JP3302859B2 - Method for forming refrigeration cycle of solar thermal adsorption regenerative refrigeration system - Google Patents

Method for forming refrigeration cycle of solar thermal adsorption regenerative refrigeration system

Info

Publication number
JP3302859B2
JP3302859B2 JP12955895A JP12955895A JP3302859B2 JP 3302859 B2 JP3302859 B2 JP 3302859B2 JP 12955895 A JP12955895 A JP 12955895A JP 12955895 A JP12955895 A JP 12955895A JP 3302859 B2 JP3302859 B2 JP 3302859B2
Authority
JP
Japan
Prior art keywords
adsorption
heat
adsorbent
refrigerant
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12955895A
Other languages
Japanese (ja)
Other versions
JPH08303901A (en
Inventor
博之 山口
勇人 成底
秀治 柳
修 伊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP12955895A priority Critical patent/JP3302859B2/en
Publication of JPH08303901A publication Critical patent/JPH08303901A/en
Application granted granted Critical
Publication of JP3302859B2 publication Critical patent/JP3302859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、吸着冷凍装置より低い
熱源温度領域で作動する吸着式冷凍装置に関し、特に太
陽熱利用吸着式蓄熱型冷凍装置の冷凍サイクル形成方法
に関する発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption refrigeration apparatus which operates in a heat source temperature range lower than that of an adsorption refrigeration apparatus, and more particularly to a method for forming a refrigeration cycle of a solar heat adsorption refrigeration apparatus.

【0002】[0002]

【従来の技術】近年、吸収式冷凍装置より低い熱源温度
領域(略60〜75℃)で作動する吸着式冷凍装置の開
発が行なわれている。
2. Description of the Related Art In recent years, an adsorption refrigeration system which operates in a heat source temperature region (about 60 to 75 ° C.) lower than that of an absorption refrigeration system has been developed.

【0003】例えば、小さなスペースで効率よく蓄熱で
きる装置として真空容器内に吸着剤と、該吸着剤を加熱
冷却する伝熱面及び冷媒と該冷媒を凝縮、蒸発させる伝
熱面を収容するようにした吸着式蓄熱装置に関する提案
が特開平3ー91660号公報に開示されている。
For example, an adsorbent, a heat transfer surface for heating and cooling the adsorbent, a refrigerant and a heat transfer surface for condensing and evaporating the refrigerant are housed in a vacuum vessel as a device capable of efficiently storing heat in a small space. A proposal regarding the adsorption type heat storage device described above is disclosed in Japanese Patent Application Laid-Open No. 3-91660.

【0004】また、最近は上記発明の改良案として、上
記吸着式蓄熱装置での冷房、暖房及び蓄熱運転の開始、
停止とともに、一度蓄熱したものを容易に保持できるよ
うにした提案が特開平5ー272832号公報に開示さ
れている。
[0004] Recently, as an improvement of the above invention, the cooling, heating and heat storage operations of the adsorption type heat storage device have been started.
Japanese Patent Application Laid-Open No. 5-272832 discloses a proposal in which the heat stored once can be easily held together with the stop.

【0005】また、ゼオライト/水系の吸着式冷凍装置
の試験及び蓄熱器(250KWh)の試験では、取出し
温度60℃(80℃)で加熱COP=(1.4)1.3
を得、また、ゼオライト/水系及び活性炭/メタノール
系の冷凍装置単体としての試験、また両系を組み合わせ
たカスケード方式冷凍装置の試験を行い、冷凍能力2.
35KW、蒸発温度2℃での冷凍COP=0.9の想定
結果が得られ、また、ゼオライト/アンモニア系を使用
したガス焚き吸着式冷凍装置の試験で、加熱COP=
1.6、冷凍COP=0.6が得られている。最近で
は、吸着系に活性炭/アンモニア系を使用し、冷凍能力
10KWで冷凍COP>0.7を得たと言う報告がなさ
れている。
In a test of a zeolite / water adsorption type refrigerating apparatus and a test of a regenerator (250 KWh), heating COP = (1.4) 1.3 at an extraction temperature of 60 ° C. (80 ° C.).
, And a test of a zeolite / water-based and activated carbon / methanol-based refrigeration system alone, and a cascade-type refrigeration system combining both systems were performed.
Assumed result of a frozen COP of 0.9 at 35 KW and an evaporation temperature of 2 ° C. was 0.9. In addition, in a test of a gas-fired adsorption refrigeration system using a zeolite / ammonia system, a heating COP =
1.6 and a frozen COP of 0.6 were obtained. Recently, it has been reported that an activated carbon / ammonia system was used as an adsorption system, and a refrigeration COP> 0.7 was obtained at a refrigeration capacity of 10 KW.

【0006】また、現在商品化された吸着式冷凍装置に
は、シリカゲル/水系を用い且つ工場廃熱を熱源とした
冷凍能力100RTまでの吸着式冷凍装置や、ゼオライ
ト/水系を用いた冷凍能力30RTの吸着式冷凍装置が
ある。
[0006] Adsorption refrigeration systems currently commercialized include an adsorption refrigeration system using a silica gel / water system and a refrigeration capacity of up to 100 RT using factory waste heat as a heat source, and a refrigeration capacity of 30 RT using a zeolite / water system. Adsorption refrigeration equipment.

【0007】一方、近年における冷房装置の普及は目覚
ましいものがあり、夏期一時期に発生する電力ピークの
一原因となっている。電力平準化の点からみると、特
に、沖縄県にあっては昼夜に亙って2つの消費電力のピ
ークが存在し、このピークの回避が重要な課題になって
いる。即ち、15時台を中心とした12〜17時の5時
間及び21時を中心とした19〜23時の4時間の冷房
需要を電力に頼らず、他のエネルギー源で処理すること
が要求されている。
[0007] On the other hand, the spread of cooling devices in recent years has been remarkable, and is one of the causes of power peaks that occur during the summer. From the viewpoint of power leveling, especially in Okinawa Prefecture, there are two peaks in power consumption over the day and night, and avoiding these peaks has become an important issue. That is, it is required that the cooling demand of 5 hours from 12:00 to 17:00 around the 15:00 level and 4 hours from 19:00 to 23:00 around 21:00 should be processed by another energy source without relying on electric power. ing.

【0008】[0008]

【発明が解決しようとする課題】上記消費電力のピーク
を回避する手段として現在実用化されているものは、揚
水発電と蓄熱式空調システムしかなく、蓄熱式空調シス
テムの普及は電力会社にとって重要な課題となってい
る。
The only means currently in practical use to avoid the above-mentioned peak power consumption are pumped-storage power generation and regenerative air conditioning systems. The spread of regenerative air conditioning systems is important for electric power companies. It has become a challenge.

【0009】また、吸着式冷凍装置は、地球温暖化現象
やオゾン層破壊等の環境問題の顕在化により、「脱フロ
ン」、「脱炭酸ガス」に加えて無公害性、安全性が高い
ことから廃熱回収システムとして注目を浴びている。一
方太陽熱に恵まれている地域ではこのエネルギーを冷房
の駆動源とするシステムが有効と考えられ、特に昼間太
陽熱を利用し、固体吸着剤を用いた家屋の蓄熱冷房を行
い、昼間のピーク電力カットに寄与する吸着式蓄熱型冷
房器の開発が強く望まれている。
In addition, due to the emergence of environmental problems such as global warming and depletion of the ozone layer, the adsorptive refrigeration system has high pollution-free and high safety in addition to "defluorocarbon" and "decarbonation gas". Has attracted attention as a waste heat recovery system. On the other hand, a system using this energy as a driving source for cooling is considered to be effective in areas that are blessed with solar heat.In particular, using solar heat during the day, heat storage and cooling of houses using solid adsorbents are used to cut peak power during the day. There is a strong demand for the development of an adsorption-type regenerative cooler that contributes.

【0010】しかしながら、上記従来の吸着式冷凍装置
には、成績係数COPの値も小さく熱効率的にはいまだ
しの状態にある。
However, the conventional adsorption refrigeration system described above has a small coefficient of performance COP and is still thermally efficient.

【0011】本発明は上記問題点に鑑みなされたもの
で、昼間太陽熱を利用し、固体吸着剤を用いた蓄熱冷房
を行い、ピーク電力カットに寄与するとともに熱効率的
にも他のヒートポンプその他の冷凍装置に比し遜色の無
い、太陽熱利用吸着式蓄熱型冷凍装置の冷凍サイクル形
成方法の提供を目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and uses daytime solar heat to perform heat storage and cooling using a solid adsorbent, thereby contributing to a reduction in peak power and improving heat efficiency in other heat pumps and other refrigeration systems. It is an object of the present invention to provide a method for forming a refrigeration cycle of a solar-heat-adsorption-type regenerative refrigeration apparatus which is comparable to the apparatus.

【0012】[0012]

【課題を解決するための手段】上記目的の達成のために
は、太陽熱の集熱部から得られる60℃以上の温水、具
体的には、75℃前後の温水を利用し蓄熱型冷房システ
ムを構築する必要がある。即ち、太陽熱エネルギーの集
熱及び供給システムの確立と熱効率及び蓄熱密度の高い
吸着式蓄熱型反応器の用意等の手段の確立が必要であ
る。そのため、本発明に対しては、再生時には太陽熱を
効率よく集熱して内蔵する吸着剤を加熱すべく用意され
た60℃以上の温水を有効に利用した温度スイング(T
SA)及び圧力スイング方式(PSA)とを併用したT
PSA方式による再生方式の採用により蓄熱効率の高い
冷凍サイクルを確立するとともに、吸着時には冷媒蒸気
の吸着による発熱を押さえるべく用意された冷却水がそ
れぞれ切り換え供給されるようにするとともに、その流
量の加減により効率良く冷凍出力を加減できるサーマル
ウエーブ伝播方式を採用するようにした。
In order to achieve the above object, a regenerative cooling system using hot water of 60 ° C. or higher, specifically, hot water of about 75 ° C., obtained from a solar heat collecting section is used. Need to build. That is, it is necessary to establish a system for collecting and supplying solar thermal energy and to prepare means for preparing an adsorption-type thermal storage reactor having high thermal efficiency and high thermal storage density. Therefore, according to the present invention, a temperature swing (T) effectively utilizing hot water of 60 ° C. or higher prepared for efficiently collecting solar heat and heating the built-in adsorbent during regeneration is provided.
SA) and T using pressure swing method (PSA)
A refrigeration cycle with high heat storage efficiency is established by adopting a regeneration method based on the PSA method. At the time of adsorption, cooling water prepared to suppress heat generated by adsorption of refrigerant vapor is switched and supplied, and the flow rate is adjusted. Therefore, a thermal wave propagation method that can increase and decrease the refrigeration output more efficiently is adopted.

【0013】また、シリカゲル/水系の採用により、比
較的高い冷熱蓄熱密度40〜50Kcal/Kgが得ら
れるようにした。また、吸着反応器と蒸発器との間に設
けた連結路には、吸着工程時以外は遮断できる蓄熱用の
蒸気バルブにより再生状態を維持できるようにした。こ
れにより再生工程後、吸着工程に移行するまでの間前記
蒸気バルブを閉じておく事により昼間若しくは夜間の冷
房需要時に電力に頼らず冷房運転を行う事が出来る。
Further, by adopting a silica gel / water system, a relatively high cold heat storage density of 40 to 50 Kcal / Kg can be obtained. In addition, a regeneration state can be maintained in a connection path provided between the adsorption reactor and the evaporator by a heat storage steam valve that can be shut off except during the adsorption step. Thus, by closing the steam valve after the regeneration process until the process shifts to the adsorption process, the cooling operation can be performed without relying on electric power at the time of daytime or nighttime cooling demand.

【0014】即ち、本発明は、吸着剤を充填して冷媒の
吸着及び再生をする吸着反応器と、再生時には前記吸着
剤の加熱により吸着剤より脱着した冷媒蒸気を凝縮器を
経由して冷媒液として貯蔵し吸着時には前記冷媒液を自
己蒸発させる蒸発器と、冷媒液の自己蒸発により発生す
る冷熱に対し冷熱負荷を形成する熱交換器とからなる吸
着式蓄熱型冷凍装置において、再生時に吸着反応器に内
蔵する吸着剤より冷媒を脱着させる加熱温水生成用の太
陽熱集熱器と、吸着剤より脱着した冷媒蒸気を排気する
真空ポンプと、前記脱着した冷媒蒸気を凝縮する凝縮器
とを設け、前記集熱器より反応器への温水供給と真空ポ
ンプの吸引量を適宜変化させて、好ましくは温度スイン
グと圧力スイング方式とを併用して吸着剤の再生を行う
再生工程と、吸着時に吸着剤の発熱を押さえる冷却水生
成用のラジエータその他の熱交換手段と、吸着反応器と
蒸発器との間に介装され、吸着時に蒸発器内の冷媒液に
自己蒸発作用を誘起させる蒸気バルブとを設け、前記再
生工程終了後前記蒸気バルブの遮断状態の継続により蓄
熱状態を維持した後、吸着工程時に該蒸気バルブを開放
して冷媒蒸気を蒸発器より反応器側に導き、該冷媒蒸気
の吸着による発熱をラジエータその他の熱交換手段より
の冷却水で押さえながら吸着を行う吸着工程とを備え、
前記蓄熱状態を挟んで前記再生工程と前記吸着工程との
交互繰り返しにより冷凍サイクル系を形成したことを特
徴とするものである。
That is, the present invention provides an adsorption reactor for charging and adsorbing a refrigerant by filling an adsorbent and a refrigerant vapor desorbed from the adsorbent by heating the adsorbent at the time of regeneration via a condenser. An adsorption-type heat storage refrigeration system comprising an evaporator that stores the liquid as a liquid and self-evaporates the refrigerant liquid at the time of adsorption, and a heat exchanger that forms a cold load against the cold generated by the self-evaporation of the refrigerant liquid. A solar heat collector for generating heated hot water for desorbing the refrigerant from the adsorbent incorporated in the reactor, a vacuum pump for exhausting the refrigerant vapor desorbed from the adsorbent, and a condenser for condensing the desorbed refrigerant vapor are provided. A regeneration step of regenerating the adsorbent by preferably changing the amount of hot water supplied from the heat collector to the reactor and the suction amount of the vacuum pump, preferably using a temperature swing and a pressure swing method together; A radiator or other heat exchange means for generating cooling water that suppresses heat generation of the adsorbent, and steam that is interposed between the adsorption reactor and the evaporator and induces a self-evaporation action in the refrigerant liquid in the evaporator during adsorption After the regeneration step, after maintaining the heat storage state by continuing the shut-off state of the steam valve, during the adsorption step, the steam valve is opened to guide the refrigerant vapor from the evaporator to the reactor side, An adsorption step of performing adsorption while suppressing heat generated by adsorption of steam with cooling water from a radiator or other heat exchange means,
A refrigeration cycle system is formed by alternately repeating the regeneration step and the adsorption step with the heat storage state interposed therebetween.

【0015】この場合、太陽熱の熱変動を防ぐために、
前記脱着用加熱温水の生成を、太陽熱集熱器とともに併
設した廃熱等を使用した補助熱源、または夜間に使用す
る電力ヒータにより行うようにした。また、好ましくは
前記吸着反応器は複数基を備えて再生工程と吸着工程を
並行して行うようにするのがよい。また、前記吸着剤/
冷媒系はシリカゲル/水系より構成した。更に前記蒸発
器はスプレイノズルからのシャワリングを行なって、蒸
発面積を大きくすることにより、蒸発層厚さを薄くし必
要な蒸発速度が得られるようにするのがよい。又前記再
生工程及び吸着工程はサーマルウエーブ伝播方式を採る
のがよい。この結果本発明においては、前記再生工程終
了後前記蒸気バルブの閉の状態を維持して再生工程によ
り生成した熱エネルギーの蓄熱を行った後、電力ピーク
時に前記蒸気バルブを開いて吸着工程を行う事が出来、
ピーク電力カットに有効に寄与する。
In this case, in order to prevent heat fluctuation of the solar heat,
The generation of the hot water for desorption is performed by an auxiliary heat source using waste heat or the like provided together with the solar heat collector or an electric heater used at night. Preferably, the adsorption reactor is provided with a plurality of units, and the regeneration step and the adsorption step are performed in parallel. The adsorbent /
The refrigerant system was composed of a silica gel / water system. Further, it is preferable that the evaporator performs showering from the spray nozzle to increase the evaporation area, thereby reducing the thickness of the evaporation layer so that a required evaporation rate can be obtained. It is preferable that the regeneration step and the adsorption step employ a thermal wave propagation method. As a result, in the present invention, after the end of the regeneration step, the steam valve is kept closed to store heat energy of the heat energy generated in the regeneration step, and then, at the time of peak power, the vapor valve is opened to perform the adsorption step. I can do things,
It effectively contributes to peak power cut.

【0016】[0016]

【作用】かかる技術手段によれば、蓄熱状態を挟んだ再
生工程と吸着工程とにより冷凍サイクルを形成して特に
太陽熱利用のTPSA方式による再生を利用した冷房を
行なう事が出来る。即ち、冷房需要がピークに達しない
時間帯に再生工程を行い、即ち該再生工程は、集熱器に
より得られた60℃以上の温水の反応器への温水供給量
を変化させて例えば吸着剤の再生温度を40℃より60
℃以上にスイングさせる。これにより内蔵された吸着剤
より脱着を始めた冷媒蒸気は例えば図2に示すように、
Pe→Pg(加熱工程)に上昇し、次に真空ポンプの吸
引量をPg→4.6Torr(冷却工程)間で変化させて前
記反応器の温度スイング方式と圧力スイング方式とを併
用した再生を行い、反応器より排出された冷媒蒸気は凝
縮器を経由して蒸発器に冷媒液として貯蔵され、温度ス
イングと圧力スイング併用のTPSA方式の再生をす
る。尚、夏の晴天時の様に太陽熱が豊富に利用できる場
合は、b’まで温度再生を行ないその後減圧再生により
c’まで再生を行なえば、冷媒循環量を増すことも可能
である。
According to the above technical means, the refrigerating cycle is formed by the regeneration step and the adsorption step sandwiching the heat storage state, and the cooling using the regeneration by the TPSA method utilizing solar heat can be performed. That is, the regeneration step is performed during a time period when the cooling demand does not reach a peak, that is, the regeneration step is performed by changing the amount of hot water supplied to the reactor of the hot water of 60 ° C. or more obtained by the heat collector to the adsorbent. Regeneration temperature from 40 ° C to 60
Swing above ℃. Thus, the refrigerant vapor that has started to desorb from the built-in adsorbent, for example, as shown in FIG.
The temperature rises from Pe to Pg (heating step), and then the amount of suction of the vacuum pump is changed between Pg and 4.6 Torr (cooling step) to regenerate the reactor using both the temperature swing method and the pressure swing method. Then, the refrigerant vapor discharged from the reactor is stored as a refrigerant liquid in the evaporator via the condenser, and the TPSA regeneration using both the temperature swing and the pressure swing is performed. If the solar heat can be utilized abundantly as in the case of fine weather in summer, it is possible to increase the amount of the circulating refrigerant by regenerating the temperature to b 'and then regenerating to c' by decompression.

【0017】ついで、前記吸着剤の再生が終了した後、
電力需要がピークに達するまでの間、前記蒸気バルブを
閉じた状態を維持して、再生エネルギの貯蔵を行う。そ
して電力需要ピーク時には吸着工程を行うために、前記
蒸気バルブを開き、減圧された吸着反応器と冷媒液を貯
蔵した蒸発器とを結ぶ蓄熱用の蒸気バルブよりの冷媒蒸
気の吸着による発熱をラジエータその他の熱交換手段よ
りの冷却水で押さえながら好ましくはサーマルウエーブ
伝播方式による吸着を行えば、蒸発器の冷媒液は自己蒸
発作用を誘起し冷熱を発生するとともに、発生した冷媒
蒸気は前記バルブを介して冷却水により冷却中の吸着剤
に吸着される。そして前記冷熱により自ら冷やされた冷
媒液(冷水)は直接熱交換器に送られ冷房を行なう。
After the regeneration of the adsorbent is completed,
Until the power demand reaches a peak, the steam valve is kept closed to store renewable energy. Then, in order to perform the adsorption step at peak power demand, the steam valve is opened, and the heat generated by the adsorption of the refrigerant vapor from the heat storage vapor valve connecting the depressurized adsorption reactor and the evaporator storing the refrigerant liquid is radiator. If the adsorption is preferably performed by the thermal wave propagation method while holding the cooling water from other heat exchange means, the refrigerant liquid of the evaporator induces a self-evaporation action to generate cold heat, and the generated refrigerant vapor passes through the valve. The adsorbent is adsorbed by the cooling water through the cooling water. The refrigerant liquid (cold water) cooled by the cold heat is directly sent to the heat exchanger to perform cooling.

【0018】この時吸着剤に発生する吸着熱は、ラジエ
ータその他の熱交換手段を介して前記温水に代わり冷却
水を反応器内の熱交換コイルを介して吸着剤と接触さ
せ、該冷却水により冷却除去される。尚、前記温水若し
くは冷却水の吸着剤の吸熱/放熱は、充填吸着剤若しく
は吸着剤モジュール内を循環する熱交換コイルにより行
われるが、これのみに限定されず、前記反応容器を外被
する水冷(温水)ジャケットにより行ってもよい。
At this time, the heat of adsorption generated in the adsorbent is brought into contact with the adsorbent through a heat exchange coil in the reactor instead of the warm water via a radiator or other heat exchange means, and It is removed by cooling. The heat absorption / radiation of the adsorbent of the hot water or the cooling water is performed by a heat exchange coil circulating in the filled adsorbent or the adsorbent module, but is not limited thereto. (Hot water) may be performed by a jacket.

【0019】[0019]

【実施例】以下、図面を参照して本発明の好適な実施例
を例示的に詳しく説明する。ただし、この実施例に記載
されている構成部品の寸法、形状、その相対的位置等は
特に特定的な記載がないかぎりは、この発明の範囲をそ
れに限定する趣旨ではなく、単なる説明例にすぎない。
図1は本発明の実施例にかかる太陽熱利用吸着式蓄熱型
冷凍装置の概略図で、図2は図1による冷凍サイクルを
示すグラフ図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be illustratively described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, shapes, relative positions, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
FIG. 1 is a schematic view of a solar-heat-adsorption type thermal storage refrigeration apparatus according to an embodiment of the present invention, and FIG. 2 is a graph showing a refrigeration cycle according to FIG.

【0020】図1に示すように、本装置は吸着剤11を
内蔵し冷媒の吸着再生をする吸着反応器10と、再生時
凝縮器19を介して凝縮された冷媒液13を貯蔵して吸
着時には前記冷媒液13に自己蒸発を誘起させる蒸発器
12と、前記蒸発器12内で自己蒸発により発生する冷
熱により降温された冷媒液13(冷水)、負荷ポンプ2
2により循環させて冷房を行なわせる冷熱負荷を形成す
るファンコイル15とで主構成を形成する。又前記反応
容器10には温水(再生時)若しくは冷却水が循環して
吸着剤との熱交換を行う熱交換コイル10aが内包され
ている。
As shown in FIG. 1, the present apparatus incorporates an adsorbent 11 for adsorbing and regenerating a refrigerant, and stores and adsorbs a refrigerant liquid 13 condensed via a condenser 19 during regeneration. Occasionally, the evaporator 12 induces self-evaporation in the refrigerant liquid 13, the refrigerant liquid 13 (cold water) cooled by cold generated by self-evaporation in the evaporator 12, the load pump 2
A main configuration is formed by the fan coil 15 which forms a cooling load for circulating by the cooling air 2 and performing cooling. The reaction vessel 10 includes a heat exchange coil 10a for circulating warm water (during regeneration) or cooling water to exchange heat with the adsorbent.

【0021】一方再生工程時の主要構成として、加熱温
水生成用の太陽熱集熱器16と、該集熱器16で生成し
た加熱温水を反応器10内の加熱コイル10aに循環さ
せて吸着剤を加熱して冷媒を脱着させる循環ポンプ17
と、真空ポンプ18を介して前記脱着した冷媒蒸気を吸
引して冷却水との熱交換により凝縮させる凝縮器19と
を設け、後記する温度スイングと圧力スイングとを併用
した構成とする。尚、前記真空ポンプ18は冷媒(水)
中へのオイルミストの混入を避けるために、オイルフリ
ー式のポンプ、例えばダイアフラム式ポンプで構成す
る。又前記循環ポンプ17は管路28中に設けた温度検
知センサTよりの検知信号に基づいて集熱器16より供
給される加熱温水の供給量の制御を行い、熱交換コイル
10aを介して加熱温水と吸着剤と熱交換して、反応器
10内の吸着剤温度を40℃より60℃以上に温度上昇
可能に構成する。
On the other hand, as a main configuration at the time of the regeneration step, a solar heat collector 16 for generating heated hot water and the heated hot water generated by the heat collector 16 are circulated through a heating coil 10 a in the reactor 10 to remove the adsorbent. Circulation pump 17 for heating and desorbing refrigerant
And a condenser 19 for sucking the desorbed refrigerant vapor through the vacuum pump 18 and condensing it by heat exchange with the cooling water, so that a temperature swing and a pressure swing described later are used in combination. The vacuum pump 18 is provided with a refrigerant (water).
In order to prevent oil mist from entering the inside, an oil-free pump, for example, a diaphragm pump is used. The circulation pump 17 controls the supply amount of the heated hot water supplied from the heat collector 16 based on the detection signal from the temperature detection sensor T provided in the pipe 28, and heats the heat via the heat exchange coil 10a. Heat exchange is performed between the hot water and the adsorbent so that the temperature of the adsorbent in the reactor 10 can be raised from 40 ° C. to 60 ° C. or more.

【0022】又前記装置の吸着工程側の主要構成とし
て、吸着工程時に作動し、該吸着工程時に吸着剤の発生
熱を押さえるべく前記循環ポンプ17により管路25及
び熱交換コイル10aを介して吸着剤を冷却する冷却水
を生成させるラジエータ21と、蒸発器12と吸着反応
器10とを吸着時に連結して蒸発器12内の冷媒液13
に自己蒸発を誘起させる蒸気バルブ14とを設け、前記
再生工程終了後前記蒸気バルブ14の遮断状態の継続に
より蓄熱状態を維持した後、吸着工程時に該蒸気バルブ
14を開放して冷媒蒸気を蒸発器12より反応器側に導
き、該冷媒蒸気の吸着による発熱をラジエータその他の
熱交換手段よりの冷却水で押さえながら吸着を行うよう
にしている。また吸着工程時の冷熱取り出し制御はサー
マルウェーブ伝幡方式とし、循環ポンプ17の回転数制
御により流量を調整することにより行う。
The main structure of the apparatus on the adsorption step side is that it operates during the adsorption step, and the circulating pump 17 adsorbs through the pipe 25 and the heat exchange coil 10a in order to suppress the heat generated by the adsorbent during the adsorption step. A radiator 21 for generating cooling water for cooling the agent, and an evaporator 12 and an adsorption reactor 10 are connected at the time of adsorption to form a refrigerant liquid 13 in the evaporator 12.
A steam valve 14 for inducing self-evaporation is provided, and after the regeneration step is completed, the heat storage state is maintained by continuing the shut-off state of the steam valve 14, and then the steam valve 14 is opened during the adsorption step to evaporate the refrigerant vapor. The adsorption is performed while the heat generated by the adsorption of the refrigerant vapor is suppressed by cooling water from a radiator or other heat exchange means. In addition, the control of taking out cold heat during the adsorption step is performed by a thermal wave propagation method, and the flow rate is adjusted by controlling the number of revolutions of the circulation pump 17.

【0023】前記集熱器16と反応器10間を結ぶ管路
24、管路27及び前記管路27を分岐させてラジエー
タ間を結ぶ管路25には夫々開閉弁26,27を設け、
再生工程時には弁26を閉じ且つ集熱器16側の弁27
を開放して前記ポンプ17を介して加熱温水を吸着剤に
供給可能に、又吸着工程時には吸着剤の発生熱を押さえ
るべく前記弁27を閉じ弁26を開放してしてポンプ1
7を介してラジエータ21にて吸着剤に供給する冷却水
を生成させている。尚、30は凝縮器19で冷却後の冷
却水を蒸発器12に戻す弁である。なお、吸着反応器1
0には、廃熱または夜間電力ヒータその他の補助熱源2
9を設け、太陽熱のみによる集熱困難な場合に前記集熱
器16と併用して若しくは集熱器16に代えて使用でき
るようにしてある。
On-off valves 26 and 27 are provided in a pipe 24, a pipe 27 connecting the collector 16 and the reactor 10, and a pipe 25 branching the pipe 27 and connecting the radiators, respectively.
During the regeneration step, the valve 26 is closed and the valve 27 on the heat collector 16 side is closed.
Is opened to supply heated hot water to the adsorbent via the pump 17, and the valve 27 is closed and the valve 26 is opened to suppress the heat generated by the adsorbent during the adsorption step.
The radiator 21 generates cooling water to be supplied to the adsorbent through the radiator 7. Reference numeral 30 denotes a valve for returning the cooling water cooled by the condenser 19 to the evaporator 12. The adsorption reactor 1
0 is waste heat or night power heater or other auxiliary heat source 2
9 is provided so that it can be used in combination with the heat collector 16 or in place of the heat collector 16 when heat collection by solar heat alone is difficult.

【0024】吸着反応器10の構造は図4に示すよう
に、シリカゲルを用いた吸着モジュール100を板状に
形成するとともに、該板状モジュール100を垂直に立
設させた状態で長手方向にそって延在させ、そして該延
在させた板状モジュール100を5枚、所定空隙を介し
て反応器10内に平行に並設することにより冷媒の圧損
をなくする構成とする。
As shown in FIG. 4, the structure of the adsorption reactor 10 is such that an adsorption module 100 using silica gel is formed in a plate shape, and the plate module 100 is vertically erected in a state of being vertically erected. The pressure loss of the refrigerant is eliminated by arranging the five extended plate-shaped modules 100 in parallel in the reactor 10 with a predetermined gap therebetween.

【0025】又前記モジュール100には熱交換コイル
10aが巻回されており、太陽熱集熱器16若しくはラ
ジエータよりの温水若しくは冷却水を前記熱交換コイル
10aを介して吸着剤と熱接触可能に構成されている。
なお前記熱交換コイル10aは各モジュール100に巻
回可能に分岐管24aを介して管路24を介して太陽熱
集熱器16若しくはラジエータ側の管路28、25と接
続されている。
A heat exchange coil 10a is wound around the module 100 so that hot water or cooling water from the solar heat collector 16 or the radiator can be brought into thermal contact with the adsorbent through the heat exchange coil 10a. Have been.
The heat exchange coil 10a is connected to the solar heat collector 16 or the pipes 28 and 25 on the radiator side via a pipe 24 via a branch pipe 24a so as to be wound around each module 100.

【0026】一方前記反応器10の冷媒導入口10bは
前記板モジュール100の延在方向に短手側側壁に開口
し、サーマルウエーブの形成の容易化を図るとともに蒸
気バルブ14を介して蒸発器12と接続されている。
(図1参照) 又前記熱交換コイル10aもその入口側10a1 を冷媒
導入口10bの反応容器上面側に設け、板モジュール1
00の延在方向に沿って巻回し、その出口側10b1
冷媒導入口反対側の反応容器上面側より導出させてお
り、これによってもサーマルウエーブの形成の容易化を
図る。又真空ポンプ18の吸引口18aは前記入口開口
反対側の反応器上面側に設け、板モジュール100の延
在方向に冷媒が流れるように構成するとともに、該ポン
プ14にオイルフリー真空ポンプを用いるのがよい。前
記板状モジュール100には図3に示すように温度セン
サTが長手方向に沿って直線状に取付けられ、サーマル
ウエーブの検知の容易化を図る。
On the other hand, the refrigerant inlet 10b of the reactor 10 is opened on the short side wall in the direction in which the plate module 100 extends to facilitate the formation of a thermal wave and to form the evaporator 12 via the steam valve 14. Is connected to
(See FIG. 1) also the heat exchange coil 10a also provided the inlet side 10a 1 into the reaction vessel upper surface side of the coolant inlet port 10b, a plate module 1
Turn 00 wound along the extending direction of the and the outlet side 10b 1 is derived from the reaction vessel upper surface side of the coolant inlet port opposite, facilitated the formation of a thermal wave also thereby. The suction port 18a of the vacuum pump 18 is provided on the upper surface side of the reactor opposite to the inlet opening so that the refrigerant flows in the direction in which the plate module 100 extends, and an oil-free vacuum pump is used as the pump 14. Is good. As shown in FIG. 3, a temperature sensor T is linearly attached to the plate-shaped module 100 along the longitudinal direction to facilitate the detection of a thermal wave.

【0027】凝縮器19はシェル&チューブ型の熱交換
器を採用し、蒸発器12はスプレイノズル13Aからの
シャワリングを行なって、蒸発面積を大きく、蒸発層厚
さを薄くし、必要な蒸発速度が得られるようにした。
The condenser 19 employs a shell-and-tube type heat exchanger, and the evaporator 12 performs showering from the spray nozzle 13A to increase the evaporation area, reduce the thickness of the evaporation layer, and perform necessary evaporation. Speed was obtained.

【0028】そしてかかる実施例に基づく冷凍サイクル
は図2に示すように、再生工程はa→bの加熱工程とb
→cの減圧再生工程とで構成される。即ち、再生工程で
は、弁26を閉じ且つ集熱器16側の弁27を開放して
ポンプ17を介して、前記太陽熱集熱器10から得られ
た65〜80℃前後の温水で吸着剤11を加熱しながら
蒸気圧をPe→Pgに上昇させつつ吸着剤11温度を4
0から60℃以上に上昇させるa→bの加熱工程を行っ
た後、ポンプ17の回転数制御により吸着剤11温度を
60℃以上に維持させつつ真空ポンプ18で吸引し、反
応器10内圧力をPg→4.6Torrに減圧させるb→c
の減圧再生工程により吸着剤の再生、言換えれば温度ス
イング方式と圧力スイング方式との併用により吸着剤の
再生を行なう。尚、太陽熱が豊富に利用できる場合は、
b’まで温度再生を行ないその後減圧再生によりc’ま
で再生を行なえば、冷媒循環量を増すことも可能であ
る。図5は前記再生工程におけるサーマルウエーブ特性
を示し、吸着剤板モジュール100の流れ方向に沿って
時間経過とともに吸着剤温度が平滑化していることが理
解できる。
As shown in FIG. 2, the refrigeration cycle according to this embodiment includes a regeneration step a → b heating step and b
→ The pressure reduction regeneration step of c. That is, in the regeneration step, the valve 26 is closed and the valve 27 on the side of the heat collector 16 is opened, and the adsorbent 11 is heated with the hot water of about 65 to 80 ° C. obtained from the solar heat collector 10 via the pump 17. The temperature of the adsorbent 11 is increased by 4 while the vapor pressure is increased from Pe to Pg while heating
After performing the heating step a → b of raising the temperature from 0 to 60 ° C. or more, the adsorbent 11 is suctioned by the vacuum pump 18 while maintaining the temperature of the adsorbent 11 at 60 ° C. or more by controlling the rotation speed of the pump 17, Is reduced to Pg → 4.6 Torr b → c
The regeneration of the adsorbent is performed by the pressure reduction regeneration step, that is, the regeneration of the adsorbent is performed by using both the temperature swing method and the pressure swing method. If solar heat is available abundantly,
If the temperature is regenerated to b 'and then regenerated to c' by depressurization regeneration, it is possible to increase the amount of circulating refrigerant. FIG. 5 shows the thermal wave characteristic in the regeneration step, and it can be understood that the adsorbent temperature is smoothed with the passage of time along the flow direction of the adsorbent plate module 100.

【0029】ついで、前記吸着剤の再生が終了した後、
電力需要がピークに達するまでの時間に対応させて、所
定時間前記蒸気バルブ14の閉じた状態を維持して、再
生エネルギの貯蔵を行う。
Then, after the regeneration of the adsorbent is completed,
The regeneration energy is stored while maintaining the closed state of the steam valve 14 for a predetermined time corresponding to the time until the power demand reaches the peak.

【0030】そして電力需要ピーク時に対応する所定時
間経過後、図2のc→dの吸着剤冷却を行った後前記蒸
気バルブ14を開き、d→aの吸着を行う。即ち、吸着
工程では前記集熱器16側の弁27を閉じラジエータ2
1側の弁26を開放してしてポンプ17を介してラジエ
ータ21にて生成した冷却水を吸着反応器10側に供給
して吸着剤11温度を60℃以上から40℃以下に下降
させるc→dの冷却工程を行った後、蒸気バルブ14を
開にし、蒸発器12の水を蒸発させてその冷媒蒸気を冷
却水で冷却中の吸着剤11に吸着させるとともに、蒸発
器12で起きる前記自己蒸発作用によって、冷熱を発生
させるd→aの吸着工程を行い、この冷熱により自ら冷
却された冷媒液(水)は冷水となり、直接ファンコイル
15に送られ、冷房を行なう。なお、この時発生する吸
着熱は、ラジエータ21により形成された前記冷却水に
より冷却除去される。尚、上記d→aの吸着工程に於い
ては、温度は40℃を維持しつつ圧力は4.6Torrから
Peに上昇する。
After a lapse of a predetermined time corresponding to the peak time of the electric power demand, the adsorbent is cooled from c to d in FIG. 2, and then the steam valve 14 is opened to adsorb d to a. That is, in the adsorption step, the valve 27 on the heat collector 16 side is closed and the radiator 2 is closed.
The valve 26 on the first side is opened and the cooling water generated by the radiator 21 is supplied to the adsorption reactor 10 via the pump 17 to lower the temperature of the adsorbent 11 from 60 ° C. or higher to 40 ° C. or lower c. → After performing the cooling step d, the steam valve 14 is opened, the water in the evaporator 12 is evaporated, and the refrigerant vapor is adsorbed on the adsorbent 11 being cooled with the cooling water, and A d → a adsorption step of generating cold heat by the self-evaporation action is performed, and the refrigerant liquid (water) cooled by the cold heat becomes cold water and is directly sent to the fan coil 15 to perform cooling. The heat of adsorption generated at this time is cooled and removed by the cooling water formed by the radiator 21. In the d → a adsorption step, the pressure rises from 4.6 Torr to Pe while maintaining the temperature at 40 ° C.

【0031】図6は前記吸着工程におけるサーマルウエ
ーブ特性を示し、吸着剤板モジュール100の流れ方向
に沿って時間経過とともに吸着剤温度が平滑化している
ことが理解できる。そして前記吸着工程と再生工程は蓄
熱状態を挟んで交互に行われる。この際、前記吸着反応
器10は2基を用意しバッチ式に吸着工程と再生工程を
交互に並行して行い、蓄熱冷房を行なうようにすること
により一層効率的である。
FIG. 6 shows the thermal wave characteristics in the adsorption step, and it can be understood that the adsorbent temperature is smoothed over time along the flow direction of the adsorbent plate module 100. The adsorption step and the regeneration step are performed alternately with the heat storage state interposed therebetween. At this time, the adsorption reactor 10 is more efficient by preparing two reactors and alternately and concurrently performing the adsorption process and the regeneration process in a batch manner to perform heat storage cooling.

【0032】図3には、本発明の実施例である日中4〜
5時間の冷房を賄える冷熱蓄熱容量12000〜150
00Kcal、冷房能力2000〜3000Kcal/
hの太陽利用吸着式蓄熱型冷凍装置に就いての、性能検
討用概略図が示してある。図に示すように、Tは温度検
知器を示し、Pは圧力トランジューサを示し、Fは流量
計を示してある。吸着反応器10にはサーマルウエーブ
伝播方式を確認するために温度検知器が上下(流路方
向)にシリーズに配設されている。太陽熱集熱器16は
集熱板16Aと該集熱板16Aにより加温された温水を
貯溜する貯溜部16Bからなる。
FIG. 3 shows an embodiment of the present invention, daytime 4 to daytime 4.
Cold heat storage capacity of 12000-150 to cover 5 hours of cooling
00Kcal, cooling capacity 2000-3000Kcal /
h is a schematic diagram for performance evaluation of the solar-assisted adsorptive regenerative refrigerator. As shown, T indicates a temperature detector, P indicates a pressure transducer, and F indicates a flow meter. In the adsorption reactor 10, temperature detectors are arranged vertically (in the flow path direction) in series in order to confirm the thermal wave propagation method. The solar heat collector 16 includes a heat collecting plate 16A and a storage section 16B for storing warm water heated by the heat collecting plate 16A.

【0033】吸着反応器10は、前記したように反応容
器内に複数の吸着器反応モジュール100が上下に平行
に並設して構成され、単一モジュール100はプレート
型構造にしてあるとともに夫々に熱交換コイル10aが
巻回されている。なお、該モジュール100の伝熱面
積、吸着剤充填量及び充填層の厚さは熱移動及び物質移
動の両面から最適化がはかられている。また、吸着工程
時の冷熱取出しは、前記したようにサーマルウエーブ伝
播方式によるため、流路方向に温度分布が形成される構
成とした。
As described above, the adsorption reactor 10 is constituted by a plurality of adsorber reaction modules 100 arranged in parallel in a vertical direction in a reaction vessel. The heat exchange coil 10a is wound. It should be noted that the heat transfer area, the adsorbent filling amount, and the thickness of the packed layer of the module 100 have been optimized from both aspects of heat transfer and mass transfer. Further, since the cold heat is taken out during the adsorption step by the thermal wave propagation method as described above, the temperature distribution is formed in the flow channel direction.

【0034】なお、図1に加え、詳細な配管系、特に吸
着反応器内の温水、冷却水配管の状況を示す図が追加記
載され、また、凝縮された冷媒液がいきなり蒸発器12
に送り込む前に、計量用の液溜め20を経由するように
してある。
In addition to FIG. 1, a detailed piping system, especially a diagram showing the condition of hot water and cooling water piping in the adsorption reactor is additionally described.
Before being fed into the reservoir, the liquid is passed through a liquid reservoir 20 for measurement.

【0035】性能検討の試験は、サイクル線図に従って
下記操作手順で行なった。再生工程は前記したように温
度スイングと圧力スイングとの併用したTPSA方法で
行なった。即ち、所定の温度(65〜80℃)の温水を
吸着反応器10に供給して、吸着反応器10を加熱しな
がら真空ポンプ18にて吸着剤11より脱着される冷媒
蒸気を排気し、凝縮器19へ送り凝縮させ、計量用液溜
め20を経由して凝縮量を計量させ、蒸発器12に送り
込む。再生温度のコントロールはサーマルウェーブ伝播
方式を効率的に行えるように前記吸着反応器10への冷
却水量を調節することにより行なうようにした。
The test of the performance study was performed according to the following operation procedure according to the cycle diagram. The regeneration step was performed by the TPSA method using both the temperature swing and the pressure swing as described above. That is, hot water at a predetermined temperature (65 to 80 ° C.) is supplied to the adsorption reactor 10, and while the adsorption reactor 10 is heated, refrigerant vapor desorbed from the adsorbent 11 is exhausted by the vacuum pump 18 and condensed. The condensate is sent to the evaporator 19, the condensed amount is measured via the measuring liquid reservoir 20, and sent to the evaporator 12. The regeneration temperature was controlled by adjusting the amount of cooling water to the adsorption reactor 10 so that the thermal wave propagation method could be performed efficiently.

【0036】ついで、前記再生工程が終了した後、電力
需要がピークに達するまでの時間を考慮して、前記蒸気
バルブ14の閉じた状態を維持して再生エネルギの貯蔵
を行った後、吸着工程に移行する。吸着工程では計量液
溜め20の凝縮水を蒸発器12に戻し、ラジエータ21
を作動させ、ポンプ17を介して冷却水を吸着反応器1
0へ供給し吸着剤を冷却する。同時に蒸発器12へのス
プレイをポンプ22及びノズル13Aにより開始させな
がら、負荷用のファンコイル15を起動し、所定の冷房
を行う。その後、吸着反応器10と蒸発器12との間の
蒸気バルブ14を開にする。
Then, after the regeneration process is completed, the regeneration energy is stored while keeping the steam valve 14 closed in consideration of the time until the power demand reaches a peak, and then the adsorption process is performed. Move to In the adsorption step, the condensed water in the measuring liquid reservoir 20 is returned to the evaporator 12 and the radiator 21
Is operated, and the cooling water is admitted to the adsorption reactor 1 via the pump 17.
0 and cool the adsorbent. At the same time, while the spray to the evaporator 12 is started by the pump 22 and the nozzle 13A, the fan coil 15 for the load is started to perform predetermined cooling. Thereafter, the steam valve 14 between the adsorption reactor 10 and the evaporator 12 is opened.

【0037】冷却出力のコントロールは図6に示すサー
マルウェーブ伝播を円滑に行うために前記吸着反応器1
0への冷却水量を調節することにより行なうようにし
た。なお、成績係数COPは温水出入口温度差と流量よ
り求めた加熱量、真空ポンプの軸動力、並びに負荷15
の冷水温度差と流量から求めた冷熱量より評価した。な
お、運転試験条件は、再生温度Tg=65〜75℃、凝
縮温度Tc=35〜40℃、吸着温度Ta=25〜40
℃、蒸発温度Te=5〜10℃の範囲で行なった。
The cooling output is controlled by the adsorption reactor 1 in order to smoothly propagate the thermal wave shown in FIG.
The adjustment was performed by adjusting the amount of cooling water to zero. The coefficient of performance COP is the heating amount obtained from the hot water inlet / outlet temperature difference and the flow rate, the shaft power of the vacuum pump, and the load 15.
Was evaluated from the amount of cold heat obtained from the difference in cold water temperature and the flow rate. The operation test conditions were as follows: regeneration temperature Tg = 65-75 ° C., condensation temperature Tc = 35-40 ° C., adsorption temperature Ta = 25-40.
C. and the evaporation temperature Te = 5-10 ° C.

【0038】上記試験の結果、吸着反応器へ供給される
温水及び冷却水流量の調整により、図5及び図6に示す
サーマルウェーブ伝播が円滑に行われ、吸着剤各部の温
度は時間とともに流路方向に伝播していく様子が観察さ
れた。また、冷凍出力の運転制御は吸着反応器へ供給す
る冷却水量をポンプ17で絞りながら、図6に示すサー
マルウェーブを形成することで略冷水温度入り口/出口
=10/5℃一定の運転が可能であることが確認され
た。また、夜間に外気温度により吸着反応器の温度が低
下した状態からの冷房運転の際もサーマルウェーブによ
る運転方法が有効であることが確認された。
As a result of the above test, the thermal wave propagation shown in FIGS. 5 and 6 was smoothly performed by adjusting the flow rates of the hot water and the cooling water supplied to the adsorption reactor, and the temperature of each part of the adsorbent was changed with time in the flow path. Propagation in the direction was observed. The operation control of the refrigeration output is performed by forming the thermal wave shown in FIG. 6 while reducing the amount of cooling water supplied to the adsorption reactor by the pump 17, so that the operation can be performed at a constant inlet / outlet temperature of approximately 10/5 ° C. Was confirmed. It was also confirmed that the operation method using the thermal wave was effective in the cooling operation when the temperature of the adsorption reactor was lowered due to the outside air temperature at night.

【0039】上記一連の運転試験により冷凍能力、冷熱
蓄熱量ともに良い結果が得られた。太陽熱利用吸収式冷
凍装置及びクラスレート式蓄熱冷房システムに対し、本
発明の太陽熱利用吸着式蓄熱型冷房機との性能比較は表
1に示すとおりである。
Through the above series of operation tests, good results were obtained in both the refrigerating capacity and the cold heat storage amount. Table 1 shows a comparison of the performance of the solar-heat-absorption refrigeration apparatus and the clathrate-type heat-storage cooling system with the solar-heat-adsorption-type heat storage cooler of the present invention.

【0040】[0040]

【表1】 [Table 1]

【0041】本実施例によれば、蓄熱密度は本発明の吸
着式冷凍装置ではクラスレート式に比較し約 1.9 倍で
あり、成績係数は若干落ちる程度である。また、基本的
には脱フロンであり、シリカゲル/水系のみを使用して
いるため、安全性も高く、吸収式にみられる腐蝕の問題
もなく、電力ピークカットに対しても有効である。特に
下記事項に関しては顕著な効果を持つものである。即ち
本発明は低温熱源で作動することができ、特に太陽熱を
利用して60〜70℃の低熱源でも作動することができ
る。
According to this embodiment, the heat storage density of the adsorption refrigeration system of the present invention is about 1.9 times that of the clathrate system, and the coefficient of performance is slightly reduced. In addition, since it is basically CFC-free and uses only silica gel / water system, it is highly safe, has no corrosion problem seen in absorption type, and is effective for power peak cut. Particularly, the following items have remarkable effects. That is, the present invention can operate with a low-temperature heat source, and in particular, can operate with a low heat source of 60 to 70 ° C. using solar heat.

【0042】又吸着剤(シリカゲル)及び冷媒(水)は
化学的にも安定しており、地球環境のみならず人体に対
しても悪影響を与えることがない。加熱減圧再生(TP
SA)法を使用しているので、蓄熱効率が高い。吸着剤
は真空下冷媒(水)のみを吸着させるので、半永久的に
使用でき交換する必要がない。
The adsorbent (silica gel) and the refrigerant (water) are chemically stable and do not adversely affect not only the global environment but also the human body. Heating pressure reduction regeneration (TP
Since the SA) method is used, the heat storage efficiency is high. Since the adsorbent adsorbs only the refrigerant (water) under vacuum, it can be used semi-permanently and does not need to be replaced.

【0043】[0043]

【発明の効果】以上記載のごとく本発明によれば、昼間
太陽熱を利用し、固体吸着剤を用いた蓄熱冷房を行い、
昼間のピーク電力カットに寄与するとともに熱効率的に
も他のヒートポンプその他の冷凍装置に比し遜色の無
い、太陽熱利用吸着式蓄熱型冷凍装置の冷凍サイクル形
成方法を得る事が出来る。
As described above, according to the present invention, heat storage and cooling using a solid adsorbent is performed by utilizing daytime solar heat,
A method for forming a refrigeration cycle of a solar-heat-adsorption-type regenerative refrigerating apparatus that contributes to a reduction in peak daytime power consumption and is not inferior to other heat pumps or other refrigerating apparatuses in terms of thermal efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例にかかる太陽熱利用吸着式蓄熱
型冷凍装置の概略図である。
FIG. 1 is a schematic diagram of a solar-heat-adsorption-type heat storage refrigeration apparatus according to an embodiment of the present invention.

【図2】図1による冷凍サイクルを示すグラフ図であ
る。
FIG. 2 is a graph showing a refrigeration cycle according to FIG. 1;

【図3】本発明の他の実施例にかかる太陽熱利用吸着式
蓄熱型冷凍装置の概略図である。
FIG. 3 is a schematic diagram of a solar heat absorption type regenerative refrigerator according to another embodiment of the present invention.

【図4】図1に示す冷凍装置の吸着反応器の内部構成を
示す概略斜視図である。
FIG. 4 is a schematic perspective view showing an internal configuration of an adsorption reactor of the refrigeration apparatus shown in FIG.

【図5】再生工程におけるサーマルウエーブを示す特性
図である。
FIG. 5 is a characteristic diagram showing a thermal wave in a regeneration step.

【図6】吸着工程におけるサーマルウエーブを示す特性
図である。
FIG. 6 is a characteristic diagram showing a thermal wave in an adsorption step.

【符号の説明】[Explanation of symbols]

10…吸着反応器 11…吸着剤 12…蒸発器 13…冷媒液 14…蒸発バルブ 15…ファンコイル(熱交換器) 16…太陽熱の集熱器 18…真空ポンプ 19…凝縮器 21…ラジエータその他の熱交換手段 DESCRIPTION OF SYMBOLS 10 ... Adsorption reactor 11 ... Adsorbent 12 ... Evaporator 13 ... Refrigerant liquid 14 ... Evaporation valve 15 ... Fan coil (heat exchanger) 16 ... Solar heat collector 18 ... Vacuum pump 19 ... Condenser 21 ... Radiator and others Heat exchange means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳 秀治 東京都江東区牡丹2丁目13番1号 株式 会社前川製作所内 (72)発明者 伊佐 修 東京都江東区牡丹2丁目13番1号 株式 会社前川製作所内 (56)参考文献 特開 昭58−102069(JP,A) 特開 昭57−80158(JP,A) 特開 昭63−194165(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 17/08 F25B 27/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideharu Yanagi 2-13-1, Botan, Koto-ku, Tokyo Co., Ltd. Inside Maekawa Works (72) Inventor Osamu 2-13-1, Botan, Koto-ku, Tokyo Co., Ltd. Maekawa Works (56) References JP-A-58-10026 (JP, A) JP-A-57-80158 (JP, A) JP-A-63-194165 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 17/08 F25B 27/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸着剤を充填して冷媒の吸着及び再生を
する吸着反応器と、再生時には前記吸着剤の加熱により
吸着剤より脱着した冷媒蒸気を凝縮器を経由して冷媒液
として貯蔵し吸着時には前記冷媒液を自己蒸発させる蒸
発器と、冷媒液の自己蒸発により発生する冷熱を利用し
て冷熱負荷との熱交換を行う熱交換器とを含む吸着式蓄
熱型冷凍装置において、 再生時に吸着反応器に内蔵する吸着剤より冷媒を脱着さ
せる加熱温水生成用の太陽熱集熱器と、吸着剤より脱着
した冷媒蒸気を排気する真空ポンプと、前記脱着した冷
媒蒸気を凝縮する凝縮器とを設け、前記集熱器より反応
器への温水供給と真空ポンプの吸引量を適宜変化させ
て、好ましくは温度スイングと圧力スイング方式とを併
用して吸着剤の再生を行う再生工程と、 吸着時に吸着剤の発熱を押さえる冷却水生成用のラジエ
ータその他の熱交換手段と、吸着反応器と蒸発器との間
に介装され、吸着時に蒸発器内の冷媒液に自己蒸発作用
を誘起させる蒸気バルブとを設け、前記再生工程終了後
前記蒸気バルブの遮断状態の継続により蓄熱状態を維持
した後、吸着工程時に該蒸気バルブを開放して冷媒蒸気
を蒸発器より反応器側に導き、該冷媒蒸気の吸着による
発熱をラジエータその他の熱交換手段よりの冷却水で押
さえながら吸着を行う吸着工程とを備え、 前記蓄熱状態を挟んで前記再生工程と前記吸着工程との
交互繰り返しにより冷凍サイクル系を形成したことを特
徴とする太陽熱利用の吸着式蓄熱型冷凍装置の冷凍サイ
クル形成方法。
1. An adsorption reactor for adsorbing a refrigerant to adsorb and regenerate a refrigerant by filling the adsorbent, and storing a refrigerant vapor desorbed from the adsorbent by heating the adsorbent at the time of regeneration as a refrigerant liquid via a condenser. An adsorption-type heat storage refrigeration apparatus including an evaporator that self-evaporates the refrigerant liquid during adsorption and a heat exchanger that performs heat exchange with a cold load using cold generated by the self-evaporation of the refrigerant liquid. A solar heat collector for generating heated hot water for desorbing the refrigerant from the adsorbent incorporated in the adsorption reactor, a vacuum pump for exhausting the refrigerant vapor desorbed from the adsorbent, and a condenser for condensing the desorbed refrigerant vapor A regeneration step of regenerating the adsorbent preferably by using a combination of a temperature swing and a pressure swing method by appropriately changing the supply of hot water from the heat collector to the reactor and the suction amount of the vacuum pump; Sucking A radiator or other heat exchange means for generating cooling water for suppressing heat generation of the agent, a steam valve interposed between the adsorption reactor and the evaporator, and inducing a self-evaporation action in the refrigerant liquid in the evaporator at the time of adsorption. After the regeneration step, after maintaining the heat storage state by continuing the shut-off state of the steam valve, during the adsorption step, the steam valve is opened to guide the refrigerant vapor from the evaporator to the reactor side, the refrigerant vapor An adsorption step of performing adsorption while suppressing heat generated by the adsorption with cooling water from a radiator or other heat exchange means, and forming a refrigeration cycle system by alternately repeating the regeneration step and the adsorption step with the heat storage state interposed therebetween. A method for forming a refrigeration cycle of an adsorption-type heat storage refrigeration apparatus utilizing solar heat.
【請求項2】 前記脱着用加熱温水の生成を、太陽熱集
熱器とともに併設した廃熱等を使用した補助熱源、また
は夜間に使用する電力ヒータにより行う事を特徴とする
請求項1記載の太陽熱利用吸着式蓄熱型冷凍装置の冷凍
サイクル形成方法。
2. The solar heating apparatus according to claim 1, wherein the generation of the hot water for desorption is performed by an auxiliary heat source using waste heat or the like provided together with the solar heat collector or an electric heater used at night. A method for forming a refrigeration cycle of an adsorption-type heat storage refrigeration apparatus.
【請求項3】 前記吸着反応器は複数基を備えて再生工
程と吸着工程を並行して行うことを特徴とする請求項1
記載の太陽熱利用吸着式蓄熱型冷凍装置の冷凍サイクル
形成方法。
3. The adsorption reactor having a plurality of reactors, wherein a regeneration step and an adsorption step are performed in parallel.
A method for forming a refrigeration cycle of the solar-heat-based adsorption-type heat storage refrigeration apparatus according to claim 1.
【請求項4】 前記吸着剤/冷媒系はシリカゲル/水系
より構成した請求項1記載の太陽熱利用吸着式蓄熱型冷
凍装置の冷凍サイクル形成方法。
4. The method according to claim 1, wherein the adsorbent / refrigerant system comprises a silica gel / water system.
【請求項5】 前記吸着反応器へ供給される温水及び冷
却水の流量調整をしてサーマルウエーブ伝播方式により
再生及び吸着時の出力調整を行うことを特徴とする請求
項1記載の太陽熱利用吸着式蓄熱型冷凍装置の冷凍サイ
クル形成方法。
5. The adsorption using solar heat according to claim 1, wherein the flow rate of the hot water and the cooling water supplied to the adsorption reactor is adjusted, and the output during regeneration and adsorption is adjusted by a thermal wave propagation method. A method for forming a refrigeration cycle of a thermal storage refrigeration system.
【請求項6】 前記蒸発器はスプレイノズルからのシャ
ワリングを行なって、蒸発面積を大きくすることを特徴
とする請求項1記載の太陽熱利用吸着式蓄熱型冷凍装置
の冷凍サイクル形成方法。
6. The method according to claim 1, wherein the evaporator performs a showering operation from a spray nozzle to increase an evaporation area.
【請求項7】 前記再生工程終了後前記蒸気バルブの閉
の状態を維持して再生工程により生成した熱エネルギー
の蓄熱を行った後、電力ピーク時に前記蒸気バルブを開
いて吸着工程を行うようにした請求項1記載の吸着式蓄
熱型冷凍装置の冷凍サイクル形成方法。
7. After the regeneration step is completed, the steam valve is kept closed to store heat energy generated in the regeneration step, and then the adsorption step is performed by opening the steam valve at peak power. The method for forming a refrigeration cycle of an adsorption-type heat storage refrigeration apparatus according to claim 1.
JP12955895A 1995-04-28 1995-04-28 Method for forming refrigeration cycle of solar thermal adsorption regenerative refrigeration system Expired - Fee Related JP3302859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12955895A JP3302859B2 (en) 1995-04-28 1995-04-28 Method for forming refrigeration cycle of solar thermal adsorption regenerative refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12955895A JP3302859B2 (en) 1995-04-28 1995-04-28 Method for forming refrigeration cycle of solar thermal adsorption regenerative refrigeration system

Publications (2)

Publication Number Publication Date
JPH08303901A JPH08303901A (en) 1996-11-22
JP3302859B2 true JP3302859B2 (en) 2002-07-15

Family

ID=15012472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12955895A Expired - Fee Related JP3302859B2 (en) 1995-04-28 1995-04-28 Method for forming refrigeration cycle of solar thermal adsorption regenerative refrigeration system

Country Status (1)

Country Link
JP (1) JP3302859B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494441A (en) * 2011-12-22 2012-06-13 魏春旺 Heating air-conditioning system for solar adsorption heat pump
CN107816821A (en) * 2016-09-14 2018-03-20 北方工业大学 Solar adsorption and absorption cascade refrigeration and heating system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383478C (en) * 2005-06-24 2008-04-23 北京北控恒有源科技发展有限公司 Solar heat pump and air conditioning system using the heat pump
CN1313784C (en) * 2005-07-28 2007-05-02 上海交通大学 Solar energy composite energy system based on solid adsorption refrigerator
JP2007218504A (en) * 2006-02-16 2007-08-30 Denso Corp Adsorber
DE102006043715A1 (en) * 2006-09-18 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adsorption heat pump with heat storage
JP5974541B2 (en) * 2012-02-29 2016-08-23 株式会社富士通ゼネラル Air conditioning system
KR101941793B1 (en) * 2014-08-22 2019-04-12 종잉 창지앙 인터내셔널 뉴 에너지 인베스트먼트 컴퍼니 리미티드 Solar heat collection adsorption composite tube, solar heat collection adsorption composite bed composed of solar heat collection adsorption composite tubes, and cooling and heating system formed of solar heat collection adsorption composite bed
KR101888553B1 (en) * 2016-05-03 2018-08-16 한국생산기술연구원 Hybrid cooling and heating system using solar heat with thermochemical heat storage tank and a method of cooling and heating using the same
AT518923A1 (en) * 2016-08-09 2018-02-15 Rep Ip Ag transport container
CN106352596B (en) * 2016-08-19 2019-01-11 上海交通大学 Refrigeration and electricity generation system based on PVT
CN109489296A (en) * 2019-01-17 2019-03-19 云南师范大学 A kind of solar energy water bath refrigeration system based on CPC

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494441A (en) * 2011-12-22 2012-06-13 魏春旺 Heating air-conditioning system for solar adsorption heat pump
CN107816821A (en) * 2016-09-14 2018-03-20 北方工业大学 Solar adsorption and absorption cascade refrigeration and heating system

Also Published As

Publication number Publication date
JPH08303901A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
Saha et al. Computational analysis of an advanced adsorption-refrigeration cycle
Saha et al. Solar/waste heat driven two-stage adsorption chiller: the prototype
Wang et al. Adsorption refrigeration—an efficient way to make good use of waste heat and solar energy
JP3302859B2 (en) Method for forming refrigeration cycle of solar thermal adsorption regenerative refrigeration system
US8479529B2 (en) Two-stage low temperature air cooled adsorption cooling unit
JPH0765816B2 (en) Adsorption refrigerator and its operating method
CN107646086A (en) Split type adsorption/absorption refrigeration system
JPH10508682A (en) Thermal compression device
Wang et al. Adsorption refrigeration-green cooling driven by low grade thermal energy
Xia et al. Development and comparison of two-bed silica gel–water adsorption chillers driven by low-grade heat source
WO1997040327A1 (en) Compression absorption heat pump
JPH11223411A (en) Adsorption heat pump
Khan et al. Numerical simulation of advanced adsorption refrigeration chiller with mass recovery
JP2002250573A (en) Air conditioner
JPH11117713A (en) Chemical heat-accumulating type intake air cooling device
JPH07301469A (en) Adsorption type refrigerator
JP2005069536A (en) Waste heat recovery type adsorption type freezer
Kumar et al. Studies on the feasibility of adsorption cooling technologies–A review
JP4186354B2 (en) Thermal management device
Jung et al. Energy storage in zeolites and application to heating and air conditioning
CN2447673Y (en) Solar air conditioner
Szelągowski et al. Experimental study on the adsorption refrigeration device built on a water-silica gel working pair
Dhokane et al. Design and development of intermittent solid adsorption refrigeration system running on solar energy
JPH09170846A (en) On-vehicle chemical heat pump
Hussein Solar Energy Refrigeration by Liquid-Solid Adsorption Technique

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees