-15 | 李峰利 | Recovery purification treatment mechanism of organic matter waste liquid contains in industrial production |
Also Published As
Publication number | Publication date |
---|---|
FR2465970A1 (en) | 1981-03-27 |
FR2465970B1 (en) | 1983-12-02 |
JPS56501330A (en) | 1981-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1981000904A1 (en) | Refrigeration process and device | |
EP0622593B1 (en) | Cooling and heating device using a solid sorbent | |
EP0124455B1 (en) | Thermodynamic process and installation for cooling or heating by adsorption onto a solid adsorbant | |
Liu et al. | Evaluation on performance of solar adsorption cooling of silica gel and SAPO-34 zeolite | |
US4187688A (en) | Solar powered intermittent cycle heat pump | |
Pons et al. | Design of an experimental solar-powered, solid-adsorption ice maker | |
Boubakri et al. | Experimental study of adsorptive solar-powered ice makers in Agadir (Morocco)—1. Performance in actual site | |
FR2641065A1 (en) | ||
Li et al. | A solar‐powered ice‐maker with the solid adsorption pair of activated carbon and methanol | |
FR2593588A1 (en) | REFRIGERATED MACHINE WITH ADSORPTION | |
FR2837430A1 (en) | Heat storage system for vehicle air conditioners, has adsorbent with adsorbing and desorbing medium and moisture is desorbed or adsorbed in adsorbents to heat cooling water | |
Zhenyan et al. | Zeolite-active carbon compound adsorbent and its use in adsorption solar cooling tube | |
Dawoud | A hybrid solar-assisted adsorption cooling unit for vaccine storage | |
WO1996009504A1 (en) | Thermal compressive device | |
JP3302859B2 (en) | Method for forming refrigeration cycle of solar thermal adsorption regenerative refrigeration system | |
FR2495497A1 (en) | COMBINED ABSORPTION AND ADSORPTION PROCESS AND APPARATUS FOR ITS IMPLEMENTATION | |
EP0425368A1 (en) | Devices for producing cold and/or heat by solid-gas reaction, managed by gravitational heat pipes | |
EP0091382A1 (en) | Adsorption refrigeration process and apparatus | |
Meunier | Sorption solar cooling | |
WO1994002790A1 (en) | Device for indirect cold generation for a refrigerating machine | |
CA2207668C (en) | Process for managing a thermochemical reaction or a solid-gas absorption | |
Kreussler et al. | Experiments on solar adsorption refrigeration using zeolite and water | |
JPH11117713A (en) | Chemical heat-accumulating type intake air cooling device | |
Sumathy | An energy efficient solar ice-maker | |
JP2005069536A (en) | Waste heat recovery type adsorption type freezer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): DE JP US |
|
RET | De translation (de og part 6b) |
Ref document number: 3049889 Country of ref document: DE Date of ref document: 19820304 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3049889 Country of ref document: DE |