WO2017092693A1 - Signature-enabled polar encoder and decoder - Google Patents

Signature-enabled polar encoder and decoder Download PDF

Info

Publication number
WO2017092693A1
WO2017092693A1 PCT/CN2016/108234 CN2016108234W WO2017092693A1 WO 2017092693 A1 WO2017092693 A1 WO 2017092693A1 CN 2016108234 W CN2016108234 W CN 2016108234W WO 2017092693 A1 WO2017092693 A1 WO 2017092693A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
bits
signature
input vector
polar code
Prior art date
Application number
PCT/CN2016/108234
Other languages
French (fr)
Inventor
Yiqun Ge
Wuxian Shi
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to KR1020187018283A priority Critical patent/KR102094719B1/en
Priority to JP2018527894A priority patent/JP6584036B2/en
Priority to CN201680065607.5A priority patent/CN108352844B/en
Priority to EP16870003.7A priority patent/EP3371890B1/en
Priority to EP20202463.4A priority patent/EP3800791A1/en
Publication of WO2017092693A1 publication Critical patent/WO2017092693A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3226Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN

Definitions

  • the invention relates to Polar codes, and to encoders and decoders for Polar codes.
  • Polar codes are based on Kronecker product matrices. is the m-fold Kronecker product of a seed matrix F.
  • Figure 1 shows how a Kronecker product matrix can be produced from a seed matrix G 2 102. Shown in Figure 1 are the 2-fold Kronecker product matrix 102 and the 3-fold Kronecker product matrix 104, where This approach can be extended to produce m-fold Kronecker product matrix
  • a polar code can be formed from a Kronecker product matrix based on matrix G 2 .
  • the generator matrix is An example of using Kronecker product matrix to produce codewords of length 8 is depicted in Figure 2.
  • a codeword x is formed by the product of an input vector u and the Kronecker product matrix 104 as indicated at 110.
  • the input vector u is composed of frozen bits and information bits.
  • the codeword x is an 8-bit vector.
  • the input vector has frozen bits in positions 0, 1, 2 and 4, and has information bits at positions 3, 5, 6 and 7.
  • An example implementation of a coder that generates codewords is indicated at 112, where the frozen bits are all set to 0, where a circle around a plus symbol indicates modulo 2 addition.
  • Codes of this form are referred to as Polar codes and the encoder is referred to as a Polar encoder.
  • Channel polarization is an operation which produces N channels from N independent copies of a binary-input discrete memoryless channel (B-DMC) W such that the new parallel channels are polarized in the sense that their mutual information is either close to 0 (low mutual SNR channels) or close to 1 (high mutual SNRchannels) .
  • B-DMC binary-input discrete memoryless channel
  • some encoder bit positions will experience a channel with high mutual SNR, and will have a relatively low reliability/low possibility to be correctly decoded, and for some encoder bit positions, they will experience a channel with a high mutual SNR, and will have high reliability /high possibility to be correctly decoded.
  • information bits are put in the reliable positions and frozen bits (bits known to both encoder and decoder) are put in unreliable positions.
  • the frozen bits can be set to any value so long as the frozen bit sequence is known to both encoder and decoder. In conventional applications, the frozen bits are all set to “0” .
  • an encoded block transmitted over the air can be received by any other non-targeted receivers.
  • Various approaches can be employed to prevent these non-targeted receivers from decoding the information.
  • Some systems use a well-known security/encrypting protocol on higher layers to provide privacy.
  • these approaches involve some higher-layer scheduling resources, and result in a long processing delay.
  • higher-layer scheduling algorithms may not provide sufficient security in a relatively low SNR condition.
  • a signature-enabled Polar code encoder and decoder are provided. Signature bits are inserted in some unreliable bit positions. Different signature bits are inserted for different receivers. For a given codeword, only the receiver with knowledge of the signature can decode the codeword. Cyclic redundancy check (CRC) bits may be included in the input vector to assist in decoding.
  • CRC Cyclic redundancy check
  • a broad aspect of the invention provides a method in an encoder.
  • the N-bit input vector is multiplied by a polar code generator matrix to produce a polar code codeword, and then the polar code codeword is transmitted or stored.
  • the polar codeword is a CRC-checked polar codeword.
  • the method further involves communicating the at least one signature bit to a receiver separately from the transmission of the codeword.
  • Another broad aspect of the invention provides a method in an encoder that involves:
  • producing the input vector further involves processing each information block to produce a respective set of CRC bits, and for each of the P information blocks, including the respective set of CRC bits in the respective portion of the input vector.
  • Another broad aspect of the invention provides a method in a decoder.
  • the method involves receiving a codeword that was encoded with a polar code in which at least one frozen bit is replaced with a corresponding at least one signature bit specific to the decoder and known to the decoder separately from receiving the codeword.
  • Decoding of the received codeword is performed by setting the at least one frozen bit to equal the corresponding at least one signature bit value.
  • the method further includes receiving information on signature bits used in the polar code separately from receiving the codeword.
  • the codeword was encoded with a CRC-checked signature enabled polar code, in which case the method further involves verifying a result of decoding using a CRC check.
  • the apparatus has a polar code encoder configured to multiply the input vector by a polar code generator matrix to produce a polar codeword.
  • Another broad aspect of the invention provides an apparatus having an input vector generator configured to produce an N-bit input vector for polar encoding by:
  • the apparatus also has a polar code encoder configured to multiply the input vector by a polar code generator matrix to produce a polar codeword.
  • the apparatus has a CRC processor configured to process each information block to produce a respective set of CRC bits.
  • the input vector producer includes the respective set of CRC bits for each of the P information blocks in the respective portion of the input vector.
  • Another broad aspect of the invention provides an apparatus having a a receiver for receiving a codeword that was encoded with a polar code, and a decoder configured to polar code decoding of the received codeword by treating at least one signature bit as a frozen bit having a known signature bit value.
  • the apparatus is configured to receive information on signature bits used in the polar code separately from receiving the codeword.
  • the apparatus also has a CRC checker configured to verify a result of decoding using a CRC check.
  • Figure 1 is an example of a conventional polar code generator matrix
  • Figure 2 is an example of a conventional polar code encoder
  • Figure 3 is a flowchart of a method of CRC-checked signature-enabled polar code encoding according to an embodiment of the invention
  • Figure 4 is a block diagram of an example application scenario for the method of Figure 3;
  • Figure 5 is an example circuit implementation of the method of Figure 3;
  • Figure 6 is a flowchart of a method of decoding a codeword of a CRC-checked signature-enabled polar code
  • Figure 7A is a flowchart of a method of CRC-checked signature-enabled polar code encoding with multiple signatures according to an embodiment of the invention
  • Figure 7B is a block diagram of an example application scenario for the method of Figure 7;
  • Figure 8 is an example circuit implementation of the method of Figure 7A
  • Figure 9 is a block diagram of an apparatus for receiving and decoding codewords of a CRC-checked signature-enabled polar code.
  • Figure 10 is a block diagram of an apparatus for encoding and transmitting codewords of a CRC-checked signature-enabled polar code.
  • CRC bits can be included in the input vector to assist in decoding.
  • CRC bits are generated based on the information bits being transmitted.
  • CRC bits are included in reliable positions (i.e. the positions with a reliable channel) .
  • CRC bits may be added to improve polar code performance for short to moderate block length. For a very long block length polar encoder, CRC is not needed.
  • an N-bit input vector is formed from K information bits, a u-bit CRC, and N-K-u frozen bits. An example is depicted in Figure 3.
  • a u-bit CRC is appended at 202 to produce a vector with the K-bit information block, and the u-bit CRC at 204.
  • the N-K-u frozen bits are inserted to produce the N-bit input vector with the K-bit information block, and the u-bit CRC and the N-K-u frozen bits, where N is a power of 2.
  • the vector 208 is then multiplied by the Kronecker product matrix at 210 to produce an N-bit codeword 212.
  • the frozen bits are inserted as positions 0, 1, 2, 4, 9 and 12.
  • CRC bits are treated like information bits until such time as they are used to check the other information bits.
  • a characteristic of a Polar decoder is that once an information bit is decoded, the bit never has the chance to be corrected. Abit that was set at step i cannot be changed at step j > i. In addition, knowledge of the value of future frozen bits or future signature bits is not taken into account i.e. these future bits, even known for the decoder, will not help decode the current information bit.
  • an encoded block on the air can be received by any other non-targeted receivers.
  • a signature that is known by a transmitter and targeted receiver (s) only is used to protect the encoded data. That is to say, the signature is “embedded” into the encoded data by a given means that only targeted receiver (s) can use it to decode the data.
  • the length of a signature can, for example, be tens of bits up to hundreds of bits. The longer a signature is, the more privacy it can provide, and the larger the resulting signature space. For example with a long enough signature, the signature space may contain thousands or even millions of signatures. In addition, ideally, this signature-enabled feature would be able to work at relatively low signal-to-noise ratio environment.
  • Some systems use a well-known security/encrypting protocol on higher layers to support the privacy. However, it involves some higher-layer scheduling resources, and results into a long processing delay. Moreover, higher-layer scheduling algorithm may not provide enough anti-jamming function in a relative low SNR condition.
  • Another approach employs signature-based FEC parameters at the physical layer. For example, a Turbo Code’s interleaving or puncturing is made a function of the signature. In another example, an LDPC matrix is somehow a function of the signature.
  • a Turbo Code s interleaving or puncturing is made a function of the signature.
  • an LDPC matrix is somehow a function of the signature.
  • Another approach involves the use of signature-based Pseudo-Scrambling at the physical layer. This approach requires extra resources (computation and buffer) for de-scrambling and can cause increased processing delay.
  • a signature can be the combination of multiple signatures that include a group signature and an individual signature.
  • a part of a data block associated to the group signature can be decoded by all the receivers of the group.
  • a part of a data block associated to the individual signature can be ONLY decoded by this receiver of this group.
  • An embodiment of the invention provides a single signature-enabled Polar code.
  • cyclic redundancy check (CRC) bits are included in the input vector to assist in decoding.
  • CRC bits are generated based on the information bits being transmitted.
  • CRC bits are included in reliable positions (i.e. the positions with a reliable channel) .
  • CRC bits may be added to improve polar code performance for short to moderate block length. For a very long block length polar encoder, CRC may not be needed.
  • a signature-enabled Polar code with CRC bits is referred to herein as a CRC-checked signature-enabled Polar code.
  • a K-bit information block for encoding is received or otherwise obtained.
  • a u-bit CRC is computed and inserted to produce a vector with the K-bit information block, and the u-bit CRC at 204.
  • M signature bits are inserted, and N-K-u-M frozen bits are inserted to produce an N-bit input vector 208 with the K-bit information block, and the u-bit CRC, the M signature bits and the N-K-u-M frozen bits, where N is a power of 2.
  • the vector 208 is then multiplied by the Kronecker product matrix at 210 to produce an N-bit codeword output (or stored) at block 212.
  • the information bits and the CRC bits are inserted in to the codeword in positions corresponding to reliable bit positions for the polar code.
  • the CRC bits do not need to all be together or at the end, so long as the transmitter and receiver know the positions of the CRC bits and the information bits.
  • the frozen bits and the signature bits are inserted into the unreliable bit positions for the polar code. In some embodiments, all of the frozen bit positions are used for signature bits.
  • the length of the signature can be tens of bits up to hundreds of bits. The longer a signature is, the more security it can provide. The signature may be long enough such that there are thousands or even millions of unique signatures.
  • Figure 4 shows an example scenario where the embodiment of Figure 3 could be used, where a transmitter 350 (Alice’s user equipment (UE)) has data targeted for reception by a targeted receiver 352 (Bob’s UE) and does not want non-targeted receiver 354 (Carol’s UE) to be able to decode the data.
  • the data block 356 for Bob’s UE 352 is transmitted over the air after CRC-checked signature-enabled polar encoding. By only informing the targeted receiver of the signature bits, the non-targeted receiver will not be able to decode the data.
  • the signature bits are inserted at bit positions 0, 1 and 2.
  • the frozen bits are inserted at positions 4, 9 and 12, the information bits are in positions 3, 5, 6, 7, 8, 10, 11, 13, and the CRC bits are at positions 14 and 15.
  • a CRC-checked signature-enabled Polar decoder does not require significant extra complexity compared with a conventional Polar decoder.
  • the decoder uses the signature bits to decode the information bits in the same ways as frozen bits are used in conventional Polar decoders. Without knowledge of these signature bits, it is nearly impossible for the decoder to decode the information bits successfully. There is no BER/BLER performance degradation due to the presence of the signature bits, as verified by both theory and simulation. In addition, there may be strong anti-jamming and error correction capacity.
  • Figure 8A shows successive-cancellation decoding for an all-frozen bit Polar code (i.e. one with frozen bits but no signature bits) .
  • the method starts in block 300 with obtaining frozen bit information and signature bit information.
  • This information is obtained separately from the received codeword.
  • this information might be communicated by a transmitter to a receiver during an initial connection setup.
  • the index i is the index of a frozen bit position, then is set to the corresponding known frozen bit value.
  • the bit position is decoded to a value of 0 or 1, for example using a path comparison operation. If the index i is equal to N-1 in block 312, then the method ends. Otherwise, the index i is incremented in block 314 and the method continues back at block 306.
  • the CRC bits are treated like data bits in the decoder in blocks 300 to 314. Then, when the bits are all decoded including data bits and CRC bits, the CRC check is performed in block 316. If the CRC check is successful then the decoded data bits are correct with high probability.
  • path comparison block 310 is performed only for bits that are neither frozen bits nor signature bits.
  • the approach of Figure 6 is not dependent on the specific signature and frozen bit positions.
  • Another embodiment of the invention provides a CRC-checked multiple-signature-enabled Polar encoder.
  • a CRC-checked multiple-signature-enabled Polar encoder With such an encoder, multiple signatures are inserted, and differing receivers can decode differing subsets of data depending on their knowledge of the signatures.
  • aK1-bit first information block and a K2-bit second information block are obtained.
  • a u1-bit first CRC is calculated based on the K1-bit first information block
  • a u2-bit second CRC is calculated based on the K2-bit second information block to produce a vector 404 with the K1-bit first information block, and the u1-bit first CRC, the k2-bit second information block, and the u2-bit second CRC.
  • a M1-bit first signature is inserted before the K1-bit first information block
  • an M2-bit second signature is inserted after the K1-bit first information block and the u1-bit first CRC and before the K2-bit second information block.
  • N-K1-u1-M1-K2-u2-M2 frozen bits are inserted to produce the N-bit input vector 408 where N is a power of 2.
  • the vector 408 is then multiplied by the Kronecker product matrix at block 410 to produce an N-bit codeword which is output (or stored) at block 412.
  • a receiver with knowledge of only the M1-bit first signature can only decode the bits of the K1-bit first information block. It cannot decode the bits of the K2-bit second information block.
  • a receiver with knowledge of both the M1-bit first signature and the M2-bit second signature can decode all the information bits.
  • the decoding approach is the same as the approach 402 of Figure 8, but a receiver that does not have all the signature bits would stop decoding for bit positions following a position containing an unknown signature bit.
  • Figure 7B shows an example scenario where the embodiment of Figure 9A could be used, where a transmitter 950 (Alice’s UE) has data 960 targeted for reception by a first receiver 952 (Bob’s UE) and wants only some of the data 962 to be decoded by a second receiver 954 (Carol’s UE) such that the rest of the data 964 can only be decoded by the first receiver 952.
  • a transmitter 950 Alice’s UE
  • Bob’s UE a transmitter 952
  • Carol a second receiver 954
  • the targeted receiver can decode all of the data 960.
  • the receiver can only decode the first part 962 of the data 960.
  • bits 0, 1, 2 contain the M1-bit first signature.
  • Bits 3, 5, 6 contain the K1 information bits.
  • Bits 7 and 8 contain the u1 CRC bits, and bit 4 is a frozen bit.
  • bit 9 contains the M2-bit second signature.
  • Bits 10, 11, 13 contain the K2 information bits.
  • Bits 14 and 15 contain the u2 CRC bits, and bit 12 is a frozen bit.
  • each signature being associated with a portion of the information.
  • a CRC-checked signature-enabled polar code can be completely specified by the eight-tuple (N, K, F, vF, S, vS, C, vC) , where:
  • N is the code length in bits (or blocklength) .
  • K is the number of information bits encoded per codeword (or code dimension) ;
  • vF is the binary vector of length Nf (frozen bits) and F is a subset of N-K indices from ⁇ 0, 1, ..., N-1 ⁇ (frozen bit positions) .
  • vS is the binary vector of length Ns (signature bits) and S is a subset of N -K indices from ⁇ 0, 1, ..., N -1 ⁇ (signature bit positions) .
  • vC is the binary vector of length Nc (CRC bits) and C is a subset of N-K indices from ⁇ 0, 1, ..., N -1 ⁇ (CRC bit positions)
  • the K + C bit positions correspond to reliable bit positions for the polar code
  • the Nf + Nc bit positions correspond to unreliable bit positions for the polar code.
  • An implementation without CRC is achieved by using all of the reliable bit positions as information bits.
  • An implementation without frozen bits is achieved by using all of the unreliable bit positions as signature bits, although it should be noted that the signature bits function the same as frozen bits; the difference is that not all receivers are aware of the signature bits.
  • x A Given any subset of indices A from a vector x, the corresponding sub-vector is denoted as x A .
  • x G d
  • x d G T
  • T indicates matrix transpose
  • the choice of the set F of frozen bit positions is a step in polar coding often referred to as polar code construction. See, for example, Arikan’s paper, referred to previously. More generally, any method of choosing a set of polar code noisy bit positions can be used instead to choose a set of positions that will be used for signature bits, or signature bits and frozen bits. As noted previously, in some cases, all frozen bit positions are used for signature bits. This application is not limited to specific frozen bit position/signature bit positions. However, within the set of positions thus chosen, a give signature bit needs to be included before information bits associated with the given signature bit.
  • CRC bits when included, are placed in polar code reliable bit positions.
  • the Kronecker product matrix based on the specific seed matrix referred to above is a specific example of a Polar code generator matrix. More generally, any Polar code generator matrix can be employed that produces codewords with reliable and unreliable positions.
  • a Polar code generator matrix is based on a Kronecker product matrix of a different seed matrix.
  • the seed matrix may be a prime-number dimensions matrix, such as 3x3 or 5x5.
  • the seed matrix may be binary or non-binary.
  • any method of encoding that is mathematically equivalent with the described methods can be employed.
  • many different encoder structures known in the art can be used to encode input data to produce codewords.
  • the encoder described herein is included as part of an apparatus that includes other components. These might, for example, include a modulator that modulates bits output by the encoder to produce symbols, and a transmitter that transmits the symbols over a channel such as a wireless channel. Similar reverse functionality would be in the receiver together with the decoder.
  • FIG. 9 is a block diagram of an apparatus for receiving and decoding codewords.
  • the apparatus 1100 includes a receiver 1104 coupled to an antenna 1102 for receiving signals from a wireless channel, and a decoder 1106.
  • Memory 1108 is coupled to the decoder 1106.
  • the receiver 1104 includes a demodulator, an amplifier, and/or other components of an RF receive chain.
  • the receiver 1104 receives, via the antenna 1102, a word that is based on a codeword of a polar code. Decoded bits are output at 1120 for further receive processing.
  • the decoder 1106 is implemented in circuitry, such as a processor, that is configured to estimate bits in the received word as disclosed herein.
  • the memory 1108 could include one or more solid-state memory devices and/or memory devices with movable and possibly removable storage media.
  • processor-executable instructions to configure a processor to perform decoding operations are stored in a non-transitory processor-readable medium.
  • the non-transitory medium could include the same memory device (s) used for the memory 1108, or one or more separate memory devices.
  • the decoding method of FIG. 6 represents one possible implementation of the decoder 1106 and the memory 1108.
  • the memory 1008 could be used to store results of processing by the processing elements of the decoder 1106.
  • the decoder 1106 could also include an address multiplexer coupled between the processing elements and the memory 1008.
  • the decoder 1106 is configured to store the results of the processing by the processing elements to respective memory areas in the memory 1008 that are each accessible to provide, in a single memory access operation, inputs to each of the processing elements for subsequent computations.
  • Other embodiments may include further, fewer, or different components and/or variations in operation of receiving apparatus components.
  • the decoder 1106 includes a polar code decoder 1116 configured to perform to polar code decoding of the received codeword by treating at least one signature bit as a frozen bit having a known signature bit value.
  • the apparatus may be configured to receive information on signature bits used in the signature-enabled polar code separately from receiving the codeword.
  • the decoder 1106 includes a CRC checker 1112 configured to verify a result of decoding using a CRC check.
  • FIG. 10 is a block diagram of an example apparatus for encoding and transmitting codewords.
  • the apparatus 1200 includes an encoder 1204 coupled to a transmitter 1206.
  • the encoder 1204 is implemented in circuitry that is configured to encode an input bit stream 1202 using a signature-enabled polar code, or a CRC-checked signature-enabled polar code.
  • the apparatus 1200 also includes an antenna 1208, coupled to the transmitter 1206, for transmitting signals over a wireless channel.
  • the transmitter 1206 includes a modulator, an amplifier, and/or other components of an RF transmit chain.
  • the apparatus 1200 and similarly the apparatus 1100 in FIG. 11, include a non-transitory computer readable medium that includes instructions for execution by a processor to implement and/or control operation of the encoder 1204 in FIG. 12, to implement and/or control operation of the decoder 1106 in FIG. 11, and/or to otherwise control the execution of methods described herein.
  • the processor may be a component of a general-purpose computer hardware platform.
  • the processor may be a component of a special-purpose hardware platform.
  • the processor may be an embedded processor, and the instructions may be provided as firmware.
  • the instructions for execution by a processor may be embodied in the form of a software product.
  • the software product may be stored in a non-volatile or non-transitory storage medium, which could be, for example, a compact disc read-only memory (CD-ROM) , universal serial bus (USB) flash disk, or a removable hard disk.
  • CD-ROM compact disc read-only memory
  • USB universal serial bus
  • Communication equipment could include the apparatus 1100, the apparatus 1200, or both a transmitter and a receiver and both an encoder and a decoder. Such communication equipment could be user equipment or communication network equipment.
  • the encoder 1202 also includes a polar code encoder 1214 configured to multiply the input vector by a polar code generator matrix to produce a signature-enabled polar codeword.
  • the transmitter 1206 transmits the signature-enabled polar codeword.
  • the input vector generator 1210 produces the N-bit input vector by inserting each of the u CRC bits in a respective polar code reliable bit position.
  • the input vector producer uses the multiple signature approach described previously, with or without CRC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

A signature-enabled Polar code encoder and decoder are provided. Signature bits are inserted in some unreliable bit positions. Different signature bits are inserted for different receivers. For a given codeword, only the receiver with knowledge of the signature can decode the codeword. Cyclic redundancy check (CRC) bits may be included in the input vector to assist in decoding.

Description

Signature-enabled Polar Encoder and Decoder
Cross Reference
This application claims priority to U.S. Patent Application Serial No. 15/364,521, filed November 30, 2016, entitled “Signature-enabled Polar Encoder and Decoder” , which claims priority to U.S. Provisional Patent Application Serial No. 62/261,590, filed December 1, 2015, entitled “Signature-enabled Polar Encoder and Decoder” , the contents of all of which are incorporated by reference herein in their entirety.
Field
The invention relates to Polar codes, and to encoders and decoders for Polar codes.
Background
Polar codes are based on Kronecker product matrices. 
Figure PCTCN2016108234-appb-000001
Figure PCTCN2016108234-appb-000002
is the m-fold Kronecker product of a seed matrix F.
If A is an m×n matrix and B is a p×q matrix, then the Kronecker product
Figure PCTCN2016108234-appb-000003
is the mp×nq block matrix:
Figure PCTCN2016108234-appb-000004
more explicitly:
Figure PCTCN2016108234-appb-000005
Figure 1 shows how a Kronecker product matrix can be produced from a seed matrix G 2 102. Shown in Figure 1 are the 2-fold Kronecker product matrix
Figure PCTCN2016108234-appb-000006
102 and the 3-fold Kronecker product matrix
Figure PCTCN2016108234-appb-000007
104, where
Figure PCTCN2016108234-appb-000008
Figure PCTCN2016108234-appb-000009
This approach can be extended to produce m-fold Kronecker product matrix
Figure PCTCN2016108234-appb-000010
A polar code can be formed from a Kronecker product matrix based on matrix G2. For a polar code having codewords of length N = 2m, the generator matrix is
Figure PCTCN2016108234-appb-000011
An example of using Kronecker product matrix
Figure PCTCN2016108234-appb-000012
to produce codewords of length 8 is depicted in Figure 2. A codeword x is formed by the product of an input vector u and the Kronecker product matrix
Figure PCTCN2016108234-appb-000013
Figure PCTCN2016108234-appb-000014
104 as indicated at 110. The input vector u is composed of frozen bits and information bits. In the specific example, N=8, so the input vector u is an 8 bit vector, and the codeword x is an 8-bit vector. The input vector has frozen bits in  positions  0, 1, 2 and 4, and has information bits at  positions  3, 5, 6 and 7. An example implementation of a coder that generates codewords is indicated at 112, where the frozen bits are all set to 0, where a circle around a plus symbol indicates modulo 2 addition. For the example of Figure 2, an N=8 bit input vector is formed from K=4 information bits and N-K=4 frozen bits. Codes of this form are referred to as Polar codes and the encoder is referred to as a Polar encoder.
More generally, in “Channel Polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels” by E. Arikan, IEEE Transactions on Information Theory Volume 55, Issue 7, Published July 2009, a “channel polarization” theory was proved in chapter IV. Channel polarization is an operation which produces N channels from N independent copies of a binary-input discrete memoryless channel (B-DMC) W such that the new parallel channels are polarized in the sense that their mutual information is either close to 0 (low mutual SNR channels) or close to 1 (high mutual SNRchannels) . In other words, some encoder bit positions will experience a channel with high mutual SNR, and will have a relatively low reliability/low possibility to be correctly decoded, and for some encoder bit positions, they will experience a channel with a high mutual SNR, and will have high reliability /high  possibility to be correctly decoded. In code construction, information bits are put in the reliable positions and frozen bits (bits known to both encoder and decoder) are put in unreliable positions. In theory, the frozen bits can be set to any value so long as the frozen bit sequence is known to both encoder and decoder. In conventional applications, the frozen bits are all set to “0” .
In a communication scenario in which a transmitter may want to send the data only for one or several specific receivers, an encoded block transmitted over the air can be received by any other non-targeted receivers. Various approaches can be employed to prevent these non-targeted receivers from decoding the information. Some systems use a well-known security/encrypting protocol on higher layers to provide privacy. However, these approaches involve some higher-layer scheduling resources, and result in a long processing delay. Moreover, higher-layer scheduling algorithms may not provide sufficient security in a relatively low SNR condition.
It would be advantageous to have a relatively simple approach to providing security for polar codes.
Summary
A signature-enabled Polar code encoder and decoder are provided. Signature bits are inserted in some unreliable bit positions. Different signature bits are inserted for different receivers. For a given codeword, only the receiver with knowledge of the signature can decode the codeword. Cyclic redundancy check (CRC) bits may be included in the input vector to assist in decoding.
A broad aspect of the invention provides a method in an encoder. The method involves producing an N-bit input vector for polar encoding, the input vector having polar code reliable bit positions and polar code unreliable bit positions, by inserting each of at least one information bit in a respective polar code reliable bit position, and each of at least one signature bit in a respective polar code unreliable bit position, where N = 2m where m>=2. The N-bit input vector is multiplied by a polar code generator matrix to produce a polar code codeword, and then the polar code codeword is transmitted or stored.
Optionally, the at least one information bit includes K information bits, K>=1, and the method further involves processing the K information bits to produce a u-bit CRC, where u >=1, and producing the N-bit input vector by inserting each of the u CRC bits in a respective polar code reliable bit position. As a result, the polar codeword is a CRC-checked polar codeword.
Optionally, the method further involves communicating the at least one signature bit to a receiver separately from the transmission of the codeword.
Another broad aspect of the invention provides a method in an encoder that involves:
producing an input vector by:
for each of P information blocks, where P>=2, producing a respective portion of an input vector, the respective portion starting with a respective set of at least one signature bit and also containing the information block, each of the sets of signature bits being different from each other;
combining the respective portions to produce the input vector;
multiplying the input vector by a polar code generator matrix to produce a polar code codeword;
and then transmitting or storing the codeword.
Optionally, producing the input vector further involves processing each information block to produce a respective set of CRC bits, and for each of the P information blocks, including the respective set of CRC bits in the respective portion of the input vector.
Another broad aspect of the invention provides a method in a decoder. The method involves receiving a codeword that was encoded with a polar code in which at least one frozen bit is replaced with a corresponding at least one signature bit specific to the decoder and known to the decoder separately from receiving the codeword. Decoding of the received codeword is  performed by setting the at least one frozen bit to equal the corresponding at least one signature bit value.
Optionally, the method further includes receiving information on signature bits used in the polar code separately from receiving the codeword.
Optionally, the codeword was encoded with a CRC-checked signature enabled polar code, in which case the method further involves verifying a result of decoding using a CRC check.
Another broad aspect of the invention provides an apparatus that has an input vector generator configured to produce an N-bit input vector for polar encoding, the input vector having polar code reliable bit positions and polar code unreliable bit positions, by inserting each of at least one information bit in a respective polar code reliable bit position, and each of at least one signature bit in a respective polar code unreliable bit position, where N = 2m where m>=2. In addition, the apparatus has a polar code encoder configured to multiply the input vector by a polar code generator matrix to produce a polar codeword.
Another broad aspect of the invention provides an apparatus having an input vector generator configured to produce an N-bit input vector for polar encoding by:
for each of P information blocks, where P>=2, producing a respective portion of the input vector, the respective portion starting with a respective set of at least one signature bit and also containing the information block, each of the sets of signature bits being different from each other; and
combining the respective portions to produce the input vector.
The apparatus also has a polar code encoder configured to multiply the input vector by a polar code generator matrix to produce a polar codeword.
Optionally, the apparatus has a CRC processor configured to process each information block to produce a respective set of CRC bits. In this case, the input vector producer includes the respective set of CRC bits for each of the P information blocks in the respective portion of the input vector.
Another broad aspect of the invention provides an apparatus having a a receiver for receiving a codeword that was encoded with a polar code, and a decoder configured to polar code decoding of the received codeword by treating at least one signature bit as a frozen bit having a known signature bit value.
Optionally, the apparatus is configured to receive information on signature bits used in the polar code separately from receiving the codeword.
Optionally, the apparatus also has a CRC checker configured to verify a result of decoding using a CRC check.
Brief Description of the Drawings
Embodiments of the invention will now be described with reference to the attached drawings in which:
Figure 1 is an example of a conventional polar code generator matrix;
Figure 2 is an example of a conventional polar code encoder;
Figure 3 is a flowchart of a method of CRC-checked signature-enabled polar code encoding according to an embodiment of the invention;
Figure 4 is a block diagram of an example application scenario for the method of Figure 3;
Figure 5 is an example circuit implementation of the method of Figure 3;
Figure 6 is a flowchart of a method of decoding a codeword of a CRC-checked signature-enabled polar code;
Figure 7A is a flowchart of a method of CRC-checked signature-enabled polar code encoding with multiple signatures according to an embodiment of the invention;
Figure 7B is a block diagram of an example application scenario for the method of Figure 7;
Figure 8 is an example circuit implementation of the method of Figure 7A;
Figure 9 is a block diagram of an apparatus for receiving and decoding codewords of a CRC-checked signature-enabled polar code; and
Figure 10 is a block diagram of an apparatus for encoding and transmitting codewords of a CRC-checked signature-enabled polar code.
Detailed Description
When Polar codes are used, cyclic redundancy check (CRC) bits can be included in the input vector to assist in decoding. CRC bits are generated based on the information bits being transmitted. CRC bits are included in reliable positions (i.e. the positions with a reliable channel) . CRC bits may be added to improve polar code performance for short to moderate block length. For a very long block length polar encoder, CRC is not needed. In a case where CRC bits are included, an N-bit input vector is formed from K information bits, a u-bit CRC, and N-K-u frozen bits. An example is depicted in Figure 3. Starting with a k-bit information block 200, a u-bit CRC is appended at 202 to produce a vector with the K-bit information block, and the u-bit CRC at 204. At 206, the N-K-u frozen bits are inserted to produce the N-bit input vector with the K-bit information block, and the u-bit CRC and the N-K-u frozen bits, where N is a power of 2. The vector 208 is then multiplied by the Kronecker product matrix at 210 to produce an N-bit codeword 212.
An example implementation is depicted in Figure 4, where N=16, K=8, u=2 and there are six frozen bits for a code rate of 0.5 The frozen bits are inserted as  positions  0, 1, 2, 4, 9 and 12. In the decoder, CRC bits are treated like information bits until such time as they are used to check the other information bits.
A characteristic of a Polar decoder is that once an information bit is decoded, the bit never has the chance to be corrected. Abit that was set at step i cannot be changed at step j > i. In addition, knowledge of the value of future frozen bits or future signature bits is not taken into account i.e. these future bits, even known for the decoder, will not help decode the current information bit.
In a communication scenario in which a transmitter may want to send the data only for one or several specific receivers, an encoded block on the air can be received by any other non-targeted receivers. To prevent these non-targeted receivers from decoding the information, a signature that is known by a transmitter and targeted receiver (s) only is used to protect the encoded data. That is to say, the signature is “embedded” into the encoded data by a given means that only targeted receiver (s) can use it to decode the data. The length of a signature can, for example, be tens of bits up to hundreds of bits. The longer a signature is, the more privacy it can provide, and the larger the resulting signature space. For example with a long enough signature, the signature space may contain thousands or even millions of signatures. In addition, ideally, this signature-enabled feature would be able to work at relatively low signal-to-noise ratio environment.
Some systems use a well-known security/encrypting protocol on higher layers to support the privacy. However, it involves some higher-layer scheduling resources, and results into a long processing delay. Moreover, higher-layer scheduling algorithm may not provide enough anti-jamming function in a relative low SNR condition.
To overcome the shortcomings of methods involving higher-layer scheduling resources, another approach employs signature-based FEC parameters at the physical layer. For example, a Turbo Code’s interleaving or puncturing is made a function of the signature. In another example, an LDPC matrix is somehow a function of the signature. These approaches tend to not only have a negative impact on FEC performance but also to increase the complexity of the decoder and the processing latency. Furthermore, their signature space usually contains a very limited number of signatures and can be decoded by brute force.
Another approach involves the use of signature-based Pseudo-Scrambling at the physical layer. This approach requires extra resources (computation and buffer) for de-scrambling and can cause increased processing delay.
In some scenarios, a signature can be the combination of multiple signatures that include a group signature and an individual signature. In this scenario, a part of a data block associated to the group signature can be decoded by all the receivers of the group. A part of a data block associated to the individual signature can be ONLY decoded by this receiver of this group.
Approaches to achieve multiple signatures involve higher layer scheduling, and therefore consume more resources for high-layer scheduling and may result in a long processing time. In addition, this method would divide a long data block into several smaller ones. However, separating a block into several smaller blocks can cause FEC performance (BLER vs. SNR) to degrade due to the smaller blocks (Turbo and LDPC) .
An embodiment of the invention provides a single signature-enabled Polar code. In some embodiments, cyclic redundancy check (CRC) bits are included in the input vector to assist in decoding. CRC bits are generated based on the information bits being transmitted. CRC bits are included in reliable positions (i.e. the positions with a reliable channel) . CRC bits may be added to improve polar code performance for short to moderate block length. For a very long block length polar encoder, CRC may not be needed. A signature-enabled Polar code with CRC bits is referred to herein as a CRC-checked signature-enabled Polar code. Although an embodiment with CRC is disclosed herein, more generally, in other embodiments, some parity check bits for error detection and/or detection can be included in the relatively reliable bit positions.
Referring to Figure 3, shown is a flowchart of a method of implementing a CRC-checked signature-enabled Polar code for execution by an encoder. At block 200, a K-bit information block for encoding is received or otherwise obtained. In block 202, a u-bit CRC is computed and inserted to produce a vector with the K-bit information block, and the u-bit CRC at 204. At 206, M signature bits are inserted, and N-K-u-M frozen bits are inserted to produce an N-bit input vector 208 with the K-bit information block, and the u-bit CRC, the M signature bits and the N-K-u-M frozen bits, where N is a power of 2. The vector 208 is then multiplied by the Kronecker product matrix at 210 to  produce an N-bit codeword output (or stored) at block 212. The Kronecker product matrix is
Figure PCTCN2016108234-appb-000015
where N =2m.
The information bits and the CRC bits are inserted in to the codeword in positions corresponding to reliable bit positions for the polar code. The CRC bits do not need to all be together or at the end, so long as the transmitter and receiver know the positions of the CRC bits and the information bits. Similarly, the frozen bits and the signature bits are inserted into the unreliable bit positions for the polar code. In some embodiments, all of the frozen bit positions are used for signature bits.
Various signature lengths can be employed. The length of the signature can be tens of bits up to hundreds of bits. The longer a signature is, the more security it can provide. The signature may be long enough such that there are thousands or even millions of unique signatures.
Figure 4 shows an example scenario where the embodiment of Figure 3 could be used, where a transmitter 350 (Alice’s user equipment (UE)) has data targeted for reception by a targeted receiver 352 (Bob’s UE) and does not want non-targeted receiver 354 (Carol’s UE) to be able to decode the data. The data block 356 for Bob’s UE 352 is transmitted over the air after CRC-checked signature-enabled polar encoding. By only informing the targeted receiver of the signature bits, the non-targeted receiver will not be able to decode the data.
An example implementation is depicted in Figure 7, where N=16, K=8, u=2, and M=3, and there are three frozen bits for a code rate of 0.5. The signature bits are inserted at  bit positions  0, 1 and 2. The frozen bits are inserted at positions 4, 9 and 12, the information bits are in  positions  3, 5, 6, 7, 8, 10, 11, 13, and the CRC bits are at positions 14 and 15.
A CRC-checked signature-enabled Polar decoder does not require significant extra complexity compared with a conventional Polar decoder. The decoder uses the signature bits to decode the information bits in the same ways as frozen bits are used in conventional Polar decoders. Without knowledge of these signature bits, it is nearly impossible for the decoder to decode the  information bits successfully. There is no BER/BLER performance degradation due to the presence of the signature bits, as verified by both theory and simulation. In addition, there may be strong anti-jamming and error correction capacity.
In a situation where a data block has a large number of bits (e.g. on the order of a thousand bits) with R=1/2~1/3, there is room to insert hundreds or even thousands of signature bits, resulting in strong privacy and obstruction capacity.
Figure 8A shows successive-cancellation decoding for an all-frozen bit Polar code (i.e. one with frozen bits but no signature bits) .
Figure 6 shows a flowchart of a method for implementation in a decoder of successive-cancellation decoding for a CRC-checked signature-enabled Polar codeword having N bits in bit positions i = 0 to N-1. The method starts in block 300 with obtaining frozen bit information and signature bit information. This information indicates the M frozen bit positions (a set Frozen) , and the K signature bit positions (a set Signature) , and the values of the frozen bits (the frozen bits are typically not receiver specific, Frozenm, m =0 to M-1, typically zero for all receivers) , and the signature bits (signaturek, k= 0, K-1, receiver specific) . This information is obtained separately from the received codeword. For example, this information might be communicated by a transmitter to a receiver during an initial connection setup. In a specific example, N=16, M=3 and K=3, and the frozen bits are in positions 4, 9 and 12 and have  values  0, 0, 0, and the signature bits are in  positions  0, 1, 2 and have  values  1, 0, 0, as indicated at 302. Decoding starts at bit position 0, by setting index i = 0 in block 304. In block 306, if the index i is the index of a signature bit position, then
Figure PCTCN2016108234-appb-000016
is set to the corresponding known signature bit value. In block 308, if the index i is the index of a frozen bit position, thenis set to the corresponding known frozen bit value. In block 310, if the index I is not the index of a signature bit position or a frozen bit position, then the bit position is decoded to a value of 0 or 1, for example using a path comparison operation. If the index i is equal to N-1 in block 312, then the method ends. Otherwise, the index i is incremented in block 314 and the method continues back at block 306.
The CRC bits are treated like data bits in the decoder in blocks 300 to 314. Then, when the bits are all decoded including data bits and CRC bits, the CRC check is performed in block 316. If the CRC check is successful then the decoded data bits are correct with high probability.
It can be seen that the path comparison block 310 is performed only for bits that are neither frozen bits nor signature bits. The approach of Figure 6 is not dependent on the specific signature and frozen bit positions.
Another embodiment of the invention provides a CRC-checked multiple-signature-enabled Polar encoder. With such an encoder, multiple signatures are inserted, and differing receivers can decode differing subsets of data depending on their knowledge of the signatures.
Referring to Figure 7A, starting at block 400, aK1-bit first information block and a K2-bit second information block are obtained. At 402 a u1-bit first CRC is calculated based on the K1-bit first information block, and a u2-bit second CRC is calculated based on the K2-bit second information block to produce a vector 404 with the K1-bit first information block, and the u1-bit first CRC, the k2-bit second information block, and the u2-bit second CRC. At 406, a M1-bit first signature is inserted before the K1-bit first information block, and an M2-bit second signature is inserted after the K1-bit first information block and the u1-bit first CRC and before the K2-bit second information block. In addition, the N-K1-u1-M1-K2-u2-M2 frozen bits are inserted to produce the N-bit input vector 408 where N is a power of 2. The vector 408 is then multiplied by the Kronecker product matrix at block 410 to produce an N-bit codeword which is output (or stored) at block 412.
A receiver with knowledge of only the M1-bit first signature can only decode the bits of the K1-bit first information block. It cannot decode the bits of the K2-bit second information block. A receiver with knowledge of both the M1-bit first signature and the M2-bit second signature can decode all the information bits. The decoding approach is the same as the approach 402 of Figure 8, but a receiver that does not have all the signature bits would stop  decoding for bit positions following a position containing an unknown signature bit.
Figure 7B shows an example scenario where the embodiment of Figure 9A could be used, where a transmitter 950 (Alice’s UE) has data 960 targeted for reception by a first receiver 952 (Bob’s UE) and wants only some of the data 962 to be decoded by a second receiver 954 (Carol’s UE) such that the rest of the data 964 can only be decoded by the first receiver 952. By informing a targeted receiver (Bob’s UE in the example of Figure 9B) of the all the signature bits, the targeted receiver can decode all of the data 960. By only informing a receiver (Carol’s UE in the example of Figure 9B) of only the first signature, the receiver can only decode the first part 962 of the data 960.
The multiple signature approach can be readily extended to accommodate P>=2 information blocks, by generating an input vector with P portions, each containing respective signature bits, one of the information blocks with at least one frozen bit inserted, and a CRC over the information block.
A specific example of an encoder that uses signatures is depicted in Figure 8, where N=16, K1=3, u1=2, M1=3, and K2=3, u2=2 and M2=1. For the first information block,  bits  0, 1, 2 contain the M1-bit first signature.  Bits  3, 5, 6 contain the K1 information bits. Bits 7 and 8 contain the u1 CRC bits, and bit 4 is a frozen bit. For the second information block, bit 9 contains the M2-bit second signature. Bits 10, 11, 13 contain the K2 information bits. Bits 14 and 15 contain the u2 CRC bits, and bit 12 is a frozen bit.
Advantages of the CRC-checked signature-enabled Polar code that may be realized in some implementations include:
does not involve a high layer encryption and scheduling protocol to achieve signature-enabled communication;
no extra computational resource is added to support the signature detection;
no extra latency is added to detect the signature;
no Polar BER/BLER performance loss due to the presence of the signature;
the presence of the signature and size of the signature is hard to detect;
a large signature size can be accommodated;
multiple signatures are supported with each signature being associated with a portion of the information.
A CRC-checked signature-enabled polar code can be completely specified by the eight-tuple (N, K, F, vF, S, vS, C, vC) , where:
N is the code length in bits (or blocklength) ,
K is the number of information bits encoded per codeword (or code dimension) ;
vF is the binary vector of length Nf (frozen bits) and F is a subset of N-K indices from {0, 1, ..., N-1} (frozen bit positions) .
vS is the binary vector of length Ns (signature bits) and S is a subset of N -K indices from {0, 1, ..., N -1} (signature bit positions) .
vC is the binary vector of length Nc (CRC bits) and C is a subset of N-K indices from {0, 1, ..., N -1} (CRC bit positions) 
where Nf + Ns + Nc = N-K
and note I= {0, 1, ..., N -1} \ (F, S, C) corresponds to the information bit indices.
In the above, the K + C bit positions correspond to reliable bit positions for the polar code, and the Nf + Nc bit positions correspond to unreliable bit positions for the polar code. An implementation without CRC is achieved by using all of the reliable bit positions as information bits. An implementation without frozen bits is achieved by using all of the unreliable bit positions as signature bits, although it should be noted that the signature bits  function the same as frozen bits; the difference is that not all receivers are aware of the signature bits.
Given any subset of indices A from a vector x, the corresponding sub-vector is denoted as xA.
For a (N, K, F, vF, S, vS, C, vC) polar code, the encoding operation for a vector of information bits u of length K will now be described. Let m = log2 (N) and
Figure PCTCN2016108234-appb-000018
be the m-fold Kronecker product of a seed matrix F, Where F is
Figure PCTCN2016108234-appb-000019
Then, a codeword is generated as
x = G d where d is a column vector ∈ {0, 1} N such that dF = vF and dI = u, dC=vC and dS=vS.
or x = d GT where () T indicates matrix transpose, and d is a row vector ∈ {0, 1} N such that dF = vF and dI = u, dC = vC and dS = vS.
Equivalently, if the seed matrix is as in the examples described above,
x = d G and d is a row vector ∈ {0, 1} N such that dF = vF and dI = u, dC=vC and dS=vS.
In polar codes that are not signature enabled, the choice of the set F of frozen bit positions (i.e. the unreliable bit positions) is a step in polar coding often referred to as polar code construction. See, for example, Arikan’s paper, referred to previously. More generally, any method of choosing a set of polar code noisy bit positions can be used instead to choose a set of positions that will be used for signature bits, or signature bits and frozen bits. As noted previously, in some cases, all frozen bit positions are used for signature bits. This application is not limited to specific frozen bit position/signature bit positions. However, within the set of positions thus chosen, a give signature bit needs to be included before information bits associated with the given signature bit. In addition, CRC bits, when included, are placed in polar code reliable bit positions.  The Kronecker product matrix based on the specific seed matrix referred to above is a specific example of a Polar code generator matrix. More generally, any Polar code generator matrix can be employed that produces codewords with reliable and unreliable positions. In some embodiments, a Polar code generator matrix is based on a Kronecker product matrix of a different seed matrix. For example, the seed matrix may be a prime-number dimensions matrix, such as 3x3 or 5x5. The seed matrix may be binary or non-binary.
More generally, any method of encoding that is mathematically equivalent with the described methods can be employed. For example, once a set of codewords is determined as described herein, many different encoder structures known in the art can be used to encode input data to produce codewords. Typically the encoder described herein is included as part of an apparatus that includes other components. These might, for example, include a modulator that modulates bits output by the encoder to produce symbols, and a transmitter that transmits the symbols over a channel such as a wireless channel. Similar reverse functionality would be in the receiver together with the decoder.
FIG. 9 is a block diagram of an apparatus for receiving and decoding codewords. The apparatus 1100 includes a receiver 1104 coupled to an antenna 1102 for receiving signals from a wireless channel, and a decoder 1106. Memory 1108 is coupled to the decoder 1106. In some embodiments, the receiver 1104 includes a demodulator, an amplifier, and/or other components of an RF receive chain. The receiver 1104 receives, via the antenna 1102, a word that is based on a codeword of a polar code. Decoded bits are output at 1120 for further receive processing.
The decoder 1106 is implemented in circuitry, such as a processor, that is configured to estimate bits in the received word as disclosed herein. The memory 1108 could include one or more solid-state memory devices and/or memory devices with movable and possibly removable storage media. In a processor-based implementation of the decoder 1106, processor-executable instructions to configure a processor to perform decoding operations are stored in a non-transitory processor-readable medium. The non-transitory medium could include the same memory device (s) used for the memory 1108, or one or  more separate memory devices. The decoding method of FIG. 6 represents one possible implementation of the decoder 1106 and the memory 1108.
The memory 1008 could be used to store results of processing by the processing elements of the decoder 1106. The decoder 1106 could also include an address multiplexer coupled between the processing elements and the memory 1008. In an embodiment, the decoder 1106 is configured to store the results of the processing by the processing elements to respective memory areas in the memory 1008 that are each accessible to provide, in a single memory access operation, inputs to each of the processing elements for subsequent computations. Other embodiments may include further, fewer, or different components and/or variations in operation of receiving apparatus components.
In a specific example, the decoder 1106 includes a polar code decoder 1116 configured to perform to polar code decoding of the received codeword by treating at least one signature bit as a frozen bit having a known signature bit value. The apparatus may be configured to receive information on signature bits used in the signature-enabled polar code separately from receiving the codeword. Where CRC is employed, the decoder 1106 includes a CRC checker 1112 configured to verify a result of decoding using a CRC check.
FIG. 10 is a block diagram of an example apparatus for encoding and transmitting codewords. The apparatus 1200 includes an encoder 1204 coupled to a transmitter 1206. The encoder 1204 is implemented in circuitry that is configured to encode an input bit stream 1202 using a signature-enabled polar code, or a CRC-checked signature-enabled polar code. In the illustrated embodiment, the apparatus 1200 also includes an antenna 1208, coupled to the transmitter 1206, for transmitting signals over a wireless channel. In some embodiments, the transmitter 1206 includes a modulator, an amplifier, and/or other components of an RF transmit chain.
In some embodiments, the apparatus 1200, and similarly the apparatus 1100 in FIG. 11, include a non-transitory computer readable medium that includes instructions for execution by a processor to implement and/or control operation of the encoder 1204 in FIG. 12, to implement and/or control  operation of the decoder 1106 in FIG. 11, and/or to otherwise control the execution of methods described herein. In some embodiments, the processor may be a component of a general-purpose computer hardware platform. In other embodiments, the processor may be a component of a special-purpose hardware platform. For example, the processor may be an embedded processor, and the instructions may be provided as firmware. Some embodiments may be implemented by using hardware only. In some embodiments, the instructions for execution by a processor may be embodied in the form of a software product. The software product may be stored in a non-volatile or non-transitory storage medium, which could be, for example, a compact disc read-only memory (CD-ROM) , universal serial bus (USB) flash disk, or a removable hard disk.
Communication equipment could include the apparatus 1100, the apparatus 1200, or both a transmitter and a receiver and both an encoder and a decoder. Such communication equipment could be user equipment or communication network equipment. In a specific example, the encoder 1204 includes an input vector generator 1210 configured to produce an N-bit input vector for polar encoding, the input vector having polar code reliable bit positions and polar code unreliable bit positions by inserting each of at least one information bit in a respective polar code reliable bit position, and each of at least one signature bit in a respective polar code unreliable bit position, where N = 2m where m>=2. The encoder 1202 also includes a polar code encoder 1214 configured to multiply the input vector by a polar code generator matrix to produce a signature-enabled polar codeword. The transmitter 1206 transmits the signature-enabled polar codeword. In addition, or alternatively, there may be a memory (not shown) for storing the signature-enabled polar codeword.
In embodiments that include the CRC, the apparatus also includes a CRC processor 1214 configured to process the K information bits to produce a u-bit CRC, where u >=1. In this case, the input vector generator 1210 produces the N-bit input vector by inserting each of the u CRC bits in a respective polar code reliable bit position.
In some embodiments, the input vector producer uses the multiple signature approach described previously, with or without CRC.
The previous description of some embodiments is provided to enable any person skilled in the art to make or use an apparatus, method, or processor readable medium according to the present disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles of the methods and devices described herein may be applied to other embodiments. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (24)

  1. A method in an encoder comprising:
    producing an N-bit input vector for polar encoding, the input vector having polar code reliable bit positions and polar code unreliable bit positions, by inserting each of at least one information bit in a respective polar code reliable bit position, and each of at least one signature bit in a respective polar code unreliable bit position, where N = 2m where m>=2;
    multiplying the N-bit input vector by a polar code generator matrix to produce a polar code codeword;
    transmitting or storing the polar code codeword.
  2. The method of claim 1 wherein multiplying the N-bit input vector by a polar code generator matrix to produce a polar code codeword comprises:
    processing the N-bit input vector to produce a result equivalent to multiplying the input vector as a row vector by an m-fold Kronecker product matrix
    Figure PCTCN2016108234-appb-100001
    where
    Figure PCTCN2016108234-appb-100002
    to produce the polar codeword or that is equivalent to multiplying an m-fold Kronecker product matrix
    Figure PCTCN2016108234-appb-100003
    by an input vector as a column vector, where
    Figure PCTCN2016108234-appb-100004
    to produce the polar codeword.
  3. The method of any of claims 1 to 2 further comprising:
    inserting at least one frozen bit in a polar code unreliable bit position.
  4. The method of claim 1 wherein the at least one information bit comprises K information bits, K>=1, the method further comprising:
    processing the K information bits to produce a u-bit CRC, where u >=1;
    producing the N-bit input vector by inserting each of the u CRC bits in a respective polar code reliable bit position;
    such that the polar codeword is a CRC-checked polar codeword.
  5. The method of claim 4 further comprising:
    inserting at least one frozen bit in a polar code unreliable bit position.
  6. The method of claim 5 wherein the N-bit input vector has M signature bits, the K information bits, u CRC bits with at least one frozen bit, where N = 2m where m> =2, and the number of frozen bits is N-K-u-M.
  7. The method of any of claims 1 to 6 further comprising:
    communicating the at least one signature bit to a receiver separately from the transmission of the codeword.
  8. A method in an encoder comprising:
    producing an input vector by:
    for each of P information blocks, where P>=2, producing a respective portion of an input vector, the respective portion starting with a respective set of at least one signature bit and also containing the information block, each of the sets of signature bits being different from each other;
    combining the respective portions to produce the input vector;
    multiplying the input vector by a polar code generator matrix to produce a polar code codeword; and
    transmitting or storing the codeword.
  9. The method of claim 8 wherein producing the input vector further comprises:
    processing each information block to produce a respective set of CRC bits;
    for each of the P information blocks, including the respective set of CRC bits in the respective portion of the input vector.
  10. The method of claim 9 wherein P=2, and wherein processing each information block to produce a respective set of CRC bits comprises:
    processing K1 information bits to produce a u1-bit CRC;
    processing K2 information bits to produce a u2-bit CRC;
    such that the input vector comprises:
    an N-bit input vector with a first portion containing M1 signature bits, the K1 information bits, and u1 CRC bits and at least one frozen bit, and with a second portion containing M2 signature bits, K2 information bits, u2 CRC bits and at least one frozen bit, where N = 2^m where m>=3.
  11. The method of claim 10 further comprising:
    conveying the M1 signature bits to a first receiver;
    conveying the M1 signature bits and the M2 signature bits to a second receiver.
  12. A method in a decoder comprising:
    receiving a codeword that was encoded with a polar code in which at least one frozen bit is replaced with a corresponding at least one signature bit specific to the decoder and known to the decoder separately from receiving the codeword;
    performing decoding of the received codeword by setting the at least one frozen bit to equal the corresponding at least one signature bit value.
  13. The method of claim 12 further comprising:
    receiving information on signature bits used in the polar code separately from receiving the codeword.
  14. The method of claim 12 wherein the codeword was encoded with a CRC-checked signature enabled polar code;
    the method further comprising verifying a result of decoding using a CRC check.
  15. An apparatus comprising:
    an input vector generator configured to produce an N-bit input vector for polar encoding, the input vector having polar code reliable bit positions and polar code unreliable bit positions, by inserting each of at least one information bit in a respective polar code reliable bit position, and each of at least one signature bit in a respective polar code unreliable bit position, where N = 2m where m>=2; and
    a polar code encoder configured to multiply the input vector by a polar code generator matrix to produce a polar codeword.
  16. The apparatus of claim 15 further comprising:
    a transmitter for transmitting the polar codeword, or a memory for storing the polar codeword.
  17. The apparatus of claim 15 wherein the at least one information bit comprises K information bits, K>=1, the apparatus further comprising:
    a CRC processor configured to process the K information bits to produce a u-bit CRC, where u >=1;
    wherein the input vector generator produces the N-bit input vector by inserting each of the u CRC bits in a respective polar code reliable bit position.
  18. The apparatus of claim 17 wherein the N-bit input vector has M signature bits, the K information bits, u CRC bits with at least one frozen bit, where N = 2m where m>=2, and the number of frozen bits is N-K-u-M.
  19. The apparatus of claim 16 wherein the transmitter is configured to convey the at least one M signature bit to a receiver separately from the transmission of the codeword.
  20. An apparatus comprising:
    an input vector generator configured to produce an N-bit input vector for polar encoding by:
    for each of P information blocks, where P>=2, producing a respective portion of the input vector, the respective portion starting with a respective set of at least one signature bit and also containing the information block, each of the sets of signature bits being different from each other; and
    combining the respective portions to produce the input vector; and
    a polar code encoder configured to multiply the input vector by a polar code generator matrix to produce a polar codeword.
  21. The apparatus of claim 20 further comprising:
    a CRC processor configured to process each information block to produce a respective set of CRC bits;
    wherein the input vector producer includes the respective set of CRC bits for each of the P information blocks in the respective portion of the input vector.
  22. An apparatus comprising:
    a receiver for receiving a codeword that was encoded with a polar code; and
    a decoder configured to polar code decoding of the received codeword by treating at least one signature bit as a frozen bit having a known signature bit value.
  23. The apparatus of claim 22 further configured receive information on signature bits used in the polar code separately from receiving the codeword.
  24. The apparatus of claim 22 further comprising:
    a CRC checker configured to verify a result of decoding using a CRC check.
PCT/CN2016/108234 2015-12-01 2016-12-01 Signature-enabled polar encoder and decoder WO2017092693A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187018283A KR102094719B1 (en) 2015-12-01 2016-12-01 Signable polar encoder and decoder
JP2018527894A JP6584036B2 (en) 2015-12-01 2016-12-01 Signature-compatible Polar encoder and decoder
CN201680065607.5A CN108352844B (en) 2015-12-01 2016-12-01 Signature-enabled polar encoder and decoder
EP16870003.7A EP3371890B1 (en) 2015-12-01 2016-12-01 Signature-enabled polar encoder and decoder
EP20202463.4A EP3800791A1 (en) 2015-12-01 2016-12-01 Signature-enabled polar encoder and decoder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562261590P 2015-12-01 2015-12-01
US62/261,590 2015-12-01
US15/364,521 2016-11-30
US15/364,521 US10581462B2 (en) 2015-12-01 2016-11-30 Signature-enabled polar encoder and decoder

Publications (1)

Publication Number Publication Date
WO2017092693A1 true WO2017092693A1 (en) 2017-06-08

Family

ID=58778265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108234 WO2017092693A1 (en) 2015-12-01 2016-12-01 Signature-enabled polar encoder and decoder

Country Status (6)

Country Link
US (3) US10581462B2 (en)
EP (2) EP3371890B1 (en)
JP (1) JP6584036B2 (en)
KR (1) KR102094719B1 (en)
CN (2) CN110545160B (en)
WO (1) WO2017092693A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506029A (en) * 2015-12-14 2019-02-28 アイディーエーシー ホールディングス インコーポレイテッド WTRU identification using polar code freeze bits
WO2019107452A1 (en) * 2017-11-29 2019-06-06 株式会社Nttドコモ Communication device and decoding method
JP2020532927A (en) * 2017-07-10 2020-11-12 アクセラーコム リミテッド Block parallel freeze bit generation for polar codes
US11012093B2 (en) 2017-12-05 2021-05-18 Cankaya Universitesi High-speed decoder for polar codes
US11025276B2 (en) 2016-05-12 2021-06-01 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (LDPC) code structure
US11031953B2 (en) 2016-06-14 2021-06-08 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (LDPC) code
US11043966B2 (en) 2016-05-11 2021-06-22 Qualcomm Incorporated Methods and apparatus for efficiently generating multiple lifted low-density parity-check (LDPC) codes
US11211947B2 (en) 2017-08-04 2021-12-28 Huawei Technologies Co., Ltd. Polar code encoding method and apparatus, polar code decoding method and apparatus, and device
US11671120B2 (en) 2015-11-12 2023-06-06 Qualcomm Incorporated Puncturing for structured low density parity check (LDPC) codes
US11811528B2 (en) 2017-08-02 2023-11-07 Huawei Technologies Co., Ltd. Polar code encoding method and apparatus in wireless communications
USRE49989E1 (en) 2017-06-10 2024-05-28 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581462B2 (en) * 2015-12-01 2020-03-03 Huawei Technologies Co., Ltd. Signature-enabled polar encoder and decoder
KR20180022175A (en) * 2016-08-23 2018-03-06 에스케이하이닉스 주식회사 Controller, semiconductor memory system and operating method thereof
US10849012B2 (en) * 2016-12-02 2020-11-24 Lg Electronics Inc. Method for performing decoding by terminal and terminal for performing same method
EP3533144A4 (en) 2017-01-09 2019-12-25 MediaTek Inc. Broadcast channel enhancement with polar code
CN115720128A (en) * 2017-01-09 2023-02-28 中兴通讯股份有限公司 Data processing method and device
CN108289006B (en) * 2017-01-09 2021-07-16 上海诺基亚贝尔股份有限公司 Method and apparatus for data processing in a communication system
CN109644008B (en) * 2017-02-10 2023-06-20 瑞典爱立信有限公司 Circular buffer rate matching for polar codes
CN114598424A (en) 2017-02-15 2022-06-07 中兴通讯股份有限公司 Data processing method and device
KR20230027317A (en) 2017-03-23 2023-02-27 퀄컴 인코포레이티드 Parity bit channel assignment for polar coding
US11211948B2 (en) * 2017-06-06 2021-12-28 Telefonaktiebolaget Lm Ericsson (Publ) Distributed CRC-assisted polar code construction
KR102452618B1 (en) * 2017-06-08 2022-10-11 삼성전자주식회사 Polar encoding and decoding using predefined information
DE102018113351A1 (en) * 2017-06-08 2018-12-13 Samsung Electronics Co., Ltd. Polar encoding and decoding using predefined information
CN107231215B (en) * 2017-06-18 2020-04-14 北京理工大学 Polarization code-based safe transmission method under parallel channel
CN110754052A (en) * 2017-08-04 2020-02-04 高通股份有限公司 Efficient interleaver design for polar codes
CN109391347B (en) * 2017-08-07 2021-10-22 华为技术有限公司 Coding and decoding method and device
US10536240B2 (en) 2017-08-07 2020-01-14 Huawei Technologies Co., Ltd. Channel encoding method and apparatus in wireless communications
US10903938B2 (en) 2017-08-21 2021-01-26 Mediatek Inc. Techniques of additional bit freezing for polar codes with rate matching
KR102409208B1 (en) * 2017-08-23 2022-06-15 삼성전자주식회사 Apparatus and method for determining polar code in wireless communication system
CN108234081B (en) * 2017-09-08 2019-02-12 华为技术有限公司 Coding method and device
CN108418658B (en) * 2017-09-08 2019-03-26 华为技术有限公司 Coding method and device
US10594439B2 (en) 2017-09-08 2020-03-17 Huawei Technologies Co., Ltd. Channel encoding method and apparatus in wireless communications to output a polar encoded bit sequence
WO2019047246A1 (en) * 2017-09-11 2019-03-14 Huawei Technologies Co., Ltd. Methods and apparatus for polar encoding
CN109600197B (en) * 2017-09-30 2023-04-07 华为技术有限公司 Polar code encoding method and encoding device
WO2019095190A1 (en) * 2017-11-16 2019-05-23 Qualcomm Incorporated Reduced overhead error detection code design for decoding a codeword
CN108092672B (en) * 2018-01-15 2021-03-19 中国传媒大学 BP decoding method based on folding scheduling
US10608669B2 (en) 2018-02-16 2020-03-31 At&T Intellectual Property I, L.P. Performance of data channel using polar codes for a wireless communication system
EP3841673B1 (en) * 2018-09-13 2024-06-19 Huawei Technologies Co., Ltd. Apparatuses and methods for mapping frozen sets between product codes and component polar codes
CN109361405B (en) * 2018-09-14 2021-09-21 北京理工大学 Transmission system and method based on prime number interleaving and polar code coding
CN111835474B (en) * 2019-04-19 2021-07-23 大唐移动通信设备有限公司 PBCH-based signal processing method and device
CN110061815A (en) * 2019-04-28 2019-07-26 中国石油大学(华东) A kind of polarization code coding method using partition strategy
US11063614B1 (en) 2019-11-21 2021-07-13 Cadence Design Systems, Inc. Polar decoder processor
US20230041939A1 (en) * 2020-01-20 2023-02-09 Nokia Technologies Oy Data privacy protection based polar coding
US11922179B2 (en) * 2020-03-04 2024-03-05 Red Hat, Inc. Migrating software and system settings between computing environments
CN116711219A (en) * 2021-01-04 2023-09-05 日本电信电话株式会社 Decoding device, decoding method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140173376A1 (en) * 2012-12-14 2014-06-19 Sungkyunkwan University Research & Business Foundation Encoding method and apparatus using crc code and polar code
CN103957015A (en) * 2014-05-12 2014-07-30 福州大学 Nonuniform quantizing coding method used for decoding LDPC code and application of method in decoder
CN104124979A (en) * 2013-04-27 2014-10-29 华为技术有限公司 Polar code decoding method and decoding device
CN104219019A (en) * 2013-05-31 2014-12-17 华为技术有限公司 Coding method and coding device

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8200207A (en) * 1982-01-21 1983-08-16 Philips Nv METHOD OF ERROR CORRECTION FOR TRANSFERRING BLOCK DATA BITS, AN APPARATUS FOR CARRYING OUT SUCH A METHOD, A DECODOR FOR USE BY SUCH A METHOD, AND AN APPARATUS CONTAINING SUCH A COVER.
US5353352A (en) * 1992-04-10 1994-10-04 Ericsson Ge Mobile Communications Inc. Multiple access coding for radio communications
AU2002233767B2 (en) * 2001-02-15 2005-01-06 Samsung Electronics Co., Ltd Apparatus and method for coding/decoding channels in a mobile communication system
US6950979B2 (en) * 2003-03-20 2005-09-27 Arraycomm Inc. Low complexity encoder and decoder
GB2461904B (en) 2008-07-17 2011-02-02 Martin Tomlinson Handoff communication system for internet radio
CN102035626B (en) 2009-09-30 2013-06-12 华为技术有限公司 Method and device for acquiring pre-coding matrix index
US8824543B2 (en) * 2010-06-18 2014-09-02 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Multilayer decoding using persistent bits
KR101271473B1 (en) 2011-06-27 2013-06-05 전북대학교산학협력단 Decoding method using polar code sequence
WO2013062548A1 (en) * 2011-10-27 2013-05-02 Empire Technology Development Llc Low complexity and power efficient error correction coding schemes
US9176927B2 (en) * 2011-11-08 2015-11-03 The Royal Institution For The Advancement Of Learning/Mcgill University Methods and systems for decoding polar codes
CN103220001B (en) * 2012-01-20 2016-09-07 华为技术有限公司 The interpretation method of polar code and code translator with cyclic redundancy check (CRC) cascade
US8347186B1 (en) * 2012-04-19 2013-01-01 Polaran Yazilim Bilisim Danismanlik Ithalat Ihracat Sanayi Ticaret Limited Sirketi Method and system for error correction in transmitting data using low complexity systematic encoder
KR101919934B1 (en) 2012-04-19 2018-11-20 삼성전자주식회사 Operating method of controller controlling nonvolatile memory device and mapping pattern selecting method of selecting mapping pattern mapping polar coded code word with multi bit data of nonvolatile memory device
CN102694625B (en) * 2012-06-15 2014-11-12 北京邮电大学 Polarization code decoding method for cyclic redundancy check assistance
US9503126B2 (en) * 2012-07-11 2016-11-22 The Regents Of The University Of California ECC polar coding and list decoding methods and codecs
WO2014021837A1 (en) * 2012-07-31 2014-02-06 Empire Technology Development Llc Entropy coding and decoding using polar codes
KR102015121B1 (en) * 2012-10-17 2019-08-28 삼성전자주식회사 Controller configured to control nonvolatile memory device and operating method of controller
CN107659384A (en) * 2012-11-16 2018-02-02 华为技术有限公司 The method and apparatus of data processing
KR102007770B1 (en) 2012-12-14 2019-08-06 삼성전자주식회사 Packet coding method and for decoding apparatus and method therof
US9083387B2 (en) * 2012-12-18 2015-07-14 Samsung Electronics Co., Ltd. Communication system with compound coding mechanism and method of operation thereof
CN103023618B (en) * 2013-01-11 2015-04-22 北京邮电大学 Random code length polar encoding method
US9362956B2 (en) * 2013-01-23 2016-06-07 Samsung Electronics Co., Ltd. Method and system for encoding and decoding data using concatenated polar codes
CN103973314A (en) * 2013-01-24 2014-08-06 中国科学院声学研究所 Signal coding and decoding method based on LDPC, receiving end and sending end
CN103414540A (en) * 2013-08-14 2013-11-27 南京邮电大学 Degraded eavesdropping channel rate compatible method based on Polar code
US9007241B2 (en) * 2013-09-16 2015-04-14 Seagate Technology Llc Reduced polar codes
CN103746708A (en) * 2013-10-25 2014-04-23 中国农业大学 Method for constructing Polar-LDPC concatenated codes
US9317365B2 (en) * 2014-03-06 2016-04-19 Seagate Technology Llc Soft decoding of polar codes
KR102128471B1 (en) 2014-03-11 2020-06-30 삼성전자주식회사 List decoding method for polar codes and memory system adopting the same
WO2015139248A1 (en) * 2014-03-19 2015-09-24 华为技术有限公司 Polar code rate-matching method and rate-matching device
US20150333775A1 (en) * 2014-05-15 2015-11-19 Broadcom Corporation Frozen-Bit Selection for a Polar Code Decoder
US10193578B2 (en) 2014-07-10 2019-01-29 The Royal Institution For The Advancement Of Learning / Mcgill University Flexible polar encoders and decoders
AU2014415500B2 (en) 2014-12-22 2019-01-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Polar code encoding method and encoding apparatus
US10581462B2 (en) * 2015-12-01 2020-03-03 Huawei Technologies Co., Ltd. Signature-enabled polar encoder and decoder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140173376A1 (en) * 2012-12-14 2014-06-19 Sungkyunkwan University Research & Business Foundation Encoding method and apparatus using crc code and polar code
CN104124979A (en) * 2013-04-27 2014-10-29 华为技术有限公司 Polar code decoding method and decoding device
CN104219019A (en) * 2013-05-31 2014-12-17 华为技术有限公司 Coding method and coding device
CN103957015A (en) * 2014-05-12 2014-07-30 福州大学 Nonuniform quantizing coding method used for decoding LDPC code and application of method in decoder

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDERSSON ET AL.: "Polar Coding for Bidirectional Broadcast Channels with Common and Confidential Messages", IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, vol. 31, no. 9, September 2013 (2013-09-01), XP011524962, DOI: 10.1109/JSAC.2013.130921
See also references of EP3371890A4
TAL ET AL.: "List Decoding of Polar Codes", IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 61, no. 5, May 2015 (2015-05-01), XP011578805, DOI: 10.1109/TIT.2015.2410251

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11671120B2 (en) 2015-11-12 2023-06-06 Qualcomm Incorporated Puncturing for structured low density parity check (LDPC) codes
JP2019506029A (en) * 2015-12-14 2019-02-28 アイディーエーシー ホールディングス インコーポレイテッド WTRU identification using polar code freeze bits
US11043966B2 (en) 2016-05-11 2021-06-22 Qualcomm Incorporated Methods and apparatus for efficiently generating multiple lifted low-density parity-check (LDPC) codes
US11025276B2 (en) 2016-05-12 2021-06-01 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (LDPC) code structure
US11239860B2 (en) 2016-06-14 2022-02-01 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (LDPC) codes
US11031953B2 (en) 2016-06-14 2021-06-08 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (LDPC) code
US11032026B2 (en) 2016-06-14 2021-06-08 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (LDPC) code
US11942964B2 (en) 2016-06-14 2024-03-26 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (LDPC) codes
US11496154B2 (en) 2016-06-14 2022-11-08 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (LDPC) code
US11831332B2 (en) 2016-06-14 2023-11-28 Qualcomm Incorporated High performance, flexible, and compact low-density parity-check (LDPC) code
USRE49989E1 (en) 2017-06-10 2024-05-28 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code
JP7365335B2 (en) 2017-07-10 2023-10-19 アクセラーコム リミテッド Electronic devices, integrated circuits, and methods for polar encoding
JP2020532927A (en) * 2017-07-10 2020-11-12 アクセラーコム リミテッド Block parallel freeze bit generation for polar codes
US11811528B2 (en) 2017-08-02 2023-11-07 Huawei Technologies Co., Ltd. Polar code encoding method and apparatus in wireless communications
US11211947B2 (en) 2017-08-04 2021-12-28 Huawei Technologies Co., Ltd. Polar code encoding method and apparatus, polar code decoding method and apparatus, and device
JP7028891B2 (en) 2017-11-29 2022-03-02 株式会社Nttドコモ Communication device and communication method
US11750320B2 (en) 2017-11-29 2023-09-05 Ntt Docomo, Inc. Communication apparatus and decoding method
WO2019107452A1 (en) * 2017-11-29 2019-06-06 株式会社Nttドコモ Communication device and decoding method
JPWO2019107452A1 (en) * 2017-11-29 2021-01-07 株式会社Nttドコモ Communication device and decryption method
US11012093B2 (en) 2017-12-05 2021-05-18 Cankaya Universitesi High-speed decoder for polar codes

Also Published As

Publication number Publication date
US20200287567A1 (en) 2020-09-10
JP2018536357A (en) 2018-12-06
US20170155405A1 (en) 2017-06-01
US11438011B2 (en) 2022-09-06
CN108352844A (en) 2018-07-31
US10680651B2 (en) 2020-06-09
CN110545160A (en) 2019-12-06
CN110545160B (en) 2020-07-14
EP3800791A1 (en) 2021-04-07
CN108352844B (en) 2024-01-30
JP6584036B2 (en) 2019-10-02
EP3371890B1 (en) 2020-10-21
KR20180087375A (en) 2018-08-01
US10581462B2 (en) 2020-03-03
US20180375532A1 (en) 2018-12-27
EP3371890A1 (en) 2018-09-12
KR102094719B1 (en) 2020-03-30
EP3371890A4 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
US11438011B2 (en) Signature-enabled polar encoder and decoder
CN108702161B (en) Systems and methods for polarization encoding and decoding
US10554223B2 (en) Apparatus and methods for polar code construction
US10484130B2 (en) Method and device for parallel polar code encoding/decoding
US10651973B2 (en) Method and apparatus for error-correction encoding using a polar code
US10454625B2 (en) System and method for employing outer codes with non-equal length codeblocks field
CN110719141B (en) Information transmission method, decoding method and device
US11018699B2 (en) Method and apparatus for controlling interleaving depth
EP3713096B1 (en) Method and device for decoding staircase code, and storage medium
KR102370903B1 (en) Method and apparatus for controlling interleaving depth
US20230171102A1 (en) Method and system for error correction coding based on generalized concatenated codes with restricted error values for code-based cryptography
Nair et al. Adaptive Security and Reliability using Linear Erasure Correction Codes
JPWO2019234923A1 (en) Transmitting device, receiving device, and encoding method
Cheng et al. A matrix based error correcting code

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201680065607.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2018527894

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870003

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187018283

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187018283

Country of ref document: KR