USRE49989E1 - Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code - Google Patents

Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code Download PDF

Info

Publication number
USRE49989E1
USRE49989E1 US17/334,608 US202117334608A USRE49989E US RE49989 E1 USRE49989 E1 US RE49989E1 US 202117334608 A US202117334608 A US 202117334608A US RE49989 E USRE49989 E US RE49989E
Authority
US
United States
Prior art keywords
rows
column
codeword
columns
base matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/334,608
Inventor
Thomas Joseph Richardson
Joseph Binamira Soriaga
Shrinivas KUDEKAR
Gabi SARKIS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US17/334,608 priority Critical patent/USRE49989E1/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RICHARDSON, THOMAS, KUDEKAR, Shrinivas, SORIAGA, JOSEPH BINAMIRA, SARKIS, GABI
Application granted granted Critical
Priority to US18/676,297 priority patent/USRE50437E1/en
Publication of USRE49989E1 publication Critical patent/USRE49989E1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • H03M13/1168Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices wherein the sub-matrices have column and row weights greater than one, e.g. multi-diagonal sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1131Scheduling of bit node or check node processing
    • H03M13/1137Partly parallel processing, i.e. sub-blocks or sub-groups of nodes being processed in parallel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1131Scheduling of bit node or check node processing
    • H03M13/114Shuffled, staggered, layered or turbo decoding schedules
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1145Pipelined decoding at code word level, e.g. multiple code words being decoded simultaneously
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/118Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure
    • H03M13/1185Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure wherein the parity-check matrix comprises a part with a double-diagonal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/615Use of computational or mathematical techniques
    • H03M13/616Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/618Shortening and extension of codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6306Error control coding in combination with Automatic Repeat reQuest [ARQ] and diversity transmission, e.g. coding schemes for the multiple transmission of the same information or the transmission of incremental redundancy
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • H03M13/6368Error control coding in combination with rate matching by puncturing using rate compatible puncturing or complementary puncturing
    • H03M13/6393Rate compatible low-density parity check [LDPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6508Flexibility, adaptability, parametrability and configurability of the implementation
    • H03M13/6513Support of multiple code types, e.g. unified decoder for LDPC and turbo codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6561Parallelized implementations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • H04L1/0069Puncturing patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for coding using low-density parity-check (LDPC) codes.
  • the LDPC codes can be arranged in or have pairwise orthogonality of adjacent rows in a parity check matrix (PCM) describing the code.
  • PCM parity check matrix
  • Embodiments also include new modules (e.g., hardware) such as a new encoder/decoder configured for leveraging LDPC coding with pairwise row orthogonality to perform flexible encoder/decoder scheduling without performance loss and advantageous hardware processing
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc.). Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division
  • a wireless multiple-access communication system may include a number of base stations (BSs), which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs).
  • BSs base stations
  • UEs user equipments
  • a set of one or more base stations may define an eNodeB (eNB).
  • eNB eNodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs), edge nodes (ENs), radio heads (RHs), smart radio heads (SRHs), transmission reception points (TRPs), etc.) in communication with a number of central units (CUs) (e.g., central nodes (CNs), access node controllers (ANCs), etc.), where a set of one or more DUs, in communication with a CU, may define an access node (e.g., which may be referred to as a BS, 5G NB, next generation NodeB (gNB or gNodeB), transmission reception point (TRP), etc.).
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • RHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CUs central nodes
  • ANCs access node controllers
  • ABS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to BS or DU).
  • downlink channels e.g., for transmissions from a BS or DU to a UE
  • uplink channels e.g., for transmissions from a UE to BS or DU.
  • NR e.g., new radio or 5G
  • LTE long term evolution
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL).
  • CP cyclic prefix
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • Binary values e.g., ones and zeros
  • binary data Unfortunately, during storage, transmission, and/or processing of binary data, errors may be unintentionally introduced; for example, a “1” may be changed to a “0” or vice versa.
  • a receiver observes each received bit in the presence of noise or distortion and only an indication of the bit's value is obtained. Under these circumstances, the observed values are interpreted as a source of “soft” bits.
  • a soft bit indicates a preferred estimate of the bit's value (e.g., a 1 or a 0) together with some indication of the reliability of that estimate. While the number of errors may be relatively low, even a small number of errors or level of distortion can result in the data being unusable or, in the case of transmission errors, may necessitate re-transmission of the data.
  • binary data can be coded to introduce carefully designed redundancy. Coding of a unit of data produces what is commonly referred to as a codeword. Because of its redundancy, a codeword will often include more bits than the input unit of data from which the codeword was produced.
  • Redundant bits are added by an encoder to the transmitted bit stream to create a code word.
  • the redundant information included in the code word as observed in the signal can be used to identify and/or correct errors in or remove distortion from the received signal in order to recover the original data unit.
  • error checking and/or correcting can be implemented as part of a decoding process.
  • decoding can be used to recover from the source data being processed, the original data unit that was encoded.
  • the decoding process may produce some indication that the original data cannot be fully recovered. Such indications of decoding failure can be used to initiate retransmission of the data.
  • Embodiments of the present invention provide improved communication devices with new, improved hardware components capable of carrying out new, improved encoding and decoding techniques.
  • Encoders and decoders according to embodiments of the present invention can include features as discussed below for leveraging LDPC coding techniques.
  • Embodiments can include LDPC encoder/decoder circuitry comprising circuit features configured to carry out encoding and decoding techniques efficiently and considering device size and operational design considerations.
  • Technical improvements can include faster hardware processing resulting from encoding/decoding using an LPDC code based on base graph having unique orthogonality arrangements.
  • Low-density parity-check (LDPC) codes can be used for simple implementation to provide coding and/or decoding at different rates.
  • higher-rate LDPC codes can be generated by puncturing lower-rate LDPC codes.
  • improvements can or should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
  • One area for improvements is the area of encoding/decoding for data transmissions. These improvements (e.g., improved LDPC codes) can be applicable to NR and other access technologies.
  • aspects of the present disclosure relate to coding for communications using LDPC codes that have pairwise orthogonality of adjacent rows in the corresponding parity check matrix (PCM) that describes the LDPC code and a new encoder/decoder that exploits the LDPC coding with the pairwise row orthogonality to perform flexible encoder/decoder scheduling without performance loss.
  • Embodiments can include circuits arranged and/or configured to carry out encoding/decoding operations using LDPC codes having pairwise orthogonality.
  • an encoder or decoder can comprise at least one processor communicatively coupled to a memory device, the encoder or decoder can be configured to implement encoding or decoding leveraging LDPC codes with pairwise orthogonality arrangements.
  • the apparatus generally includes a receiver configured to receive a codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal the receiver.
  • the apparatus includes at least one processor coupled with a memory and comprising decoder circuitry configured to decode the codeword based on a LDPC code to produce a set of information bits.
  • the LDPC code is stored in the memory and defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
  • the apparatus generally includes at least one processor coupled with a memory and comprising an encoder circuit configured to encode a set of information bits based on a LDPC code to produce a codeword.
  • the LDPC code is stored in the memory and defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
  • the apparatus includes a transmitter configured to transmit the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements arranged proximal the transmitter.
  • Certain aspects provide a method for wireless communication by a receiving device.
  • the method generally includes receiving a codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal a receiver.
  • the method includes decoding the codeword via decoder circuitry based on a LDPC code to produce a set of information bits.
  • the LDPC code is stored and defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
  • the method generally includes encoding with encoder circuitry a set of information bits based on a LDPC code to produce a codeword.
  • the LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
  • the method includes transmitting the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements.
  • the apparatus generally includes means for receiving a codeword in accordance with a radio technology across a wireless channel.
  • the apparatus generally includes means for decoding the codeword based on a LDPC code to produce a set of information bits.
  • the LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
  • the apparatus generally includes means for encoding a set of information bits based on a LDPC code to produce a codeword.
  • the LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
  • the apparatus generally includes means for transmitting the codeword in accordance with a radio technology across a wireless channel.
  • the computer executable code generally includes code for receiving a codeword in accordance with a radio technology across a wireless channel.
  • the computer executable code generally includes code for decoding the codeword based on a LDPC code to produce a set of information bits.
  • the LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
  • the computer executable code generally includes code for encoding a set of information bits based on a LDPC code to produce a codeword.
  • the LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
  • the computer executable code generally includes code for transmitting the codeword in accordance with a radio technology across a wireless channel.
  • Certain embodiments can include a number of devices capable of communication.
  • some embodiments may include user-based, handheld consumer devices that comprise a housing capable of holding internal circuitry.
  • the internal circuitry can include one or more processors configured to carry out mobile communications and associated memory for storing data and software.
  • the internal circuitry can also include wireless modem features that include encoder/decoder circuitry that may use LPDC codes for encoding or decoding information in wireless communication settings.
  • an apparatus can comprise: a transceiver capable of wireless communications with at least one network node of a wireless network; and a processor coupled to the transceiver.
  • the processor can comprise an encoder capable of encoding data to provide encoded data by performing operations comprising: encoding the data with a low-density parity-check (LDPC) code having row-wise orthogonality to provide LDPC-coded data.
  • the processor can comprise a decoder capable of decoding data to provide decoded data by performing operations comprising: decoding data with a low-density party-check (LDPC) code having row-wise orthogonality to provide LDPC-decoded data.
  • LDPC low-density parity-check
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example logical architecture of a distributed radio access network (RAN), in accordance with certain aspects of the present disclosure.
  • RAN radio access network
  • FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE), in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
  • FIG. 6 illustrates an example of a frame format for a new radio (NR) system, in accordance with certain aspects of the present disclosure.
  • NR new radio
  • FIGS. 7 - 7 A show graphical and matrix representations of an exemplary low-density parity-check (LDPC) code, in accordance with certain aspects of the present disclosure.
  • LDPC low-density parity-check
  • FIG. 8 is a lifted bipartite graph illustrating lifting of the LDPC code of FIG. 7 A , in accordance with certain aspects of the present disclosure.
  • FIG. 9 is a block diagram illustrating an encoder, in accordance with certain aspects of the present disclosure.
  • FIG. 10 is a block diagram illustrating a decoder, in accordance with certain aspects of the present disclosure.
  • FIG. 11 is an example generalized structure of an LDPC code base matrix, in accordance with certain aspects of the present disclosure.
  • FIG. 12 an example LDPC code base matrix, in accordance with certain aspects of the present disclosure.
  • FIG. 13 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
  • FIG. 14 is a flow diagram illustrating example operations for wireless communications by a receiving device using LDPC coding, in accordance with certain aspects of the present disclosure.
  • FIG. 15 is a flow diagram illustrating example operations for wireless communications by a transmitting device using LDPC coding, in accordance with certain aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for coding for communications using low-density parity-check (LDPC) codes that have pairwise orthogonality of adjacent rows in the corresponding parity check matrix (PCM) that describes the LDPC code.
  • LDPC low-density parity-check
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA), cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM).
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS).
  • New Radio is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF).
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP).
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2).
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies.
  • aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • New radio (NR) access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond), millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond), massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC).
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments.
  • transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antennas, antenna alements arranged or located proximal receiver or transmitter components, RF-chains, power amplifiers, modulators, buffer, processor(s), interleaver, adders/summers, etc.).
  • innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • the wireless communication network 100 may be a New Radio (NR) or 5G network.
  • the NR network may use low-density parity-check (LPDC) coding for certain transmissions, in accordance with certain aspects of the present disclosure.
  • LPDC low-density parity-check
  • a transmitting device such as a base station (BS) 110 on the downlink or a user equipment (UE) 120 on the uplink, can encode information bits for transmission to a receiving device in the wireless communication network 100 .
  • the transmitting device encodes the information bits for certain transmissions using LDPC code.
  • the base graph associated with the LDPC code may have pairwise row orthogonality in a lower portion of the base graph.
  • the receiving device such as the UE 120 on the downlink or the BS 110 on the uplink, receives the encoded transmission from the transmitting device and decodes the transmission to obtain the information.
  • the receiving device may exploit the pairwise row orthogonality in the decoder for more flexible decoder scheduling.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG), UEs for users in the home, etc.).
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110 a, 110 b and 110 c may be macro BSs for the macro cells 102 a, 102 b and 102 c, respectively.
  • the BS 110 x may be a pico BS for a pico cell 102 x.
  • the BSs 110 y and 110 z may be femto BSs for the femto cells 102 y and 102 z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • Wireless communication network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS).
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110 r may communicate with the BS 110 a and a UE 120 r in order to facilitate communication between the BS 110 a and the UE 120 r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • Wireless communication network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless communication network 100 .
  • macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt).
  • Wireless communication network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless communication network 100 , and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE), a cellular phone, a smart phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.), an entertainment device (e.g., a music device
  • Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device), or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB)) may be 12 subcarriers (or 180 kHz). Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz), respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks), and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • a scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs), and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • FIG. 2 illustrates an example logical architecture of a distributed Radio Access Network (RAN) 200 , which may be implemented in the wireless communication network 100 illustrated in FIG. 1 .
  • a 5G access node 206 may include an ANC 202 .
  • ANC 202 may be a central unit (CU) of the distributed RAN 200 .
  • the backhaul interface to the Next Generation Core Network (NG-CN) 204 may terminate at ANC 202 .
  • the backhaul interface to neighboring next generation access Nodes (NG-ANs) 210 may terminate at ANC 202 .
  • ANC 202 may include one or more TRPs 208 (e.g., cells, BSs, gNBs, etc.).
  • the TRPs 208 may be a distributed unit (DU). TRPs 208 may be connected to a single ANC (e.g., ANC 202 ) or more than one ANC (not illustrated). For example, for RAN sharing, radio as a service (RaaS), and service specific AND deployments, TRPs 208 may be connected to more than one ANC. TRPs 208 may each include one or more antenna ports. TRPs 208 may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
  • DU distributed unit
  • TRPs 208 may be connected to a single ANC (e.g., ANC 202 ) or more than one ANC (not illustrated). For example, for RAN sharing, radio as a service (RaaS), and service specific AND deployments, TRPs 208 may be connected to more than one ANC. TRPs 208 may each include one or more antenna ports. TRPs 208 may be configured to individually (
  • the logical architecture of distributed RAN 200 may support fronthauling solutions across different deployment types.
  • the logical architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter).
  • next generation access node (NG-AN) 210 may support dual connectivity with NR and may share a common fronthaul for LTE and NR.
  • NG-AN next generation access node
  • the logical architecture of distributed RAN 200 may enable cooperation between and among TRPs 208 , for example, within a TRP and/or across TRPs via ANC 202 .
  • An inter-TRP interface may not be used.
  • Logical functions may be dynamically distributed in the logical architecture of distributed RAN 200 .
  • the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU (e.g., TRP 208 ) or CU (e.g., ANC 202 ).
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • FIG. 3 illustrates an example physical architecture of a distributed RAN 300 , according to aspects of the present disclosure.
  • a centralized core network unit (C-CU) 302 may host core network functions.
  • C-CU 302 may be centrally deployed.
  • C-CU 302 functionality may be offloaded (e.g., to advanced wireless services (AWS)), in an effort to handle peak capacity.
  • AWS advanced wireless services
  • a centralized RAN unit (C-RU) 304 may host one or more ANC functions.
  • the C-RU 304 may host core network functions locally.
  • the C-RU 304 may have distributed deployment.
  • the C-RU 304 may be close to the network edge.
  • a DU 306 may host one or more TRPs (Edge Node (EN), an Edge Unit (EU), a Radio Head (RH), a Smart Radio Head (SRH), or the like).
  • the DU may be located at edges of the network with radio frequency (RF) functionality.
  • RF radio frequency
  • FIG. 4 illustrates example components of BS 110 and UE 120 (as depicted in FIG. 1 ), which may be used to implement aspects of the present disclosure.
  • antennas 452 , processors 466 , 458 , 464 , and/or controller/processor 480 of the UE 120 and/or antennas 434 , processors 420 , 460 , 438 , and/or controller/processor 440 of the BS 110 may be used to perform the various techniques and methods described herein for LDPC coding using LPDC codes having pairwise row orthogonality of adjacent rows in the PCM describing the code.
  • the processors 466 , 458 , 464 , and/or controller/processor 480 of the UE 120 and/or the processors 420 , 460 , 438 , and/or controller/processor 440 of the BS 110 may include an encoder and/or a decoder as described in more detail below with respect to FIG. 9 and FIG. 10 , and may be configured to LDPC coding using LPDC code with pairwise row orthogonality in adjacent rows of the corresponding PCM describing the LDPC code, according to certain aspects of the present disclosure.
  • a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440 .
  • the control information may be for the physical broadcast channel (PBCH), physical control format indicator channel (PCFICH), physical hybrid ARQ indicator channel (PHICH), physical downlink control channel (PDCCH), group common PDCCH (GC PDCCH), etc.
  • the data may be for the physical downlink shared channel (PDSCH), etc.
  • the processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 420 may also generate reference symbols, e.g., for the primary synchronization signal (PSS), secondary synchronization signal (SSS), and cell-specific reference signal (CRS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CRS cell-specific reference signal
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432 a through 432 t.
  • Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc.) to obtain an output sample stream.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 432 a through 432 t may be transmitted via the antennas 434 a through 434 t, respectively.
  • the antennas 452 a through 452 r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DE-MODs) in transceivers 454 a through 454 r, respectively.
  • Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc.) to obtain received symbols.
  • a MIMO detector 456 may obtain received symbols from all the demodulators 454 a through 454 r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460 , and provide decoded control information to a controller/processor 480 .
  • a transmit processor 464 may receive and process data (e.g., for the physical uplink shared channel (PUSCH)) from a data source 462 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480 .
  • the transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS)).
  • the symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators in transceivers 454 a through 454 r (e.g., for SC-FDM, etc.), and transmitted to the base station 110 .
  • the uplink signals from the UE 120 may be received by the antennas 434 , processed by the modulators 432 , detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120 .
  • the receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440 .
  • the controllers/processors 440 and 480 may direct the operation at the BS 110 and the UE 120 , respectively.
  • the processor 440 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein.
  • the memories 442 and 482 may store data and program codes for BS 110 and UE 120 , respectively.
  • a scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure.
  • the illustrated communications protocol stacks may be implemented by devices operating in a wireless communication system, such as a 5G system (e.g., a system that supports uplink-based mobility).
  • Diagram 500 illustrates a communications protocol stack including a RRC layer 510 , a PDCP layer 515 , a RLC layer 520 , a MAC layer 525 , and a PHY layer 530 .
  • the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
  • a network access device e.g., ANs, CU
  • a first option 505 -a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2 ) and distributed network access device (e.g., DU 208 in FIG. 2 ).
  • a centralized network access device e.g., an ANC 202 in FIG. 2
  • distributed network access device e.g., DU 208 in FIG. 2
  • an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit
  • an RLC layer 520 , a MAC layer 525 , and a PHY layer 530 may be implemented by the DU.
  • the CU and the DU may be collocated or non-collocated.
  • the first option 505 -a may be useful in a macro cell, micro cell, or pico cell deployment.
  • a second option 505 -b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device.
  • RRC layer 510 PDCP layer 515 , RLC layer 520 .
  • MAC layer 525 MAC layer 525 , and PHY layer 530 may each be implemented by the AN.
  • the second option 505 -b may be useful in, for example, a femto cell deployment.
  • a UE may implement an entire protocol stack as shown in 505 -c (e.g., the RRC layer 510 , the PDCP layer 515 , the RLC layer 520 , the MAC layer 525 , and the PHY layer 530 ).
  • the basic transmission time interval (TTI) or packet duration is the 1 ms subframe.
  • a subframe is still 1 ms, but the basic TTI is referred to as a slot.
  • a subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, . . . slots) depending on the subcarrier spacing.
  • the NR RB is 12 consecutive frequency subcarriers.
  • NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc.
  • the symbol and slot lengths scale with the subcarrier spacing.
  • the CP length also depends on the subcarrier spacing.
  • FIG. 6 is a diagram showing an example of a frame format 600 for NR.
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9.
  • Each subframe may include a variable number of slots depending on the subcarrier spacing.
  • Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing.
  • the symbol periods in each slot may be assigned indices.
  • a mini-slot is a subslot structure (e.g., 2, 3, or 4 symbols).
  • Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched.
  • the link directions may be based on the slot format.
  • Each slot may include DL/UL data as well as DL/UL control information.
  • a synchronization signal (SS) block is transmitted.
  • the SS block includes a PSS, a SSS, and a two symbol PBCH.
  • the SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 6 .
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may provide half-frame timing, the SS may provide the CP length and frame timing.
  • the PSS and SSS may provide the cell identity.
  • the PBCH carries some basic system information (SI), such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc.
  • the SS blocks may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI), system information blocks (SIBs), other system information (OSI) can be transmitted on a PDSCH in certain subframes.
  • SI basic system information
  • SIBs system
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE 1 ) to another subordinate entity (e.g., UE 2 ) without relaying that communication through the scheduling entity (e.g., UE or BS), even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum).
  • a UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc.) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc.).
  • RRC radio resource control
  • the UE may select a dedicated set of resources for transmitting a pilot signal to a network.
  • the UE may select a common set of resources for transmitting a pilot signal to the network.
  • a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof.
  • Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE.
  • One or more of the receiving network access devices, or a CU to which receiving network access device(s) transmit the measurements of the pilot signals may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
  • Error correcting codes generally compensate for the intrinsic unreliability of information transfer (e.g., over the air medium) in these systems by introducing redundancy into the data stream.
  • Low-density parity-check (LDPC) codes are one type of error correcting codes which use an iterative coding system.
  • Gallager codes are an example of “regular” LDPC codes.
  • Regular LDPC codes are linear block code in which most of the elements of its parity check matrix H (PCM) are ‘0’.
  • LDPC codes can be represented by bipartite graphs (often referred to as “Tanner graphs”).
  • a set of variable nodes corresponds to bits of a codeword (e.g., information bits or systematic bits)
  • a set of check nodes correspond to a set of parity-check constraints that define the code.
  • Edges in the graph connect variable nodes to check nodes.
  • the nodes of the graph are separated into two distinctive sets and with edges connecting nodes of two different types, variable and check.
  • Graphs as used in LDPC coding may be characterized in a variety of manners.
  • a lifted code is created by copying a bipartite base graph (G) a number of times, N.
  • the number of copies, or liftings may be referred to as the lifting size or lifting size value Z.
  • a variable node and a check node are considered “neighbors” if they are connected by an “edge” (i.e., the line connecting the variable node and the check node) in the bipartite graph.
  • edge (e) of the bipartite base graph For each edge (e) of the bipartite base graph, a permutation is applied to the N copies of edge (e) to interconnect the N copies of G.
  • a bit sequence having a one-to-one association with the variable node sequence is a valid codeword if and only if, for each check node (also referred to as a constraint node), the bits associated with all neighboring variable nodes sum to 0 modulo 2, i.e., they include an even number of 1's.
  • the resulting LDPC code may be quasi-cyclic (QC) if the permutations used are cyclic.
  • the cyclic permutations applies to the edges may be referred to as lifting values or cyclic lifting values.
  • the lifting values are represented by a value k of an entry in the PCM.
  • FIGS. 7 - 7 A show graphical and matrix representations of an exemplary LDPC code, respectively, in accordance with certain aspects of the present disclosure.
  • FIG. 7 shows a bipartite graph 700 representing an example LDPC code.
  • the bipartite graph 700 includes a set of five variable nodes 710 (represented by circles) connected to four check nodes 720 (represented by squares). Edges in the graph 700 connect variable nodes 710 to the check nodes 720 (represented by the lines connecting the variable nodes 710 to the check nodes 720 ).
  • 5 variable nodes and
  • 4 check nodes, connected by
  • 12 edges.
  • the bipartite graph 700 may be represented by a simplified adjacency matrix.
  • FIG. 7 A shows a matrix representation 700 A of the bipartite graph 700 .
  • the matrix representation 700 A includes the PCM, H, and a codeword vector x, where x 1 , x 2 , . . . x 5 represent bits of the codeword x.
  • H is used for determining whether a received signal was normally decoded.
  • H is a binary matrix having C rows corresponding to j check nodes and V columns corresponding to i variable nodes (i.e., a demodulated symbol). The rows represent the equations and the columns represent the bits (also referred to as digits) of the codeword.
  • FIG. 7 A shows a matrix representation 700 A of the bipartite graph 700 .
  • the matrix representation 700 A includes the PCM, H, and a codeword vector x, where x 1 , x 2 , . . . x 5 represent bits of the
  • H has four rows and five columns corresponding to the four check nodes and the five variable nodes, respectively. If a j-th check node is connected to an i-th variable node by an edge, i.e., the two nodes are neighbors and the edge is represented by a 1 in the i-th column and j-th row of H. That is, the intersection of an i-th row and a j-th column contains a “1” where an edge joins the corresponding vertices and a “0” where there is no edge. In some representations, a blank or a (*) is used to represent no edge.
  • the length of the LDPC code corresponds to the number of variable nodes in the bipartite graph.
  • the number of edges e.g., non-zero elements, also referred to as entries, in the PCM
  • the degree of a node refers to the number of edges connected to that node. For example, as shown in FIG. 7 , the variable node 711 has three degrees of connectivity, with edges connected to check nodes 721 , 722 , and 723 .
  • Variable node 712 has three degrees of connectivity, with edges connected to check nodes 721 , 723 , and 724 .
  • Variable node 713 has two degrees of connectivity, with edges connected to check nodes 721 and 724 .
  • Variable node 714 has two degrees of connectivity, with edges connected to check nodes 722 and 724 .
  • variable node 715 has two degrees of connectivity, with edges connected to check nodes 722 and 723 .
  • the number of edges incident to a variable node 710 is equal to the number of 1's in the corresponding column in the PCM H shown in FIG. 7 A , and is called the variable node degree d(v).
  • the number of edges connected with a check node 420 is equal to the number of ones in a corresponding row and is called the check node degree d(c).
  • the first column in the matrix H corresponds to the variable node 711 and the corresponding entries in the column (1, 1, 1, 0) indicates the edge connections to the check nodes 721 , 722 , and 723 .
  • the entries in the second, third, fourth, and fourth columns of H represent the edge connections of the variable nodes 712 , 713 , 714 , and 715 , respectively, to the check nodes.
  • a regular code is one for which all variable nodes in the bipartite graph have the same degree and all constraint nodes have the same degree.
  • an irregular code has constraint nodes and/or variable nodes of differing degrees.
  • Lifting enables LDPC codes to be implemented using parallel encoding and/or decoding implementations while also reducing the complexity typically associated with large LDPC codes.
  • Lifting helps enable efficient parallelization of LDPC decoders while still having a relatively compact description. More specifically, lifting is a technique for generating a relatively large LDPC code from multiple copies of a smaller base code.
  • a lifted LDPC code may be generated by producing Z parallel copies of the base graph (e.g., protograph) and then interconnecting the parallel copies through permutations of edge clusters of each copy of the base graph.
  • the base graph defines the (macro) structure of the code and consists of a number (K) of information bit columns and a number (N) of code bit columns.
  • a corresponding PCM of the lifted graph can be constructed from the PCM of the base graph (also known as the “base PCM”) by replacing each entry in the base PCM with a Z ⁇ Z matrix.
  • the “0” (or blank or (*)) entries are replaced with the 0 matrix and the non-zero entries (indicating a base edge) are replaced with a Z ⁇ Z permutation matrix.
  • the permutations are cyclic permutations.
  • a cyclically lifted LDPC code can also be interpreted as a code over the ring of binary polynomials modulo x z +1.
  • the binary vector (b 0 , b 1 , b 2 , . . . , b z-1 ) corresponds to the bits associated to Z corresponding variable nodes in the lifted graph, that is, Z copies of a single base variable node.
  • a cyclic permutation by k of the binary vector is achieved by multiplying the corresponding binary polynomial by x k where multiplication is taken modulo x z +1.
  • the PCM for the lifted graph can be expressed using the matrix for the base graph in which “1” entries are replaced with monomials of the form x k and “0” entries are lifted as 0, but now the 0 is interpreted as the 0 binary polynomial modulo x z +1.
  • Such a matrix may be written by giving the value kin place of x k .
  • the 0 polynomial is sometimes represented as “ ⁇ 1” and sometimes as another character in order to distinguish it from x 0 .
  • a square submatrix of the PCM represents the parity bits of the code.
  • the complementary columns correspond to information bits that, at the time of encoding, are set equal to the information bits to be encoded.
  • the encoding may be achieved by solving for the variables in the aforementioned square submatrix in order to satisfy the parity check equations.
  • the PCM may be partitioned into two parts M and N, where M is the square portion.
  • the above algebra can be interpreted as being over the ring of binary polynomials modulo x z +1.
  • a received LDPC codeword can be decoded to produce a reconstructed version of the original codeword.
  • decoding can be used to recover the original data unit that was encoded. Redundant bits may be used by decoders to detect and correct bit errors.
  • LDPC decoder(s) generally operate by iteratively performing local calculations and passing those results by exchanging messages within the bipartite graph along the edges, and updating these messages by performing computations at the nodes based on the incoming messages. These steps may be repeated several times.
  • each variable node 710 in the graph 700 may initially be provided with a “soft bit” (e.g., representing the received bit of the codeword) that indicates an estimate of the associated bit's value as determined by observations from the communications channel.
  • a “soft bit” e.g., representing the received bit of the codeword
  • the LDPC decoders may update messages by iteratively reading them, or some portion thereof, from memory and writing an updated message, or some portion thereof, back to, memory.
  • the update operations are typically based on the parity check constraints of the corresponding LDPC code. For lifted LDPC codes, messages on like edges are often processed in parallel.
  • LDPC codes designed for high speed applications often use quasi-cyclic constructions with large lifting factors and relatively small base graphs to support high parallelism in encoding and decoding operations.
  • LDPC codes with higher code rates tend to have relatively fewer parity checks. If the number of base parity checks is smaller than the degree of a variable node (e.g., the number of edges connected to a variable node), then, in the base graph, that variable node is connected to at least one of the base parity checks by two or more edges (e.g., the variable node may have a “double edge”).
  • the number of base parity checks is smaller than the degree of a variable node (e.g., the number of edges connected to a variable node), then, in the base graph, that variable node is connected to at least one of the base parity checks by two or more edges.
  • Having a base variable node and a base check node connected by two or more edges is generally undesirable for parallel hardware implementation purposes.
  • double edges may result in multiple concurrent read and write operations to the same memory locations, which in turn may create data coherency problems.
  • a double edge in a base LDPC code may trigger parallel reading of the same soft bit value memory location twice during a single parallel parity check update.
  • additional circuitry is typically needed to combine the soft hit values that are written hack to memory, so as to properly incorporate both updates.
  • eliminating double edges in the LDPC code helps to avoid this extra complexity
  • edges in the Tanner graph representation may be statistically interchangeable. In other words, there exists a single statistical equivalence class of edges. For multi-edge LDPC codes, multiple equivalence classes of edges may be possible. While in the standard irregular LDPC ensemble definition, nodes in the graph (both variable and constraint) are specified by their degree, i.e., the number of edges they are connected to, in the multi-edge type setting an edge degree is a vector; it specifies the number of edges connected to the node from each edge equivalence class (type) independently.
  • a multi-edge type ensemble is comprised of a finite number of edge types.
  • the degree type of a constraint node is a vector of (non-negative) integers; the i-th entry of this vector records the number of sockets of the i-th type connected to such a node.
  • This vector may be referred to as an edge degree.
  • the degree type of a variable node has two parts although it can be viewed as a vector of (non-negative) integers. The first part relates to the received distribution and will be termed the received degree and the second part specifies the edge degree.
  • the edge degree plays the same role as for constraint nodes. Edges are typed as they pair sockets of the same type. This constraint, that sockets must pair with sockets of like type, characterizes the multi-edge type concept. In a multi-edge type description, different node types can have different received distributions (e.g., the associated bits may go through different channels).
  • Puncturing is the act of removing bits from a codeword to yield a shorter codeword. Punctured variable nodes correspond to codeword bits that are not actually transmitted. Puncturing a variable node in an LDPC code creates a shortened code (e.g. due to the removal of a bit), while also effectively removing a check node. If the variable node to be punctured has a degree of one, puncturing the variable node removes the associated bit from the code and effectively removes its single neighboring check node from the graph. As a result, the number of check nodes in the graph is reduced by one.
  • FIG. 9 is a simplified block diagram illustrating an encoder, in accordance with certain aspects of the present disclosure.
  • FIG. 9 is a simplified block diagram 900 illustrating a portion of a radio frequency (RF) modem 950 that may be configured to provide a signal including a punctured encoded message for wireless transmission.
  • RF radio frequency
  • a convolutional encoder 902 in transmitting device such as a BS (e.g., a BS 110 ) on the downlink or a UE (e.g., a UE 120 ) on the uplink, receives a message 920 for transmission.
  • a BS e.g., a BS 110
  • a UE e.g., a UE 120
  • the message 920 may contain data and/or encoded voice or other content directed to a receiving device (e.g., a UE on the downlink or a BS on the uplink).
  • the encoder 902 encodes the message.
  • the encoder 902 encodes information bits of the message using LDPC codes having pairwise row orthogonality, in accordance with certain aspects of the present disclosure described in more detail below.
  • An encoded bit stream 922 produced by the encoder 902 may then be selectively punctured by a puncturing module 904 , which may be a separate device or component, or which may be integrated with the encoder 902 .
  • the puncturing module 904 may determine that the bit stream should be punctured prior to transmission, or transmitted without puncturing.
  • the decision to puncture the bit stream 922 is typically made based on network conditions, network configuration, radio access network (RAN) defined preferences, and/or for other reasons.
  • the bit stream 922 may be punctured according to a puncture pattern 912 and used to encode the message 920 .
  • the puncturing module 904 provides an output 924 to a mapper 906 that generates a sequence of transmit (Tx) symbols 926 that are modulated, amplified, and otherwise processed by Tx chain 908 to produce an RF signal 928 for transmission through antenna 910 .
  • the punctured codeword bits are not transmitted.
  • the decoders and decoding algorithms used to decode LDPC codewords operate by exchanging messages within the graph along the edges and updating these messages by performing computations at the nodes based on the incoming messages.
  • Each variable node in the graph is initially provided with a soft bit, termed a received value, that indicates an estimate of the associated bit's value as determined by observations from, for example, the communications channel. Ideally, the estimates for separate bits are statistically independent; however, this ideal may be violated in practice.
  • a received codeword is comprised of a collection of received values.
  • FIG. 10 is a simplified block diagram illustrating a decoder, in accordance with certain aspects of the present disclosure.
  • FIG. 10 is a simplified schematic 1000 illustrating a portion of a RF modem 1050 that may be configured to receive and decode a wirelessly transmitted signal including a punctured encoded message.
  • the punctured codeword bits may be treated as erased.
  • the log likelihood ratios (LLRs) of the punctured nodes may be set to 0 at initialization.
  • the modem 1050 receiving the signal may reside in a receiving device, such as a UE (e.g., UE 120 ) on the downlink or a BS (e.g., BS 120 ) on the uplink.
  • a UE e.g., UE 120
  • BS e.g., BS 120
  • An antenna 1002 provides an RF signal 1020 to the receiving device.
  • An RF chain 1004 processes and demodulates the RF signal 1020 and may provide a sequence of symbols 1022 to a demapper 1006 , which produces a bit stream 1024 representative of the encoded message.
  • the demapper 1006 provides a depunctured bit stream 1024 .
  • the demapper 1006 includes a depuncturing module that can be configured to insert null values at locations in the bit stream at which punctured bits were deleted by the transmitter.
  • the depuncturing module may be used when the puncture pattern 1010 used to produce the punctured bit stream at the transmitter is known.
  • the puncture pattern 1010 can be used to identify LLRs 1028 ignored during decoding of the bit stream 1024 by the decoder 1008 .
  • the LDPC decoder may include a plurality of processing elements to perform the parity check or variable node operations in parallel. For example, when processing a codeword with lifting size Z, the LDPC decoder may utilize Z processing elements to perform parity check operations on all Z edges of a lifted graph, concurrently.
  • the decoder 1008 decodes information bits of the message based on LDPC codes having pairwise row orthogonality, in accordance with certain aspects of the present disclosure described in more detail below.
  • the decoder 1008 is a new decoder that exploits the pairwise row orthogonality of the LDPC to perform flexible decoder scheduling without performance loss.
  • LDPC low-density parity-check
  • the basegraph including variable nodes and check nodes
  • the basegraph can be represented by a corresponding parity check matrix (PCM) having columns corresponding to the variable nodes and rows corresponding to the check nodes.
  • Edges in the basegraph have entries in the PCM.
  • Quasi-cyclic LDPC codes have integer cyclic lifting values V i,j in the non-zero entries in the PCM for ith column and the jth row. The cyclic lifting values correspond to circulant permutations of the edges when the basegraph if lifted to obtain a lifted graph.
  • aspects of the present disclosure provide LDPC encoders using LDPC codes having pairwise orthogonality of adjacent rows in the PCM describing the code and LDPC decoders that can exploit the LDPC coding with the pairwise row orthogonality to perform flexible decoder scheduling without performance loss.
  • the PCM for some basegraphs used for LDPC coding have the PCM structure 1100 shown in FIG. 11 .
  • the PCM structure 1100 includes an upper portion with the region 1102 corresponding to systems bits; the region 1104 corresponding to parity bits; and the region 1106 corresponding to hybrid automatic repeat request (HARQ) extension bits (e.g., all zeros).
  • the regions 1102 and 1106 may have a horizontally rectangular shape.
  • the first two, highest degree, systematic bits in the region 1102 may be punctured (e.g., the first two columns in the PCM).
  • the region 1104 has a square shape.
  • the region 1104 may include a special parity bit.
  • the first or last column in the region 1104 may have a weight of 1, while the remaining columns may have a weight of 3 and dual diagonal.
  • the PCM structure 1100 also includes a lower portion with the region 1108 and the region 1110 .
  • the lower portion of the PCM structure 1100 may be used for puncturing and/or incremental redundancy (IR) HARQ.
  • the region 1110 may be a diagonal matrix (i.e., a diagonal of entries with the rest not having entries, i.e., zero).
  • the lower diagonal structure may ensure that puncturing of the mother code does not require decoding of the mother code, thereby reducing complexity.
  • the diagonal structure may render the code amenable to node-parallel decoding architectures.
  • the columns of region 1110 may correspond to HARQ bits and the region 1108 .
  • the region 1108 (and also maybe a portion of the region 1110 ) in the lower power portion of the PCM structure 1100 may have pairwise row orthogonality in each adjacent row.
  • FIG. 12 an example PCM 1200 for an LDPC code, illustrating the PCM structure 1100 of FIG. 11 , in accordance with certain aspects of the present disclosure.
  • a “1” represents an entry in the PCM (which may be replaced with a cyclic lifting value V i,j ) and a “0” represents absence of an entry.
  • the PCM 1200 includes a bottom portion with pairwise row orthogonality in adjacent rows.
  • any given column there are not entries in adjacent (i.e., consecutive) rows.
  • adjacent rows in the lower portion of the columns can both have no entries (i.e., shown as 0's) or only one has an entry (i.e., a 1,0 or 0,1), such that there entries are not in any pair of adjacent rows (i.e., 1,1 does not occur).
  • FIG. 12 illustrates an example PCM with the pairwise row orthogonality in the rows 26-46
  • the different numbers of rows could be non-orthogonal.
  • the first two columns include some non-orthogonality of the rows, while in the remaining columns in the first portion are non-orthogonal.
  • adjacent rows in all of the columns are orthogonal. For example, as shown in FIG.
  • adjacent rows in the first two columns are not always orthogonal, however, the adjacent rows in the remaining columns (i.e., columns 3-27) are pairwise orthogonal.
  • rows 26-46 all of the columns in the region (e.g., columns 1-27) have pairwise row orthogonality.
  • the description of the basegraph may be stored on chip, for example, at the BS and/or the UE.
  • the description may be basegraph, the PCM, or some other representation of the sparse matrix.
  • the receiving decodes the codeword received from the transmitting device.
  • the receiving device may decode according to decoding schedule.
  • the receiving device may decode the codeword using a layered decoder.
  • the decoding schedule may be based, at least in part, on the stored description of the basegraph.
  • the decoding schedule may decode the codeword row by row (e.g., using the basegraph).
  • the decoding schedule may decode the codeword column by column.
  • the decoding schedule may decode the two columns at a time (e.g., within a row or pair of rows).
  • the decoding schedule may skip absent entries for decoding.
  • the receiving device may use a new decoder with improved performance.
  • the decoder may exploit the pairwise orthogonality of the LDPC described herein to increase decoding speed, for example, by decoding the codeword by pairs of rows at a time, without performance loss.
  • the decoder may have increased decoding scheduling flexibility, due to the pairwise row orthogonality, because for any set of three consecutive rows in the lower portion of the code, the decoder can select between two different orthogonal combinations for simultaneous decoding.
  • FIG. 13 illustrates a communications device 1300 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 14 and/or FIG. 15 .
  • the communications device 1300 includes a processing system 1302 coupled to a transceiver 1308 .
  • the transceiver 1308 is configured to transmit and receive signals for the communications device 1300 via an antenna 1310 , such as the various signals as described herein.
  • the processing system 1302 may be configured to perform processing functions for the communications device 1300 , including processing signals received and/or to be transmitted by the communications device 1300 .
  • the processing system 1302 includes a processor 1304 coupled to a computer-readable medium/memory 1312 via a bus 1306 .
  • the computer-readable medium/memory 1312 is configured to store instructions (e.g., computer executable code) that when executed by the processor 1304 , cause the processor 1304 to perform the operations illustrated in FIG. 14 and/or FIG. 15 , or other operations for performing the various techniques discussed herein for LDPC coding with pairwise row orthogonality.
  • computer-readable medium/memory 1512 stores code 1314 for encoding information bits using LDPC code with pairwise row orthogonality; code 1316 for transmitting the codeword over a wireless channel; code 1318 for receiving a codeword; and code 1320 for decoding the codeword using LDPC code with pairwise row orthogonality to obtain information bits.
  • FIG. 14 is a flow diagram illustrating example operations 1400 for wireless communications by a receiving device using LDPC coding, in accordance with certain aspects of the present disclosure.
  • the receiving device may be a BS (e.g., such as a BS 110 in the wireless communication network 100 ) on the uplink or a UE (e.g., such as a UE 120 in the wireless communication network 100 ) on the downlink.
  • BS e.g., such as a BS 110 in the wireless communication network 100
  • UE e.g., such as a UE 120 in the wireless communication network 100
  • the operations 1400 begin, at 1402 . by receiving a codeword (e.g., or punctured codeword) in accordance with a radio technology (e.g., NR or 5G radio technology) across a wireless channel via one or more antenna elements situated proximal a receiver.
  • a codeword e.g., or punctured codeword
  • the receiving device decodes (e.g., with a layered decoder) the codeword (e.g., and depunctures if the codeword is punctured) via decoder circuitry based on a LDPC code to produce a set of information bits.
  • the LDPC code (e.g., or a lifted LDPC code) is stored and defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion (e.g., the bottom 21 rows) of the second number of rows. For example, in each of the first number of columns, at most one row of each pair of the adjacent orthogonal rows in the last portion of the rows has an entry.
  • the decoding may be based on a decoding schedule.
  • the decoding schedule may include decoding sequentially row by row in the base matrix or by simultaneously decoding pairs of rows (e.g., an column by column) in the base matrix.
  • the receiving device may select from two combinations of two rows from any three sequential rows in the last portion for the simultaneous decoding pairs of the decoding schedule.
  • the decoding schedule skips for decoding portions of the base matrix that do not contain an associated entry.
  • FIG. 15 is a flow diagram illustrating example operations 1500 for wireless communications by a transmitting device using LDPC coding, in accordance with certain aspects of the present disclosure.
  • the transmitting device may be a UE (e.g., such as a UE 120 in the wireless communication network 100 ) on the uplink or a BS (e.g., such as a BS 121 in the wireless communication network 100 ) on the downlink.
  • the operations 1500 may be complementary to the operations 1400 by the receiving device.
  • the operations 1500 begin, at 1502 . by encoding a set of information bits with encoder circuitry based on a LDPC code to produce a codeword.
  • the LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
  • the transmitting device transmits the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements.
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c).
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component(s) and/or module(s), including, but not limited to a circuit, an application specific integrated circuit (ASIC), or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory), flash memory, ROM (Read Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM PROM
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared (IR), radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and Blu-ray® disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media).
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal). Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • instructions for performing the operations described herein and illustrated in FIG. 14 and FIG. 15 may comprise instructions for performing the operations described herein and illustrated in FIG. 14 and FIG. 15 .
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mathematical Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)
  • Telephonic Communication Services (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

Certain aspects of the present disclosure provide low-density parity-check (LDPC) codes having pairwise orthogonality of adjacent rows, and a new decoder that exploits the pairwise row orthogonality for flexible decoder scheduling without performance loss. An apparatus includes a receiver configured to receive a codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal the receiver. The apparatus includes at least one processor coupled with a memory and comprising decoder circuitry configured to decode the codeword based on a LDPC code to produce a set of information bits. The LDPC code is stored in the memory and defined by a base matrix having columns in which all adjacent rows are orthogonal in a last portion of the rows.

Description

CROSS-REFERENCE TO RELATED APPLICATION & PRIORITY CLAIM
This application claims benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/517,916, filed Jun. 10, 2017, and also U.S. Provisional Patent Application Ser. No. 62/522,044, filed Jun. 19, 2017. Both of said applications are herein incorporated by reference in their entireties as if fully set forth below and for all applicable purposes.This application is reissue of U.S. Pat. No. 10,312,939, issued on Jun. 4, 2019 which was filed as U.S. patent application Ser. No. 16/003,047, filed Jun. 7, 2018. U.S. patent application Ser. No. 16/003,047 claims benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/517,916, filed Jun. 10, 2017, and also U.S. Provisional Patent Application Ser. No. 62/522,044, filed Jun. 19, 2017, both of said applications are herein incorporated by reference in their entireties as if fully set forth below and for all applicable purposes.
TECHNICAL FIELD
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for coding using low-density parity-check (LDPC) codes. In some embodiments, the LDPC codes can be arranged in or have pairwise orthogonality of adjacent rows in a parity check matrix (PCM) describing the code. Embodiments also include new modules (e.g., hardware) such as a new encoder/decoder configured for leveraging LDPC coding with pairwise row orthogonality to perform flexible encoder/decoder scheduling without performance loss and advantageous hardware processing
INTRODUCTION
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc.). Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
In some examples, a wireless multiple-access communication system may include a number of base stations (BSs), which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs). In an LTE or LTE-A network, a set of one or more base stations may define an eNodeB (eNB). In other examples (e.g., in a next generation, a new radio (NR), or 5G network), a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs), edge nodes (ENs), radio heads (RHs), smart radio heads (SRHs), transmission reception points (TRPs), etc.) in communication with a number of central units (CUs) (e.g., central nodes (CNs), access node controllers (ANCs), etc.), where a set of one or more DUs, in communication with a CU, may define an access node (e.g., which may be referred to as a BS, 5G NB, next generation NodeB (gNB or gNodeB), transmission reception point (TRP), etc.). ABS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to BS or DU).
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. NR (e.g., new radio or 5G) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL). To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
Binary values (e.g., ones and zeros), are used to represent and communicate various types of information, such as video, audio, statistical information, etc. Unfortunately, during storage, transmission, and/or processing of binary data, errors may be unintentionally introduced; for example, a “1” may be changed to a “0” or vice versa.
Generally, in the case of data transmission, a receiver observes each received bit in the presence of noise or distortion and only an indication of the bit's value is obtained. Under these circumstances, the observed values are interpreted as a source of “soft” bits. A soft bit indicates a preferred estimate of the bit's value (e.g., a 1 or a 0) together with some indication of the reliability of that estimate. While the number of errors may be relatively low, even a small number of errors or level of distortion can result in the data being unusable or, in the case of transmission errors, may necessitate re-transmission of the data. In order to provide a mechanism to check for errors and, in some cases, to correct errors, binary data can be coded to introduce carefully designed redundancy. Coding of a unit of data produces what is commonly referred to as a codeword. Because of its redundancy, a codeword will often include more bits than the input unit of data from which the codeword was produced.
Redundant bits are added by an encoder to the transmitted bit stream to create a code word. When signals arising from transmitted code words are received or processed, the redundant information included in the code word as observed in the signal can be used to identify and/or correct errors in or remove distortion from the received signal in order to recover the original data unit. Such error checking and/or correcting can be implemented as part of a decoding process. In the absence of errors, or in the case of correctable errors or distortion, decoding can be used to recover from the source data being processed, the original data unit that was encoded. In the case of unrecoverable errors, the decoding process may produce some indication that the original data cannot be fully recovered. Such indications of decoding failure can be used to initiate retransmission of the data. As the use of fiber optic lines for data communication and increases in the rate at which data can be read from and stored to data storage devices (e.g., disk drives, tapes, etc.) increases, there is an increasing need for efficient use of data storage and transmission capacity and also for the ability to encode and decode data at high rates of speed.
In the context of 3GPP standardization efforts by interested parties and 3GPP participants, TR.38.912 (Version 14.0.0, March 2017) outlined aspects related to study items under consideration for NR to fulfill requirements of IMT-2020 plans. One area related to channel coding (Section 8.2.1.5). This section discusses channel coding for NR including LDPC (Section 8.2.1.5.1) and discusses some matrix components.
BRIEF SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
While encoding efficiency and high data rates are important, for an encoding and/or decoding system to be practical for use in a wide range of devices (e.g., consumer devices), it is also important that the encoders and/or decoders can be implemented at reasonable cost. Embodiments of the present invention provide improved communication devices with new, improved hardware components capable of carrying out new, improved encoding and decoding techniques. Encoders and decoders according to embodiments of the present invention can include features as discussed below for leveraging LDPC coding techniques. Embodiments can include LDPC encoder/decoder circuitry comprising circuit features configured to carry out encoding and decoding techniques efficiently and considering device size and operational design considerations. Technical improvements can include faster hardware processing resulting from encoding/decoding using an LPDC code based on base graph having unique orthogonality arrangements.
Communication systems often need to operate at several different rates. Low-density parity-check (LDPC) codes can be used for simple implementation to provide coding and/or decoding at different rates. For example, higher-rate LDPC codes can be generated by puncturing lower-rate LDPC codes.
As the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR technology. Preferably, improvements can or should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies. One area for improvements is the area of encoding/decoding for data transmissions. These improvements (e.g., improved LDPC codes) can be applicable to NR and other access technologies.
Aspects of the present disclosure relate to coding for communications using LDPC codes that have pairwise orthogonality of adjacent rows in the corresponding parity check matrix (PCM) that describes the LDPC code and a new encoder/decoder that exploits the LDPC coding with the pairwise row orthogonality to perform flexible encoder/decoder scheduling without performance loss. Embodiments can include circuits arranged and/or configured to carry out encoding/decoding operations using LDPC codes having pairwise orthogonality. In some embodiments, an encoder or decoder can comprise at least one processor communicatively coupled to a memory device, the encoder or decoder can be configured to implement encoding or decoding leveraging LDPC codes with pairwise orthogonality arrangements.
Certain aspects provide an apparatus for wireless communication by a receiving device. The apparatus generally includes a receiver configured to receive a codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal the receiver. The apparatus includes at least one processor coupled with a memory and comprising decoder circuitry configured to decode the codeword based on a LDPC code to produce a set of information bits. The LDPC code is stored in the memory and defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
Certain aspects provide an apparatus for wireless communication by a transmitting device. The apparatus generally includes at least one processor coupled with a memory and comprising an encoder circuit configured to encode a set of information bits based on a LDPC code to produce a codeword. The LDPC code is stored in the memory and defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows. The apparatus includes a transmitter configured to transmit the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements arranged proximal the transmitter.
Certain aspects provide a method for wireless communication by a receiving device. The method generally includes receiving a codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal a receiver. The method includes decoding the codeword via decoder circuitry based on a LDPC code to produce a set of information bits. The LDPC code is stored and defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
Certain aspects provide a method for wireless communication by a transmitting device. The method generally includes encoding with encoder circuitry a set of information bits based on a LDPC code to produce a codeword. The LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows. The method includes transmitting the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements.
Certain aspects provide an apparatus for wireless communication, such as a receiving device. The apparatus generally includes means for receiving a codeword in accordance with a radio technology across a wireless channel. The apparatus generally includes means for decoding the codeword based on a LDPC code to produce a set of information bits. The LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
Certain aspects provide an apparatus for wireless communication, such as a transmitting device. The apparatus generally includes means for encoding a set of information bits based on a LDPC code to produce a codeword. The LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows. The apparatus generally includes means for transmitting the codeword in accordance with a radio technology across a wireless channel.
Certain aspects provide a computer readable medium having computer executable code stored thereon for wireless communication. The computer executable code generally includes code for receiving a codeword in accordance with a radio technology across a wireless channel. The computer executable code generally includes code for decoding the codeword based on a LDPC code to produce a set of information bits. The LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows.
Certain aspects provide a computer readable medium having computer executable code stored thereon for wireless communication. The computer executable code generally includes code for encoding a set of information bits based on a LDPC code to produce a codeword. The LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows. The computer executable code generally includes code for transmitting the codeword in accordance with a radio technology across a wireless channel.
Certain embodiments can include a number of devices capable of communication. For example, some embodiments may include user-based, handheld consumer devices that comprise a housing capable of holding internal circuitry. The internal circuitry can include one or more processors configured to carry out mobile communications and associated memory for storing data and software. The internal circuitry can also include wireless modem features that include encoder/decoder circuitry that may use LPDC codes for encoding or decoding information in wireless communication settings. In another example, an apparatus can comprise: a transceiver capable of wireless communications with at least one network node of a wireless network; and a processor coupled to the transceiver. The processor can comprise an encoder capable of encoding data to provide encoded data by performing operations comprising: encoding the data with a low-density parity-check (LDPC) code having row-wise orthogonality to provide LDPC-coded data. The processor can comprise a decoder capable of decoding data to provide decoded data by performing operations comprising: decoding data with a low-density party-check (LDPC) code having row-wise orthogonality to provide LDPC-decoded data.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram illustrating an example logical architecture of a distributed radio access network (RAN), in accordance with certain aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE), in accordance with certain aspects of the present disclosure.
FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
FIG. 6 illustrates an example of a frame format for a new radio (NR) system, in accordance with certain aspects of the present disclosure.
FIGS. 7-7A show graphical and matrix representations of an exemplary low-density parity-check (LDPC) code, in accordance with certain aspects of the present disclosure.
FIG. 8 is a lifted bipartite graph illustrating lifting of the LDPC code of FIG. 7A, in accordance with certain aspects of the present disclosure.
FIG. 9 is a block diagram illustrating an encoder, in accordance with certain aspects of the present disclosure.
FIG. 10 is a block diagram illustrating a decoder, in accordance with certain aspects of the present disclosure.
FIG. 11 is an example generalized structure of an LDPC code base matrix, in accordance with certain aspects of the present disclosure.
FIG. 12 an example LDPC code base matrix, in accordance with certain aspects of the present disclosure.
FIG. 13 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
FIG. 14 is a flow diagram illustrating example operations for wireless communications by a receiving device using LDPC coding, in accordance with certain aspects of the present disclosure.
FIG. 15 is a flow diagram illustrating example operations for wireless communications by a transmitting device using LDPC coding, in accordance with certain aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for coding for communications using low-density parity-check (LDPC) codes that have pairwise orthogonality of adjacent rows in the corresponding parity check matrix (PCM) that describes the LDPC code.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented, or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication technologies, such as LTE, CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA), cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM). An OFDMA network may implement a radio technology such as NR (e.g. 5G RA), Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS).
New Radio (NR) is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF). 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP). cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2). The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
New radio (NR) access (e.g., 5G technology) may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond), millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond), massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC). These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
While aspects and embodiments are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, embodiments and/or uses may come about via integrated chip embodiments and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc.). While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. For example, transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antennas, antenna alements arranged or located proximal receiver or transmitter components, RF-chains, power amplifiers, modulators, buffer, processor(s), interleaver, adders/summers, etc.). It is intended that innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
Example Wireless Communications System
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed. For example, the wireless communication network 100 may be a New Radio (NR) or 5G network. The NR network may use low-density parity-check (LPDC) coding for certain transmissions, in accordance with certain aspects of the present disclosure. For example, a transmitting device, such as a base station (BS) 110 on the downlink or a user equipment (UE) 120 on the uplink, can encode information bits for transmission to a receiving device in the wireless communication network 100. The transmitting device encodes the information bits for certain transmissions using LDPC code. The base graph associated with the LDPC code may have pairwise row orthogonality in a lower portion of the base graph. The receiving device, such as the UE 120 on the downlink or the BS 110 on the uplink, receives the encoded transmission from the transmitting device and decodes the transmission to obtain the information. The receiving device may exploit the pairwise row orthogonality in the decoder for more flexible decoder scheduling.
As illustrated in FIG. 1 , the wireless communication network 100 may include a number of base stations (BSs) 110 and other network entities. A BS may be a station that communicates with user equipments (UEs). Each BS 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and next generation NB (gNB or gNodeB), NR BS, 5G NB, access point (AP), or transmission reception point (TRP) may be interchangeable. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG), UEs for users in the home, etc.). A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1 , the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively. A BS may support one or multiple (e.g., three) cells.
Wireless communication network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS). A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1 , a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r. A relay station may also be referred to as a relay BS, a relay, etc.
Wireless communication network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless communication network 100. For example, macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt).
Wireless communication network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
A network controller 130 may couple to a set of BSs and provide coordination and control for these BSs. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
The UEs 120 (e.g., 120x, 120y, etc.) may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE), a cellular phone, a smart phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.), an entertainment device (e.g., a music device, a video device, a satellite radio, etc.), a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device), or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB)) may be 12 subcarriers (or 180 kHz). Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz), respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks), and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR. NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
In some examples, access to the air interface may be scheduled, wherein a. A scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs), and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
In FIG. 1 , a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink. A finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
FIG. 2 illustrates an example logical architecture of a distributed Radio Access Network (RAN) 200, which may be implemented in the wireless communication network 100 illustrated in FIG. 1 . A 5G access node 206 may include an ANC 202. ANC 202 may be a central unit (CU) of the distributed RAN 200. The backhaul interface to the Next Generation Core Network (NG-CN) 204 may terminate at ANC 202. The backhaul interface to neighboring next generation access Nodes (NG-ANs) 210 may terminate at ANC 202. ANC 202 may include one or more TRPs 208 (e.g., cells, BSs, gNBs, etc.).
The TRPs 208 may be a distributed unit (DU). TRPs 208 may be connected to a single ANC (e.g., ANC 202) or more than one ANC (not illustrated). For example, for RAN sharing, radio as a service (RaaS), and service specific AND deployments, TRPs 208 may be connected to more than one ANC. TRPs 208 may each include one or more antenna ports. TRPs 208 may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
The logical architecture of distributed RAN 200 may support fronthauling solutions across different deployment types. For example, the logical architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter).
The logical architecture of distributed RAN 200 may share features and/or components with LTE. For example, next generation access node (NG-AN) 210 may support dual connectivity with NR and may share a common fronthaul for LTE and NR.
The logical architecture of distributed RAN 200 may enable cooperation between and among TRPs 208, for example, within a TRP and/or across TRPs via ANC 202. An inter-TRP interface may not be used.
Logical functions may be dynamically distributed in the logical architecture of distributed RAN 200. As will be described in more detail with reference to FIG. 5 , the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU (e.g., TRP 208) or CU (e.g., ANC 202).
FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure. A centralized core network unit (C-CU) 302 may host core network functions. C-CU 302 may be centrally deployed. C-CU 302 functionality may be offloaded (e.g., to advanced wireless services (AWS)), in an effort to handle peak capacity.
A centralized RAN unit (C-RU) 304 may host one or more ANC functions. Optionally, the C-RU 304 may host core network functions locally. The C-RU 304 may have distributed deployment. The C-RU 304 may be close to the network edge.
A DU 306 may host one or more TRPs (Edge Node (EN), an Edge Unit (EU), a Radio Head (RH), a Smart Radio Head (SRH), or the like). The DU may be located at edges of the network with radio frequency (RF) functionality.
FIG. 4 illustrates example components of BS 110 and UE 120 (as depicted in FIG. 1 ), which may be used to implement aspects of the present disclosure. For example, antennas 452, processors 466, 458, 464, and/or controller/processor 480 of the UE 120 and/or antennas 434, processors 420, 460, 438, and/or controller/processor 440 of the BS 110 may be used to perform the various techniques and methods described herein for LDPC coding using LPDC codes having pairwise row orthogonality of adjacent rows in the PCM describing the code. For example, the processors 466, 458, 464, and/or controller/processor 480 of the UE 120 and/or the processors 420, 460, 438, and/or controller/processor 440 of the BS 110 may include an encoder and/or a decoder as described in more detail below with respect to FIG. 9 and FIG. 10 , and may be configured to LDPC coding using LPDC code with pairwise row orthogonality in adjacent rows of the corresponding PCM describing the LDPC code, according to certain aspects of the present disclosure.
At the BS 110, a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440. The control information may be for the physical broadcast channel (PBCH), physical control format indicator channel (PCFICH), physical hybrid ARQ indicator channel (PHICH), physical downlink control channel (PDCCH), group common PDCCH (GC PDCCH), etc. The data may be for the physical downlink shared channel (PDSCH), etc. The processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 420 may also generate reference symbols, e.g., for the primary synchronization signal (PSS), secondary synchronization signal (SSS), and cell-specific reference signal (CRS). A transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc.) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
At the UE 120, the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DE-MODs) in transceivers 454a through 454r, respectively. Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc.) to obtain received symbols. A MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
On the uplink, at UE 120, a transmit processor 464 may receive and process data (e.g., for the physical uplink shared channel (PUSCH)) from a data source 462 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480. The transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS)). The symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators in transceivers 454a through 454r (e.g., for SC-FDM, etc.), and transmitted to the base station 110. At the BS 110, the uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120. The receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
The controllers/ processors 440 and 480 may direct the operation at the BS 110 and the UE 120, respectively. The processor 440 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein. The memories 442 and 482 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure. The illustrated communications protocol stacks may be implemented by devices operating in a wireless communication system, such as a 5G system (e.g., a system that supports uplink-based mobility). Diagram 500 illustrates a communications protocol stack including a RRC layer 510, a PDCP layer 515, a RLC layer 520, a MAC layer 525, and a PHY layer 530. In various examples, the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
A first option 505-a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2 ) and distributed network access device (e.g., DU 208 in FIG. 2 ). In the first option 505-a, an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit, and an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU. In various examples the CU and the DU may be collocated or non-collocated. The first option 505-a may be useful in a macro cell, micro cell, or pico cell deployment.
A second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device. In the second option, RRC layer 510, PDCP layer 515, RLC layer 520. MAC layer 525, and PHY layer 530 may each be implemented by the AN. The second option 505-b may be useful in, for example, a femto cell deployment.
Regardless of whether a network access device implements part or all of a protocol stack, a UE may implement an entire protocol stack as shown in 505-c (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530).
In LTE, the basic transmission time interval (TTI) or packet duration is the 1 ms subframe. In NR, a subframe is still 1 ms, but the basic TTI is referred to as a slot. A subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, . . . slots) depending on the subcarrier spacing. The NR RB is 12 consecutive frequency subcarriers. NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. The symbol and slot lengths scale with the subcarrier spacing. The CP length also depends on the subcarrier spacing.
FIG. 6 is a diagram showing an example of a frame format 600 for NR. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9. Each subframe may include a variable number of slots depending on the subcarrier spacing. Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing. The symbol periods in each slot may be assigned indices. A mini-slot is a subslot structure (e.g., 2, 3, or 4 symbols).
Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched. The link directions may be based on the slot format. Each slot may include DL/UL data as well as DL/UL control information.
In NR, a synchronization signal (SS) block is transmitted. The SS block includes a PSS, a SSS, and a two symbol PBCH. The SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 6 . The PSS and SSS may be used by UEs for cell search and acquisition. The PSS may provide half-frame timing, the SS may provide the CP length and frame timing. The PSS and SSS may provide the cell identity. The PBCH carries some basic system information (SI), such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc. The SS blocks may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI), system information blocks (SIBs), other system information (OSI) can be transmitted on a PDSCH in certain subframes.
In some circumstances, two or more subordinate entities (e.g., UEs) may communicate with each other using sidelink signals. Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications. Generally, a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS), even though the scheduling entity may be utilized for scheduling and/or control purposes. In some examples, the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum).
A UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc.) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc.). When operating in the RRC dedicated state, the UE may select a dedicated set of resources for transmitting a pilot signal to a network. When operating in the RRC common state, the UE may select a common set of resources for transmitting a pilot signal to the network. In either case, a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof. Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE. One or more of the receiving network access devices, or a CU to which receiving network access device(s) transmit the measurements of the pilot signals, may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
Example Error Correction Coding
Many communications systems (e.g., such as NR) use error-correcting codes. Error correcting codes generally compensate for the intrinsic unreliability of information transfer (e.g., over the air medium) in these systems by introducing redundancy into the data stream. Low-density parity-check (LDPC) codes are one type of error correcting codes which use an iterative coding system. Gallager codes are an example of “regular” LDPC codes. Regular LDPC codes are linear block code in which most of the elements of its parity check matrix H (PCM) are ‘0’.
LDPC codes can be represented by bipartite graphs (often referred to as “Tanner graphs”). In a bipartite graph, a set of variable nodes corresponds to bits of a codeword (e.g., information bits or systematic bits), and a set of check nodes correspond to a set of parity-check constraints that define the code. Edges in the graph connect variable nodes to check nodes. Thus, the nodes of the graph are separated into two distinctive sets and with edges connecting nodes of two different types, variable and check.
Graphs as used in LDPC coding may be characterized in a variety of manners. A lifted code is created by copying a bipartite base graph (G) a number of times, N. The number of copies, or liftings, may be referred to as the lifting size or lifting size value Z. A variable node and a check node are considered “neighbors” if they are connected by an “edge” (i.e., the line connecting the variable node and the check node) in the bipartite graph. For each edge (e) of the bipartite base graph, a permutation is applied to the N copies of edge (e) to interconnect the N copies of G. A bit sequence having a one-to-one association with the variable node sequence is a valid codeword if and only if, for each check node (also referred to as a constraint node), the bits associated with all neighboring variable nodes sum to 0 modulo 2, i.e., they include an even number of 1's. The resulting LDPC code may be quasi-cyclic (QC) if the permutations used are cyclic. The cyclic permutations applies to the edges may be referred to as lifting values or cyclic lifting values. The lifting values are represented by a value k of an entry in the PCM.
FIGS. 7-7A show graphical and matrix representations of an exemplary LDPC code, respectively, in accordance with certain aspects of the present disclosure. FIG. 7 shows a bipartite graph 700 representing an example LDPC code. The bipartite graph 700 includes a set of five variable nodes 710 (represented by circles) connected to four check nodes 720 (represented by squares). Edges in the graph 700 connect variable nodes 710 to the check nodes 720 (represented by the lines connecting the variable nodes 710 to the check nodes 720). The bipartite graph 700 consists of |V|=5 variable nodes and |C|=4 check nodes, connected by |E|=12 edges.
The bipartite graph 700 may be represented by a simplified adjacency matrix. FIG. 7A shows a matrix representation 700A of the bipartite graph 700. The matrix representation 700A includes the PCM, H, and a codeword vector x, where x1, x2, . . . x5 represent bits of the codeword x. H is used for determining whether a received signal was normally decoded. H is a binary matrix having C rows corresponding to j check nodes and V columns corresponding to i variable nodes (i.e., a demodulated symbol). The rows represent the equations and the columns represent the bits (also referred to as digits) of the codeword. In FIG. 7A, H has four rows and five columns corresponding to the four check nodes and the five variable nodes, respectively. If a j-th check node is connected to an i-th variable node by an edge, i.e., the two nodes are neighbors and the edge is represented by a 1 in the i-th column and j-th row of H. That is, the intersection of an i-th row and a j-th column contains a “1” where an edge joins the corresponding vertices and a “0” where there is no edge. In some representations, a blank or a (*) is used to represent no edge. The codeword vector x represents a valid codeword if and only if Hx=0. Thus, if the codeword is received correctly, then Hx=0 (mod 2). When the product of a coded received signal and the PCM becomes “0”, this signifies that no error has occurred.
The length of the LDPC code corresponds to the number of variable nodes in the bipartite graph. The number of edges (e.g., non-zero elements, also referred to as entries, in the PCM) in a row (column) is defined as the row (column) weight dc(dv). The degree of a node refers to the number of edges connected to that node. For example, as shown in FIG. 7 , the variable node 711 has three degrees of connectivity, with edges connected to check nodes 721, 722, and 723. Variable node 712 has three degrees of connectivity, with edges connected to check nodes 721, 723, and 724. Variable node 713 has two degrees of connectivity, with edges connected to check nodes 721 and 724. Variable node 714 has two degrees of connectivity, with edges connected to check nodes 722 and 724. And variable node 715 has two degrees of connectivity, with edges connected to check nodes 722 and 723.
In the bipartite graph 700 shown in FIG. 7 , the number of edges incident to a variable node 710 is equal to the number of 1's in the corresponding column in the PCM H shown in FIG. 7A, and is called the variable node degree d(v). Similarly, the number of edges connected with a check node 420 is equal to the number of ones in a corresponding row and is called the check node degree d(c). For example, as shown in FIG. 7A, the first column in the matrix H corresponds to the variable node 711 and the corresponding entries in the column (1, 1, 1, 0) indicates the edge connections to the check nodes 721, 722, and 723. while the 0 indicates that there is not an edge to check node 724. The entries in the second, third, fourth, and fourth columns of H represent the edge connections of the variable nodes 712, 713, 714, and 715, respectively, to the check nodes. A regular code is one for which all variable nodes in the bipartite graph have the same degree and all constraint nodes have the same degree. On the other hand, an irregular code has constraint nodes and/or variable nodes of differing degrees.
“Lifting” enables LDPC codes to be implemented using parallel encoding and/or decoding implementations while also reducing the complexity typically associated with large LDPC codes. Lifting helps enable efficient parallelization of LDPC decoders while still having a relatively compact description. More specifically, lifting is a technique for generating a relatively large LDPC code from multiple copies of a smaller base code. For example, a lifted LDPC code may be generated by producing Z parallel copies of the base graph (e.g., protograph) and then interconnecting the parallel copies through permutations of edge clusters of each copy of the base graph. The base graph defines the (macro) structure of the code and consists of a number (K) of information bit columns and a number (N) of code bit columns. Z liftings of the base graph results in a final blocklength of KZ. Thus, a larger graph can be obtained by a “copy and permute” operation where multiple copies of the base graph are made and connected to form a single lifted graph. For the multiple copies, like edges are a set of copies of single base edge, are permutated and connected to form a connected graph Z times larger than the base graph. FIG. 8 is a lifted bipartite graph 900 illustrating liftings of three copies of the bipartite graph 700 of FIG. 7 . Three copies may be interconnected by permuting like edges among the copies. If the permutations are restricted to cyclic permutations, then the resulting bipartite graph 900 corresponds to a quasi-cyclic LDPC with lifting Z=3.
A corresponding PCM of the lifted graph can be constructed from the PCM of the base graph (also known as the “base PCM”) by replacing each entry in the base PCM with a Z×Z matrix. The “0” (or blank or (*)) entries (those having no base edges) are replaced with the 0 matrix and the non-zero entries (indicating a base edge) are replaced with a Z×Z permutation matrix. In the case of cyclic liftings, the permutations are cyclic permutations.
A cyclically lifted LDPC code can also be interpreted as a code over the ring of binary polynomials modulo xz+1. In this interpretation, a binary polynomial, (x)=b0+b1x+b2x2+ . . . bz-1xz-1 may be associated to each variable node in the base graph. The binary vector (b0, b1, b2, . . . , bz-1) corresponds to the bits associated to Z corresponding variable nodes in the lifted graph, that is, Z copies of a single base variable node. A cyclic permutation by k of the binary vector is achieved by multiplying the corresponding binary polynomial by xk where multiplication is taken modulo xz+1. A degree d parity check in the base graph can be interpreted as a linear constraint on the neighboring binary polynomials B1(x), . . . , Bd(x), written as xk 1 B1(x)+xk 2 B2(x)+ . . . +xk d Bd(x)=0xk 1 B1(x)+xk 2 B2(x)+ . . . +xk d Bd(x)=0, the values, k1, . . . , kd are the cyclic lifting values associated to the corresponding edges. This resulting equation is equivalent to the Z parity checks in the cyclically lifted Tanner graph corresponding to the single associated parity check in the base graph. Thus, the PCM for the lifted graph can be expressed using the matrix for the base graph in which “1” entries are replaced with monomials of the form xk and “0” entries are lifted as 0, but now the 0 is interpreted as the 0 binary polynomial modulo xz+1. Such a matrix may be written by giving the value kin place of xk. In this case the 0 polynomial is sometimes represented as “−1” and sometimes as another character in order to distinguish it from x0.
Typically, a square submatrix of the PCM represents the parity bits of the code. The complementary columns correspond to information bits that, at the time of encoding, are set equal to the information bits to be encoded. The encoding may be achieved by solving for the variables in the aforementioned square submatrix in order to satisfy the parity check equations. The PCM may be partitioned into two parts M and N, where M is the square portion. Thus, encoding reduces to solving Mc=s=Nd where c and d comprise x. In the case of quasi-cyclic codes, or cyclically lifted codes, the above algebra can be interpreted as being over the ring of binary polynomials modulo xz+1.
A received LDPC codeword can be decoded to produce a reconstructed version of the original codeword. In the absence of errors, or in the case of correctable errors, decoding can be used to recover the original data unit that was encoded. Redundant bits may be used by decoders to detect and correct bit errors. LDPC decoder(s) generally operate by iteratively performing local calculations and passing those results by exchanging messages within the bipartite graph along the edges, and updating these messages by performing computations at the nodes based on the incoming messages. These steps may be repeated several times. For example, each variable node 710 in the graph 700 may initially be provided with a “soft bit” (e.g., representing the received bit of the codeword) that indicates an estimate of the associated bit's value as determined by observations from the communications channel. Using these soft bits the LDPC decoders may update messages by iteratively reading them, or some portion thereof, from memory and writing an updated message, or some portion thereof, back to, memory. The update operations are typically based on the parity check constraints of the corresponding LDPC code. For lifted LDPC codes, messages on like edges are often processed in parallel.
LDPC codes designed for high speed applications often use quasi-cyclic constructions with large lifting factors and relatively small base graphs to support high parallelism in encoding and decoding operations. LDPC codes with higher code rates (e.g., the ratio of the message length to the code word length) tend to have relatively fewer parity checks. If the number of base parity checks is smaller than the degree of a variable node (e.g., the number of edges connected to a variable node), then, in the base graph, that variable node is connected to at least one of the base parity checks by two or more edges (e.g., the variable node may have a “double edge”). Or if the number of base parity checks is smaller than the degree of a variable node (e.g., the number of edges connected to a variable node), then, in the base graph, that variable node is connected to at least one of the base parity checks by two or more edges. Having a base variable node and a base check node connected by two or more edges is generally undesirable for parallel hardware implementation purposes. For example, such double edges may result in multiple concurrent read and write operations to the same memory locations, which in turn may create data coherency problems. A double edge in a base LDPC code may trigger parallel reading of the same soft bit value memory location twice during a single parallel parity check update. Thus, additional circuitry is typically needed to combine the soft hit values that are written hack to memory, so as to properly incorporate both updates. However, eliminating double edges in the LDPC code helps to avoid this extra complexity
In the definition of standard irregular LDPC code ensembles (degree distributions) all edges in the Tanner graph representation may be statistically interchangeable. In other words, there exists a single statistical equivalence class of edges. For multi-edge LDPC codes, multiple equivalence classes of edges may be possible. While in the standard irregular LDPC ensemble definition, nodes in the graph (both variable and constraint) are specified by their degree, i.e., the number of edges they are connected to, in the multi-edge type setting an edge degree is a vector; it specifies the number of edges connected to the node from each edge equivalence class (type) independently. A multi-edge type ensemble is comprised of a finite number of edge types. The degree type of a constraint node is a vector of (non-negative) integers; the i-th entry of this vector records the number of sockets of the i-th type connected to such a node. This vector may be referred to as an edge degree. The degree type of a variable node has two parts although it can be viewed as a vector of (non-negative) integers. The first part relates to the received distribution and will be termed the received degree and the second part specifies the edge degree. The edge degree plays the same role as for constraint nodes. Edges are typed as they pair sockets of the same type. This constraint, that sockets must pair with sockets of like type, characterizes the multi-edge type concept. In a multi-edge type description, different node types can have different received distributions (e.g., the associated bits may go through different channels).
Puncturing is the act of removing bits from a codeword to yield a shorter codeword. Punctured variable nodes correspond to codeword bits that are not actually transmitted. Puncturing a variable node in an LDPC code creates a shortened code (e.g. due to the removal of a bit), while also effectively removing a check node. If the variable node to be punctured has a degree of one, puncturing the variable node removes the associated bit from the code and effectively removes its single neighboring check node from the graph. As a result, the number of check nodes in the graph is reduced by one.
FIG. 9 is a simplified block diagram illustrating an encoder, in accordance with certain aspects of the present disclosure. FIG. 9 is a simplified block diagram 900 illustrating a portion of a radio frequency (RF) modem 950 that may be configured to provide a signal including a punctured encoded message for wireless transmission. In one example, a convolutional encoder 902 in transmitting device, such as a BS (e.g., a BS 110) on the downlink or a UE (e.g., a UE 120) on the uplink, receives a message 920 for transmission. The message 920 may contain data and/or encoded voice or other content directed to a receiving device (e.g., a UE on the downlink or a BS on the uplink). The encoder 902 encodes the message. In some examples, the encoder 902 encodes information bits of the message using LDPC codes having pairwise row orthogonality, in accordance with certain aspects of the present disclosure described in more detail below. An encoded bit stream 922 produced by the encoder 902 may then be selectively punctured by a puncturing module 904, which may be a separate device or component, or which may be integrated with the encoder 902. The puncturing module 904 may determine that the bit stream should be punctured prior to transmission, or transmitted without puncturing. The decision to puncture the bit stream 922 is typically made based on network conditions, network configuration, radio access network (RAN) defined preferences, and/or for other reasons. The bit stream 922 may be punctured according to a puncture pattern 912 and used to encode the message 920. The puncturing module 904 provides an output 924 to a mapper 906 that generates a sequence of transmit (Tx) symbols 926 that are modulated, amplified, and otherwise processed by Tx chain 908 to produce an RF signal 928 for transmission through antenna 910. The punctured codeword bits are not transmitted.
The decoders and decoding algorithms used to decode LDPC codewords operate by exchanging messages within the graph along the edges and updating these messages by performing computations at the nodes based on the incoming messages. Each variable node in the graph is initially provided with a soft bit, termed a received value, that indicates an estimate of the associated bit's value as determined by observations from, for example, the communications channel. Ideally, the estimates for separate bits are statistically independent; however, this ideal may be violated in practice. A received codeword is comprised of a collection of received values.
FIG. 10 is a simplified block diagram illustrating a decoder, in accordance with certain aspects of the present disclosure. FIG. 10 is a simplified schematic 1000 illustrating a portion of a RF modem 1050 that may be configured to receive and decode a wirelessly transmitted signal including a punctured encoded message. The punctured codeword bits may be treated as erased. For example, the log likelihood ratios (LLRs) of the punctured nodes may be set to 0 at initialization. In various examples, the modem 1050 receiving the signal may reside in a receiving device, such as a UE (e.g., UE 120) on the downlink or a BS (e.g., BS 120) on the uplink. An antenna 1002 provides an RF signal 1020 to the receiving device. An RF chain 1004 processes and demodulates the RF signal 1020 and may provide a sequence of symbols 1022 to a demapper 1006, which produces a bit stream 1024 representative of the encoded message.
The demapper 1006 provides a depunctured bit stream 1024. In some examples, the demapper 1006 includes a depuncturing module that can be configured to insert null values at locations in the bit stream at which punctured bits were deleted by the transmitter. The depuncturing module may be used when the puncture pattern 1010 used to produce the punctured bit stream at the transmitter is known. The puncture pattern 1010 can be used to identify LLRs 1028 ignored during decoding of the bit stream 1024 by the decoder 1008. The LDPC decoder may include a plurality of processing elements to perform the parity check or variable node operations in parallel. For example, when processing a codeword with lifting size Z, the LDPC decoder may utilize Z processing elements to perform parity check operations on all Z edges of a lifted graph, concurrently.
In some examples, the decoder 1008 decodes information bits of the message based on LDPC codes having pairwise row orthogonality, in accordance with certain aspects of the present disclosure described in more detail below. In some example, the decoder 1008 is a new decoder that exploits the pairwise row orthogonality of the LDPC to perform flexible decoder scheduling without performance loss.
Example Pairwise Orthogonality of Adjacent Rows in LDPC Code
In new radio (NR), low-density parity-check (LDPC) is used for channel coding of certain channels. As described above with respect to FIGS. 7-10 , LDPC codes are defined by the basegraph, including variable nodes and check nodes, and the basegraph can be represented by a corresponding parity check matrix (PCM) having columns corresponding to the variable nodes and rows corresponding to the check nodes. Edges in the basegraph have entries in the PCM. Quasi-cyclic LDPC codes have integer cyclic lifting values Vi,j in the non-zero entries in the PCM for ith column and the jth row. The cyclic lifting values correspond to circulant permutations of the edges when the basegraph if lifted to obtain a lifted graph. The number of lifts, Z, is the lifting or lifting size value. Different values of Z for the basegraph are used to support different blocklengths. For each supported lift, the shift coefficients are calculated as a function of the lifting size and the cyclic lifting value as:
Pi,j=f(Vi,j,Z)
Shortening can be applied before the LDPC encoding. Systematic bits may be punctured.
Aspects of the present disclosure provide LDPC encoders using LDPC codes having pairwise orthogonality of adjacent rows in the PCM describing the code and LDPC decoders that can exploit the LDPC coding with the pairwise row orthogonality to perform flexible decoder scheduling without performance loss.
In NR, the PCM for some basegraphs used for LDPC coding have the PCM structure 1100 shown in FIG. 11 . The PCM structure 1100 includes an upper portion with the region 1102 corresponding to systems bits; the region 1104 corresponding to parity bits; and the region 1106 corresponding to hybrid automatic repeat request (HARQ) extension bits (e.g., all zeros). The regions 1102 and 1106 may have a horizontally rectangular shape. In some examples, the first two, highest degree, systematic bits in the region 1102 may be punctured (e.g., the first two columns in the PCM). The region 1104 has a square shape. The region 1104 may include a special parity bit. The first or last column in the region 1104 may have a weight of 1, while the remaining columns may have a weight of 3 and dual diagonal.
The PCM structure 1100 also includes a lower portion with the region 1108 and the region 1110. In some examples, the lower portion of the PCM structure 1100 may be used for puncturing and/or incremental redundancy (IR) HARQ. The region 1110 may be a diagonal matrix (i.e., a diagonal of entries with the rest not having entries, i.e., zero). The lower diagonal structure may ensure that puncturing of the mother code does not require decoding of the mother code, thereby reducing complexity. The diagonal structure may render the code amenable to node-parallel decoding architectures. The columns of region 1110 may correspond to HARQ bits and the region 1108. According to certain aspects, the region 1108 (and also maybe a portion of the region 1110) in the lower power portion of the PCM structure 1100 may have pairwise row orthogonality in each adjacent row.
FIG. 12 an example PCM 1200 for an LDPC code, illustrating the PCM structure 1100 of FIG. 11 , in accordance with certain aspects of the present disclosure. In the PCM 1200 shown in FIG. 12 , a “1” represents an entry in the PCM (which may be replaced with a cyclic lifting value Vi,j) and a “0” represents absence of an entry. As shown in FIG. 12 , the PCM 1200 includes a bottom portion with pairwise row orthogonality in adjacent rows. As shown, in the rows 26-46, in the columns (e.g., columns 1-22) before the bottom diagonal structure (e.g., corresponding to the region 1108 before the region 1110) and, in some cases, a first portion of the region 1110 (e.g., columns 23-27), in any given column there are not entries in adjacent (i.e., consecutive) rows. In other words, adjacent rows in the lower portion of the columns can both have no entries (i.e., shown as 0's) or only one has an entry (i.e., a 1,0 or 0,1), such that there entries are not in any pair of adjacent rows (i.e., 1,1 does not occur).
Although FIG. 12 illustrates an example PCM with the pairwise row orthogonality in the rows 26-46, the different numbers of rows could be non-orthogonal. In some examples, in the first portion of the rows of the lower structure (i.e., region 1108), the first two columns include some non-orthogonality of the rows, while in the remaining columns in the first portion are non-orthogonal. However, in the second portion of the rows in the lower structure, adjacent rows in all of the columns are orthogonal. For example, as shown in FIG. 12 , in the rows 6-25 in a PCM (e.g., a first portion of the lower structure), adjacent rows in the first two columns (i.e., columns 102) are not always orthogonal, however, the adjacent rows in the remaining columns (i.e., columns 3-27) are pairwise orthogonal. As shown in FIG. 12 , in the bottom portion of the lower structure, rows 26-46, all of the columns in the region (e.g., columns 1-27) have pairwise row orthogonality.
According to certain aspects, at least a portion of the description of the basegraph may be stored on chip, for example, at the BS and/or the UE. The description may be basegraph, the PCM, or some other representation of the sparse matrix.
To recover the information bits, the receiving decodes the codeword received from the transmitting device. The receiving device may decode according to decoding schedule. The receiving device may decode the codeword using a layered decoder. The decoding schedule may be based, at least in part, on the stored description of the basegraph. The decoding schedule may decode the codeword row by row (e.g., using the basegraph). The decoding schedule may decode the codeword column by column. The decoding schedule may decode the two columns at a time (e.g., within a row or pair of rows). The decoding schedule may skip absent entries for decoding.
In some examples, the receiving device may use a new decoder with improved performance. The decoder may exploit the pairwise orthogonality of the LDPC described herein to increase decoding speed, for example, by decoding the codeword by pairs of rows at a time, without performance loss. In addition, the decoder may have increased decoding scheduling flexibility, due to the pairwise row orthogonality, because for any set of three consecutive rows in the lower portion of the code, the decoder can select between two different orthogonal combinations for simultaneous decoding.
FIG. 13 illustrates a communications device 1300 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 14 and/or FIG. 15 . The communications device 1300 includes a processing system 1302 coupled to a transceiver 1308. The transceiver 1308 is configured to transmit and receive signals for the communications device 1300 via an antenna 1310, such as the various signals as described herein. The processing system 1302 may be configured to perform processing functions for the communications device 1300, including processing signals received and/or to be transmitted by the communications device 1300.
The processing system 1302 includes a processor 1304 coupled to a computer-readable medium/memory 1312 via a bus 1306. In certain aspects. the computer-readable medium/memory 1312 is configured to store instructions (e.g., computer executable code) that when executed by the processor 1304, cause the processor 1304 to perform the operations illustrated in FIG. 14 and/or FIG. 15 , or other operations for performing the various techniques discussed herein for LDPC coding with pairwise row orthogonality. In certain aspects, computer-readable medium/memory 1512 stores code 1314 for encoding information bits using LDPC code with pairwise row orthogonality; code 1316 for transmitting the codeword over a wireless channel; code 1318 for receiving a codeword; and code 1320 for decoding the codeword using LDPC code with pairwise row orthogonality to obtain information bits.
FIG. 14 is a flow diagram illustrating example operations 1400 for wireless communications by a receiving device using LDPC coding, in accordance with certain aspects of the present disclosure. The receiving device may be a BS (e.g., such as a BS 110 in the wireless communication network 100) on the uplink or a UE (e.g., such as a UE 120 in the wireless communication network 100) on the downlink.
The operations 1400 begin, at 1402. by receiving a codeword (e.g., or punctured codeword) in accordance with a radio technology (e.g., NR or 5G radio technology) across a wireless channel via one or more antenna elements situated proximal a receiver. At 1404, the receiving device decodes (e.g., with a layered decoder) the codeword (e.g., and depunctures if the codeword is punctured) via decoder circuitry based on a LDPC code to produce a set of information bits. The LDPC code (e.g., or a lifted LDPC code) is stored and defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion (e.g., the bottom 21 rows) of the second number of rows. For example, in each of the first number of columns, at most one row of each pair of the adjacent orthogonal rows in the last portion of the rows has an entry. The decoding may be based on a decoding schedule. The decoding schedule may include decoding sequentially row by row in the base matrix or by simultaneously decoding pairs of rows (e.g., an column by column) in the base matrix. The receiving device may select from two combinations of two rows from any three sequential rows in the last portion for the simultaneous decoding pairs of the decoding schedule. The decoding schedule skips for decoding portions of the base matrix that do not contain an associated entry.
FIG. 15 is a flow diagram illustrating example operations 1500 for wireless communications by a transmitting device using LDPC coding, in accordance with certain aspects of the present disclosure. The transmitting device may be a UE (e.g., such as a UE 120 in the wireless communication network 100) on the uplink or a BS (e.g., such as a BS 121 in the wireless communication network 100) on the downlink. The operations 1500 may be complementary to the operations 1400 by the receiving device.
The operations 1500 begin, at 1502. by encoding a set of information bits with encoder circuitry based on a LDPC code to produce a codeword. The LDPC code is defined by a base matrix having a first number of columns corresponding to variable nodes of a base graph and a second number of rows corresponding to check nodes of the base graph. For each of the first number of columns, all adjacent rows are orthogonal in a last portion of the second number of rows. At 1504, the transmitting device transmits the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c).
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component(s) and/or module(s), including, but not limited to a circuit, an application specific integrated circuit (ASIC), or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device (PLD), discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1 ), a user interface (e.g., keypad, display, mouse, joystick, etc.) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory), flash memory, ROM (Read Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared (IR), radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and Blu-ray® disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media). In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal). Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For example, instructions for performing the operations described herein and illustrated in FIG. 14 and FIG. 15 .
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (46)

What is claimed is:
1. An apparatus for wireless communication, comprising:
a receiver configured to receive a codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal the receiver; and
at least one processor coupled with a memory and comprising decoder circuitry configured to decode the codeword based on a low density parity check (LDPC) code to produce a set of information bits, wherein:
the LDPC code is stored in the memory and defined by a base matrix having a first number plurality of columns corresponding to variable nodes of a base graph and a second number plurality of rows corresponding to check nodes of the base graph, and;
elements in all adjacent rows of a column are orthogonal, for each of the first number plurality of columns, all adjacent rows are orthogonal in a last portion of the second number of at least twenty-one rows starting from a last row of the base matrix; and
each row of the twenty-one rows contains a non-zero element in a first column, of the plurality of columns, with a column index 0, or a non-zero element in a second column, of the plurality of columns, with a column index 1.
2. The apparatus of claim 1, wherein entries each element in the base matrix correspond corresponds to an edge between the a variable node and the a check node, of the a base graph, associated with the entry in base matrix.
3. The apparatus of claim 2, wherein entries each non-zero element in the base matrix include corresponds to a cyclic integer lifting values value.
4. The apparatus of claim 2, wherein in each column of the first number plurality of columns, at most one row of each pair of the adjacent orthogonal rows in the last portion of the twenty-one rows has an entry contains a non-zero element.
5. The apparatus of claim 1, wherein the last portion of the rows comprises at least the bottom twenty-one rows of the base matrix.
6. The apparatus of claim 1, wherein the memory is configured to store at least a portion of the LDPC code.
7. The apparatus of claim 1, wherein the at least one processor includes a layered decoder configured to decode the codeword.
8. The apparatus of claim 1, wherein the at least one processor is configured to decode the codeword based on a decoding schedule.
9. The apparatus of claim 8, wherein the decoding schedule includes decoding at least one processor is configured to decode the codeword based on the LDPC code by decoding sequentially row by row in the base matrix or by to simultaneously decoding decode pairs of rows in the base matrix based on the decoding schedule.
10. The apparatus of claim 9, wherein the at least one processor is configured to select from two combinations a combination of two rows from any three sequential rows in the last portion for the simultaneous decoding pairs of the decoding schedule twenty-one rows to simultaneously decode.
11. The apparatus of claim 9, wherein the row by row or pairs of rows is performed at least one processor is further configured to decode sequentially column by column in the base matrix.
12. The apparatus of claim 8, wherein the decoding schedule includes skipping at least one processor is further configured to skip decoding portions elements of the base matrix that do not contain an associated entry a zero.
13. The apparatus of claim 1, wherein the LDPC code comprises a lifted LDPC code.
14. The apparatus of claim 1, wherein:
the codeword comprises a punctured codeword,; and
the at least one processor further comprises a depuncturer configured to depuncture the codeword, and
the decoding comprises decoding the depunctured codeword.
15. An apparatus for wireless communication, comprising:
at least one processor coupled with a memory and comprising an encoder circuit configured to encode a set of information bits based on a low density parity check (LDPC) code to produce a codeword, wherein:
the LDPC code is stored in the memory and defined by a base matrix having a first number plurality of columns corresponding to variable nodes of a base graph and a second number plurality of rows corresponding to check nodes of the base graph, and;
elements in all adjacent rows of a column are orthogonal, for each of the first number plurality of columns, all adjacent rows are orthogonal in a last portion of the second number of at least rows starting from a last row of the base matrix; and
each row of the twenty-one rows contains a non-zero element in a first column, of the plurality of columns, with a column index 0, or a non-zero element in a second column, of the plurality of columns, with a column index 1; and
a transmitter configured to transmit the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements arranged proximal the transmitter.
16. The apparatus of claim 15, wherein entries each element in the base matrix correspond corresponds to an edge between the a variable node and the a check node, of the a base graph, associated with the entry in base matrix.
17. The apparatus of claim 16, wherein entries each non-zero element in the base matrix are replaced corresponds to a cyclic integer lifting values value.
18. The apparatus of claim 16, wherein in each column of the first number plurality of columns, at most one row of each pair of the adjacent orthogonal rows in the last portion of the twenty-one rows has an entry contains a non-zero element.
19. The apparatus of claim 15, wherein the last portion of the rows comprises at least the bottom twenty-one rows of the base matrix.
20. The apparatus of claim 15, wherein:
the at least one processor is further configured to lifted the LDPC code by generating generate an integer number of copies of the base matrix; and
the LDPC code comprises a lifted LDPC code to lift the LDPC code.
21. The apparatus of claim 15, wherein:
the at least one processor further comprises a puncturer configured to puncture the codeword, and
the transmitting the codeword comprises transmitting transmitter is configured to transmit the punctured codeword.
22. A method for wireless communication, comprising:
receiving a codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal a receiver; and
decoding the codeword via decoder circuitry based on a low density parity check (LDPC) code to produce a set of information bits, wherein:
the LDPC code is stored in a memory and defined by a base matrix having a first number plurality of columns corresponding to variable nodes of a base graph and a second number plurality of rows corresponding to check nodes of the base graph, and;
elements in all adjacent rows of a column are orthogonal, for each of the first numberplurality of columns, all adjacent rows are orthogonal in a last portion of the second number of at least twenty-one rows starting from a last row of the base matrix; and
each row of the twenty-one rows contains a non-zero element in a first column, of the plurality of columns, with a column index 0, or a non-zero element in a second column, of the plurality of columns, with a column index 1.
23. The method of claim 22, wherein in each column of the first number plurality of columns, at most one row of each pair of the adjacent orthogonal rows in the last portion of the twenty-one rows has an entry a non-zero element.
24. The method of claim 22, wherein the last portion of the rows comprises at least the bottom twenty-one rows of the base matrix.
25. The method of claim 22, wherein: the decoding is based on a decoding schedule; and the decoding schedule the codeword includes decoding the codeword based on the LDPC code by decoding sequentially row by row in the base matrix or by simultaneously decoding pairs of rows in the base matrix based on a decoding schedule.
26. The method of claim 25, further comprising selecting from two combinations of two each pair of the pairs of rows from any three sequential rows in of the last portion for the simultaneous decoding pairs of the decoding schedule twenty-one rows to decode.
27. A method for wireless communication, comprising:
encoding a set of information bits with encoder circuitry based on a low density parity check (LDPC) code to produce a codeword wherein:
the LDPC code is stored in a memory and defined by a base matrix having a first number plurality of columns corresponding to variable nodes of a base graph and a second number plurality of rows corresponding to check nodes of the base graph, and;
elements in all adjacent rows of a column are orthogonal, for each of the first number plurality of columns, all adjacent rows are orthogonal in a last portion of the second number of at least twenty-one rows starting from a last row of the base matrix; and
each row of the twenty-one rows contains a non-zero element in a first column, of the plurality of columns, with a column index 0, or a non-zero element in a second column, of the plurality of columns, with a column index 1; and
transmitting the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements.
28. The method of claim 27, wherein in each column of the first number plurality of columns, at most one row of each pair of the adjacent orthogonal rows in the last portion of the twenty-one rows has an entry contains a non-zero element.
29. The method of claim 27, wherein the last portion of the rows comprises at least the bottom twenty-one rows of the base matrix.
30. The method of claim 27, further comprising puncturing the codeword, wherein transmitting the codeword comprises transmitting the punctured codeword.
31. The apparatus of claim 1, wherein each row of the plurality of rows, except the twenty-one rows, contains a non-zero element in the first column, a non-zero element in the second column, or a non-zero element in both the first column and the second column.
32. The apparatus of claim 1, wherein:
the set of information bits is K information bits, where K is a positive integer;
the base matrix is a base matrix H lifted by a lifting factor Z;
the plurality of columns consists of V columns corresponding to i variable nodes, where V is 68;
the plurality of rows consists of C rows corresponding to j check nodes, where C is 46; and
the elements in the base matrix are represented by a row index i and a column index j.
33. The apparatus of claim 32, wherein an element Vi,j of the base matrix is a non-zero element at least when i=[25], j=[1]; i=[26], j=[0]; i=[27], j=[1]; i=[28], j=[0]; i=[29], j=[1]; i=[30], j=[0]; i=[31], j=[1]; i=[32], j=[0]; i=[33], j=[1]; i=[34], j=[0]; i=[35], j=[1]; i=[36], j=[0]; i=[37], j=[1]; i=[38], j=[0]; i=[39], j=[1]; i=[40], j=[0]; i=[41], j=[1]; i=[42], j=[0]; i=[43], j=[1]; i=[44], j=[0]; i=[45], j=[1].
34. The apparatus of claim 33, wherein an element Vi,j of the base matrix is further a non-zero element at least when j=[0] and i=[24], i=[22], i=[20], i=[19], i=[17], i=[15], i=[14], i=[13], i=[12], i=[11], i=[9], i=[8], i=[7], i=[6], i=[5], i=[4], i=[3], i=[2], i=[1], i=[0]; and when j=[1] and i=[23], i=[21], i=[20], i=[19], i=[18], i=[16], i=[15], i=[12], i=[11], i=[10], i=[9], i=[8], i=[7], i=[5], i=[4], i=[3], i=[2], i=[0].
35. The apparatus of claim 1, wherein:
the receiver is configured to receive the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal the receiver;
the at least one processor is configured to select a combination pairs of rows from any three sequential rows in the twenty-one rows; and
the at least one processor comprises decoder circuitry configured to simultaneously decode each pair of rows.
36. The apparatus of claim 1, wherein the first column having the column index 0 and the second column having the column index 1 have a highest degree among the plurality of columns, where the first column and the second column have a highest number of non-zero entries among the plurality of columns.
37. The apparatus of claim 36, wherein:
the codeword comprises a punctured codeword, where systematic bits corresponding to the first column and the second column are punctured; and
the at least one processor comprises a depuncturer configured to depuncture the systematic bits corresponding to the first column and the second column.
38. The apparatus of claim 15, wherein each row of the plurality of rows, except the twenty-one rows, contains a non-zero element in the first column, a non-zero element in the second column, or a non-zero element in both the first column and the second column.
39. The apparatus of claim 15, wherein:
the set of information bits is K information bits, where K is a positive integer;
the base matrix is a base matrix H lifted by a lifting factor Z;
the plurality of columns consists of V columns corresponding to i variable nodes, where V is 68;
the plurality of rows consists of C rows corresponding to j check nodes, where C is 46; and
the elements in the base matrix are represented by a row index i and a column index j.
40. The apparatus of claim 39, wherein an element Vi,j of the base matrix is a non-zero element at least when i=[25], j=[1]; i=[26], j=[0]; i=[27], j=[1]; i=[28], j=[0]; i=[29], j=[1]; i=[30], j=[0]; i=[31], j=[1]; i=[32], j=[0]; i=[33], j=[1]; i=[34], j=[0]; i=[35], j=[1]; i=[36], j=[0]; i=[37], j=[1]; i=[38], j=[0]; i=[39], j=[1]; i=[40], j=[0]; i=[41], j=[1]; i=[42], j=[0]; i=[43], j=[1]; i=[44], j=[0]; i=[45], j=[1].
41. The apparatus of claim 40, wherein an element Vi,j of the base matrix is further a non-zero element at least when j=[0] and i=[24], i=[22], i=[20], i=[19], i=[17], i=[15], i=[14], i=[13], i=[12], i=[11], i=[9], i=[8], i=[7], i=[6], i=[5], i=[4], i=[3], i=[2], i=[1], i=[0]; and when j=[1] and i=[23], i=[21], i=[20], i=[19], i=[18], i=[16], i=[15], i=[12], i=[11], i=[10], i=[9], i=[8], i=[7], i=[5], i=[4], i=[3], i=[2], i=[0].
42. The apparatus of claim 15, wherein:
the transmitter is configured to transmit the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal the transmitter;
the at least one processor is configured to select a combination pairs of rows from any three sequential rows in the twenty-one rows; and
the at least one processor comprises encoder circuitry configured to simultaneously encode each pair of rows.
43. The apparatus of claim 15, wherein the first column having the column index 0 and the second column having the column index 1 have a highest degree among the plurality of columns, where the first column and the second column have a highest number of non-zero entries among the plurality of columns.
44. The apparatus of claim 43, wherein the at least one processor comprises a puncturer configured to puncture systematic bits in the codeword corresponding to the first column and the second column.
45. The apparatus of claim 1, wherein the receiver is configured to receive the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal the receiver.
46. The apparatus of claim 15, wherein the transmitter is configured to transmit the codeword in accordance with a radio technology across a wireless channel via one or more antenna elements situated proximal the transmitter.
US17/334,608 2017-06-10 2021-05-28 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code Active USRE49989E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/334,608 USRE49989E1 (en) 2017-06-10 2021-05-28 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code
US18/676,297 USRE50437E1 (en) 2017-06-10 2024-05-28 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762517916P 2017-06-10 2017-06-10
US201762522044P 2017-06-19 2017-06-19
US16/003,047 US10312939B2 (en) 2017-06-10 2018-06-07 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code
US17/334,608 USRE49989E1 (en) 2017-06-10 2021-05-28 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/003,047 Reissue US10312939B2 (en) 2017-06-10 2018-06-07 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/676,297 Continuation USRE50437E1 (en) 2017-06-10 2024-05-28 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Publications (1)

Publication Number Publication Date
USRE49989E1 true USRE49989E1 (en) 2024-05-28

Family

ID=64562649

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/003,047 Ceased US10312939B2 (en) 2017-06-10 2018-06-07 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code
US17/334,608 Active USRE49989E1 (en) 2017-06-10 2021-05-28 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code
US18/676,297 Active USRE50437E1 (en) 2017-06-10 2024-05-28 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/003,047 Ceased US10312939B2 (en) 2017-06-10 2018-06-07 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/676,297 Active USRE50437E1 (en) 2017-06-10 2024-05-28 Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Country Status (9)

Country Link
US (3) US10312939B2 (en)
EP (1) EP3635869A1 (en)
JP (2) JP6932791B2 (en)
KR (1) KR102178603B1 (en)
CN (1) CN110710111B (en)
BR (1) BR112019025741A2 (en)
CA (1) CA3061475A1 (en)
TW (2) TWI775870B (en)
WO (1) WO2018227133A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE50437E1 (en) 2017-06-10 2025-05-20 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10784901B2 (en) 2015-11-12 2020-09-22 Qualcomm Incorporated Puncturing for structured low density parity check (LDPC) codes
US10454499B2 (en) 2016-05-12 2019-10-22 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (LDPC) code structure
US9917675B2 (en) 2016-06-01 2018-03-13 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of CRC bits
US10313057B2 (en) 2016-06-01 2019-06-04 Qualcomm Incorporated Error detection in wireless communications using sectional redundancy check information
US10291354B2 (en) 2016-06-14 2019-05-14 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (LDPC) code
CA3026317C (en) 2016-07-27 2023-09-26 Qualcomm Incorporated Design of hybrid automatic repeat request (harq) feedback bits for polar codes
US10868569B2 (en) * 2017-05-08 2020-12-15 Qualcomm Incorporated PBCH signal design and efficient continuous monitoring and polar decoding
CN108988869B (en) * 2017-05-31 2021-07-30 大唐移动通信设备有限公司 Method and device for determining check matrix and computer storage medium
US10560910B2 (en) 2017-06-12 2020-02-11 Qualcomm Incoporated Synchronization signal for a broadcast channel
KR102113450B1 (en) 2017-07-07 2020-05-20 퀄컴 인코포레이티드 Communication technology using low density parity check code base graph selection
EP3718216A1 (en) * 2017-12-15 2020-10-07 Huawei Technologies Co., Ltd. Design of base parity-check matrices for ldpc codes that have subsets of orthogonal rows
US10637503B2 (en) * 2018-08-03 2020-04-28 Innogrit Technologies Co., Ltd. Systems and methods for decoding low density parity check encoded codewords
US12432811B2 (en) 2020-08-06 2025-09-30 Qualcomm Incorporated Discontinuous reception for sidelink
KR102340895B1 (en) * 2020-08-28 2021-12-20 고려대학교 산학협력단 Network scheduling apparatus and method using quantum approximation
US12191993B2 (en) 2021-03-18 2025-01-07 Qualcomm Incorporated Bit replacing for low density parity check encoding
CN113300717B (en) * 2021-05-19 2022-06-10 西南交通大学 A high-efficiency LDPC encoder circuit based on rate adaptation
CN113661657A (en) * 2021-07-02 2021-11-16 香港应用科技研究院有限公司 Low-delay segmented quasi-cyclic low-density parity-check (QC-LDPC) decoder
US11575390B2 (en) * 2021-07-02 2023-02-07 Hong Kong Applied Science and Technology Research Insitute Co., Ltd. Low-latency segmented quasi-cyclic low-density parity-check (QC-LDPC) decoder
JP7572326B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572320B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572317B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572324B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572318B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572323B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572328B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572322B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572329B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572327B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572321B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572331B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572319B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
JP7572330B2 (en) * 2021-07-20 2024-10-23 株式会社三共 Gaming Machines
US12199634B2 (en) 2021-11-26 2025-01-14 Samsung Electronics Co., Ltd. Decoding apparatus, decoding method, and electronic apparatus
KR20240048306A (en) 2022-10-06 2024-04-15 삼성전자주식회사 Generalized ldpc encoder, generalized ldpc encoding method and storage device
WO2024152363A1 (en) * 2023-01-20 2024-07-25 华为技术有限公司 Ldpc code-based communication method and communication apparatus
EP4472085A1 (en) * 2023-05-29 2024-12-04 Nokia Solutions and Networks Oy Accelerating low-density parity-check decoding via scheduling, and related devices, methods and computer programs
CN120165696A (en) * 2023-12-14 2025-06-17 华为技术有限公司 A communication method and communication device based on low-density parity check code

Citations (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288479A (en) 1994-04-18 1995-10-31 Nec Corp Error correction concatenate coding method/device
US5583500A (en) 1993-02-10 1996-12-10 Ricoh Corporation Method and apparatus for parallel encoding and decoding of data
US5844918A (en) 1995-11-28 1998-12-01 Sanyo Electric Co., Ltd. Digital transmission/receiving method, digital communications method, and data receiving apparatus
TW427076B (en) 1999-04-06 2001-03-21 Inst Information Industry CRC key checking device and the method thereof
WO2002062002A1 (en) 2001-02-01 2002-08-08 Qualcomm Incorporated Coding scheme for a wireless communication system
US6438724B1 (en) 1999-03-16 2002-08-20 International Business Machines Corporation Method and apparatus for deterministically altering cyclic redundancy check information for data storage
US20020147954A1 (en) 2001-03-22 2002-10-10 Shea John M. Method and coding means for error-correction utilizing concatenated parity and turbo codes
US20030033575A1 (en) 2001-06-15 2003-02-13 Tom Richardson Methods and apparatus for decoding LDPC codes
CN1399829A (en) 1999-11-25 2003-02-26 西门子公司 Method for adjusting data rate in communication device and corresponding communication device
US20030053435A1 (en) 2001-05-22 2003-03-20 Nagabhushana Sindhushayana Enhanced channel interleaving for optimized data throughput
US20030123409A1 (en) 2001-10-17 2003-07-03 Samsung Electronics Co., Ltd. Apparatus and method for multiplexing/demultiplexing transport channels in a CDMA communication system
US20030172342A1 (en) 2002-03-08 2003-09-11 Uri Elzur System and method for identifying upper layer protocol message boundaries
US6633865B1 (en) 1999-12-23 2003-10-14 Pmc-Sierra Limited Multithreaded address resolution system
US6674768B1 (en) 1998-10-09 2004-01-06 Nec Corporation Data transmission device and data transmission method capable of minimizing delay of fast data
US20040098659A1 (en) 2002-11-18 2004-05-20 Bjerke Bjorn A. Rate-compatible LDPC codes
US20040187129A1 (en) 2003-02-26 2004-09-23 Tom Richardson Method and apparatus for performing low-density parity-check (LDPC) code operations using a multi-level permutation
US20040262376A1 (en) 2003-06-25 2004-12-30 Centre National De La Recherche Scientifique (Cnrs), Universite Paris Sud (Paris Xi) Method and apparatus for resolution of problems using constrained discrete variables
US6854082B1 (en) 2001-11-27 2005-02-08 Lsi Logic Corporation Unequal error protection Reed-Muller code generator and decoder
US20050050435A1 (en) 2003-08-26 2005-03-03 Samsung Electronics Co., Ltd. Apparatus and method for coding/decoding block low density parity check code in a mobile communication system
US20050078765A1 (en) 2003-10-13 2005-04-14 Samsung Electronics Co., Ltd. Method and apparatus for space-time coding using lifting low density parity check codes in a wireless communication system
US20050149842A1 (en) 2003-11-14 2005-07-07 Samsung Electronics Co., Ltd. Channel encoding/decoding apparatus and method using a parallel concatenated low density parity check code
US6931581B1 (en) 2000-10-25 2005-08-16 Sun Microsystems, Inc. Method for superimposing a sequence number in an error detection code in a data network
US6961888B2 (en) 2002-08-20 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for encoding LDPC codes
US20050246617A1 (en) 2004-04-28 2005-11-03 Samsung Electronics Co., Ltd. Apparatus and method for coding/decoding block low density parity check code with variable block length
EP1601109A2 (en) 1997-07-30 2005-11-30 Samsung Electronics Co., Ltd. Adaptive channel encoding method and device
US20050283708A1 (en) 2004-05-12 2005-12-22 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding block low density parity check codes with a variable coding rate
US20050283707A1 (en) 2004-06-22 2005-12-22 Eran Sharon LDPC decoder for decoding a low-density parity check (LDPC) codewords
US20060020868A1 (en) 2004-07-21 2006-01-26 Tom Richardson LDPC decoding methods and apparatus
US20060020872A1 (en) 2004-07-21 2006-01-26 Tom Richardson LDPC encoding methods and apparatus
US20060026486A1 (en) 2004-08-02 2006-02-02 Tom Richardson Memory efficient LDPC decoding methods and apparatus
US20060036925A1 (en) 2004-08-16 2006-02-16 Samsung Electronics Co., Ltd. Apparatus and method for coding/decoding block low density parity check code with variable block length
CN1780199A (en) 2004-11-17 2006-05-31 北京三星通信技术研究有限公司 Method for judging packet encoding and decoding methods
US20060156199A1 (en) 2004-12-22 2006-07-13 Qualcomm Incorporated Pruned bit-reversal interleaver
US20060184855A1 (en) 2005-02-17 2006-08-17 Samsung Electronics Co., Ltd. Turbo decoder architecture for use in software-defined radio systems
EP1724932A1 (en) 2005-05-16 2006-11-22 Samsung Electronics Co., Ltd. Device and method for padding and puncturing low density parity check
WO2006124428A2 (en) 2005-05-12 2006-11-23 Qualcomm Incorporated Apparatus and method for channel interleaving in communications system
US20060274687A1 (en) 2005-06-06 2006-12-07 Joonsuk Kim Method and system for parsing bits in an interleaver for adaptive modulations in a multiple input multiple output (MIMO) wireless local area network (WLAN) system
US20060294445A1 (en) 2005-06-24 2006-12-28 Dariush Divsalar ARA type protograph codes
US20070011568A1 (en) * 2002-08-15 2007-01-11 Texas Instruments Incorporated Hardware-Efficient Low Density Parity Check Code for Digital Communications
US20070022362A1 (en) 2005-07-01 2007-01-25 Nec Laboratories America, Inc. Rate-compatible low density parity check coding for hybrid ARQ
TWI272777B (en) 2003-08-08 2007-02-01 Intel Corp Method and apparatus for varying lengths of low density parity check codewords
TW200711359A (en) 2005-06-30 2007-03-16 Nokia Corp Apparatus, and associated method, for allocating communications in a multi-channel communication system
US20070089025A1 (en) 2005-09-26 2007-04-19 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding block low density parity check codes having variable coding rate
CN1953335A (en) 2005-10-21 2007-04-25 中兴通讯股份有限公司 A coding device and method for low density parity check code of supporting any code rate/code length
US20070101243A1 (en) 2005-09-30 2007-05-03 Samsung Electronics Co., Ltd Method for puncturing a low density parity check code
CN1960188A (en) 2006-04-29 2007-05-09 北京泰美世纪科技有限公司 Method for constructing low-density parity check code, encoding method, and transmission system
US20070113147A1 (en) 2005-10-31 2007-05-17 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving a signal in a communication system using a low density parity check code
US20070113148A1 (en) 2005-10-31 2007-05-17 Samsung Electronics Co., Ltd. Decoding apparatus and method in a communication system using low density parity check codes
US7222284B2 (en) 2003-06-26 2007-05-22 Nokia Corporation Low-density parity-check codes for multiple code rates
US7231557B2 (en) 2003-04-02 2007-06-12 Qualcomm Incorporated Methods and apparatus for interleaving in a block-coherent communication system
US20070136636A1 (en) 2005-12-12 2007-06-14 Industrial Technology Research Institute Data encoding method for error correction
US7237181B2 (en) 2003-12-22 2007-06-26 Qualcomm Incorporated Methods and apparatus for reducing error floors in message passing decoders
US20070162815A1 (en) 2006-01-06 2007-07-12 Mostafa El-Khamy System and method for providing H-ARQ rate compatible codes for high throughput applications
CN101047387A (en) 2007-03-23 2007-10-03 北京大学 Construction method of multi-code rate compatible LDPC code and its decoder
CN101076946A (en) 2004-06-24 2007-11-21 Lg电子株式会社 Method and apparatus for encoding and decoding data using low-density parity-check codes in a wireless communication system
US20080059862A1 (en) 2006-09-04 2008-03-06 Samsung Electronics Co., Ltd. Apparatus and method to transmit/receive signal in a communication system
CN101141133A (en) 2007-10-23 2008-03-12 北京邮电大学 An Encoding Method of Structured Low Density Check Code
US20080062975A1 (en) 2006-09-08 2008-03-13 Ian Mes Method and apparatus for optimizing the transmission of signals over a group of wires
WO2008052202A1 (en) 2006-10-26 2008-05-02 Qualcomm Incorporated Coding schemes for wireless communication transmissions
US20080109708A1 (en) 2006-11-06 2008-05-08 Samsung Electronics Co., Ltd. Apparatus and method for signal transmission/reception in a communication system
CN101188428A (en) 2007-12-10 2008-05-28 中兴通讯股份有限公司 Speed matching method of limited length circular buffer of LDPC code
US20080126916A1 (en) 2006-11-17 2008-05-29 Lg Electronics Inc. Method of executing ldpc coding using parity check matrix
KR100833515B1 (en) 2006-12-05 2008-05-29 한국전자통신연구원 Parity check matrix generation method, sub / decoding method of LDPC code with variable information length and variable code rate, and apparatus using same
CN101217337A (en) 2007-01-01 2008-07-09 中兴通讯股份有限公司 A low density parity code encoding device and method supporting incremental redundancy hybrid automatic repeat
US20080178065A1 (en) 2007-01-24 2008-07-24 Qualcomm Incorporated Ldpc encoding and decoding of packets of variable sizes
US20080207120A1 (en) 2005-06-29 2008-08-28 Anna Kurina Wireless Data Transmission Methods, Devices, and Systems
US20080204286A1 (en) 2007-02-28 2008-08-28 Conexant Systems, Inc. Methods and Systems for LDPC Coding
WO2008112625A1 (en) 2007-03-09 2008-09-18 Qualcomm Incorporated Encoding and decoding of low density parity check (ldpc ) codes
US20080298334A1 (en) 2007-05-31 2008-12-04 Agere Systems Inc. Reducing false detection in an hsdpa 3g terminal
US20080320353A1 (en) 2007-06-20 2008-12-25 Motorola, Inc. Apparatus comprising a circular buffer and method for assigning redundancy versions to a circular buffer
US20080317152A1 (en) 2005-07-05 2008-12-25 Shanghai Ultimate Power Communications Technology, Method and Apparatus for Multi-Carrier Hsdpa Traffic Transmission Channel Coding
WO2009005264A1 (en) 2007-06-29 2009-01-08 Lg Electronics Inc. Digital broadcasting system and data processing method
WO2009011134A1 (en) 2007-07-19 2009-01-22 Panasonic Corporation Wireless communication device, and method for allocating communication resources in ldpc coding
US7493551B2 (en) 2004-09-22 2009-02-17 Stmicroelectronics N.V. Method and device for delivering punctured code words encoded with a LDPC code
US20090077456A1 (en) 2007-09-18 2009-03-19 Zhouyue Pi Methods and apparatus to generate multiple CRCs
JP2009081577A (en) 2007-09-25 2009-04-16 Samsung Electronics Co Ltd Reception device, communication system, and signal processing method
US7526717B2 (en) 2004-06-16 2009-04-28 Samsung Electronics Co., Ltd. Apparatus and method for coding and decoding semi-systematic block low density parity check codes
US20090113256A1 (en) 2007-10-24 2009-04-30 Nokia Corporation Method, computer program product, apparatus and device providing scalable structured high throughput LDPC decoding
US20090113276A1 (en) 2007-10-24 2009-04-30 Nokia Corporation Method, apparatus, computer program product and device providing semi-parallel low density parity check decoding using a block structured parity check matrix
US20090125735A1 (en) 2007-11-12 2009-05-14 Zimmerman George A Active idle communication system
US20090158129A1 (en) 2007-12-06 2009-06-18 Seho Myung Method and apparatus for encoding and decoding channel in a communication system using low-density parity-check codes
US7571372B1 (en) 2005-06-23 2009-08-04 Marvell International Ltd. Methods and algorithms for joint channel-code decoding of linear block codes
US20090204868A1 (en) 2008-02-12 2009-08-13 Samsung Electronics Co. Ltd. Method and apparatus for signal transmission/reception in a communication system using an harq scheme
US7581159B2 (en) 2004-11-23 2009-08-25 Texas Instruments Incorporated Simplified decoding using structured and punctured LDPC codes
US20090217129A1 (en) 2008-02-26 2009-08-27 Samsung Electronics Co., Ltd. Method and apparatus for channel encoding and decoding in a communication system using low-density-parity-check codes
US20090259915A1 (en) 2004-10-12 2009-10-15 Michael Livshitz Structured low-density parity-check (ldpc) code
US20090300461A1 (en) 2008-05-29 2009-12-03 Gadi Shor Device, method and computer program product for communication
CN101645763A (en) 2008-08-06 2010-02-10 中兴通讯股份有限公司 Dispatching method and uplink dispatching system for uplink data transmission
US7685495B2 (en) 2005-05-12 2010-03-23 Qualcomm Incorporated Apparatus and method for channel interleaving in communications system
CN101682381A (en) 2007-06-15 2010-03-24 松下电器产业株式会社 Radio communication device, radio communication system, and radio communication method
US20100077275A1 (en) 2006-10-18 2010-03-25 Panasonic Corporation Method and system for data transmission in a multiple input multiple output (mimo) system
US20100107033A1 (en) 2007-01-31 2010-04-29 Kenichi Kuri Radio communication device and puncturing method
US20100153819A1 (en) 2008-12-12 2010-06-17 Yeong-Luh Ueng Decoding Method and System for Low-Density Parity Check Code
US20100185926A1 (en) 2009-01-21 2010-07-22 Matthew Todd Lawson Enhanced Error Detection in Multilink Serdes Channels
US20100199153A1 (en) 2007-07-12 2010-08-05 Panasonic Corporation Low-density parity check convolution code (ldpc-cc) encoder and ldpc-cc decoder
US20100211844A1 (en) 2007-09-27 2010-08-19 Panasonic Corporation Wireless communication apparatus, wireless communication system, and wireless communication method
US7793194B2 (en) 2007-09-08 2010-09-07 Lg Electronics, Inc. Signal segmentation method and CRC attachment method for reducing undetected error
CN101826878A (en) 2010-04-26 2010-09-08 杨磊 QC-LDPC (Quasi-Cyclic Low Density Parity Check) code constructing method
US20100257425A1 (en) 2009-04-06 2010-10-07 Nec Laboratories America, Inc. Systems and methods for constructing the base matrix of quasi-cyclic low-density parity-check codes
US20100275089A1 (en) 2009-04-27 2010-10-28 The Hong Kong University Of Science And Technology Iterative decoding of punctured low-density parity check codes by selection of decoding matrices
US20100287438A1 (en) 2009-05-07 2010-11-11 Ismail Lakkis Method an apparatus for low density parity check codes encoding and decoding
US7840880B1 (en) 2006-09-25 2010-11-23 Altera Corporation Methods and apparatus for error checking code computation
JP2010537460A (en) 2007-08-17 2010-12-02 パナソニック株式会社 Perform cyclic redundancy check across multiple encoded segments
US20110047433A1 (en) 2009-08-24 2011-02-24 Samsung Electronics Co., Ltd. System and method for structured ldpc code family with fixed code length and no puncturing
US20110066916A1 (en) 2009-09-14 2011-03-17 Samsung Electronics Co., Ltd. System and method for structured ldpc code family
JP2011512106A (en) 2008-02-11 2011-04-14 サムスン エレクトロニクス カンパニー リミテッド Channel coding and decoding method and apparatus in communication system using low density parity check code
US20110096862A1 (en) 2007-08-09 2011-04-28 Panasonic Corporation Radio communication apparatus, radio communication system, and radio communication method
US20110126072A1 (en) 2008-07-09 2011-05-26 Sharp Kabushiki Kaisha Communication device, communication system, reception method and communication method
US20110161772A1 (en) 2008-09-02 2011-06-30 Panasonic Corporation Wireless communication device and wireless communication method
US7979784B2 (en) 2006-03-29 2011-07-12 Samsung Electronics Co., Ltd. Method and system for enhancing transmission reliability of video information over wireless channels
US7986622B2 (en) 2006-10-24 2011-07-26 Broadcom Corporation Method and system for physical layer aggregation
US20110202820A1 (en) 2010-02-18 2011-08-18 Hughes Network Systems, Llc Method and system for providing low density parity check (ldpc) encoding and decoding
US20110239075A1 (en) 2007-06-12 2011-09-29 Jun Xu Channel coding, modulating and mapping method for hybrid automatic repeat request of low density parity check code
CN102340378A (en) 2011-10-23 2012-02-01 许继集团有限公司 Fiber Channel CRC check method for longitudinal protection
US8151157B2 (en) 2006-06-07 2012-04-03 Lg Electronics Inc. Method of encoding/decoding using low density check code matrix
US20120084625A1 (en) 2010-08-12 2012-04-05 Samsung Electronics Co., Ltd. Apparatus and method for decoding ldpc codes in a communications system
CN102437858A (en) 2011-08-31 2012-05-02 北京理工大学 Method for improving structure of convolution code encoder
WO2012064869A1 (en) 2010-11-09 2012-05-18 Qualcomm Incorporated Packet-level erasure protection coding in aggregated packet transmissions
CN102474386A (en) 2009-07-29 2012-05-23 马维尔国际贸易有限公司 Method and device for WLAN transmission
CN102571105A (en) 2012-02-24 2012-07-11 西安电子科技大学 Coding method of code-rate-variable low-density parity-check codes (LDPCs) of which performance approximates to channel capacity
CN102651652A (en) 2008-05-04 2012-08-29 华为技术有限公司 Method and device for generating code rate compatible with low density parity check (LDPC) codes and hybrid automatic repeat request (HARQ) schemes
US8271846B2 (en) 2008-02-26 2012-09-18 Samsung Electronics Co., Ltd Method and apparatus for channel encoding and decoding in a communication system using low-density parity-check codes
US20120240001A1 (en) 2011-03-16 2012-09-20 Samsung Electronics Co., Ltd. Ldpc code family for millimeter-wave band communications in a wireless network
EP2518923A1 (en) 2011-04-26 2012-10-31 Panasonic Corporation Bit permutation patterns for BICM with LDPC codes of rate 2/5 and QAM constellations
CN102783206A (en) 2010-02-19 2012-11-14 株式会社Ntt都科摩 Mobile terminal device, wireless base station device, and wireless communication method
US20120317461A1 (en) 2011-06-11 2012-12-13 Samsung Electronics Co. Ltd. Apparatus and method for transmitting and receiving packet in broadcasting and communication system
US8356227B2 (en) 2006-06-16 2013-01-15 Lg Electronics Inc. Method of encoding/decoding using low density check code matrix
US20130031438A1 (en) 2011-07-29 2013-01-31 Stec, Inc. Multi-rate ldpc decoding
US20130051556A1 (en) 2011-08-22 2013-02-28 Samsung Electronics Co., Ltd. System for encrypting data with an error correction code
US8392789B2 (en) 2009-07-28 2013-03-05 Texas Instruments Incorporated Method and system for decoding low density parity check codes
US20130086445A1 (en) 2011-09-30 2013-04-04 Jonathan Yedidia Quasi-Cyclic Low-Density Parity-Check Codes
US8418015B2 (en) 2007-06-08 2013-04-09 China Academy Of Telecommunications Technology Method, apparatus and system for coding and decoding of LDPC codes
US20130117344A1 (en) 2011-11-08 2013-05-09 Warren GROSS Methods and Systems for Decoding Polar Codes
CN103152056A (en) 2013-01-30 2013-06-12 北京大学 Quasi-cyclic low density parity check code (LDPC) construction method and device based on protographs
CN103188044A (en) 2011-05-19 2013-07-03 北京新岸线移动多媒体技术有限公司 Data transmission method and equipment
US8484545B2 (en) 2009-04-23 2013-07-09 Georgia Tech Research Corporation Secure communication using error correction codes
US8495459B2 (en) 2008-11-24 2013-07-23 Samsung Electronics Co., Ltd Channel-encoding/decoding apparatus and method using low-density parity-check codes
CN103281166A (en) 2013-05-15 2013-09-04 北京邮电大学 Hybrid automatic repeat request transmission method based on polarization code
US20130272378A1 (en) 2012-04-16 2013-10-17 Qualcomm Incorporated Coefficient groups and coefficient coding for coefficient scans
US8601352B1 (en) * 2009-07-30 2013-12-03 Apple Inc. Efficient LDPC codes
US8601345B1 (en) 2010-05-12 2013-12-03 Tellabs Operations, Inc. Method and apparatus for searching frame alignment with false alignment protection
CN103441816A (en) 2007-08-14 2013-12-11 Lg电子株式会社 Apparatus for transmitting data in a wireless access system and channel coding method
US20140003533A1 (en) 2012-06-28 2014-01-02 Research In Motion Limited Reduced worst-case context-coded bins in video compression with parity hiding
US20140019820A1 (en) 2012-07-11 2014-01-16 The Regents Of The University Of California Ecc polar coding and list decoding methods and codecs
US20140040214A1 (en) 2012-07-31 2014-02-06 Empire Technology Development Llc Entropy Coding and Decoding Using Polar Codes
US8650457B1 (en) * 2010-09-03 2014-02-11 Marvell International Ltd. Methods and systems for reconfigurable LDPC decoders
US20140068375A1 (en) 2012-08-28 2014-03-06 Hughes Network Systems, Llc System and method for communicating with low density parity check codes
CN103636130A (en) 2011-05-18 2014-03-12 松下电器产业株式会社 Parallel bit interleaver
US8687751B1 (en) 2010-04-02 2014-04-01 Marvell International Ltd. Multiple-input multiple-output receivers using successive interference cancellation based on cyclic redundancy check
CN103716130A (en) 2014-01-09 2014-04-09 苏州英菲泰尔电子科技有限公司 Physical layer self-adaption processing method for improving network transmission reliability
US20140101116A1 (en) 2012-10-08 2014-04-10 Cleversafe, Inc. Robust transmission of data utilizing encoded data slices
CN103746708A (en) 2013-10-25 2014-04-23 中国农业大学 Method for constructing Polar-LDPC concatenated codes
CN103780329A (en) 2012-10-17 2014-05-07 华为技术有限公司 Method, device and system for encoding and decoding
US20140169388A1 (en) 2012-12-14 2014-06-19 Sungkyunkwan University Research & Business Foundation Packet decoding method and apparatus
US20140173376A1 (en) 2012-12-14 2014-06-19 Sungkyunkwan University Research & Business Foundation Encoding method and apparatus using crc code and polar code
CN103905152A (en) 2014-03-21 2014-07-02 华南理工大学 Method for stochastically optimizing effective throughput adopting cross-layer joint encoding in erasure channel
US20140201592A1 (en) 2013-01-16 2014-07-17 Broadcom Corporation Very short size LDPC coding for physical and/or control channel signaling
US20140223254A1 (en) 2013-02-01 2014-08-07 Samsung Electronics Co., Ltd. Qc-ldpc convolutional codes enabling low power trellis-based decoders
WO2014117836A1 (en) 2013-01-31 2014-08-07 Intracom S.A. Telecom Solutions Ldpc code design and encoding apparatus enabling the adjustment of code rate and codelength
US20140229788A1 (en) 2013-02-13 2014-08-14 Qualcomm Incorporated Ldpc design for high rate, high parallelism, and low error floor
US8892979B2 (en) 2006-10-26 2014-11-18 Qualcomm Incorporated Coding schemes for wireless communication transmissions
CN104202126A (en) 2008-09-19 2014-12-10 爱立信电话股份有限公司 Iterative decoding of blocks with cyclic redundancy checks
US20140365842A1 (en) 2012-01-20 2014-12-11 Huawei Technologies Co., Ltd. Decoding method and decoding device for polar code cascaded with cyclic redundancy check
US20140365844A1 (en) 2013-06-10 2014-12-11 Broadcom Corporation Cyclic redundancy check (CRC) and forward error correction (FEC) for ranging within communication systems
US20140365845A1 (en) 2013-06-06 2014-12-11 Broadcom Corporation Combining CRC and FEC on a variable number of NCPs
KR20150034561A (en) 2013-09-26 2015-04-03 삼성전자주식회사 transmitting apparatus, receving apparatus and signal processing method thereof
WO2015054268A1 (en) 2013-10-09 2015-04-16 Qualcomm Incorporated Data transmission scheme with unequal code block sizes
US20150120798A1 (en) 2013-10-28 2015-04-30 Yo Won Jeong Data encoding with sign data hiding
KR101524869B1 (en) 2007-06-04 2015-06-02 삼성전자주식회사 Apparatus and method for encoding and decoding low density parity check codes
US20150178149A1 (en) 2013-12-20 2015-06-25 Lsi Corporation Method to distribute user data and error correction data over different page types by leveraging error rate variations
US20150188666A1 (en) 2013-12-17 2015-07-02 Samsung Electronics Co., Ltd. Computing system with polar processing mechanism and method of operation thereof
US20150229337A1 (en) 2014-02-11 2015-08-13 Lsi Corporation Mitigation of write errors in multi-level cell flash memory through adaptive error correction code decoding
US20150249473A1 (en) 2012-11-16 2015-09-03 Huawei Technologies Co.,Ltd. Method and apparatus for processing data
WO2015139297A1 (en) 2014-03-21 2015-09-24 华为技术有限公司 Polar code rate-matching method and rate-matching device
US20150293716A1 (en) 2013-01-24 2015-10-15 Texas A&M University System Joint rewriting and error correction in write-once memories
US20150334700A1 (en) 2014-05-19 2015-11-19 Mediatek Inc. Handheld device, base station and transmission control method thereof
US9214960B2 (en) * 2011-01-18 2015-12-15 Samsung Electronics Co., Ltd Apparatus and method for transmitting and receiving data in communication/broadcasting system
US20150381208A1 (en) 2013-03-07 2015-12-31 Huawei Technologies Co., Ltd. Polar code decoding method and decoder
CN105227189A (en) 2015-09-24 2016-01-06 电子科技大学 The polarization code coding and decoding method that segmentation CRC is auxiliary
US20160013810A1 (en) 2014-07-10 2016-01-14 The Royal Institution For The Advancement Of Learning / Mcgill University Flexible polar encoders and decoders
US20160012465A1 (en) 2014-02-08 2016-01-14 Jeffrey A. Sharp System and method for distributing, receiving, and using funds or credits and apparatus thereof
US20160013931A1 (en) 2013-12-12 2016-01-14 Samsung Electronics Co., Ltd. Method and apparatus of joint security advanced ldpc cryptcoding
US20160020783A1 (en) * 2014-07-17 2016-01-21 Lsi Corporation Low Density Parity Check Decoder With Relative Indexing
CN105284053A (en) 2013-06-14 2016-01-27 三星电子株式会社 Method and apparatus for encoding and decoding low-density parity-check codes
CN105306165A (en) 2014-06-23 2016-02-03 中兴通讯股份有限公司 Data transmission method and device
US20160043745A1 (en) 2012-12-03 2016-02-11 Digital PowerRadio, LLC Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems
CN105337696A (en) 2015-10-08 2016-02-17 东南大学 Polarization decoding method based on subsection CRC
KR101598754B1 (en) 2015-03-16 2016-03-02 세종대학교산학협력단 LDPC decoder and apparatus for de-puncturing of puncturing date thereof
US20160087648A1 (en) 2014-09-18 2016-03-24 Broadcom Corporation Puncture-aware low density parity check (LDPC) decoding
US9325347B1 (en) * 2014-02-21 2016-04-26 Microsemi Storage Solutions (U.S.), Inc. Forward error correction decoder and method therefor
US9362956B2 (en) 2013-01-23 2016-06-07 Samsung Electronics Co., Ltd. Method and system for encoding and decoding data using concatenated polar codes
US20160164629A1 (en) 2014-12-05 2016-06-09 Lg Electronics Inc. Method and device for providing secure transmission based on polar code
US20160164537A1 (en) 2014-12-08 2016-06-09 Samsung Electronics Co., Ltd. Method and apparatus for parallel concatenated ldpc convolutional codes enabling power-efficient decoders
US20160173132A1 (en) 2014-12-10 2016-06-16 Alcatel-Lucent Usa Inc. Construction of Structured LDPC Convolutional Codes
JP2016518035A (en) 2013-03-28 2016-06-20 シャープ株式会社 System and method for demodulation reference signal selection
US20160183187A1 (en) 2014-12-22 2016-06-23 Intel Corporation Adjacent channel interference mitigation for low-power wake-up radio
US20160197701A1 (en) * 2013-07-22 2016-07-07 Samsng Electronics Co., Ltd. Apparatus and Method for Receiving Signal in Communication System Supporting Low Density Parity Check Code
EP3046259A1 (en) 2015-01-16 2016-07-20 Alcatel Lucent Apparatuses and methods for ldpc convolutional encoding and decoding
US20160218750A1 (en) 2015-01-23 2016-07-28 Empire Technology Development Llc Parity check code encoder
US20160309482A1 (en) 2015-04-15 2016-10-20 Qualcomm Incorporated Interference-aware group owner, bandwidth, and channel selection in peer-to-peer wireless communication systems
US9479375B1 (en) 2015-04-02 2016-10-25 University Of South Florida Joint physical layer security and PAPR mitigation in OFDM systems
US20160337083A1 (en) 2015-05-15 2016-11-17 Freescale Semiconductor, Inc. Method of Offloading Cyclic Redundancy Check on Portions of a Packet
US20160380763A1 (en) 2015-06-24 2016-12-29 Lg Electronics Inc. Security communication using polar code scheme
CN106341138A (en) 2016-09-05 2017-01-18 厦门大学 Combined source channel coding matrix construction method based on photograph LDPC codes
US20170031599A1 (en) 2015-07-27 2017-02-02 Sas Institute Inc. Distributed data set storage and retrieval
US20170047947A1 (en) 2015-08-12 2017-02-16 Telefonaktiebolaget L M Ericsson (Publ) Rate-compatible polar codes
US20170063493A1 (en) 2015-08-25 2017-03-02 Signalchip Innovations Private Limited Methods and circuits for performing cyclic redundancy check (crc) of an input data stream
US20170075754A1 (en) 2015-09-10 2017-03-16 Cavium, Inc. Apparatus and method for parallel crc units for variably-sized data frames
US9602133B1 (en) * 2015-01-27 2017-03-21 Microsemi Storage Solutions (U.S.), Inc. System and method for boost floor mitigation
KR20170053589A (en) 2015-11-06 2017-05-16 삼성전자주식회사 Channel coding framework for 802.11ay and larger block-length ldpc codes for 11ay with two-step lifting matrices and in-place property
US20170141798A1 (en) 2015-11-12 2017-05-18 Qualcomm Incorporated Puncturing for structured low density parity check (ldpc) codes
WO2017091244A1 (en) 2015-11-23 2017-06-01 Intel IP Corporation Hybrid arq schemes based on low density parity check codes
WO2017092693A1 (en) 2015-12-01 2017-06-08 Huawei Technologies Co., Ltd. Signature-enabled polar encoder and decoder
US9692451B2 (en) 2014-09-30 2017-06-27 Avago Technologies General Ip (Singapore) Pte. Ltd Non-binary low density parity check (NB-LDPC) codes for communication systems
US20170187489A1 (en) 2015-12-23 2017-06-29 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding channel in communication or broadcasting system
US20170222663A1 (en) 2014-09-30 2017-08-03 Micron Technology, Inc. Progressive effort decoder architecture
US20170230149A1 (en) 2013-07-11 2017-08-10 InterDigital Pantent Holdings, Inc. Systems and methods for smart harq for wifi
US9742439B1 (en) * 2015-06-08 2017-08-22 Microsemi Solutions (U.S.), Inc. Method and device for forward error correction decoder system utilizing orthogonality of an H matrix
US9774893B2 (en) * 2013-08-01 2017-09-26 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US20170331494A1 (en) 2016-05-11 2017-11-16 Qualcomm Incorporated Methods and apparatus for efficiently generating multiple lifted low-density parity-check (ldpc) codes
US20170331497A1 (en) 2016-05-12 2017-11-16 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (ldpc) code structure
US20170353269A1 (en) 2016-06-01 2017-12-07 Qualcomm Incorporated Encoding and decoding of control signaling with sectional redundancy check
US20170353267A1 (en) 2016-06-01 2017-12-07 Qualcomm Incorporated Generalized polar code construction
US20170353271A1 (en) 2016-06-01 2017-12-07 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of crc bits
US20170359148A1 (en) 2016-06-14 2017-12-14 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (ldpc) code
EP3264611A1 (en) 2016-05-12 2018-01-03 MediaTek Inc. Qc-ldpc coding methods and apparatus
US20180007712A1 (en) 2015-01-09 2018-01-04 Interdigital Patent Holdings, Inc. Methods, apparatuses and systems for supporting multi-user transmissions in a wireless local area network (wlan) system
US20180034593A1 (en) 2016-07-27 2018-02-01 Qualcomm Incorporated Design of hybrid automatic repeat request (harq) feedback bits for polar codes
WO2018030927A1 (en) 2016-08-11 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Selection of an error correcting code based on a target information length and a target parity length
WO2018029633A1 (en) 2016-08-12 2018-02-15 Telefonaktiebolaget L M Ericsson (Publ) Rate matching methods for ldpc codes
CN107733442A (en) 2016-08-12 2018-02-23 中兴通讯股份有限公司 The processing method and processing device of structured LDPC code
WO2018050062A1 (en) 2016-09-15 2018-03-22 Huawei Technologies Co., Ltd. Method and apparatus for encoding data using a polar code
US20180152205A1 (en) 2016-11-25 2018-05-31 Lg Electronics Inc. Method of performing interleaving using ldpc and communication apparatus therefor
WO2018128560A1 (en) 2017-01-09 2018-07-12 Huawei Technologies Co., Ltd Efficiently decodable qc-ldpc code
WO2018144560A1 (en) 2017-02-03 2018-08-09 Idac Holdings, Inc. Code block segmentation depending on ldpc base matrix selection
US20180226992A1 (en) * 2017-02-03 2018-08-09 Huawei Technologies Co., Ltd. Offset Lifting Method
WO2018144251A1 (en) 2017-02-06 2018-08-09 Qualcomm Incorporated Multiple low density parity check (ldpc) base graph design
US10051333B2 (en) * 2013-08-01 2018-08-14 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US20180358984A1 (en) 2017-06-10 2018-12-13 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in lpdc code
US20180367245A1 (en) 2017-06-19 2018-12-20 Qualcomm Incorporated COMMUNICATION TECHNIQUES WITH SELF-DECODABLE REDUNDANCY VERSIONS (RVs) USING SYSTEMATIC CODES
US20180367253A1 (en) 2017-06-16 2018-12-20 At&T Intellectual Property I, L.P. Facilitating notifications to indicate failed code block groups in 5g or other next generation networks
CN109150191A (en) 2017-06-15 2019-01-04 华为技术有限公司 Information processing method, apparatus and communication device
US10177787B1 (en) 2015-09-17 2019-01-08 Seagate Technology Llc Mitigation of error correction failure due to trapping sets
US20190013900A1 (en) 2017-07-07 2019-01-10 Qualcomm Incorporated Communication techniques applying low-density parity-check code base graph selection
US20190052400A1 (en) 2017-08-11 2019-02-14 Qualcomm Incorporated Self-decodable redundancy versions for low-density parity-check codes
US20190068318A1 (en) 2015-09-24 2019-02-28 Idac Holdings, Inc. Methods for enhanced multiplexing in wireless systems
US20190394000A1 (en) 2017-03-19 2019-12-26 Lg Electronics Inc. Method and apparatus for transmitting uplink transport block in wireless communication system
US20200028523A1 (en) 2016-09-30 2020-01-23 Zte Corporation Quasi-cyclic ldpc coding and decoding method and apparatus, and ldpc coder and decoder
US20200044665A1 (en) 2017-05-05 2020-02-06 Huawei Technologies Co.,Ltd. Apparatus and method for channel coding in communication system
US20200067641A1 (en) 2017-05-04 2020-02-27 Huawei Technologies Co., Ltd. Data transmission method, base station, and terminal device
EP3622627A1 (en) 2017-05-12 2020-03-18 Qualcomm Incorporated Constructing parity check matrices with row-orthogonality for rate compatible qc-ldpc codes
US10659079B2 (en) 2017-05-05 2020-05-19 Mediatek Inc. QC-LDPC codes
US20200162109A1 (en) 2017-05-05 2020-05-21 China Academy Of Telecommunications Technology Method and device of selecting base graph of low-density parity-check code
US20200235854A1 (en) 2016-12-15 2020-07-23 Qualcomm Incorporated Crc bits for joint decoding and verification of control information using polar codes
US10735138B2 (en) 2017-05-02 2020-08-04 Futurewei Technologies, Inc. Multi-label offset lifting method
US20200404069A1 (en) 2019-09-11 2020-12-24 Intel Corporation Framework for computing in radio access network (ran)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080077473A (en) 2007-02-20 2008-08-25 엘지전자 주식회사 Digital broadcasting system and data processing method
KR101285887B1 (en) 2007-03-26 2013-07-11 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
KR101253185B1 (en) 2007-03-26 2013-04-10 엘지전자 주식회사 Digital broadcasting system and data processing method
EP2056550B1 (en) * 2007-10-30 2013-04-24 Sony Corporation Data processing apparatus and method
US8902869B2 (en) * 2011-06-15 2014-12-02 Marvell World Trade Ltd. Low bandwidth PHY for WLAN
WO2013104992A2 (en) * 2012-01-11 2013-07-18 Marvell World Trade Ltd. Information bit padding schemes for wlan
US9838037B2 (en) * 2013-05-02 2017-12-05 Sony Corporation Data processing device and data processing method
EP3048734B1 (en) 2013-09-20 2019-01-02 Saturn Licensing LLC Encoding and decoding of a rate 10/15 ldpc code of length 16200 for dvb
US9722633B2 (en) * 2015-02-11 2017-08-01 Mitsubishi Electric Research Laboratories, Inc. Method and system for reliable data communications with adaptive multi-dimensional modulations for variable-iteration decoding
WO2017009837A1 (en) 2015-07-15 2017-01-19 Ramot At Tel Aviv University Ltd. Micro-rna for the treatment of malignant solid tumors and metastasis
KR20170075627A (en) * 2015-12-23 2017-07-03 삼성전자주식회사 Apparatus and method for encoding and decoding in communication or broadcasting system
WO2017119922A1 (en) 2016-01-04 2017-07-13 Intel IP Corporation Encoding and decoding using low-density parity-check matrices
WO2018027497A1 (en) * 2016-08-08 2018-02-15 Nokia Technologies Oy Inter-block modifications to generate sub-matrix of rate compatible parity check matrix
US20180131392A1 (en) * 2016-11-04 2018-05-10 Mediatek Inc. NR LDPC With Interleaver
CN113472359B (en) * 2016-12-20 2024-11-12 三星电子株式会社 Apparatus and method for channel coding/decoding in communication system
TWI652907B (en) * 2017-01-09 2019-03-01 聯發科技股份有限公司 Offset Coefficient and Lifting Factor Design for New Radio Low Density Parity Check Codes
US10630319B2 (en) * 2017-01-24 2020-04-21 Mediatek Inc. Structure of interleaver with LDPC code
US10348329B2 (en) 2017-02-13 2019-07-09 Qualcomm Incorporated Low density parity check (LDPC) circular buffer rate matching
US10608665B2 (en) * 2017-03-24 2020-03-31 Mediatek Inc. Method and apparatus for error correction coding in communication
CN110583023B (en) * 2017-05-04 2022-03-01 三星电子株式会社 Method and apparatus for channel encoding and decoding in a communication or broadcast system
WO2018201609A1 (en) * 2017-05-05 2018-11-08 华为技术有限公司 Information processing method and communication apparatus
WO2018201540A1 (en) * 2017-05-05 2018-11-08 华为技术有限公司 Information processing method and communication apparatus
US10484013B2 (en) * 2017-05-12 2019-11-19 Mediatek Inc. Shift-coefficient table design of QC-LDPC code for smaller code block sizes in mobile communications
WO2018218466A1 (en) * 2017-05-28 2018-12-06 华为技术有限公司 Information processing method and communication device
CN119602808A (en) 2017-06-15 2025-03-11 华为技术有限公司 Information processing method, device and communication equipment

Patent Citations (347)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583500A (en) 1993-02-10 1996-12-10 Ricoh Corporation Method and apparatus for parallel encoding and decoding of data
JPH07288479A (en) 1994-04-18 1995-10-31 Nec Corp Error correction concatenate coding method/device
US5844918A (en) 1995-11-28 1998-12-01 Sanyo Electric Co., Ltd. Digital transmission/receiving method, digital communications method, and data receiving apparatus
EP1601109A2 (en) 1997-07-30 2005-11-30 Samsung Electronics Co., Ltd. Adaptive channel encoding method and device
US6674768B1 (en) 1998-10-09 2004-01-06 Nec Corporation Data transmission device and data transmission method capable of minimizing delay of fast data
US6438724B1 (en) 1999-03-16 2002-08-20 International Business Machines Corporation Method and apparatus for deterministically altering cyclic redundancy check information for data storage
TW427076B (en) 1999-04-06 2001-03-21 Inst Information Industry CRC key checking device and the method thereof
CN1399829A (en) 1999-11-25 2003-02-26 西门子公司 Method for adjusting data rate in communication device and corresponding communication device
US6633865B1 (en) 1999-12-23 2003-10-14 Pmc-Sierra Limited Multithreaded address resolution system
US6931581B1 (en) 2000-10-25 2005-08-16 Sun Microsystems, Inc. Method for superimposing a sequence number in an error detection code in a data network
US6961388B2 (en) 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
WO2002062002A1 (en) 2001-02-01 2002-08-08 Qualcomm Incorporated Coding scheme for a wireless communication system
CN101005301A (en) 2001-02-01 2007-07-25 高通股份有限公司 Coding scheme for a wireless communication system
US20020147954A1 (en) 2001-03-22 2002-10-10 Shea John M. Method and coding means for error-correction utilizing concatenated parity and turbo codes
US20030053435A1 (en) 2001-05-22 2003-03-20 Nagabhushana Sindhushayana Enhanced channel interleaving for optimized data throughput
US7133853B2 (en) 2001-06-15 2006-11-07 Qualcomm Incorporated Methods and apparatus for decoding LDPC codes
US7552097B2 (en) 2001-06-15 2009-06-23 Qualcomm Incorporated Methods and apparatus for decoding LDPC codes
US20030033575A1 (en) 2001-06-15 2003-02-13 Tom Richardson Methods and apparatus for decoding LDPC codes
US20030123409A1 (en) 2001-10-17 2003-07-03 Samsung Electronics Co., Ltd. Apparatus and method for multiplexing/demultiplexing transport channels in a CDMA communication system
US6854082B1 (en) 2001-11-27 2005-02-08 Lsi Logic Corporation Unequal error protection Reed-Muller code generator and decoder
US20030172342A1 (en) 2002-03-08 2003-09-11 Uri Elzur System and method for identifying upper layer protocol message boundaries
US20070011568A1 (en) * 2002-08-15 2007-01-11 Texas Instruments Incorporated Hardware-Efficient Low Density Parity Check Code for Digital Communications
US6961888B2 (en) 2002-08-20 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for encoding LDPC codes
US20100153812A1 (en) 2002-08-20 2010-06-17 Qualcomm Incorporated Methods and apparatus for encoding ldpc codes
US7627801B2 (en) 2002-08-20 2009-12-01 Qualcomm Incorporated Methods and apparatus for encoding LDPC codes
US8751902B2 (en) 2002-08-20 2014-06-10 Qualcomm Incorporated Methods and apparatus for encoding LDPC codes
US20040098659A1 (en) 2002-11-18 2004-05-20 Bjerke Bjorn A. Rate-compatible LDPC codes
US7237171B2 (en) 2003-02-26 2007-06-26 Qualcomm Incorporated Method and apparatus for performing low-density parity-check (LDPC) code operations using a multi-level permutation
US20040187129A1 (en) 2003-02-26 2004-09-23 Tom Richardson Method and apparatus for performing low-density parity-check (LDPC) code operations using a multi-level permutation
US7231557B2 (en) 2003-04-02 2007-06-12 Qualcomm Incorporated Methods and apparatus for interleaving in a block-coherent communication system
US20040262376A1 (en) 2003-06-25 2004-12-30 Centre National De La Recherche Scientifique (Cnrs), Universite Paris Sud (Paris Xi) Method and apparatus for resolution of problems using constrained discrete variables
US7222284B2 (en) 2003-06-26 2007-05-22 Nokia Corporation Low-density parity-check codes for multiple code rates
CN101019328A (en) 2003-06-26 2007-08-15 诺基亚有限公司 Low-density parity-check codes for multiple code rates
TWI272777B (en) 2003-08-08 2007-02-01 Intel Corp Method and apparatus for varying lengths of low density parity check codewords
US20050050435A1 (en) 2003-08-26 2005-03-03 Samsung Electronics Co., Ltd. Apparatus and method for coding/decoding block low density parity check code in a mobile communication system
US20050078765A1 (en) 2003-10-13 2005-04-14 Samsung Electronics Co., Ltd. Method and apparatus for space-time coding using lifting low density parity check codes in a wireless communication system
CN1868145A (en) 2003-10-13 2006-11-22 三星电子株式会社 Method and apparatus for space-time coding using low density parity check codes in a wireless communication system
JP2007507156A (en) 2003-10-13 2007-03-22 サムスン エレクトロニクス カンパニー リミテッド Space-time coding method and apparatus using lifting low density parity check code in wireless communication system
US20050149842A1 (en) 2003-11-14 2005-07-07 Samsung Electronics Co., Ltd. Channel encoding/decoding apparatus and method using a parallel concatenated low density parity check code
US7237181B2 (en) 2003-12-22 2007-06-26 Qualcomm Incorporated Methods and apparatus for reducing error floors in message passing decoders
US20050246617A1 (en) 2004-04-28 2005-11-03 Samsung Electronics Co., Ltd. Apparatus and method for coding/decoding block low density parity check code with variable block length
US20050283708A1 (en) 2004-05-12 2005-12-22 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding block low density parity check codes with a variable coding rate
US7526717B2 (en) 2004-06-16 2009-04-28 Samsung Electronics Co., Ltd. Apparatus and method for coding and decoding semi-systematic block low density parity check codes
US20050283707A1 (en) 2004-06-22 2005-12-22 Eran Sharon LDPC decoder for decoding a low-density parity check (LDPC) codewords
CN101076946A (en) 2004-06-24 2007-11-21 Lg电子株式会社 Method and apparatus for encoding and decoding data using low-density parity-check codes in a wireless communication system
US20060020868A1 (en) 2004-07-21 2006-01-26 Tom Richardson LDPC decoding methods and apparatus
US20060020872A1 (en) 2004-07-21 2006-01-26 Tom Richardson LDPC encoding methods and apparatus
US20060026486A1 (en) 2004-08-02 2006-02-02 Tom Richardson Memory efficient LDPC decoding methods and apparatus
US20060036925A1 (en) 2004-08-16 2006-02-16 Samsung Electronics Co., Ltd. Apparatus and method for coding/decoding block low density parity check code with variable block length
US7493551B2 (en) 2004-09-22 2009-02-17 Stmicroelectronics N.V. Method and device for delivering punctured code words encoded with a LDPC code
US7747934B2 (en) 2004-10-12 2010-06-29 Nortel Networks Limited Method for selecting low density parity check (LDPC) code used for encoding of variable length data
US20090259915A1 (en) 2004-10-12 2009-10-15 Michael Livshitz Structured low-density parity-check (ldpc) code
CN1780199A (en) 2004-11-17 2006-05-31 北京三星通信技术研究有限公司 Method for judging packet encoding and decoding methods
US7581159B2 (en) 2004-11-23 2009-08-25 Texas Instruments Incorporated Simplified decoding using structured and punctured LDPC codes
US20060156199A1 (en) 2004-12-22 2006-07-13 Qualcomm Incorporated Pruned bit-reversal interleaver
US20060184855A1 (en) 2005-02-17 2006-08-17 Samsung Electronics Co., Ltd. Turbo decoder architecture for use in software-defined radio systems
WO2006124428A2 (en) 2005-05-12 2006-11-23 Qualcomm Incorporated Apparatus and method for channel interleaving in communications system
US7685495B2 (en) 2005-05-12 2010-03-23 Qualcomm Incorporated Apparatus and method for channel interleaving in communications system
US20070011567A1 (en) 2005-05-16 2007-01-11 Samsung Electronics Co., Ltd. Method for padding and puncturing low density parity check code
US8006162B2 (en) 2005-05-16 2011-08-23 Samsung Electronics Co., Ltd. Method for padding and puncturing low density parity check code
EP1724932A1 (en) 2005-05-16 2006-11-22 Samsung Electronics Co., Ltd. Device and method for padding and puncturing low density parity check
KR101157246B1 (en) 2005-05-16 2012-06-15 삼성전자주식회사 Padding and puncturing method for ldpc channel code
US20060274687A1 (en) 2005-06-06 2006-12-07 Joonsuk Kim Method and system for parsing bits in an interleaver for adaptive modulations in a multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7571372B1 (en) 2005-06-23 2009-08-04 Marvell International Ltd. Methods and algorithms for joint channel-code decoding of linear block codes
US20060294445A1 (en) 2005-06-24 2006-12-28 Dariush Divsalar ARA type protograph codes
US20080207120A1 (en) 2005-06-29 2008-08-28 Anna Kurina Wireless Data Transmission Methods, Devices, and Systems
TW200711359A (en) 2005-06-30 2007-03-16 Nokia Corp Apparatus, and associated method, for allocating communications in a multi-channel communication system
US20070022362A1 (en) 2005-07-01 2007-01-25 Nec Laboratories America, Inc. Rate-compatible low density parity check coding for hybrid ARQ
US20080317152A1 (en) 2005-07-05 2008-12-25 Shanghai Ultimate Power Communications Technology, Method and Apparatus for Multi-Carrier Hsdpa Traffic Transmission Channel Coding
US20070089025A1 (en) 2005-09-26 2007-04-19 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding block low density parity check codes having variable coding rate
US20070101243A1 (en) 2005-09-30 2007-05-03 Samsung Electronics Co., Ltd Method for puncturing a low density parity check code
CN1953335A (en) 2005-10-21 2007-04-25 中兴通讯股份有限公司 A coding device and method for low density parity check code of supporting any code rate/code length
US20070113148A1 (en) 2005-10-31 2007-05-17 Samsung Electronics Co., Ltd. Decoding apparatus and method in a communication system using low density parity check codes
US20070113147A1 (en) 2005-10-31 2007-05-17 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving a signal in a communication system using a low density parity check code
US20070136636A1 (en) 2005-12-12 2007-06-14 Industrial Technology Research Institute Data encoding method for error correction
US8132072B2 (en) 2006-01-06 2012-03-06 Qualcomm Incorporated System and method for providing H-ARQ rate compatible codes for high throughput applications
US20120166917A1 (en) 2006-01-06 2012-06-28 Qualcomm Incorporated System and method for providing h-arq rate compatible codes for high throughput applications
US20070162815A1 (en) 2006-01-06 2007-07-12 Mostafa El-Khamy System and method for providing H-ARQ rate compatible codes for high throughput applications
US7979784B2 (en) 2006-03-29 2011-07-12 Samsung Electronics Co., Ltd. Method and system for enhancing transmission reliability of video information over wireless channels
CN1960188A (en) 2006-04-29 2007-05-09 北京泰美世纪科技有限公司 Method for constructing low-density parity check code, encoding method, and transmission system
US8151157B2 (en) 2006-06-07 2012-04-03 Lg Electronics Inc. Method of encoding/decoding using low density check code matrix
US8356227B2 (en) 2006-06-16 2013-01-15 Lg Electronics Inc. Method of encoding/decoding using low density check code matrix
US20080059862A1 (en) 2006-09-04 2008-03-06 Samsung Electronics Co., Ltd. Apparatus and method to transmit/receive signal in a communication system
US20080062975A1 (en) 2006-09-08 2008-03-13 Ian Mes Method and apparatus for optimizing the transmission of signals over a group of wires
US7840880B1 (en) 2006-09-25 2010-11-23 Altera Corporation Methods and apparatus for error checking code computation
US20100077275A1 (en) 2006-10-18 2010-03-25 Panasonic Corporation Method and system for data transmission in a multiple input multiple output (mimo) system
US7986622B2 (en) 2006-10-24 2011-07-26 Broadcom Corporation Method and system for physical layer aggregation
US8892979B2 (en) 2006-10-26 2014-11-18 Qualcomm Incorporated Coding schemes for wireless communication transmissions
JP2010508728A (en) 2006-10-26 2010-03-18 クゥアルコム・インコーポレイテッド Coding scheme for wireless communication transmission
US20100023834A1 (en) 2006-10-26 2010-01-28 Qualcomm Incorproated Coding schemes for wireless communication transmissions
JP2012142968A (en) 2006-10-26 2012-07-26 Qualcomm Inc Coding schemes for wireless communication transmissions
US8453030B2 (en) 2006-10-26 2013-05-28 Qualcomm Incorporated Coding schemes for wireless communication transmissions
RU2426241C2 (en) 2006-10-26 2011-08-10 Квэлкомм Инкорпорейтед Coding schemes for wireless communication transmission
WO2008052202A1 (en) 2006-10-26 2008-05-02 Qualcomm Incorporated Coding schemes for wireless communication transmissions
KR20110106438A (en) 2006-10-26 2011-09-28 콸콤 인코포레이티드 Coding Method for Wireless Communication Transmission
US8117516B2 (en) 2006-11-06 2012-02-14 Samsung Electronics Co., Ltd Apparatus and method for signal transmission/reception in a communication system
US20080109708A1 (en) 2006-11-06 2008-05-08 Samsung Electronics Co., Ltd. Apparatus and method for signal transmission/reception in a communication system
US20080126916A1 (en) 2006-11-17 2008-05-29 Lg Electronics Inc. Method of executing ldpc coding using parity check matrix
US20100325511A1 (en) 2006-12-05 2010-12-23 Jong-Ee Oh Method of generating parity-check matrix, encoding/decoding method for low density parity-check code with variable information length and variable code rate and apparatus using the same
KR100833515B1 (en) 2006-12-05 2008-05-29 한국전자통신연구원 Parity check matrix generation method, sub / decoding method of LDPC code with variable information length and variable code rate, and apparatus using same
CN101217337A (en) 2007-01-01 2008-07-09 中兴通讯股份有限公司 A low density parity code encoding device and method supporting incremental redundancy hybrid automatic repeat
WO2008092040A2 (en) 2007-01-24 2008-07-31 Qualcomm Incorporated Ldpc encoding and decoding of packets of variable sizes
CN101601187A (en) 2007-01-24 2009-12-09 高通股份有限公司 LDPC encoding and decoding of variable size packets
US20080178065A1 (en) 2007-01-24 2008-07-24 Qualcomm Incorporated Ldpc encoding and decoding of packets of variable sizes
US8578249B2 (en) 2007-01-24 2013-11-05 Qualcomm Incorporated LDPC encoding and decoding of packets of variable sizes
TW201334425A (en) 2007-01-24 2013-08-16 Qualcomm Inc LDPC encoding and decoding of packets of variable sizes
JP2010517444A (en) 2007-01-24 2010-05-20 クゥアルコム・インコーポレイテッド LDPC encoding and decoding of variable size packets
US20100107033A1 (en) 2007-01-31 2010-04-29 Kenichi Kuri Radio communication device and puncturing method
KR20090130176A (en) 2007-02-28 2009-12-18 엑소시스트 트랜스퍼 에이지 엘.엘.씨. Method and system for LDPC coding
US20080204286A1 (en) 2007-02-28 2008-08-28 Conexant Systems, Inc. Methods and Systems for LDPC Coding
WO2008112625A1 (en) 2007-03-09 2008-09-18 Qualcomm Incorporated Encoding and decoding of low density parity check (ldpc ) codes
US8261155B2 (en) 2007-03-09 2012-09-04 Qualcomm Incorporated Methods and apparatus for encoding and decoding low density parity check (LDPC) codes
CN101047387A (en) 2007-03-23 2007-10-03 北京大学 Construction method of multi-code rate compatible LDPC code and its decoder
US20080298334A1 (en) 2007-05-31 2008-12-04 Agere Systems Inc. Reducing false detection in an hsdpa 3g terminal
KR101524869B1 (en) 2007-06-04 2015-06-02 삼성전자주식회사 Apparatus and method for encoding and decoding low density parity check codes
US8418015B2 (en) 2007-06-08 2013-04-09 China Academy Of Telecommunications Technology Method, apparatus and system for coding and decoding of LDPC codes
US20110239075A1 (en) 2007-06-12 2011-09-29 Jun Xu Channel coding, modulating and mapping method for hybrid automatic repeat request of low density parity check code
US8516334B2 (en) 2007-06-12 2013-08-20 Zte Corporation Channel coding, modulating and mapping method for hybrid automatic repeat request of low density parity check code
CN101682381A (en) 2007-06-15 2010-03-24 松下电器产业株式会社 Radio communication device, radio communication system, and radio communication method
US20080320353A1 (en) 2007-06-20 2008-12-25 Motorola, Inc. Apparatus comprising a circular buffer and method for assigning redundancy versions to a circular buffer
WO2009005264A1 (en) 2007-06-29 2009-01-08 Lg Electronics Inc. Digital broadcasting system and data processing method
US20100199153A1 (en) 2007-07-12 2010-08-05 Panasonic Corporation Low-density parity check convolution code (ldpc-cc) encoder and ldpc-cc decoder
WO2009011134A1 (en) 2007-07-19 2009-01-22 Panasonic Corporation Wireless communication device, and method for allocating communication resources in ldpc coding
US20110096862A1 (en) 2007-08-09 2011-04-28 Panasonic Corporation Radio communication apparatus, radio communication system, and radio communication method
CN103441816A (en) 2007-08-14 2013-12-11 Lg电子株式会社 Apparatus for transmitting data in a wireless access system and channel coding method
JP2010537460A (en) 2007-08-17 2010-12-02 パナソニック株式会社 Perform cyclic redundancy check across multiple encoded segments
US20140304574A1 (en) 2007-09-08 2014-10-09 Lg Electronics Inc. Signal segmentation method and crc attachment method for reducing undetected error
US7793194B2 (en) 2007-09-08 2010-09-07 Lg Electronics, Inc. Signal segmentation method and CRC attachment method for reducing undetected error
US20090077456A1 (en) 2007-09-18 2009-03-19 Zhouyue Pi Methods and apparatus to generate multiple CRCs
JP2009081577A (en) 2007-09-25 2009-04-16 Samsung Electronics Co Ltd Reception device, communication system, and signal processing method
US20100211844A1 (en) 2007-09-27 2010-08-19 Panasonic Corporation Wireless communication apparatus, wireless communication system, and wireless communication method
CN101141133A (en) 2007-10-23 2008-03-12 北京邮电大学 An Encoding Method of Structured Low Density Check Code
US20090113256A1 (en) 2007-10-24 2009-04-30 Nokia Corporation Method, computer program product, apparatus and device providing scalable structured high throughput LDPC decoding
US20090113276A1 (en) 2007-10-24 2009-04-30 Nokia Corporation Method, apparatus, computer program product and device providing semi-parallel low density parity check decoding using a block structured parity check matrix
US20090125735A1 (en) 2007-11-12 2009-05-14 Zimmerman George A Active idle communication system
US20090158129A1 (en) 2007-12-06 2009-06-18 Seho Myung Method and apparatus for encoding and decoding channel in a communication system using low-density parity-check codes
CN101188428A (en) 2007-12-10 2008-05-28 中兴通讯股份有限公司 Speed matching method of limited length circular buffer of LDPC code
JP2011512106A (en) 2008-02-11 2011-04-14 サムスン エレクトロニクス カンパニー リミテッド Channel coding and decoding method and apparatus in communication system using low density parity check code
US20090204868A1 (en) 2008-02-12 2009-08-13 Samsung Electronics Co. Ltd. Method and apparatus for signal transmission/reception in a communication system using an harq scheme
EP2091171A2 (en) 2008-02-12 2009-08-19 Samsung Electronics Co., Ltd. Method and apparatus for signal transmission in a communication system using an HARQ scheme
KR20090092197A (en) 2008-02-26 2009-08-31 삼성전자주식회사 Apparatus and method for encoding and decoding channel in communication system using low-density parity-check codes
CN102017426A (en) 2008-02-26 2011-04-13 三星电子株式会社 Method and apparatus for channel coding and decoding in a communication system using low-density parity-check codes
RU2520405C2 (en) 2008-02-26 2014-06-27 Самсунг Электроникс Ко., Лтд. Method and apparatus for channel encoding and decoding in communication system using low-density parity check codes
US8271846B2 (en) 2008-02-26 2012-09-18 Samsung Electronics Co., Ltd Method and apparatus for channel encoding and decoding in a communication system using low-density parity-check codes
EP2096760A1 (en) 2008-02-26 2009-09-02 Samsung Electronics Co., Ltd. Method and apparatus for channel encoding and decoding in a communication system using low-density parity-check codes
WO2009107990A2 (en) 2008-02-26 2009-09-03 Samsung Electronics Co., Ltd. Method and apparatus for channel encoding and decoding in a communication system using low-density parity-check codes
RU2520406C2 (en) 2008-02-26 2014-06-27 Самсунг Электроникс Ко., Лтд. Method and apparatus for channel encoding and decoding in communication system using low-density parity check codes
US20090217129A1 (en) 2008-02-26 2009-08-27 Samsung Electronics Co., Ltd. Method and apparatus for channel encoding and decoding in a communication system using low-density-parity-check codes
JP2011514049A (en) 2008-02-26 2011-04-28 サムスン エレクトロニクス カンパニー リミテッド Channel coding and decoding method and apparatus in communication system using low density parity check code
CN102651652A (en) 2008-05-04 2012-08-29 华为技术有限公司 Method and device for generating code rate compatible with low density parity check (LDPC) codes and hybrid automatic repeat request (HARQ) schemes
US20090300461A1 (en) 2008-05-29 2009-12-03 Gadi Shor Device, method and computer program product for communication
US20110126072A1 (en) 2008-07-09 2011-05-26 Sharp Kabushiki Kaisha Communication device, communication system, reception method and communication method
CN101645763A (en) 2008-08-06 2010-02-10 中兴通讯股份有限公司 Dispatching method and uplink dispatching system for uplink data transmission
US20110161772A1 (en) 2008-09-02 2011-06-30 Panasonic Corporation Wireless communication device and wireless communication method
CN104202126A (en) 2008-09-19 2014-12-10 爱立信电话股份有限公司 Iterative decoding of blocks with cyclic redundancy checks
US8495459B2 (en) 2008-11-24 2013-07-23 Samsung Electronics Co., Ltd Channel-encoding/decoding apparatus and method using low-density parity-check codes
US20100153819A1 (en) 2008-12-12 2010-06-17 Yeong-Luh Ueng Decoding Method and System for Low-Density Parity Check Code
US20100185926A1 (en) 2009-01-21 2010-07-22 Matthew Todd Lawson Enhanced Error Detection in Multilink Serdes Channels
US20100257425A1 (en) 2009-04-06 2010-10-07 Nec Laboratories America, Inc. Systems and methods for constructing the base matrix of quasi-cyclic low-density parity-check codes
US8484545B2 (en) 2009-04-23 2013-07-09 Georgia Tech Research Corporation Secure communication using error correction codes
US20100275089A1 (en) 2009-04-27 2010-10-28 The Hong Kong University Of Science And Technology Iterative decoding of punctured low-density parity check codes by selection of decoding matrices
US20100287438A1 (en) 2009-05-07 2010-11-11 Ismail Lakkis Method an apparatus for low density parity check codes encoding and decoding
US8392789B2 (en) 2009-07-28 2013-03-05 Texas Instruments Incorporated Method and system for decoding low density parity check codes
CN102474386A (en) 2009-07-29 2012-05-23 马维尔国际贸易有限公司 Method and device for WLAN transmission
US8601352B1 (en) * 2009-07-30 2013-12-03 Apple Inc. Efficient LDPC codes
US20110047433A1 (en) 2009-08-24 2011-02-24 Samsung Electronics Co., Ltd. System and method for structured ldpc code family with fixed code length and no puncturing
US8495450B2 (en) 2009-08-24 2013-07-23 Samsung Electronics Co., Ltd. System and method for structured LDPC code family with fixed code length and no puncturing
US20110066916A1 (en) 2009-09-14 2011-03-17 Samsung Electronics Co., Ltd. System and method for structured ldpc code family
US20110202820A1 (en) 2010-02-18 2011-08-18 Hughes Network Systems, Llc Method and system for providing low density parity check (ldpc) encoding and decoding
CN102783206A (en) 2010-02-19 2012-11-14 株式会社Ntt都科摩 Mobile terminal device, wireless base station device, and wireless communication method
US8687751B1 (en) 2010-04-02 2014-04-01 Marvell International Ltd. Multiple-input multiple-output receivers using successive interference cancellation based on cyclic redundancy check
CN101826878A (en) 2010-04-26 2010-09-08 杨磊 QC-LDPC (Quasi-Cyclic Low Density Parity Check) code constructing method
US8601345B1 (en) 2010-05-12 2013-12-03 Tellabs Operations, Inc. Method and apparatus for searching frame alignment with false alignment protection
US20120084625A1 (en) 2010-08-12 2012-04-05 Samsung Electronics Co., Ltd. Apparatus and method for decoding ldpc codes in a communications system
US8650457B1 (en) * 2010-09-03 2014-02-11 Marvell International Ltd. Methods and systems for reconfigurable LDPC decoders
WO2012064869A1 (en) 2010-11-09 2012-05-18 Qualcomm Incorporated Packet-level erasure protection coding in aggregated packet transmissions
US8473821B2 (en) 2010-11-09 2013-06-25 Qualcomm, Incorporated Packet-level erasure protection coding in aggregated packet transmissions
US9214960B2 (en) * 2011-01-18 2015-12-15 Samsung Electronics Co., Ltd Apparatus and method for transmitting and receiving data in communication/broadcasting system
US20120240001A1 (en) 2011-03-16 2012-09-20 Samsung Electronics Co., Ltd. Ldpc code family for millimeter-wave band communications in a wireless network
EP2518923A1 (en) 2011-04-26 2012-10-31 Panasonic Corporation Bit permutation patterns for BICM with LDPC codes of rate 2/5 and QAM constellations
CN103636130A (en) 2011-05-18 2014-03-12 松下电器产业株式会社 Parallel bit interleaver
CN103188044A (en) 2011-05-19 2013-07-03 北京新岸线移动多媒体技术有限公司 Data transmission method and equipment
US20120317461A1 (en) 2011-06-11 2012-12-13 Samsung Electronics Co. Ltd. Apparatus and method for transmitting and receiving packet in broadcasting and communication system
US20130031438A1 (en) 2011-07-29 2013-01-31 Stec, Inc. Multi-rate ldpc decoding
US20130051556A1 (en) 2011-08-22 2013-02-28 Samsung Electronics Co., Ltd. System for encrypting data with an error correction code
CN102437858A (en) 2011-08-31 2012-05-02 北京理工大学 Method for improving structure of convolution code encoder
US20130086445A1 (en) 2011-09-30 2013-04-04 Jonathan Yedidia Quasi-Cyclic Low-Density Parity-Check Codes
CN102340378A (en) 2011-10-23 2012-02-01 许继集团有限公司 Fiber Channel CRC check method for longitudinal protection
US20130117344A1 (en) 2011-11-08 2013-05-09 Warren GROSS Methods and Systems for Decoding Polar Codes
US20140365842A1 (en) 2012-01-20 2014-12-11 Huawei Technologies Co., Ltd. Decoding method and decoding device for polar code cascaded with cyclic redundancy check
CN102571105A (en) 2012-02-24 2012-07-11 西安电子科技大学 Coding method of code-rate-variable low-density parity-check codes (LDPCs) of which performance approximates to channel capacity
US20130272378A1 (en) 2012-04-16 2013-10-17 Qualcomm Incorporated Coefficient groups and coefficient coding for coefficient scans
US20140003533A1 (en) 2012-06-28 2014-01-02 Research In Motion Limited Reduced worst-case context-coded bins in video compression with parity hiding
US20140019820A1 (en) 2012-07-11 2014-01-16 The Regents Of The University Of California Ecc polar coding and list decoding methods and codecs
US20140040214A1 (en) 2012-07-31 2014-02-06 Empire Technology Development Llc Entropy Coding and Decoding Using Polar Codes
US20140068375A1 (en) 2012-08-28 2014-03-06 Hughes Network Systems, Llc System and method for communicating with low density parity check codes
US20140101116A1 (en) 2012-10-08 2014-04-10 Cleversafe, Inc. Robust transmission of data utilizing encoded data slices
EP2899912A1 (en) 2012-10-17 2015-07-29 Huawei Technologies Co., Ltd. Encoding method, decoding method, encoding device, decoding device, encoding system, and decoding system
CN103780329A (en) 2012-10-17 2014-05-07 华为技术有限公司 Method, device and system for encoding and decoding
US20150249473A1 (en) 2012-11-16 2015-09-03 Huawei Technologies Co.,Ltd. Method and apparatus for processing data
US20160043745A1 (en) 2012-12-03 2016-02-11 Digital PowerRadio, LLC Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems
US9667381B2 (en) 2012-12-14 2017-05-30 Samsung Electronics Co., Ltd. Packet decoding method and apparatus
US20140169388A1 (en) 2012-12-14 2014-06-19 Sungkyunkwan University Research & Business Foundation Packet decoding method and apparatus
US20140173376A1 (en) 2012-12-14 2014-06-19 Sungkyunkwan University Research & Business Foundation Encoding method and apparatus using crc code and polar code
US20140201592A1 (en) 2013-01-16 2014-07-17 Broadcom Corporation Very short size LDPC coding for physical and/or control channel signaling
US9362956B2 (en) 2013-01-23 2016-06-07 Samsung Electronics Co., Ltd. Method and system for encoding and decoding data using concatenated polar codes
US20150293716A1 (en) 2013-01-24 2015-10-15 Texas A&M University System Joint rewriting and error correction in write-once memories
CN103152056A (en) 2013-01-30 2013-06-12 北京大学 Quasi-cyclic low density parity check code (LDPC) construction method and device based on protographs
WO2014117836A1 (en) 2013-01-31 2014-08-07 Intracom S.A. Telecom Solutions Ldpc code design and encoding apparatus enabling the adjustment of code rate and codelength
US20140223254A1 (en) 2013-02-01 2014-08-07 Samsung Electronics Co., Ltd. Qc-ldpc convolutional codes enabling low power trellis-based decoders
WO2014127140A1 (en) 2013-02-13 2014-08-21 Qualcomm Incorporated Design for lifted ldpc codes having high parallelism, low error floor, and simple encoding principle
JP2016507200A (en) 2013-02-13 2016-03-07 クゥアルコム・インコーポレイテッドQualcomm Incorporated Design for lifted LDPC codes with high parallelism, low error floor, and simple coding principles
WO2014127129A1 (en) 2013-02-13 2014-08-21 Qualcomm Incorporated Ldpc design using quasi-cyclic constructions and puncturing for high rate, high parallelism, and low error floor
KR20150118992A (en) 2013-02-13 2015-10-23 퀄컴 인코포레이티드 LDPC design using quasi-cyclic structures and puncturing for high rate, high parallelism, and low error floor
US20140229789A1 (en) 2013-02-13 2014-08-14 Qualcomm Incorporated Ldpc design for high parallelism, low error floor, and simple encoding
US20140229788A1 (en) 2013-02-13 2014-08-14 Qualcomm Incorporated Ldpc design for high rate, high parallelism, and low error floor
CN104981978A (en) 2013-02-13 2015-10-14 高通股份有限公司 LDPC design using quasi-cyclic constructions and puncturing for high rate, high parallelism, and low error floor
US20150381208A1 (en) 2013-03-07 2015-12-31 Huawei Technologies Co., Ltd. Polar code decoding method and decoder
JP2016518035A (en) 2013-03-28 2016-06-20 シャープ株式会社 System and method for demodulation reference signal selection
CN103281166A (en) 2013-05-15 2013-09-04 北京邮电大学 Hybrid automatic repeat request transmission method based on polarization code
US20140365845A1 (en) 2013-06-06 2014-12-11 Broadcom Corporation Combining CRC and FEC on a variable number of NCPs
US20140365844A1 (en) 2013-06-10 2014-12-11 Broadcom Corporation Cyclic redundancy check (CRC) and forward error correction (FEC) for ranging within communication systems
CN105284053A (en) 2013-06-14 2016-01-27 三星电子株式会社 Method and apparatus for encoding and decoding low-density parity-check codes
US20170230149A1 (en) 2013-07-11 2017-08-10 InterDigital Pantent Holdings, Inc. Systems and methods for smart harq for wifi
US20160197701A1 (en) * 2013-07-22 2016-07-07 Samsng Electronics Co., Ltd. Apparatus and Method for Receiving Signal in Communication System Supporting Low Density Parity Check Code
US9774893B2 (en) * 2013-08-01 2017-09-26 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US10051333B2 (en) * 2013-08-01 2018-08-14 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
KR20150034561A (en) 2013-09-26 2015-04-03 삼성전자주식회사 transmitting apparatus, receving apparatus and signal processing method thereof
JP2016539534A (en) 2013-10-09 2016-12-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated Data transmission method using unequal code block size
US10075266B2 (en) 2013-10-09 2018-09-11 Qualcomm Incorporated Data transmission scheme with unequal code block sizes
WO2015054268A1 (en) 2013-10-09 2015-04-16 Qualcomm Incorporated Data transmission scheme with unequal code block sizes
CN103746708A (en) 2013-10-25 2014-04-23 中国农业大学 Method for constructing Polar-LDPC concatenated codes
US20150120798A1 (en) 2013-10-28 2015-04-30 Yo Won Jeong Data encoding with sign data hiding
US20160013931A1 (en) 2013-12-12 2016-01-14 Samsung Electronics Co., Ltd. Method and apparatus of joint security advanced ldpc cryptcoding
US20150188666A1 (en) 2013-12-17 2015-07-02 Samsung Electronics Co., Ltd. Computing system with polar processing mechanism and method of operation thereof
US20150178149A1 (en) 2013-12-20 2015-06-25 Lsi Corporation Method to distribute user data and error correction data over different page types by leveraging error rate variations
CN103716130A (en) 2014-01-09 2014-04-09 苏州英菲泰尔电子科技有限公司 Physical layer self-adaption processing method for improving network transmission reliability
US20160012465A1 (en) 2014-02-08 2016-01-14 Jeffrey A. Sharp System and method for distributing, receiving, and using funds or credits and apparatus thereof
US20150229337A1 (en) 2014-02-11 2015-08-13 Lsi Corporation Mitigation of write errors in multi-level cell flash memory through adaptive error correction code decoding
US9325347B1 (en) * 2014-02-21 2016-04-26 Microsemi Storage Solutions (U.S.), Inc. Forward error correction decoder and method therefor
WO2015139297A1 (en) 2014-03-21 2015-09-24 华为技术有限公司 Polar code rate-matching method and rate-matching device
CN103905152A (en) 2014-03-21 2014-07-02 华南理工大学 Method for stochastically optimizing effective throughput adopting cross-layer joint encoding in erasure channel
US20150334700A1 (en) 2014-05-19 2015-11-19 Mediatek Inc. Handheld device, base station and transmission control method thereof
CN105306165A (en) 2014-06-23 2016-02-03 中兴通讯股份有限公司 Data transmission method and device
US20160013810A1 (en) 2014-07-10 2016-01-14 The Royal Institution For The Advancement Of Learning / Mcgill University Flexible polar encoders and decoders
US20160020783A1 (en) * 2014-07-17 2016-01-21 Lsi Corporation Low Density Parity Check Decoder With Relative Indexing
US20160087648A1 (en) 2014-09-18 2016-03-24 Broadcom Corporation Puncture-aware low density parity check (LDPC) decoding
US20170222663A1 (en) 2014-09-30 2017-08-03 Micron Technology, Inc. Progressive effort decoder architecture
US9692451B2 (en) 2014-09-30 2017-06-27 Avago Technologies General Ip (Singapore) Pte. Ltd Non-binary low density parity check (NB-LDPC) codes for communication systems
US20160164629A1 (en) 2014-12-05 2016-06-09 Lg Electronics Inc. Method and device for providing secure transmission based on polar code
US20160164537A1 (en) 2014-12-08 2016-06-09 Samsung Electronics Co., Ltd. Method and apparatus for parallel concatenated ldpc convolutional codes enabling power-efficient decoders
US20160173132A1 (en) 2014-12-10 2016-06-16 Alcatel-Lucent Usa Inc. Construction of Structured LDPC Convolutional Codes
US20160183187A1 (en) 2014-12-22 2016-06-23 Intel Corporation Adjacent channel interference mitigation for low-power wake-up radio
US20180007712A1 (en) 2015-01-09 2018-01-04 Interdigital Patent Holdings, Inc. Methods, apparatuses and systems for supporting multi-user transmissions in a wireless local area network (wlan) system
EP3046259A1 (en) 2015-01-16 2016-07-20 Alcatel Lucent Apparatuses and methods for ldpc convolutional encoding and decoding
US20160218750A1 (en) 2015-01-23 2016-07-28 Empire Technology Development Llc Parity check code encoder
US9602133B1 (en) * 2015-01-27 2017-03-21 Microsemi Storage Solutions (U.S.), Inc. System and method for boost floor mitigation
KR101598754B1 (en) 2015-03-16 2016-03-02 세종대학교산학협력단 LDPC decoder and apparatus for de-puncturing of puncturing date thereof
US9479375B1 (en) 2015-04-02 2016-10-25 University Of South Florida Joint physical layer security and PAPR mitigation in OFDM systems
US20160309482A1 (en) 2015-04-15 2016-10-20 Qualcomm Incorporated Interference-aware group owner, bandwidth, and channel selection in peer-to-peer wireless communication systems
US20160337083A1 (en) 2015-05-15 2016-11-17 Freescale Semiconductor, Inc. Method of Offloading Cyclic Redundancy Check on Portions of a Packet
US9742439B1 (en) * 2015-06-08 2017-08-22 Microsemi Solutions (U.S.), Inc. Method and device for forward error correction decoder system utilizing orthogonality of an H matrix
US20160380763A1 (en) 2015-06-24 2016-12-29 Lg Electronics Inc. Security communication using polar code scheme
US20170031599A1 (en) 2015-07-27 2017-02-02 Sas Institute Inc. Distributed data set storage and retrieval
US20170047947A1 (en) 2015-08-12 2017-02-16 Telefonaktiebolaget L M Ericsson (Publ) Rate-compatible polar codes
US20170063493A1 (en) 2015-08-25 2017-03-02 Signalchip Innovations Private Limited Methods and circuits for performing cyclic redundancy check (crc) of an input data stream
US20170075754A1 (en) 2015-09-10 2017-03-16 Cavium, Inc. Apparatus and method for parallel crc units for variably-sized data frames
US10177787B1 (en) 2015-09-17 2019-01-08 Seagate Technology Llc Mitigation of error correction failure due to trapping sets
CN105227189A (en) 2015-09-24 2016-01-06 电子科技大学 The polarization code coding and decoding method that segmentation CRC is auxiliary
US20190068318A1 (en) 2015-09-24 2019-02-28 Idac Holdings, Inc. Methods for enhanced multiplexing in wireless systems
CN105337696A (en) 2015-10-08 2016-02-17 东南大学 Polarization decoding method based on subsection CRC
KR20170053589A (en) 2015-11-06 2017-05-16 삼성전자주식회사 Channel coding framework for 802.11ay and larger block-length ldpc codes for 11ay with two-step lifting matrices and in-place property
US10784901B2 (en) 2015-11-12 2020-09-22 Qualcomm Incorporated Puncturing for structured low density parity check (LDPC) codes
US20170141798A1 (en) 2015-11-12 2017-05-18 Qualcomm Incorporated Puncturing for structured low density parity check (ldpc) codes
US20200412387A1 (en) 2015-11-12 2020-12-31 Qualcomm Incorporated Puncturing for structured low density parity check (ldpc) codes
WO2017091244A1 (en) 2015-11-23 2017-06-01 Intel IP Corporation Hybrid arq schemes based on low density parity check codes
WO2017092693A1 (en) 2015-12-01 2017-06-08 Huawei Technologies Co., Ltd. Signature-enabled polar encoder and decoder
US20170187489A1 (en) 2015-12-23 2017-06-29 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding channel in communication or broadcasting system
US20170331494A1 (en) 2016-05-11 2017-11-16 Qualcomm Incorporated Methods and apparatus for efficiently generating multiple lifted low-density parity-check (ldpc) codes
US20190356337A1 (en) 2016-05-12 2019-11-21 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (ldpc) code structure
US10454499B2 (en) 2016-05-12 2019-10-22 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (LDPC) code structure
RU2718171C1 (en) 2016-05-12 2020-03-30 Квэлкомм Инкорпорейтед Improved puncturing and code structure with low density of parity checks (ldpc)
US11025276B2 (en) 2016-05-12 2021-06-01 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (LDPC) code structure
EP3264611A1 (en) 2016-05-12 2018-01-03 MediaTek Inc. Qc-ldpc coding methods and apparatus
WO2017197267A1 (en) 2016-05-12 2017-11-16 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (ldpc) code structure
US20170331497A1 (en) 2016-05-12 2017-11-16 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (ldpc) code structure
US20190280817A1 (en) 2016-06-01 2019-09-12 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of crc bits
US9917675B2 (en) 2016-06-01 2018-03-13 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of CRC bits
US20200322085A1 (en) 2016-06-01 2020-10-08 Qualcomm Incorporated Generalized polar code construction
US10644836B2 (en) 2016-06-01 2020-05-05 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of CRC bits
US20170353269A1 (en) 2016-06-01 2017-12-07 Qualcomm Incorporated Encoding and decoding of control signaling with sectional redundancy check
US20180205498A1 (en) 2016-06-01 2018-07-19 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of crc bits
US20170353267A1 (en) 2016-06-01 2017-12-07 Qualcomm Incorporated Generalized polar code construction
WO2017209837A1 (en) 2016-06-01 2017-12-07 Qualcomm Incorporated Generalized polar code construction
US20170353271A1 (en) 2016-06-01 2017-12-07 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of crc bits
US20190260507A1 (en) 2016-06-01 2019-08-22 Qualcomm Incorporated Error detection in wireless communications using sectional redundancy check information
US10348451B2 (en) 2016-06-01 2019-07-09 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of CRC bits
US10313057B2 (en) 2016-06-01 2019-06-04 Qualcomm Incorporated Error detection in wireless communications using sectional redundancy check information
US20220224356A1 (en) 2016-06-14 2022-07-14 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (ldpc) codes
US10469104B2 (en) 2016-06-14 2019-11-05 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (LDPC) codes
US20210058192A1 (en) 2016-06-14 2021-02-25 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (ldpc) code
US20200052817A1 (en) 2016-06-14 2020-02-13 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (ldpc) codes
US20230275599A1 (en) 2016-06-14 2023-08-31 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (ldpc) code
US11032026B2 (en) 2016-06-14 2021-06-08 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (LDPC) code
US20170359148A1 (en) 2016-06-14 2017-12-14 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (ldpc) code
US10291354B2 (en) 2016-06-14 2019-05-14 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (LDPC) code
US20190245654A1 (en) 2016-06-14 2019-08-08 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (ldpc) code
US20230327683A1 (en) 2016-06-14 2023-10-12 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (ldpc) codes
US11031953B2 (en) 2016-06-14 2021-06-08 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (LDPC) code
US20190199475A1 (en) 2016-06-14 2019-06-27 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (ldpc) code
US20170359086A1 (en) 2016-06-14 2017-12-14 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (ldpc) codes
US20180034593A1 (en) 2016-07-27 2018-02-01 Qualcomm Incorporated Design of hybrid automatic repeat request (harq) feedback bits for polar codes
US20210281359A1 (en) 2016-07-27 2021-09-09 Qualcomm Incorporated Design of hybrid automatic repeat request (harq) feedback bits for polar codes
US10291359B2 (en) 2016-07-27 2019-05-14 Qualcomm Incorporated Of hybrid automatic repeat request (HARQ) feedback bits for polar codes
WO2018030927A1 (en) 2016-08-11 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Selection of an error correcting code based on a target information length and a target parity length
WO2018029633A1 (en) 2016-08-12 2018-02-15 Telefonaktiebolaget L M Ericsson (Publ) Rate matching methods for ldpc codes
CN107733442A (en) 2016-08-12 2018-02-23 中兴通讯股份有限公司 The processing method and processing device of structured LDPC code
CN106341138A (en) 2016-09-05 2017-01-18 厦门大学 Combined source channel coding matrix construction method based on photograph LDPC codes
WO2018050062A1 (en) 2016-09-15 2018-03-22 Huawei Technologies Co., Ltd. Method and apparatus for encoding data using a polar code
US20200028523A1 (en) 2016-09-30 2020-01-23 Zte Corporation Quasi-cyclic ldpc coding and decoding method and apparatus, and ldpc coder and decoder
US20180152205A1 (en) 2016-11-25 2018-05-31 Lg Electronics Inc. Method of performing interleaving using ldpc and communication apparatus therefor
US20200235854A1 (en) 2016-12-15 2020-07-23 Qualcomm Incorporated Crc bits for joint decoding and verification of control information using polar codes
WO2018128560A1 (en) 2017-01-09 2018-07-12 Huawei Technologies Co., Ltd Efficiently decodable qc-ldpc code
WO2018144560A1 (en) 2017-02-03 2018-08-09 Idac Holdings, Inc. Code block segmentation depending on ldpc base matrix selection
US20200235759A1 (en) 2017-02-03 2020-07-23 Idac Holdings, Inc. Method and apparatus for low-density parity-check (ldpc) coding
US20180226992A1 (en) * 2017-02-03 2018-08-09 Huawei Technologies Co., Ltd. Offset Lifting Method
US10560118B2 (en) 2017-02-06 2020-02-11 Qualcomm Incorporated Multiple low density parity check (LDPC) base graph design
US11277151B2 (en) 2017-02-06 2022-03-15 Qualcomm Incorporated Multiple low density parity check (LDPC) base graph design
US10340949B2 (en) 2017-02-06 2019-07-02 Qualcomm Incorporated Multiple low density parity check (LDPC) base graph design
WO2018144251A1 (en) 2017-02-06 2018-08-09 Qualcomm Incorporated Multiple low density parity check (ldpc) base graph design
US20190394000A1 (en) 2017-03-19 2019-12-26 Lg Electronics Inc. Method and apparatus for transmitting uplink transport block in wireless communication system
US10735138B2 (en) 2017-05-02 2020-08-04 Futurewei Technologies, Inc. Multi-label offset lifting method
US20200067641A1 (en) 2017-05-04 2020-02-27 Huawei Technologies Co., Ltd. Data transmission method, base station, and terminal device
US20200162109A1 (en) 2017-05-05 2020-05-21 China Academy Of Telecommunications Technology Method and device of selecting base graph of low-density parity-check code
US10659079B2 (en) 2017-05-05 2020-05-19 Mediatek Inc. QC-LDPC codes
US20200044665A1 (en) 2017-05-05 2020-02-06 Huawei Technologies Co.,Ltd. Apparatus and method for channel coding in communication system
EP3622627A1 (en) 2017-05-12 2020-03-18 Qualcomm Incorporated Constructing parity check matrices with row-orthogonality for rate compatible qc-ldpc codes
US10312939B2 (en) 2017-06-10 2019-06-04 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code
US20180358984A1 (en) 2017-06-10 2018-12-13 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in lpdc code
CN109150191A (en) 2017-06-15 2019-01-04 华为技术有限公司 Information processing method, apparatus and communication device
US20180367253A1 (en) 2017-06-16 2018-12-20 At&T Intellectual Property I, L.P. Facilitating notifications to indicate failed code block groups in 5g or other next generation networks
US20180367245A1 (en) 2017-06-19 2018-12-20 Qualcomm Incorporated COMMUNICATION TECHNIQUES WITH SELF-DECODABLE REDUNDANCY VERSIONS (RVs) USING SYSTEMATIC CODES
US20200059317A1 (en) 2017-07-07 2020-02-20 Qualcomm Incorporated Communication techniques applying low-density parity-check code base graph selection
US10355822B2 (en) 2017-07-07 2019-07-16 Qualcomm Incorporated Communication techniques applying low-density parity-check code base graph selection
US20190013900A1 (en) 2017-07-07 2019-01-10 Qualcomm Incorporated Communication techniques applying low-density parity-check code base graph selection
US20190052400A1 (en) 2017-08-11 2019-02-14 Qualcomm Incorporated Self-decodable redundancy versions for low-density parity-check codes
US20200404069A1 (en) 2019-09-11 2020-12-24 Intel Corporation Framework for computing in radio access network (ran)

Non-Patent Citations (157)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Multiplexing and Channel Coding (Release 15)", 3GPP TS 38.212 V15.3.0 (Sep. 2018), pp. 1-95.
"IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Broadband Wireless Access Systems; IEEE Std 802.16/2009 (Revision of IEEE Std 80216-2004)", May 29, 2009, XP068045637, ISBN: 978-0-7381-5919-5, pp. 1-2080.
<span style:"font-family: calibri,">Guo J., et al., "Multi-CRC Polar Codes and Their Applications", IEEE Communications Letters,< span style:="font-family: calibri;">Feb. 22, 2016, vol. 20, No. 2, pp, 212-215.
3GPP, "Technical Specification Group Radio Access Network, Study on New Radio Access Technology", 3GPP TR 38.912 V14.0.0., Release 14, 650 Route Des Lucioles, Sophia-Antipolis, Valbonne, France; https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3059. (Mar. 2017).
Abbasfar A., et al., "Accumulate Repeat Accumulate Codes", Dec. 2, 2003, XP002585965, Retrieved from the Internet: URL: http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8047/1/03-3469.pdf [retrieved on Jun. 4, 2010], 6 pages.
Alcatel-Lucent et al., "LDPC Coding Proposal for LBC", 3GPP2 Draft; C30-20070226-002_C30-20070212-034R1_AHLQRZ_LDPC_PROPOSAL_FOR_LBC, Mar. 27, 2007, XP062206073, Retrieved from the Internet: URL:http://ftp.3gpp2.org/TSGC/Working/2007/2007-03-Atlanta/TSG-C-2007-03-At1anta/WG3/LDPC Ad Hoc Call,Feb. 26, 2007/ pp. 1-27.
Alcatel-Lucent et al., "LDPC Coding Proposal for LBC", 3GPP2 Draft; C30-20070226-002_C30-20070212-034R1_AHLQRZ_LDPC_PROPOSAL_FOR_LBC, Mar. 27, 2007, XP062206073, Retrieved from the Internet: URL:http://ftp.3gpp2.org/TSGC/Working/2007/2007-03-Atlanta/TSG-C-2007-03-Atlanta/WG3/LDPC Ad Hoc Call,2007.02.26/ pp. 1-27.
Alcatel-Lucent et al., "LDPC Coding Proposal for LBC", 3GPP2-Drafts, 2500 Wilson Boulevard, Suite 300, Arlington, Virginia 22201, USA, Mar. 15, 2007 (Mar. 15, 2007), XP040477608, 32 Pages, page 1-p. 13, pp. 10-12.
Alcatel-Lucent et al., "LDPC Coding Proposal for LBC", 3GPP2-Drafts, 2500 Wilson Boulevard, Suite 300, Arlington, Virginia 22201, USA, Mar. 15, 2007, XP040477608, 32 pages.
Arikan E., "A Survey of Reed-Muller Codes From Polar Coding Perspective", Information Theory Workshop (ITW), Piscataway, NJ, USA, Jan. 6, 2010, pp. 1-5, XP031703947, ISBN: 978-1-4244-6372-5.
Arikan E., "Channel Polarization: a Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," IEEE Transactions on Information Theory, vol. 55 (7), 2009, pp. 3051-3073, XP080428257.
Arikan E., "Channel Polarization: a Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels", IEEE Transactions on Information Theory, IEEE Press, USA, vol. 55, No. 7, Jul. 1, 2009 (Jul. 1, 2009), pp. 3051-3073, XP080428257, ISSN: 0018-9448.
Arikan E.. "Challenges and some new directions in channel coding," Computer Science, Information Theory, arXiv:1504.03916, Apr. 15, 2015, 11 pages.
Bing L., et al., "Unequal Error Protection Nonbinary LDPC Codes for Bandwidth Efficient Transmission", Signal processing, vol. 27, No. 7, Jul. 7, 2011, 7 Pages.
Chapter II Demand and Amendment under PCT Article 34 dated Jan. 18, 2018, PCT/US2017/035026.
Chen B., et al., "List Viterbi Algorithms for Continuous Transmission", IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ, USA, vol. 49, No. 5, XP011009921, May 1, 2001 (May 1, 2001), pp. 784-792, ISSN: 0990-6778.
Chen B., et al., "List Viterbi Algorithms for Continuous Transmission", IEEE Transactions on Communications, vol. 49 No. 5, XP011009921, May 1, 2001, pp. 784-792.
Chen T.Y., et al., "Protograph-based Raptor-Like LDPC Codes with Low Thresholds", IEEE International Conference on Communications, Jun. 10, 2012, DOI: 10.1109/ICC.2012.6363996, ISBN: 978-1-4577-2052-9, pp. 2161-2165.
Chiu M.C., et al., "Reduced-Complexity SCL Decoding of Multi-CRC-Aided Polar Codes", Sep. 28, 2016, XP055384603, pp. 1-9, Retrieved from the Internet: URL:https://arxiv.org/pdf/1609.08813.pdf [retrieved on Jun. 23, 2017].
Communication pursuant to Article 94(3) EPC, dated by the European Patent Office dated Oct. 12, 2021 for EPO Application No. 18735108.5, 6 Pages.
Communication pursuant to Rule 164(2)(b) and Article 94(3) EPC, dated by the European Patent Office dated Oct. 15, 2021 for EPO Application No. 17729655.5, 15 Pages.
Decision of Rejection issued in corresponding Japanese Patent Application No. 2019-567304, dated Dec. 21, 2020 (9 pages).
Deng X., et al., "Segmented Cyclic Redundancy Check: A Data Protection Scheme for Fast Reading RFID Tag's Memory," IEEE Wireless Communications and Networking Conference, 2008, pp. 1576-1581.
El-Khamy M., et al., "Binary Polar Codes are Optimized Codes for Bitwise Multistage Decoding", Computer Science, Information Theory, Arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, Apr. 12, 2016, XP080695103, DOI: 10.1049/EL.2016.0837, 2 pages.
El-Khamy M., et al., "Binary Polar Codes are Optimized Codes for Bitwise Multistage Decoding", Computer Science, Information Theory.Arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, Apr. 12. 2016, XP080695103, DOI: 10.1049/E1.2016.0837, 2 pages.
El-Khamy M., et al., "Design of Rate Compatible Structured LDPC Codes for Hybrid ARQ Applications", IEEE, Aug. 1, 2009, vol. 27(6), pp. 965-973.
EP Response Dated Nov. 7, 2023 to the Official Communication EP Application No. 18735108.5, 17 Pages.
EPO Communication Under Rule 71(3) EPC for Application No. 18735108.5, mailing date of Jan. 4, 2024.
Ericsson: "CRC Attachment Point for MAC-is When Transmitting MAC-c PDU", R2-086458, 3GPP TSG-RAN WG2 Meeting #64 , Prague, Czech Republic, Nov. 10-Nov. 14, 2008, Nov. 3, 2008, 2 Pages.
Ericsson: "Design Parameters and Implementation Aspects of LPDC Codes," 3GPP Draft, 3GPP TSG-RAN WG1 #88, R1-1703537 Design Parameters and Implementation Aspects of LDPC Codes, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis, vol. RAN WG1, No. Athens, Greece; Feb. 13, 2017-Feb. 17, 2017, Feb. 15, 2017, XP051222070, 10 pages, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88/Docs/.
Ericsson: "Design Parameters and Implementation Aspects of LPDC Codes," 3GPP Draft; R1-1703537 Design Parameters and Implementation Aspects of LDPC Codes, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis, vol. RAN WG1, No. Athens, Greece; Feb. 13, 2017-Feb. 17, 2017, Feb. 15, 2017, XP051222070, 10 pages, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88/Docs/ [retrieved on Feb. 15, 2017].
Ericsson: "Implementation and Performance of LDPC Decoder", 3GPP TSG RAN WG1 AH_NR Meeting R1-1700111, Jan. 20, 2017, 8 Pages.
Ericsson: "LDPC Code Performance for High Reliability Use Cases", 3GPP Draft, 3GPP TSG RAN WG1 NR Ad-Hoc#2, R1-1710499 LDPC Code Performance for High Reliability Use Cases, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis CE, vol. RAN WG1, No. Qingdao, P.R. China, Jun. 27, 2017-Jun. 30, 2017, Jun. 26, 2017 (Jun. 26, 2017), XP051299707, pp. 1-6, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/.
Ericsson: "Performance and Complexity of Per-Segment CRC Attachment Methods" 3GPP Draft; R1-073741, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921, Sophia-Antipolis Cedex, France, vol. RAN WG1, No. Athens, Greece; Aug. 15, 2007, XP050107330, 3 pages.
Ericsson: "Performance and Complexity of Per-Segment CRC Attachment Methods", 3GPP TSG-RAN WG1#50, 3GPP Draft, R1-073741, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921, Sophia-Antipolis Cedex, France, vol. RAN WG1, No. Athens, Greece; Aug. 15, 2007 (Aug. 15, 2007), XP050107330, 3 Pages.
Ericsson: "System Information for Low Complexity and Extended Coverage", 3GPP Draft; R1-1708730—Sysinfo for Low Complexity and Ext Coverage, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Hangzhou, China; May 15, 2017-May 19, 2017 May 7, 2017, XP051263297, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/ [retrieved on May 7, 2017], 3 pages.
Ericsson: "System Information for Low Complexity and Extended Coverage", 3GPP Draft; R1-1708730—Sysinfo for Low Complexity and Ext Coverage, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Hangzhou, China; May 15, 2017-May 19, 2017 May 7, 2017, XP051263297, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/.
Examination report under sections 12 & 13 of the Patents Act, 1970 and the Patents Rules, 2003, dated by Intellectual Property India dated Nov. 8, 2021 for Application No. 2018/47039985, 6 pages.
Guo J., et al., "Multi-CRC Polar Codes and Their Applications", IEEE Communications Letters, IEEE Service Center, Piscataway, NJ, US, vol. 20, No. 2, Feb. 1, 2016 (Feb. 1, 2016), XP011598246, pp. 212-215, ISSN: 1089-7798, DOI:10.1109/LCOMM.2015.2508022, [retrieved on Feb. 8, 2016], Abstract, Sections II, III, IV.
Hashemi S.A., et al., "Partitioned Successive-Cancellation List Decoding of Polar Codes", 2016 IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP), Mar. 20, 2016, pp. 957-960, https://ieeexplore.eee.org/stamp/stamp.jsp?tp=&arnumber=7471817, XP032900743, DOI: 10.1109/ICASSP.2016.7471817, [retrieved on May 18, 2016].
Hashemi S.A., et al., "Partitioned Successive-Cancellation List Decoding of Polar Codes", 2016 IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP), Mar. 20, 2016, pp. 957-960, XP032900743, DOI: 10.1109/ICASSP.2016.7471817, [retrieved on May 18, 2016].
Huawei et al., "Details of the Polar Code Design", 3GPP TSG RAN WG1 Meeting #87, R1-1611254, Reno, USA, 3rd Generation, Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Reno, USA; Nov. 10, 2016-Nov. 14, 2016, Nov. 13, 2016 (Nov. 13, 2016), XP051175235, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs Nov. 10-14, 2016, 15 pages.
IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Broadband Wireless Access Systems; IEEE Std 802.16-2009 (Revision of IEEE Std 802.16-2004), IEEE Standard, IEEE, Piscataway, NJ, USA, May 29, 2009, XP068045637, ISBN: 978-0-7381-5919-5, pp. 1-2080, p. 1057-p. 1061.
IEEE Std 802.16e-2005, "Air Interface For Fixed and Mobile Broadband Wireless Access Systems", Amendment 2 and Corrigendum 1 to IEEE Std 802.16-2004, IEEE, Feb. 28, 2006, pp. 626-630, ( https://www.worldcat.org/title/ieee-standardfor-local-and-metropolitan-area-networks-part-16-air-interface-for-fixed-and-mobilebroadband-wireless-access-systems-amendment-2-physical-and-medium-accesscontrol-layers-for-combined-fixed-and-mobile-operation-in-licensed-bands-andcorrigendum-1/oclc/6455369). XP002515198.
IEEE: "IEEEStd 802.16e-2005, Air Interface for Fixed and Mobile Broadband Wireless Access Systems," Amendment 2 and Corrigendum 1 to IEEE Std 802.16/2004, IEEE STD 802.16E-2005, Feb. 28, 2006 (Feb. 28, 2006), pp. 626-630, XP002515198.
Intel Corporation: "LDPC Code Design for NR", 3GPP TSG RAN WG1 Meeting #85, 3GPP Draft; R1-164183, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. Ran WG1, No. Nanjing, China; May 23, 2016-May 27, 2016, May 14, 2016 (May 14, 2016), 4 Pages, XP051090075, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/ [retrieved on May 14, 2016] p. 1-p. 3.
Intel Corporation: "LDPC Coding Chain" [online], 3GPP Draft, 3GPP TSG RAN WG1 Meeting NR-Adhoc#2, R1-1711344, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. Ran WG1, No. Qingdao, P.R. China, Jun. 27, 2017-Jun. 30, 2017, Jun. 20, 2017 (Jun. 20, 2017), XP051305812, pp. 1-6, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1706/Docs/.
Interdigital Inc: "Code Block Segmentation for Data Channel", 3GPP Draft; R1-1710958, Code Block Segmentation for Data Channel, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650 Route Des Lucioles; F-06921, Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Qingdao; Jun. 27, 2017-Jun. 30, 2017, Jun. 26, 2017 (Jun. 26, 2017), XP051300159, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/, [retrieved on Jun. 26, 2017].
Interdigital Inc: "Code Block Segmentation for Data Channel", 3GPP Draft; R1-1710958, Code Block Segmentation for Data Channel, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650 Route Des Lucioles; F-06921, Sophia-Antipolis Cedex; France, vol. RAN WG1, no. Qingdao; Jun. 27, 2017-Jun. 30, 2017, Jun. 26, 2017 (Jun. 26, 2017), XP051300159, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/.
International Preliminary Report on Patentability, PCT/US2017/035026, dated Aug. 14, 2018.
International Preliminary Report on Patentability—PCT/CN2016/091914, The International Bureau of WIPO—Geneva, Switzerland, dated Feb. 7, 2019.
International Preliminary Report on Patentability—PCT/US2016/048178, The International Bureau of WIPO—Geneva, Switzerland, dated May 24, 2018.
International Preliminary Report on Patentability—PCT/US2017/025421, The International Bureau of WIPO—Geneva, Switzerland, dated May 18, 2018.
International Preliminary Report on Patentability—PCT/US2017/032156, The International Bureau of WIPO—Geneva, Switzerland, dated Jul. 24, 2018.
International Preliminary Report on Patentability—PCT/US2017/032413, The International Bureau of WIPO—Geneva, Switzerland, dated Aug. 24, 2018.
International Preliminary Report on Patentability—PCT/US2017/037465, The International Bureau of WIPO—Geneva, Switzerland, dated Sep. 25, 2018.
International Preliminary Report on Patentability—PCT/US2017/037468, The International Bureau of WIPO—Geneva, Switzerland, dated Sep. 10, 2018.
International Preliminary Report on Patentability—PCT/US2018/038229, The International Bureau of WIPO—Geneva, Switzerland, dated Jan. 2, 2020.
International Search Report and Writien Opinion, PCT/US2017/025421, dated Mar. 31, 2017, International Search Authority—European Patent Office, Nov. 7, 2017, pp. 1-33.
International Search Report and Written Opinion—PCT/CN2016/091914—ISA/EPO—dated Apr. 17, 2017.
International Search Report and Written Opinion—PCT/CN2017/077868—ISA/EPO—dated Jun. 2, 2017.
International Search Report and Written Opinion—PCT/US2016/048178—ISA/EPO—dated Nov. 3, 2016.
International Search Report and Written Opinion—PCT/US2017/025422—ISA/EPO—dated Oct. 10, 2017.
International Search Report and Written Opinion—PCT/US2017/032156—ISA/EPO—dated Aug. 14, 2017.
International Search Report and Written Opinion—PCT/US2017/032413—ISA/EPO—dated Aug. 30, 2017.
International Search Report and Written Opinion—PCT/US2017/035026—ISA/EPO—dated Nov. 6, 2017.
International Search Report and Written Opinion—PCT/US2017/037465—ISA/EPO—dated Sep. 27, 2017.
International Search Report and Written Opinion—PCT/US2017/037468—ISA/EPO—dated Sep. 22, 2017.
International Search Report and Written Opinion—PCT/US2018/036726—ISA/EPO—dated Sep. 7, 2018.
International Search Report and Written Opinion—PCT/US2018/038229—ISA/EPO—dated Nov. 29, 2018.
International Search Report and Written Opinion—PCT/US2018/040507—ISA/EPO—dated Oct. 15, 2018.
Jacobsen, N., et al., "Design of Rate-Compatible Irregular LDPC Codes Based on Edge Growth and Parity Splitting", 2007 IEEE 66th Vehicular Technology Conference, Oct. 15, 2007, pp. 1052-1056, DOI: 10.1109/ VETECF.2007.228.
Jiang M., et al., "An Improved Variable Length Coding Scheme Using Structured LDPC Codes", Wireless Communications and Signal Processing (WCSP), 2010 International Conference on, IEEE, Piscataway, NJ, USA, Oct. 21, 2010 (Oct. 21, 2010), XP031800170, pp. 1-5, ISBN: 978-1-4244-7556-8, p. 1, right-hand column—p. 4, left-hand column.
Jiang M., et al., "An improved Variable Length Coding Scheme Using Structured LPDC Codes", IEEE, Oct. 1, 2010, 5 Pages.
Jun Lin et al., "A reduced latency list decoding algorithm for polar codes", 2014 IEEE Workshop on Signal Processing Systems (SIPS), Oct. 1, 2014, p. 1-6.
Kalsi A., et al., "A Base Matrix Method to Construct Column Weight 3 Quasi-Cyclic LDPC Codes with High Girth", IEEE, 4 Pages, Sep. 8, 2016.
Keeth, J., (Nokia): 3GPP TSG-RAN WG1 Email (Subject: "[89-24] LDPC Code Base Graph # 1 for NR", Date: Tue, May 23, 2017 09:33:58 +0000), May 23, 2017, 1 Page, Retrieved from the Internet: URL: https://list.etsi.org/scripts/wa.exe?A2=ind1705D&L=3GPP_TSG_RAN_WG1&P=R18940&u=75177.
Keeth, J., (Nokia): 3GPP TSG-RAN WG1 Email (Subject: "Re: [89-24] LDPC Code Base Graph # 1 for NR", Date: Wed, Jun. 7, 2017 18:17:47 +0000), and The Attachment "Way forward on LDPC designs_clean.docx", Jun. 7, 2017, 58 Pages, Retrieved from the Internet: URL: https://list.etsi.org/scripts/wa.exe?A2=ind1706A&L=3GPP_TSG_RAN_WG1&P=R3822731.
Leroux C., et al., "A Semi-Parallel Successive-Cancellation Decoder for Polar Codes," IEEE Transactions on Signal Processing, Jan. 2013, vol. 61, No. 2, pp. 1-11.
Li, B., et al., "An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check", IEEE Communications Letters, IEEE Service Center, Piscataway, NJ, US, vol. 16, No. 12, Dec. 1, 2012 (Dec. 1, 2012), XP011478817, pp. 2044-2047, ISSN: 1089-7798, DOI:10.1109/LCOMM.2012.111612.121898, abstract, Section I, III and IV.
Liu J., et al., "Rate-Compatible LDPC Codes with Short Block Lengths Based on Puncturing and Extension Techniques," 2014, pp. 1-20.
Lucas R et al., "Improved Soft-Decision Decoding of Reed-Muller Codes as Generalized Multiple Concatenated Codes", ITG-FACHBERI, vol. 183, VDE-VERLAG, DE, No. 146, Mar. 5, 1998, pp. 137-142.
Ma, F., "Puncturing Schemes for Rate-Compatible LDPC Codes", Chinese Selected Doctoral Dissertations and Master's Theses Full-Text Databases (Master) Information Science and Technology, Oct. 15, 2012 (Dec. 2011), 60 Pages.
Mackay D.J.C., "Good Error-Correcting Codes Based on Very Sparse Matrices," IEEE Transactions on Information Theory, Mar. 1999, vol. 45 (2), pp. 399-431.
Mahdavifar H., et al., "Fast Multi-dimensionai Polar Encoding and Decoding," Information Theory and Applications Workshop (ITA), IEEE, 2014, 5 pages.
Mahdavifar H., et al., "Fast Multi-dimensional Polar Encoding and Decoding," Information Theory and Applications Workshop (ITA), IEEE, 2014, 5 pages.
Mahdavifar H., et al., "On the Construction and Decoding of Concatenated Polar Codes", IEEE International Symposium on Information Theory, Jul. 7, 2013, pp. 952-956, XP032497043, ISSN: 2157-8095, DOI: 10.1109/ISIT.2013.6620367 [retrieved on Oct. 3, 2013].
Mediatek Inc: "A Multi-Codebook Embedded Compact QC-LDPC Design" [online], 3GPP Draft, 3GPP TSG-RAN WG1 NR, Spokane, USA, Apr. 3-7, 2017, R1-1704457, pp. 1-11, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88b/Docs/R1-1704457.zip.
Mediatek Inc: "Multi-Codebook Embedded Compact QC-LDPC Designs", 3GPP TSG-RAN WG1 NR, R1-1706175, Apr. 4, 2017, XP051252463, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88b/Docs/, 14 pages.
Mediatek Inc: "Resolving Polar Code Memory Complexity Issue", 3GPP TSG RAN WG1 Meeting #86bis, R1-1610420, Lisbon, Portugal, Oct. 10, 2016-Oct. 14, 2016, 6 Pages, Oct. 18, 2016, Internet URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/R1-1610420.zip.
Myung S., et al., "Extension of Quasi-cyclic LDPC Codes by Lifting," Proc ., IEEE International Symposium on Information Theory, ISIT 2005, Adelaide, Australia, Sep. 4, 2005 (Sep. 4, 2005),-Sep. 9, 2005 (Sep. 9, 2005), pp. 2305-2309, XP010845965, ISBN: 978-0-7803-9151-2.
Myung S., et al., "Lifting Methods for Quasi-Cyclic LDPC Codes", IEEE Communications Letters, IEEE Service Center, Piscataway, NJ, US, (Jun. 1, 2006) Jun. 2006, vol. 10, No. 6, pp. 489-491, doi:10.1109/LCOMM.2006.1638625, ISSN 1089-7798.
Myung S., et al., "Lifting Methods for Quasi-Cyclic LDPC Codes", IEEE Communications Letters, Jun. 2006, vol. 10, No. 6, pp. 489-491.
Nguyen T.V., et al., "The Design of Rate-Compatible Protograph LDPC Codes", IEEE Transactions on Communications, Oct. 1, 2012, vol. 60, No. 10, XP011469171, ISSN: 0090-6778, DOI: 10.1109/TCOMM.2012.081012.110010, pp. 2841-2850.
Niu K., et al., "CRC-Aided Decoding of Polar Codes," IEEE Communications Letters, Oct. 2012, vol. 16, No. 10, pp. 1668-1671.
Nokia et al., "LDPC Design for eMBB", 3GPP Draft; R1-1705857_LDPC Design for EMBB, 3rd Generation Partnership Project (3 GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Spokane, WA, USA; Apr. 3, 2017-Apr. 7, 2017 Mar. 24, 2017, XP051250965, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88b/Docs/ [retrieved on Mar. 24, 2017], 8 pages.
Nokia, et al., "Alcatel-Lucent Shanghai Bell Performance and Complexity of Turbo, LDPC and Polar Codes", 3GPP TSG-RAN WG1 #84bis, R1-162897, Busan, Korea, Apr. 11-15, 2016, 6 Pages.
Nokia, et al., "LDPC Design for eMBB Data", 3GPP Draft, 3GPP TSG-RAN WG1#NR Ad-Hoc meeting, R1-1701028_LDPC Design for EMBB, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, no. Spokane, U.S.A., Jan. 16, 2017-Jan. 20, 2017, Jan. 16, 2017 (Jan. 16, 2017), 13 Pages, XP051208543, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/ [retrieved on Jan. 16, 2017], the whole document.
Nokia, et al., "R1-1701028_PCM_Large_Blocks," Jan. 9, 2017 (Jan. 9, 2017), pp. 1-1, XP055847852, Retrieved from the Internet: URL: https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1701/Docs/ [retrieved on Oct. 5, 2021].
Nokia, et al., "WF on Candidate LDPC Base Matrices" [online], 3GPP Draft, 3GPP TSG RAN WG1 Meeting #89, R1-1709751, Hangzhou, China, May 15-19, 2017, 34 Pages, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/R1-1709751.zip.
Nokia: "Rate Matching for LDPC" [online], 3GPP TSG RAN WG1 NR Ad-Hoc#2, R1-1711536, Jun. 19, 2017, 5 Pages, Internet URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1706/Docs/R1-1711536.zip. (In particular, refer to Section 2).
Nokia: "Structured LDPC Code Design," 11-04-1362-00-000n-structured-ldpc-code-design, IEEE Draft, 11-04-1362-00-000N-Structured-LDPC-Code-Design, IEEE 802.11-04/1362r0, IEEE-SA Mentor, Piscataway, NJ, USA, vol. 802.11n, Nov. 5, 2004 (Nov. 5, 2004), pp. 1-11, XP017690013, [retrieved on Nov. 5, 2004]. https://mentor.ieee.org/802.11/dcn/04/11-04-1362-00-000n-structured-ldpc-codedesign.doc).
Notice of Reasons for Rejection for Japan Patent Application No. 2021-070978 dated Apr. 25, 2022, 26 pages.
Notice of Reasons for Rejection for Japan Patent Application No. 2021-070978 dated Dec. 5, 2022, 10 pages.
Oh M., et al., "LDPC Coding for OFDMA PHY", IEEE C802.16e-04/487r3, IEEE Internet http://grouper.ieee.org/, Nov. 2004, (Nov. 9, 2004), pp. 0-9.
Partial International Search Report—PCT/US2017/025421—ISA/EPO—dated Jul. 10, 2017.
Partial International Search Report—PCT/US2018/038229—ISA/EPO—dated Oct. 11, 2018.
Qualcomm Incorporated: "LDPC Codes—HARQ, Rate", 3GPP Draft; R1-162209, LDPC_RATECOMPATIBILITY_HIGHLEVELDESIGN, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles; F06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Busan, Korea; Apr. 2, 2016, XP051080037, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84b/Docs/, 4 pages.
Qualcomm Incorporated: "LDPC Codes—HARQ, Rate", 3GPP TSG-RAN WG1 #84b, 3GPP Draft; R1-162209 LDPC_Ratecompatibility_Highleveldesign, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Busan, Korea; Apr. 11, 2016-Apr. 15, 2016, Apr. 2, 2016, 4 Pages, XP051080037, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84b/Docs/, pp. 2, 3.
Qualcomm Incorporated: "LDPC Design Overview", 3GPP TSG-RAN WG1#85, R1-164697, May 2016, pp. 1-5, May 23, 2016-May 27, 2016, URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_812/Docs/R1-164697.zip.
Qualcomm Incorporated: "LDPC Rate Compatible Design Overview", 3GPP Draft, 3GPP TSG-RAN WG1#86bis, R1-1610137_LDPC_RATE_COMPATIBLE_DESIGN, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921, Sophia-Antipolis Cedex, France, vol. RAN WG1. No. Lisbon, Portugal, Oct. 10, 2016-Oct. 14, 2016, Oct. 9, 2016, 27 Pages, XP051150160, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/ [retrieved on Oct. 9, 2016], p. 1-p. 9.
Qualcomm Incorporated: "LDPC Rate Compatible Design Overview", 3GPP Draft; R1-1610137, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles; F-06921; Sophia-Anti Polis Cedex. vol. Ran WG1. No. Lisbon, Portugal, Oct. 9, 2016, 27 pages, XP051150160, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/ [retrieved on Oct. 9, 2016].
Qualcomm Incorporated: "LDPC Rate Compatible Design" [online], 3GPP Draft, 3GPP TSG-RAN WG1 #89ah, R1-1711213, Qingdao, China, Jun. 27-30, 2017, pp. 1-11, Retrieved from the Internet URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1706/Docs/R1-1711213.zip.
Qualcomm Incorporated: "LDPC Rate Compatible Design" [online], 3GPP TSG-RAN WG1 #89, R1-1709181, May 13, 2017, pp. 1-11, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/R1-1709181.zip. (In particular, refer to Section 1).
Qualcomm Incorporated: "LDPC Rate Compatible Design", 3GPP Draft, 3GPP TSG-RAN WG1 Ad Hoc, R1-1700830_LDPC_Rate_Compatible_Design, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. RAN WG1, No. Spokane, USA, Jan. 16, 2017-Jan. 20, 2017, Jan. 16, 2017 (Jan. 16, 2017), 19 Pages, XP051208349, Jan. 10, 2017, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/ [retrieved on Jan. 16, 2017].
Qualcomm Incorporated: "LDPC Rate Matching", 3GPP Draft; R1-1708640_LDPC RATE_MATCHING, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Hangzhou, China; May 15, 2017-May 19, 2017 May 14, 2017, XP051273827, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/ [retrieved on May 14, 2017], 3 pages.
Qualcomm Incorporated: "LDPC Segmentation", 3GPP Draft; R1-1711211, 3GPP TSG-RAN WG1#89ah,LDPC Segmentation, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921, Sophia-Antipolis Cedex, France, vol. RAN WG1, No. Qingdao, China; Jun. 27, 2017-Jun. 30, 2017, Jun. 26, 2017 (Jun. 26, 2017), XP051300410, pp. 1-6, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/ [retrieved on Jun. 26, 2017], Sections 1, 3-4.
Qualcomm Incorporated: "LDPC Segmentation", 3GPP Draft; RI-1711211, LDPC Segmentation, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921, Sophia-Cedex, France, vol. RAN WG1, No. Qingdao, China; Jun. 27, 2017-Jun. 30, 2017, Jun. 26, 2017 (Jun. 26, 2017), XP051300410, pp. 1-6, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RANI/Docs/ , [retrieved on Jun. 26, 2017].
Qualcomm Incorporated: "Polar Code Design Overview", 3GPP Draft, 3GPP TSG-RAN WG1 #85, R1-164699_POLAR_DESIGN_OVERVIEW, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. RAN WG1, No. Nanjing, China, May 23, 2016-May 27, 2016, May 14, 2016 (May 14, 2016), XP051089936, 3 Pages, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/.
Richardson T., et al., "Design of Low-Density Parity Check Codes for 5G New Radio," IEEE Communications Magazine, vol., 56 (3), Mar. 1, 2018, pp. 28-34, XP055480192.
Richardson T., et al., "LDPC Proposal Update", C30-20061218-004, 3GPP2-Drafts, Dec. 18, 2006 (Dec. 18, 2006), pp. 1-30, XP040476671, ftp://ftp.3gpp2.org/TSGC/Working/2007/2007-01-Vancouver/TSG-C-2007-01-Vancouver/WG3/Distribution%202006.12.18/C30-20061218-004_QCOM_LDPC_proposal_update.pdf.
Roth C., et al., "A 15.8 pJ/bit/iter Quasi-Cyclic LDPC Decoder for IEEE 802.11n in 90 nm CMOS," IEEE Asian Solid-State Circuits Conference, Nov. 8-10, 2010, 4 pages.
Sagar, G. Suresh Krishna & M.Sandeep Kumar, "A Layered Decoding Architecture for LDPC Decoder with Low Energy Consumption", Gates Institute of Technology, GiTAM university, Vizag, International Journal of Electronic Signals and Systems, ISSN: 2231-5969, vol. 3, Iss-1, 2013. *
Samsung: "Flexibility of LDPC—Length, Rate and IR-HARQ", 3GPP Draft, 3GPP TSG RAN WG1 #85, R1-164007 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. RAN WG1. No. Nanjing, China, May 23, 2016-May 27, 2016 May 14, 2016 (May 14, 2016), XP051090116, 8 Pages, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/ [retrieved on May 14, 2016], p. 1-p. 3 p. 6.
Samsung: "LDPC Code for BG1", 3GPP TSG RAN WG1 NR#2, R1-1710744, Qingdao, China, Jun. 27-30, 2017, 3 Pages.
Samsung: "LDPC Code for BG2", 3GPP TSG RAN WG1 NR#2, R1-1710745, Qingdao, China, Jun. 27-30, 2017, 3 Pages.
Samsung: "Preliminary Evaluation Results on New Channel Coding Scheme for NR—LDPC Code for High Throughput", 3GPP TSG-RAN WG1#85, R1-164812, May 14, 2016, 17 Pages.
Shea J M, et al., "Multidimensional Codes", In Wiley Encyclopedia of Telecommunications, vol. 3, pp. 1-26, XP055402230, https://doi.org/10.1002/0471219282.eot342, Apr. 15, 2003, Entirety.
Shea J.M., et al., "Multidimensional Codes" In: "Wiley Encyclopedia of Telecommunications," Jan. 1, 2003, vol. 3, pp. 1538-1551, XP055402230.
Shi L., "Research on Polar Code Characters and its Encoding and Decoding Method", Chinese Master's Theses Full-Text Database, Information Science and Technology, Issue No. 12, Dec. 15, 2015.
Shuyang L., et al., "Design of High Efficient LDPC Encoder in IEEE 802.16e", 4 Pages, Nov. 2, 2012.
Stolte N., "Recursive Codes with the Plotkin-Construction and Their Decoding," (DOI:10.13140/RG.2.1.1036.6803) https://www.researchgate.net/publication/286929473_Recursive_Codes_with_the_Plotkin-Construction_and_Their_Decoding , May 2003, (Jan. 31, 2001), the whole document, 145 pages.
Stolte N., Rekursive Codes mit der Plotkin-Konstruktion and ihre Decodierung, D17 Darmstadter Dissertation, Jan. 1, 2002, 151 pages, (in particular, pp. 13-30), XP055241445, URL:http:1/tuprints.ulb.tu-darmstadt.de/epda/000183/stolte.pdf, Techn. Universitat, Diss., 2002 (Nicht f. d. Austausch)_Darmstadt [retrieved on Jan. 14, 2016].
Stolte N., Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung, D17 Darmstadter Dissertation, Jan. 1, 2002, 151 pages, (in particular, pp. 13-30), XP055241445, URL:http://tuprints.ulb.tu-darmstadt.de/epda/000183/stolte.pdf, Techn. Universitat, Diss., 2002 (Nicht f. d. Austausch)_Darmstadt [retrieved on Jan. 14, 2016].
Surra S.A., et al., "Gigabit Rate Achieving Low-Power LDPC Codes: Design and Architecture", IEEE, Mar 1, 2011, pp. 1994-1999.
Taiwan Search Report—TW107119819—TIPO—dated Nov. 18, 2021.
Tal I., et al., "List Decoding of Polar Codes", IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, May 2015, vol. 61, No. 5, pp. 2213-2226.
Tal I., et al., "List Decoding of Polar Codes", IEEE Transactions on Information Theory, May 31, 2012, pp. 1-11.
Tal I., et al., "List Decoding of Polar Codes", International Symposium on Information Theory proceedings, ISIT 2011, St. Petersburg, Russia, Jul. 31 -Aug. 5, 2011, May 31, 2012 (May 31, 2012), pp. 1-11, XP055225954, Piscataway, NJ, ISBN: 978-1-4577-0596-0, Retrieved from the Internet: URL: http://arxiv.org/pdf/1206.0050.pdf [retrieved on Nov. 4, 2015] sections II-III.
Trifonov P., "Efficient Design and Decoding of Polar Codes", IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ, USA, vol. 60, No. 11, Nov. 1, 2012 (Nov. 1, 2012), XP011473857, pp. 3221-3227, ISSN: 0090-6778, DOI: 10.1109/TCOMM.2012.081512.110872.
Trifonov P., "Efficient Design and Decoding of Polar Codes", IEEE Transactions on Communications, vol. 60, No. 11, Nov. 1, 2012, XP011473857, ISSN: 0090-6778, DOI: 10.1109/TCOMM.2012.081512.110872, pp. 3221-3227.
Trifonov P., et al., "Fast Encoding of Polar Codes with Reed-Solomon Kernel," IEEE Transactions on Communications, May 2016, pp. 1-8.
Trifonov P., et al., "Generalized Concatenated Codes based on Polar Codes", 8th International Symposium on Wireless Communication Systems, Nov. 6, 2011, XP032090122, pp. 442-446, DOI: 10.1109/ISWCS.2011.6125399, ISBN: 978-1-61284-403-9.
Wang T., et al., "Parity-Check-Concatenated Polar Codes", IEEE Communications Letters, IEEE Service Center, Piscataway, NJ, US, vol. 20, No. 12, Dec. 1, 2016, pp. 2342-2345, XP011636292, ISSN: 1089-7798, DOI: 10.1109/LCOMM.2016.2607169 [retrieved on Dec. 8, 2016].
Wang Y., et al., "Concatenations of Polar Codes With Outer BCH Codes and Convolutional Codes", 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (ALLERTON), Sep. 30, 2014, pp. 813-819, XP032731136, DOI: 10.1109/ALLERTON.20147028538 [retrieved on Jan. 30, 2015].
Written Opinion of the International Preliminary Examining Authority dated May 14, 2018—PCT/US2017/035026.
Xie Y., et al., "Design of Rate Compatible Protograph-based LDPC Codes with Mixed Circulants", IEEE, 6th International Symposium on Turbo Codes & Iterative Information Processing, Sep. 2010, pp. 434-438.
Xu, R., et al., "High Girth LDPC Coding for OFDMA PHY", C80216e-05_031″, IEEE Draft, IEEE 802.16 Broadband Wireless Access Working Group, No. IEEE C802.16e-05/031, IEEE-SA, Piscataway, NJ USA, vol. 802.16e, Jan. 10, 2005 (Jan. 10, 2005), XP017625511, pp. 1-11, [retrieved on Feb. 15, 2005], Retrieved from the Internet: URL: http://ieee802.org/16.
Yu Q., et al., "Hybrid Parity-Check and CRC Aided SCL Decoding for Polar Codes", 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPScom) and IEEE Smart Data (SmartData), IEEE, Dec. 15, 2016 (Dec. 15, 2016), XP033093024, Dec. 18, 2016, pp. 711-716, DOI: 10.1109/IThings-Greencom-Cpscom-Smartdata.2016.152 [retrieved on May 1, 2017] section III-A, figure 3.
Zhang Z., et al., "An Efficient 10GBASE-T Ethernet LDPC Decoder Design With Low Error Floors," IEEE Journal of Solid-State Circuits, Apr. 2010, vol. 45 (4), pp. 843-855.
Zhou H., et al., "Segmented CRC-Aided SC List Polar Decoding", 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), May 15, 2016 (May 15, 2016), XP032918751, pp. 1-5, DOI: 10.1109/VTCSPRING.2016.7504469, [retrieved on Jul. 5, 2016], Abstract, Sections III.
Zhou H., et al., "Segmented CRC-Aided SC List Polar Decoding", 2016 IEEE 83rd Vehicular Technology Conference, May 15, 2016, XP032918751, pp. 1-5, DOI: 10.1109/VTCSPRING.2016.7504469, [retrieved on Jul. 5, 2016].
ZTE, et al., "Compact LDPC Design for eMBB", 3GPP Draft, 3GPP TSG RAN WG1 AH NR Meeting, R1-1700247 Compact LDPC Design for EMBB_Final, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. RAN WG1. No. Spokane, USA, Jan. 16, 2017-Jan. 20, 2017 Jan. 10, 2017 (Jan. 10, 2017), XP051202750, pp. 1-16, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1701/Docs/ [retrieved on-Jan. 10, 2017] p. 1-p. 13.
ZTE: "NR LDPC Design", 3GPP Draft, R1-1709289, NR LDPC design, 3rd Generation Partnership ProjecT (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921, Sophia- Antipolis Cedex; France, vol. RAN WG1, No. Hangzhou, China; May 15, 2017-May 19, 2017, May 16, 2017 (May 16, 2017), XP051285041, pp. 1-12, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/ [retrieved on May 16, 2017].
ZTE: "NR LDPC Design", 3GPP TSG RAN WG1 Meeting #89, 3GPP Draft; R1-1709289, NR LDPC Design, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921, Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Hangzhou, China; May 15, 2017-May 19, 2017, May 16, 2017 (May 16, 2017), XP051285041, pp. 1-12, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_89/Docs/ [retrieved on May 16, 2017] the whole document.
ZTE: "Structured LDPC Coding with Rate Matching", 3GPP Draft; R1-060115, Mobile Competence Centre ; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Helsinki, Finland; Jan. 19, 2006, XP050950962, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/LTE_AH_0601/Docs/, 13 pages.
ZTE: "Structured LDPC Coding with Rate Matching", 3GPP TSG RAN WG1 LTE Ad Hoc Meeting, 3GPP Draft; R1-060115 Structured LDPC Coding with Rate Matching, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. Ran WG1, No. Helsinki, Finland; Jan. 23, 2006-Jan. 25, 2006, Jan. 19, 2006, 13 Pages, XP050950962, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/LTE_AH_0601/Docs/, [retrieved on Jan. 19, 2006] p. 7.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE50437E1 (en) 2017-06-10 2025-05-20 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Also Published As

Publication number Publication date
JP7260587B2 (en) 2023-04-18
CN110710111B (en) 2020-11-17
WO2018227133A1 (en) 2018-12-13
CA3061475A1 (en) 2018-12-13
US10312939B2 (en) 2019-06-04
KR20190140082A (en) 2019-12-18
BR112019025741A2 (en) 2020-06-23
JP2021119685A (en) 2021-08-12
TW201909568A (en) 2019-03-01
TWI775870B (en) 2022-09-01
CN110710111A (en) 2020-01-17
TW202249438A (en) 2022-12-16
KR102178603B1 (en) 2020-11-13
JP6932791B2 (en) 2021-09-08
EP3635869A1 (en) 2020-04-15
US20180358984A1 (en) 2018-12-13
USRE50437E1 (en) 2025-05-20
TWI825911B (en) 2023-12-11
JP2020522951A (en) 2020-07-30

Similar Documents

Publication Publication Date Title
USRE50437E1 (en) Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code
US12191883B2 (en) Methods and apparatus for compactly describing lifted low-density parity-check (LDPC) codes
US20250167920A1 (en) Communication techniques applying low-density parity-check code base graph selection
EP3642985B1 (en) Communication techniques with self-decodable redundancy versions (rvs) using systematic codes
US11043966B2 (en) Methods and apparatus for efficiently generating multiple lifted low-density parity-check (LDPC) codes
US11470591B2 (en) Direct transport block size specification

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RICHARDSON, THOMAS;SORIAGA, JOSEPH BINAMIRA;KUDEKAR, SHRINIVAS;AND OTHERS;SIGNING DATES FROM 20190212 TO 20190319;REEL/FRAME:057012/0470

CC Certificate of correction