USRE47285E1 - Vacuum system and endoscopy arrangement for endoscopic vacuum therapy - Google Patents

Vacuum system and endoscopy arrangement for endoscopic vacuum therapy Download PDF

Info

Publication number
USRE47285E1
USRE47285E1 US15/846,725 US201215846725A USRE47285E US RE47285 E1 USRE47285 E1 US RE47285E1 US 201215846725 A US201215846725 A US 201215846725A US RE47285 E USRE47285 E US RE47285E
Authority
US
United States
Prior art keywords
negative pressure
vacuum
fluid collection
collection element
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/846,725
Other languages
English (en)
Inventor
Gunnar Loske
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lohmann and Rauscher GmbH and Co KG
Original Assignee
Lohmann and Rauscher GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45855755&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE47285(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE102011013743A external-priority patent/DE102011013743A1/de
Priority claimed from DE102011013744A external-priority patent/DE102011013744A1/de
Priority claimed from DE201210003129 external-priority patent/DE102012003129A1/de
Application filed by Lohmann and Rauscher GmbH and Co KG filed Critical Lohmann and Rauscher GmbH and Co KG
Priority to US15/846,725 priority Critical patent/USRE47285E1/en
Application granted granted Critical
Publication of USRE47285E1 publication Critical patent/USRE47285E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/916Suction aspects of the dressing specially adapted for deep wounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00094Suction openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/96Suction control thereof
    • A61M1/966Suction control thereof having a pressure sensor on or near the dressing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/00073Insertion part of the endoscope body with externally grooved shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00082Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00135Oversleeves mounted on the endoscope prior to insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00154Holding or positioning arrangements using guiding arrangements for insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/31Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the rectum, e.g. proctoscopes, sigmoidoscopes, colonoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/73Suction drainage systems comprising sensors or indicators for physical values
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/915Constructional details of the pressure distribution manifold
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/96Suction control thereof
    • A61M1/962Suction control thereof having pumping means on the suction site, e.g. miniature pump on dressing or dressing capable of exerting suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1042Alimentary tract
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/04Force
    • F04C2270/042Force radial
    • F04C2270/0421Controlled or regulated

Definitions

  • the invention herein relates to a vacuum system and an endoscopy arrangement for endoscopic vacuum therapy, in particular for endoscopic intracorporeal, intraluminal or intracavitary vacuum therapy.
  • Endoscopic examinations of the upper and lower gastrointestinal tract are diagnostic and therapeutic routine examinations.
  • the examination of the middle intestinal tract, especially the small intestine, is difficult because it is very long and extremely mobile.
  • extra long endoscopes are used in the so-called push enteroscopy
  • the so-called single or double-balloon enteroscopy is used.
  • the latter uses balloon systems on the endoscope and/or on the overtube; they are inflated during the examination and can press against the intestinal wall from inside. As a result, the endoscope or the overtube can become wedged against the intestinal wall, thereby allowing a deeper examination of the intestine.
  • Another possibility of examining the intestine is a photographic record via a swallowable video capsule.
  • Conventional vacuum sponge therapy low pressure wound therapy
  • An open-cell polyurethane sponge or other fluid collection medium is placed into the wound, sealed by means of a film, and then subjected to a vacuum. Wound cleansing and wound healing can take place under this arrangement.
  • a vacuum system for endoscopic intracavitary, intraluminal or intracorporeal vacuum therapy is proposed for the aspiration of body fluids, wound secretions or gases from a hollow space, such as a body cavity, a hollow organ, a tissue abscess or an intestinal lumen, especially while establishing a temporary endoscopic closure of an intestinal lumen.
  • the vacuum system comprises:
  • the invention is based on the finding that the experience of vacuum therapy in external wounds is not applicable to endoscopic vacuum therapy. Based on this fact, it recognizes a rapid build-up of the vacuum with a short evacuation period as an essential technical prerequisite that can determine the success of an endoscopic vacuum treatment.
  • the requirements of a vacuum pump unit for endoscopic vacuum therapy can be specified as follows according to the invention:
  • the negative pressure applied to a fluid collection element must be rapidly sufficiently high, so that the fluid collection element can be aspirated and adhere firmly to the surrounding tissue.
  • the vacuum must not be too high, so that, via an open-pore structure of a fluid collection member to be connected, it can achieve a drainage effect on the surrounding tissue.
  • the suction effect must not cause any injury to the aspirated tissue. In such cases, the adequate drainage effect at the wound is absent.
  • the suction capacity of the vacuum pump is, therefore, designed according to the invention herein and adjustable by means of the pressure regulating unit in such a way that a vacuum defined under these marginal conditions, can be built up within a very short period of time or at a rapid speed and can be maintained constant.
  • the therapy would be ineffective if the parameters concerning the vacuum build-up were not to correspond to the specific requirements. Only with a rapid vacuum build-up and its maintenance and, rapid restoration of the vacuum in case of need, for example with a typical treatment indication, namely, the treatment of esophageal injuries, a closure of the perforation defect and effective wound drainage will be implemented at the same time.
  • the permanently secured closure and the drainage against the physiological intrathoracic negative pressure in the direction of the esophageal lumen stops contamination by saliva or secretions toward the chest cavity and thus acts as a barrier to infection.
  • a dislocation of a fluid collection element may occur. Any interrupted or ineffective suction at the wound bed leads to a standstill in therapy or deterioration of the wound situation.
  • intraluminal treatment in the esophagus in case of an esophageal perforation the loss of the negative pressure can allow swallowed tough saliva secretions to get between the esophageal wall and the fluid collection element and lead to clogging of the pores and hence to discontinuation of the therapy.
  • insufficient pressure parameters can cause clogging of the pores by small or large intestine feces.
  • a permanent negative pressure is generated at the wound, avoiding a drop in the negative pressure subject to the therapy.
  • the vacuum is very rapidly restored by the vacuum system according to the invention.
  • a drop in the vacuum can occur both because of the swallowing of saliva, food, air and gas and because of intestinal peristalsis. The same applies to the application of vacuum therapy on the small intestine, large intestine or stomach or in the entire intestinal system.
  • the endoscopic vacuum therapy made possible by the invention involves a negative pressure therapy for internal wounds carried out using flexible endoscopes subject to endoscopic vision and using endoscopic techniques, vacuum drainage devices being intracorporeally introduced into hollow spaces in cavities (intracavitary), intestinal lumens (intraluminal) via natural or artificial body orifices.
  • the vacuum system according to the invention enables endoscopic vacuum therapy of internal wounds, some of which, if untreated, are associated with a high mortality rate or often require complex surgical treatment.
  • sealing in endoscopic vacuum therapy which can only take place because of the vacuum as a result of the abutting tissues, is less stable. Sealing and, therefore, the fixing of the fluid collection medium is exclusively caused by the fact that, as a result of the vacuum, the fluid collection element attaches itself to the tissue by suction similar to a suction cup and the vacuum is maintained permanently and constantly.
  • the invention is, therefore, based on the finding that, for successful implementation of endoscopic vacuum therapy, a vacuum system must meet the requirements specified by, set on and monitored by the pressure regulating unit.
  • a vacuum pump is provided, the suction capacity of which is controllable and which is designed to generate, within a short defined evacuating period of between 0.5 and 5 seconds, a specified negative pressure at the application site of the fluid collection element and then to maintain it at a constant value.
  • the invention is further based on the finding that an additional parameter, namely the volume of the wound cavity to be evacuated or the intestinal lumen, is negligible.
  • an additional parameter namely the volume of the wound cavity to be evacuated or the intestinal lumen.
  • the term vacuum is used in the specification herein as a synonym for the term negative pressure.
  • the inventor has found that, in practice, negative pressures of an amount of less than 60 mm Hg and an amount greater than 500 mm Hg are not be required and that insofar, the performance of the vacuum pump can be limited in favor of a design of limited performance but instead lighter and preferably portable by the patient.
  • a displacement pump such as a rotary piston pump, a rotary vane pump, a trochoid pump, a scroll pump, a piston pump, a helical pump, a rotary piston pump, a roller pump or a membrane pump is provided.
  • the vacuum pump to be provided in the vacuum system according to the invention shall, within the context of the specification herein, be understood to include combinations of at least two pumps or multi-stage pump systems.
  • the vacuum pump is for example equipped with two pumping stages.
  • the vacuum pump is preferably equipped with a pump combination.
  • the vacuum is generated via a prevacuum using a booster pump,
  • a parameter of the vacuum system according to the invention that is important for successful treatment is the period of time required for evacuation to the required negative pressure of the volume involved in each case in the sections of the hollow spaces to be treated.
  • the maximum suction capacity of the vacuum pump is designed in such a way that, taking into consideration the dead volumes that occur in practice, the pressure value of the vacuum specified according to the invention is reached within a short period of about half a second.
  • the maximum possible evacuation period lasts up to a few seconds, in particular up to a maximum of 2 seconds, in order to reach a defined continuous vacuum.
  • the pressure regulating unit is designed to control the vacuum pump in operation for achieving the vacuum within a range of values of the evacuation period that comprises the stated minimum and maximum values of the evacuation period. The negative pressure is maintained constant after the evacuation period.
  • Advantageous embodiments of the vacuum system additionally have, connected to the pressure regulating unit, a user input unit which is designed to accept a user input of the evacuation period and/or a negative pressure value and to transmit it to the pressure regulating unit.
  • the pressure regulating unit is designed to determine the control signal concerned, figuring in the current user input, and transmit it to the control input of the vacuum pump.
  • the operation of the vacuum system with an evacuation period of more than 5 seconds is possible via an appropriate user input on the user input unit (or on a hand piece or foot pedal, connected to the user input unit, to be operated by the physician.)
  • This can also be useful if, using a single pump system, the present focused vacuum endoscopy as well as a vacuum treatment of external wounds is to be feasible.
  • a certain temporary increase of the vacuum over the value intended for therapy may be indicated initially, hence at the beginning of therapy, for a short period of time, in order to assure a secure attachment of a drainage device at the therapy location.
  • a higher negative pressure is temporarily advantageous so that the fluid collection medium can be suctioned into place in such a way that it cannot accidentally be dislodged by an endoscope introduced into the body during this initial phase. But if so, in comparison to the total duration of therapy, this involves a relatively short initial period of time, for instance, 15 minutes, while the duration of therapy can typically extend over several days.
  • the user input will have a lockable mode switch that allows adjustment by the user of either a therapy mode or an endoscopy mode, the pressure regulating unit being designed to output only the second or third control signal but not the first control signal in the therapy mode and the predefined negative pressure value interval in the therapy mode extending over negative pressure values with respect to a surrounding pressure between a minimum negative pressure of 60 mm Hg and a maximum negative pressure of 250 mm Hg.
  • the locking of the mode switch is preferably only possible using a key, wherein key can also mean a code.
  • the success of the therapy is further improved if the evacuation period and the negative pressure are adaptable according to an examination or therapy to be carried out in each case.
  • the pathophysiological intrathoracic negative pressure and the pressure fluctuations caused by respiratory motion are directed against the suction effect of the vacuum pump. This physiological negative pressure must be cancelled out or counteracted by a very short vacuum pump evacuation period in the direction of the suction of the pump.
  • the pressure regulating unit and the vacuum pump are, therefore, designed for being able to build up the defined negative pressure as a function of incoming test signals at a frequency of at least 30 vacuum buildups/minute. This proves to be beneficial for carrying out an endoscopic vacuum sponge therapy on the upper gastrointestinal tract.
  • using the vacuum system up to 60, more preferably 120 vacuum buildups/minute can be carried out.
  • the evacuation period is adjustable by user input via the pressure regulating unit.
  • the vacuum system additionally has, connected to the pressure regulating unit, a user input unit which is designed to accept a user input of the evacuation period and to transmit it to the pressure regulating unit.
  • the pressure regulating unit is adapted to control the vacuum pump as a function of the user input, in order to generate the negative pressure in the specified evacuation period.
  • the pressure regulating unit is designed to support a selection between the following predefined therapy settings via the user input unit by appropriate predefined control parameters:
  • a negative pressure between 80 and 150 mm Hg (10665 to 20000 Pa) and selecting a maximum evacuation period of 2 seconds is advantageous.
  • the value of the negative pressure to be selected also depends on a contact surface of a fluid collection medium with the surrounding tissue. With a large contact area, compared to a small contact area, for fixing the fluid collection medium a lesser negative pressure may be required.
  • the user input unit is, therefore, preferably additionally designed to receive an additional input of an identification of a type of fluid collection element.
  • the pressure regulating unit is designed to determine, based on prestored therapy data, values assigned to the input type of the fluid collection element of the vacuum and/or the evacuation period, and to control the vacuum pump during operation in accordance with these determined values.
  • a continuous lasting negative pressure has essentially proven to be of value.
  • the pressure regulating unit to be designed to control the vacuum pump so as to apply the negative pressure fluctuating between at least two negative pressure values, for example between about 100 mm Hg and about 150 mm Hg.
  • the pressure regulating unit By applying a fluctuating negative pressure, the granulation stimulation of the wound can be increased.
  • a suction interruption lasting longer than a few seconds take place.
  • the pressure regulating unit is designed to monitor negative pressure values during a negative pressure application and an examination carried out using negative pressure. Sensors are connectable by either electrical, i.e. wired, or wireless communication to the pressure regulating unit of the vacuum system, so that preset negative pressure values of the vacuum pump to be generated can be monitored and adjusted by the pressure regulating unit. In this way, as a result of the pressure detection, monitoring and control of the pump suction can be performed directly on a fluid collection element by sensors. This prevents a therapy standstill from occurring, for example in case of clogging of the fluid collection medium or the fluid communication element. This is particularly important in the treatment of esophageal injuries, because otherwise an inflammation of the chest cavity occurs, which entails a tedious treatment and often leads to death.
  • the pressure regulating unit By evaluating the test signals arriving from the pressure sensors, comparing them to a nominal value in each case, the pressure regulating unit preferably also captures the evacuation period actually required.
  • the vacuum system is preferably provided with a vacuum drainage arrangement which is connected upstream of the vacuum pump on the negative pressure side.
  • the pressure regulating unit is, therefore, preferably designed to accept a user input of a collection container volume via the user input unit and to adjust the pump capacity additionally dependent on the entered volume. In doing so, the pressure regulating unit controls the pump capacity not only, as explained above, in accordance with the evacuation period desired by the user, but also additionally takes into account for this purpose the volume of the secretion collection container.
  • the pressure regulating unit is designed to figure in a secretion collection container volume as part of the dead volume.
  • different secretion collection container volumes may be required so that the pressure regulating unit must be able to use appropriately different dead volume values. They may, for instance, be saved in a memory of the pressure regulating unit and selected by user input.
  • alternatively coding, affixed to the secretion collection container per se and readable by the pressure regulating unit, may be captured, from which the applicable dead volume value can be derived.
  • the secretion collection container is designed to accept and/or discharge secretions and gas that occurs during operation and is aspirated by the vacuum pump.
  • the pump is additionally equipped with a negative pressure-resistant presecretion collection container, which is connected, in the direction of suction, upstream from the application site on the patient toward the vacuum pump and is connected to the secretion collection container conveying fluid.
  • the pressure regulating unit is then designed appropriately to figure in a secretion collection container volume as an additional part of the dead volume.
  • collected secretions can be conveyed from the presecretion collection container to the secretion collection container.
  • the presecretion collection container and the secretion collection container are connected to each other across a valve.
  • the presecretion collection container and the secretion collection container are connectable to each other via an interposable filter.
  • these collection containers and their connection to the vacuum are designed exchangeable.
  • suction build-up via the dead volume of the secretion collection container. If the suction build-up of the vacuum pump takes place via a secretion collection container, its dead volume, together with the suction capacity of the pump (L/min), substantially determines the rate of suction build-up.
  • the suction capacity of the vacuum pump is, therefore, preferably designed to evacuate additionally the dead volume which is formed by the secretion collection container and the presecretion collection container within the evacuation period.
  • the secretion collection container is connectable, via preferably negative pressure-resistant fluid communication elements, in particular drainage hoses, to a fluid collection element so that the negative pressure at the fluid collection element can be built up via the secretion collection container.
  • the pressure regulating unit is designed to figure in, as an additional portion of the dead volume, an additional volume, which forms at least one negative pressure-resistant fluid communication element, in particular a drainage hose, which is distally connectable to a fluid collection element and proximally to the secretion collection container or the presecretion collection container.
  • the evacuation period can be adjusted on the pressure regulating unit via an adjustment of a suction capacity of the vacuum pump.
  • the pressure regulating unit of the vacuum pump receives, in addition to the user input, as an additional input for adjustment via the test signal input, measured values from a negative pressure sensor, which is located by the hollow space to be evacuated. Details concerning the embodiment and placement of the sensor are discussed below.
  • a presecretion collection container used in these embodiments it is preferably connected to the vacuum pump in such a way that it can be subjected to a prevacuum.
  • the vacuum pump has two pump stages and is designed to generate the negative pressure at the examination/treatment site using a first stage of the two pump stages via a prevacuum in the presecretion collection container. It has the comparatively smaller volume of the two collection containers, in order to achieve as short an evacuation period as possible.
  • the presecretion collection container typically has a volume of 50 mL to 300 mL.
  • the secretion collection container typically has a volume of 100 mL to 1000 mL. But smaller or larger volumes can also be selected, subject to adjustment of the required suction capacity of the vacuum pump.
  • An additional preferred embodiment provides for a pressure regulating unit, which not only adjusts the capacity of the pump in accordance with the volume of the secretion collection container, but also takes into account a volume of a fluid collection element to be evacuated.
  • a pressure regulating unit which not only adjusts the capacity of the pump in accordance with the volume of the secretion collection container, but also takes into account a volume of a fluid collection element to be evacuated.
  • an additional user input via the user input unit is provided, which is forwarde to the pressure regulating unit, which, in turn, appropriately controls the pump capacity for achieving the evacuation period in each case. In doing so, an evacuation of the secretion collection containers is simultaneously carried out within the evacuation period.
  • the pump capacity is designed in such a way that, within the evacuation period, the dead space volume of the secretion collection container and the fluid collection element is evacuated.
  • a controllable pump capacity in the range of 1 L/min to 20 L/min is required.
  • the pressure regulating unit is equipped with a monitoring unit, which automatically monitors any excessive rise and/or reduction of the negative pressure, of the duration of the evacuation period as well as a duration of a negative pressure system and adjusts the pump capacity if specified limit values are exceeded.
  • a monitoring unit which automatically monitors any excessive rise and/or reduction of the negative pressure, of the duration of the evacuation period as well as a duration of a negative pressure system and adjusts the pump capacity if specified limit values are exceeded.
  • control signal input In addition to the control signal input, further switching and control elements, across which an operation of the vacuum pump can be carried out, are preferably provided on the vacuum pump.
  • the pressure regulating unit and the user input unit can be integrated as a structural unit with the vacuum pump.
  • At least one negative pressure sensor on the vacuum pump and/or at least one connection for an external negative pressure sensor is provided.
  • the negative pressure sensor is directly or indirectly connected to a fluid collection medium and/or fluid communication element that is connected to the vacuum pump and is designed to forward its test results as test signals to the pressure regulating unit of the vacuum pump.
  • the fluid communication elements are drainage hoses.
  • a vacuum can be built up on a single fluid collection element or a plurality thereof.
  • the vacuum pump is preferably designed for accomplishing any vacuum generation completely independent from each other.
  • the pump capacity of the vacuum pump is adapted to the higher demands of simultaneous negative pressure generation on various fluid collection elements.
  • the pressure regulating unit is designed to output control signals to individually controllable throttle elements which are arranged in each corresponding branch, in order to effect the individually adapted build-up of a vacuum in each case.
  • the vacuum pump is designed to generate a vacuum in endoscopic intracavitary and intraluminal vacuum therapy. It is, however, also usable in vacuum sponge therapy on external wounds. It is moreover usable in vacuum endoscopy.
  • the vacuum system is preferably designed as a portable unit, so that a patient can move as freely as possible and be mobile.
  • the electrical power supply of the pump is assured for example by a battery or battery pack.
  • the vacuum pump in treatment rooms may exist in the form of an integrated, centrally controlled vacuum wall suction device, which must be appropriately adjusted in its pumping capacity, in order to supply at least the vacuum required in accordance with the invention within the evacuation period necessary according to the invention.
  • the generation of the necessary vacuum can take place even without a separate vacuum pump, hence with the appropriately designed wall suction device replacing the vacuum pump.
  • the pressure regulating unit of the vacuum system according to the invention must be adapted in such an infrastructure, in order to be able to control vacuum pressure control elements, such as throttle elements depending on the given (usually not controllable) pumping capacity of the wall suction device as a function of time, so that the required negative pressures between fluid collection element and wall suction device are reached within the specified period of time.
  • vacuum pressure control elements such as throttle elements depending on the given (usually not controllable) pumping capacity of the wall suction device as a function of time
  • the user input unit of the vacuum system comprises an arrangement for manual control of the vacuum pump, by means of which a start signal for starting and a control signal for reduction of the vacuum on the fluid collection element for forwarding to the pressure regulating unit can be generated and output.
  • the user input unit is connected to one switching device or a plurality thereof on the handle of the endoscope; alternatively, operation of the pump via foot/hand switch or directly at the pump is also possible.
  • a switching unit on the endoscope or a foot switch is provided.
  • the vacuum system has a plurality of negative pressure-side connections for one drainage hose or a plurality thereof.
  • the pressure regulating unit in this embodiment is designed to control the vacuum pump upon an appropriate user input via the user input unit, optionally aspirating or flushing either unilaterally only one of the connections or alternating two of the connections or simultaneously two connections.
  • the vacuum on a plurality of fluid collection elements can be controlled simultaneously and independent from each other, which will be explained in more detail below within the framework of the description of the figures.
  • the endoscope is also connected to the vacuum pump of the vacuum system via a fluid communication element on the negative pressure side and has an additional fluid collection element.
  • This exemplary embodiment according to the invention in the form of an endoscopy arrangement is based on the finding that in balloon enteroscopy, known in the state of the art, adequate fixing of an endoscope or overtube by clamping the balloon to the intestinal wall is frequently not possible and, as a result, deeper examinations do not succeed.
  • the balloon can easily slip; in particular, sufficient fixation in the case of wide intestinal lumens (stomach/colon) is not possible. If the balloon is excessively inflated, there is a risk of intestinal wall injury and even wall rupture.
  • the endoscopy arrangement utilizes this finding for embodiment of an endoscopy arrangement for endoscopic intraluminal sponge vacuum therapy, in order to place one fluid collection element or a plurality thereof, for example sponge drainage devices, for example intraluminally, in the intestinal lumen and to anchor them at the placement site using a vacuum according to the parameters specified according to the invention.
  • the sponge drainage devices in this example with the vacuum applied to the sponge, attach themselves by suction to the intestinal mucosa and are fixed to the placement site by the negative pressure.
  • an endoscope and overtube need an anchoring arrangement against the adjacent tissue, such as the intestinal mucosa.
  • this anchoring is achieved by the attachment by suction of the sponge drainage device to the intestinal mucosa.
  • the treatment or examination method based thereon is also referred to as a vacuum endoscopy.
  • Endoscopic vacuum therapy is used in the treatment of internal wounds. Their effectiveness was first demonstrated in suture leaks at the rectum, then also in the case of intestinal leakages at other locations, such as esophagus, stomach, small and large intestines.
  • endoscopic vacuum therapy can also be used for wound treatment.
  • endoscopic vacuum therapy the natural or artificial means of access to hollow organs, gastrointestinal tract and body cavities are used endoscopically. Using the endoscope, sponge drainage devices are introduced internally, intracorporeally, intraluminally and intracavitary.
  • the sponge body is placed in the intestinal lumen at the defect level.
  • the sponge body is introduced through the defect into an (extraluminal) wound cavity. Both therapies may also be combined.
  • vacuum suction is applied to the led out drainage hose.
  • the wound cavity or the intestinal lumen collapses subject to the suction together with the elastic sponge body.
  • the sponge surface attaches by suction to the wound surface suction cup-like, and, at the same time, it fixes itself at the placement site by suction. Effective wound drainage takes place, at the same time the wound defect is closed.
  • the wound cleanses itself, granulation tissue forms and the wound heals as a secondary consequence.
  • An endoscopic exchange of the sponge drainage device is performed at multi-day intervals.
  • a special form of endoscopic vacuum sponge therapy does not aim at complete closure of a cavity, as explained above, but at maximum secretion discharge.
  • the sponge drainage device is also placed into a hollow organ, e.g. the duodenum (postpyloric vacuum duodenal drain) and subjected to suction.
  • the drainage effect is metered in such a way that complete intestinal sealing need not be achieved, but that the fluid collection medium becomes subject to suction to such an extent that optimal fluid conveyance is achieved (in the example of a duodenal placement, of pancreatic and biliary secretions from the intestinal lumen). It is conceivable to use this type of application in other hollow organs or cavities, where maximum secretion drainage is desired.
  • the vacuum pump is preferably connected to the sponge drainage unit by one fluid communication element or a plurality thereof in the form of drainage hoses and/or in the form of a channel in the endoscope, which may also be arranged, at least partially, in or on the sponge drainage unit.
  • the fluid communication element is fluid-conductive and connected, via orifices in its wall, to the fluid collection element.
  • These perforation openings are particularly advantageously located in a section between the proximal or distal end of the hose.
  • the perforation openings are advantageously located in the middle section of the fluid communication element.
  • the perforation openings are arranged in a plurality of sections between the proximal and the distal end of the hose.
  • the perforation openings preferably have a diameter of 1 mm to 10 mm.
  • the fluid collection medium Above the perforation openings of the hose wall, the fluid collection medium can be attached from the outside by means of gluing, suture or another means of attachment.
  • such fluid communication elements are equipped with dual lumen or even multiple channels.
  • Such a fluid communication element is suitable for flushing and aspirating via various channels.
  • At least one of the channels is preferably designed in its diameter in such a way that a wire-like negative pressure sensor can be temporarily or permanently introduced into the fluid communication element.
  • one half of the fluid communication element may have a small lumen and the other half a large lumen. This may be particularly advantageous especially when the drainage device can be placed in such a way that, for example in the presence of an esophagocutaneous fistula, one of the legs of the drainage device discharges percutaneously outward via the cutaneous fistula and the other drainage leg inward orally via the esophagus.
  • the of the fluid communication element leading out can be closed using clips.
  • a flushing treatment can also be carried out.
  • one of the legs can be used for suction, the other one for flushing.
  • the various diameters of the fluid communication element are continuously tapered and pass from the large lumen to the small lumen diameter without any gradation. This assures atraumatic placement of the drainage device.
  • the perforation openings are located in particular at the distal end of the hose.
  • a wire-like element can be introduced into the fluid communication element.
  • the fluid collection elements and the fluid communication elements are radiopaque.
  • the fluid communication elements have an inside diameter of 1 mm to 10 mm.
  • the fluid collection element having approximately cylinder shape, has an outside diameter of 5 mm to 30 mm.
  • the outside diameter of the fluid communication element and the fluid collection element are, in one embodiment, adapted to the inside diameter of an inner working channel of the endoscope, so that they are displaceable within the inner working channel and their placement can be undertaken via the inner working channel of the endoscope.
  • this achieves placement of the drainage device through small orifices subject to visualization.
  • minimizing the diameter achieves that, using the endoscopic techniques, the number of regions that are endoscopically reachable is increased and, as a result, can be easily supplied with a vacuum drainage unit.
  • the outside diameters of the fluid communication element and the fluid collection element are adapted to the inside diameter of an outer working channel of the endoscope in such a way that they are displaceable within the outer working channel and their placement can be undertaken via the outer working channel of the endoscope.
  • one drainage channel or a plurality thereof are integrated as fluid communication medium. They are cylindrical. These drainage channels are negative pressure-resistant, so that they do not collapse subject to the applied vacuum. They are connectable to the vacuum pump by negative pressure-resistant drainage hoses.
  • the drainage channels have, at their distal end in their walls, an opening or a plurality thereof, which fluid-conductively perforate the overtube outward in such a way that fluids and gases can be drained by suction.
  • the fluid collection element is attachable or attached, for example by gluing, string or clamping.
  • the fluid collection element that is fluid-conductive and connected to the fluid communication element can be placed both endoscopically, laparoscopically, thoracoscopically, intraluminally in open surgery, intracavitary, intracorporeally.
  • the sponge drainage unit is attached by the distal end of the endoscope and/or the distal end of the overtube unit.
  • a drainage hose is proposed, to the end of which the sponge drainage unit in the form of a polyurethane sponge body is sewn.
  • the sponge drainage unit has a circular or hollow cylindrical, hence tubular, base body.
  • an open-pore elastic compressible polyurethane sponge body Preferred is a pore size in the polyurethane foam body from 200 ⁇ m to 1000 ⁇ m, a pore size of 400 ⁇ m to 600 ⁇ m being particularly preferred.
  • the sponge can be adapted to the requirements by cutting its length and volume to size.
  • the fluid collection medium is an open-pore film.
  • a polyurethane sponge body can be enclosed in such an open-pore film.
  • the film may, for instance, be pulled over the sponge which is typically achieved by cutting.
  • the open-pore film is preferably designed as a small baggie and can be tied closed using a string.
  • the film may have a structure comprising two film sheets, which are fluid-conductive and connected, via pores, over their entire surface.
  • the length and thickness of the fluid collection element can be designed variable.
  • the fluid collection element in various embodiments is between 2 and 10 cm long, but other lengths are also possible depending on the application, as indicated below.
  • the fluid collection element has an outside diameter of 1.5 cm to 3.0 cm.
  • the fluid collection element is preferably 0.5 cm to 1.5 cm in diameter and 1 to 4 cm long.
  • the fluid collection element is preferably 1.5 cm to 2.5 cm in diameter and 4 cm to 10 cm long.
  • the central channel in the fluid collection element has a diameter of 0.5 cm to 1.0 cm but other diameters are also possible depending on the application.
  • the sponge body is graspable using grasping tongs, polyp grabbers or loops and insertable orthograde subject to endoscopic control. Placement may, however, be technically difficult. Visibility is restricted.
  • the internal wound orifices, through which the sponge body is inserted, for instance, in intracavitary therapy, are often small and angled and hard to access.
  • the mobility of the endoscope is restricted by the sponge drainage device.
  • the spaces to be endoscoped are narrow.
  • a blunt-ended sponge drainage device easily snags on the internal wound orifice or the intestinal mucosa.
  • the drainage hose therefore, preferably ends distally in a tip.
  • the tip of the drainage device is designed conically as well as, in particular, soft and atraumatic, in order to avoid injuries of any adjacent tissue.
  • the pointed-end distal end of the drainage hose may project beyond the distal end of the fluid collection element, but it may, instead, end in the sponge body.
  • a conically converging configuration of the hose end advantageously continues in an imposed sponge body of the sponge drainage unit in such a way that the sponge body continuously abuts the drainage device. This facilitates the drainage placement maneuver.
  • the projectile-like tapered tip of the drainage hose is also provided with a central channel in such a way that, as a result, a guidewire can be introduced.
  • the tip may advantageously be equipped with a transverse channel, through which, for instance, a string can be installed.
  • a device is attached that can be grasped using forceps, a hook, a loop or another insertion instrument.
  • a string or wire loop may be attached.
  • a grasping bead of metal or plastic may be attached.
  • a metal or plastic eyelet may be attached.
  • a string may be attached.
  • the string may for example be 1 cm to 250 cm long.
  • the string may be led out via the fistula using an endoscopic technique. If the tip is lost during the placement maneuver, the string can be used for recovery.
  • the pull-(through) technique can also be used for placement. The exchange maneuvers can be substantially simplified by using the pull-through technique.
  • the device which can be grasped using forceps, a hook, a loop or another insertion instrument is particularly designed tension-proof in such a way that the drainage device can be pulled by them through tissue, intestinal lumens, fistulas.
  • the device must be designed flexibly and atraumatically.
  • the pointed top-seated attachment is designed in such a way that, after application to the end of the drainage hose, the outside of the hose ends flush with the outside of the pointed top-seated attachment.
  • the string may be used for endoscopic, laparoscopic, thoracoscopic or open surgical rendezvous maneuvers. The intraoperative placement maneuver can thereby be substantially simplified.
  • the through-pull technique can be used when placing a sponge drainage into the esophagus, when a percutaneous endoscopic gastrostomy to the anterior gastric wall was installed.
  • a string can be introduced and taken outside through the mouth using a gastroscope.
  • the string is connected to the tip of the sponge drainage device and then, by pulling by the string, pulled to the placement site in the esophagus.
  • Intraluminal placement becomes much simpler.
  • the string is preferably attached to the sponge body or the drainage hose in such a way that it can be removed at any time. This is for example possible when the string is passed through a string loop or an eyelet in the form of a double string or infinite loop that is attached to the end of the drainage hose or sponge body. If the string is to be removed, the infinite loop is severed and pulled.
  • a longitudinal axis of the sponge drainage unit runs substantially parallel to the longitudinal axis of overtube.
  • a channel created in the sponge drainage unit encompasses the entire circumference of the overtube, a drainage hose introduced into the sponge drainage unit having openings there in its wall.
  • the fluid collection element may alternatively just partially encompass the overtube.
  • the fluid collection element is advantageously provided with a fluid-conducting outer coating that facilitates sliding with respect to the intestinal mucosa in the absence of any negative pressure.
  • this outer coating is a fluid-conducting film.
  • the film coating is advantageously hydrophilic, so that the fluid collection element can slide more easily on the mucosa. It is, however, important to assure that the outer coating can conduct the suction to be applied fluid-conductively and unabated onto the intestinal mucosa, in particular with the largest possible surface, so that the fluid collection element attaches itself by suction and becomes fixed in place.
  • the suction effect of endoscopic therapy can only develop on the wound surface in case of open sponge pores in the interior region of the sponge drainage unit.
  • the sponge body may become partially or completely clogged by swallowed viscous saliva.
  • the sponge body does not become attached by suction to the tissue across its entire surface but only partially via the open pores. If the pores become clogged with secretions, the sponge at these points cannot become attached by suction. It will be observed that, between clogged sponge surface and esophageal mucosa, saliva and secretions may drain even into the stomach, while during this process the sponge body is simultaneously still attached by suction to the mucosa via the pores that remain open.
  • the airtight delimitation required for vacuum build-up consists, on the one hand, in contact with the suction-attached tissue surface, on the other hand, in the surface sealing by clogging mucus or tough secretions. Under these conditions, an effective vacuum suction may continue to exist on the circumscribed mucosa or wound surface. However, if the pores of the sponge body are completely clogged by tough secretions, no suction effect can develop at the wound bed; the vacuum then exists only in the fluid-conducting system. Therapy comes to a standstill or there may even be worsening of the wound condition.
  • One embodiment of the endoscopy arrangement therefore, provides for the sponge body to have, on its outer surface, recesses for receiving a sensor, which can be inserted between intestinal wall and sponge body during the operation of the endoscopy arrangement.
  • a sensor which can be inserted between intestinal wall and sponge body during the operation of the endoscopy arrangement.
  • Such an additional sensor can be utilized for enteral feeding, stomach relief or flushing.
  • a vacuum can be applied to the sponge body while an additional sensor is simultaneously in place.
  • the sponge develops no direct suction effect on the intestinal wall. Neither are the typical sponge- and suction-caused mucosa and wound changes observed here.
  • the mucosa fits itself to the sponge surface so that the mucosa adheres nub-like in the pores of the sponge.
  • sections of the fluid collection element are provided with a surface seal for closure of the open pores.
  • the surface seal may be provided by an elastic adhesive, which can be applied to the surface of the sponge in liquid form or as a spray and cures here elastically.
  • the sealed surface of the sponge does not exert any suction effect on the mucosa or wound surface abutting here.
  • the sponge body then becomes attached by suction to the tissue surface across the surface of its open pores only.
  • an effective local vacuum can continue to be built up.
  • Appropriately targeted placement of the sponge body assures that the vacuum suction and the suction cup-like attachment of the sponge body by suction is undertaken only in a circumscribed tissue region. In this way, any potential tissue injury by the vacuum suction that does not require treatment is avoided.
  • the local vacuum suction can be applied at the location in need of therapy.
  • sealing may advantageously be undertaken on a third or half of the surface over the entire length of the sponge body.
  • different patterns for surface sealing are possible. Placing a partially sealed sponge body into the esophagus can achieve that, between the sealed sponge surface and the adjacent mucosa that is not exposed to the vacuum suction, saliva secretions, fluids can even empty into the stomach physiologically along the esophagus. Saliva retention is reduced, a liquid diet can be made possible.
  • a feeding tube for enteral feeding can also be installed.
  • the surface sealing can be produced using elastic films glued onto the sponge.
  • these films may be longitudinally profiled so that secretions can better drain along the film by capillary action in a distal direction.
  • Surface sealing may also be implemented using longitudinally halved elastic tubes which are attached to the sponge body by their convex side by gluing. With the mucosa abutting the concave side, a tubular tunnel is produced, through which secretions can drain, without being aspirated by the sponge body.
  • the stated different types of surface sealing may be combined with each other.
  • At least one tubular tube is integrated in the sponge body.
  • This allows a flow of secretions (e.g. flow of saliva to the stomach) through the sponge body subject to vacuum suction. Premature clogging of the sponge pores by viscous secretions is prevented or delayed, so that the vacuum can develop its effect at the wound bed or the mucosa better and for a longer period of time.
  • saliva retention can be prevented and enteral nutrition made possible in intraluminal vacuum therapy. Numerous new therapeutic possibilities arise from the use of this embodiment.
  • the fluid collection element should be provided with an additional complete channel in the longitudinal direction. Through this channel, another sensor can be introduced. It may be particularly advantageous to introduce a tubular tube, which passes through the entire length of the collection element and projects beyond it by the ends.
  • the tube has the same length as the fluid collection element, typically a sponge body. It is not fluid-conductive and not connected to the sponge body. Both at the proximal end and the distal end, it may be provided with a tulip-shaped flare. The tube does not collapse when the vacuum is applied, hence is negative pressure resistant. The tube is flexible, without breaking off as a result of kinking.
  • the tube serves as fluid pass-through element for viscous secretions, such as saliva or feces.
  • the endoscope can also be introduced into the fluid pass-through element.
  • sensors, endoscopic instruments, a guidewire or an elastic installation and placement rod can also be introduced.
  • an endoscope can likewise be introduced.
  • an endoscope can also be used as a guide element for installing a vacuum system with fluid pass-through element. The fact that the endoscope per se can be used as a guide rail for sponge drainage greatly simplifies the maneuver; full endoscopic control and visibility are gained and work steps are saved in the placement of the fluid collection element.
  • the endoscope need not be removed from the body.
  • the endoscope preferably has a diameter between 5 mm and 10 mm.
  • the tube may be fixed in the sponge body by means of a suture, gluing or in another manner. But no special attachment of the tube within the channel of the fluid collection medium is necessary. On the contrary, if no attachment is carried out, this is especially advantageous. Because, in that case, in a removal maneuver, the tube can be easily removed from it, independent of the sponge body. This is particularly advantageous when the sponge body adheres very firmly to the intestinal wall and is mechanically detached from the wall using an endoscope. With suction applied, the tube is fixed by vacuum suction in the sponge body.
  • a pusher For placement of a vacuum drainage system equipped with such a fluid pass-through element (i.e. the sponge drainage unit, possibly including the overtube,), a pusher may be used.
  • the pusher has a tube, into which an installation and placement rod or an endoscope can also be introduced.
  • the pusher can be moved sliding on these guide elements.
  • a vacuum drainage system can be moved toward the distal end and can, as a result, be separated from the guide element at the placement site.
  • the pusher is advantageously provided with a longitudinal slot so that, at any time during an examination, they can be placed laterally onto an endoscope or removed.
  • the distal end and the proximal end of the fluid pass-through element are radially divided and are movable outward hinge-like or wing-like outward with respect to a central tube section of the fluid pass-through element.
  • all sections of the fluid pass-through elements abut it.
  • the sponge body collapses, contracts and attaches itself to the intestinal wall by suction.
  • the movable ends of the fluid collection element unfold hinge-like and spread open tulip-like.
  • the vacuum drainage device becomes anchored at the placement site in a proximal and distal direction.
  • saliva and/or secretions can accumulate more easily in the fluid pass-through element and can be passed through the fluid collection element, without being aspirated.
  • This embodiment can be applied particularly advantageously for passing through physiologically accumulating secretions, such as (depending on the application site) saliva, small intestine or large intestine feces or air.
  • physiological oral enteral feeding and/or the insertion of feeding or stomach relief sensors is possible. In a treatment involving the colon, this allows feces to be evacuated and the installation of an artificial anus to be avoided.
  • the ends of the fluid pass-through element can also consist of an elastic film or other surface seals.
  • a channel located in the sponge body can be equipped with a surface seal.
  • This internal surface seal is advantageously made of a longitudinally profiled film, along which secretions are also preferably drained by capillary action, in this way preventing clogging of the sponge body in the intestinal wall contact area.
  • the surface seal extends to the proximal end and the distal end of the sponge body.
  • the overtube forms a flexible plastic sleeve fitted to the length of the endoscope in the direction from proximal to distal (hereinafter the longitudinal direction), into which the endoscope can be inserted.
  • the length will advantageously be selected in such a way that the overtube is approximately 20 cm-80 cm shorter than the endoscope. Over this difference in length, both can be moved back and forth relative to each other in the longitudinal direction.
  • the overtube can be designed with different lengths and diameters. Moreover, it is advantageously designed of a material that allows individually adapting its length to the length of the endoscope, e.g. by cutting if off at the proximal end and/or the distal end. Preferably, the overtube is between 80 cm and 160 cm long. But other lengths are also possible.
  • the inside diameter of the overtube is preferably only slightly wider than the outside diameter of the endoscope, so that both can be easily moved relative to each other and the overall diameter does not become too large.
  • the inside diameter will be 8 mm to 15 mm wide, but other inside diameters are also possible.
  • the outside diameter is 10 mm to 25 mm wide, but other outside diameters are also possible.
  • a lubricant can be used.
  • the outer sleeve of the endoscope, the inside and the outside of the overtube are coated using a low-friction, especially additionally hydrophilic material.
  • the proximal end of the overtube has a funnel-shaped enlargement so that an endoscope can be more easily inserted.
  • a valve-like closure is provided, through which insertion of an endoscope is possible, escape of examination gas or secretions is prevented.
  • the lumen is tapered at the distal end, so that it abuts the endoscope and, as a result, prevents gradation, which would make pushing the entire unit forward difficult or rather facilitates sliding relative to the endoscope.
  • the overtube has, immediately proximal and distal relative to the imposed fluid collection element, an annular lip-like thickening, so that during suction build-up proximally and distally relative to the sponge, at the connection of the lip to the intestinal wall, an intimate connection and thus a better seal is created, which facilitates vacuum build-up at the sponge.
  • the annular swells are produced elastic.
  • the swells are also slotted like the overtube.
  • the sponge drainage device has a support sleeve. It is designed in such a way that it can be mounted on top of the overtube and/or the endoscope and removed again. It is particularly designed in such a way that, fluid-conducting, it connects the drainage hose that is situated in the overtube and/or the endoscope and the fluid collection element, hence the sponge of the sponge drainage device.
  • the support sleeve is attachable, together with the fluid collection element, on the overtube/the endoscope by means of gluing, adhesive tape, elastic, string or any other fastening option above the suction ports or is already attached accordingly during their production.
  • the use of the overtube/endoscope is, however, optionally possible, depending on the application, with or without fluid collection element.
  • the overtube and the imposed fluid collection element and the support sleeve are preferably longitudinally slotted over their entire lengths.
  • the longitudinal slot offers the advantage that, at any moment during an endoscopic examination, the overtube can be attached to an endoscope and also removed again.
  • This slot can be closed by gluing, adhesive tape, string, zipper or any other technical means.
  • the closing mechanism is preferably designed in such a way that it can be repeatedly opened and closed.
  • the support sleeve has, at its proximal and its distal end, annular swells.
  • An annular lip can also be attached to the proximal and/or distal end of the fluid collection element.
  • this lip is attached to the fluid collection element by gluing.
  • the annular lip-like swell is created by stable compression and adhesion of the fluid collection medium. The fluid collection element is placeable on the overtube from the side.
  • the fluid collection element consists of an open-pore thin fluid-conductive film. It has the particular advantage that the diameter of the overtube in the area of the fluid collection element is not substantially increased and that, as a result, the overtube can slide freely. It is, however, important to assure that the open-pore film can be fluid-conductive and forward the suction to be applied unabated, so that the fluid collection element becomes attached by suction and is fixed in place.
  • the overtube is designed so as to receive a plurality of fluid collection elements and drainage hoses in different longitudinal sections. This advantageously assures that the anchoring of the overtube not only takes place at the distal end, but also in other locations along the overtube, too.
  • working channels may be provided, which extend longitudinally from proximal to distal inside the overtube. Like the overtube, they may also be designed longitudinally slotted for opening and closing. These working channels can be used for flushing, aspirating or inserting instruments.
  • Overtube as well as endoscope are preferably provided with measurement markings so that, on the one hand, the penetration depth can be determined, but on the other hand, it is possible to measure in how far both are displaced relative to each other.
  • Vacuum enteroscopy can be carried out using conventional endoscopes.
  • a conventional endoscope with a vacuum sponge overtube only the vacuum anchor is used by the vacuum on the fluid collection medium of the overtube.
  • the length of the overtube should be selected shorter than that of the endoscope so that mobility relative to the endoscope is possible.
  • the endoscope has a length between 120 cm and 220 cm, but other lengths are also possible.
  • the endoscope has an outside diameter of 8 cm to 12 mm. But other outside diameters are also possible.
  • Integrated in the endoscope are preferably one or more fluid communication elements. They are preferably designed as negative pressure-resistant plastic channels in a wall of the endoscope, which, as a special preference, are fluid-conductive and perforate the outer sleeve of the endoscope at the distal end of the endoscope with a perforation opening or a plurality thereof and terminate here. These negative pressure-resistant suction channels are connected to the vacuum pump via negative pressure-resistant fluid-conducting connections, so that fluids and gas can be drained by suction.
  • the fluid communication element (the channel) in the endoscope is preferably cylindrical. Preferably, the channel is arranged parallel to a longitudinal axis of the fluid collection element.
  • Such an endoscope can be used with or without any fluid collection element.
  • the special endoscope With the special endoscope, conventional examinations can be performed, too.
  • the channel of the fluid collection element encompasses the entire circumference of the endoscope at the level of the openings of the fluid communication element.
  • the fluid collection element can also be only partially encompass the endoscope.
  • the fluid collection element consists of an open-pore thin fluid-conducting film. It has the special advantage that the diameter of the endoscope in the area of the fluid collection element is not substantially larger and that, as a result, the endoscope can slide unimpeded. It is important to assure that the open-pore coating can direct the suction to be applied and is fluid-conductive, so that the fluid collection element becomes attached by suction and is fixed in place.
  • the longitudinal axis of the fluid collection element substantially coincides with the longitudinal axis of the endoscope or is at least parallel to it.
  • the channel is preferably arranged parallel to an axis of symmetry of the fluid collection element.
  • endoscopic instruments in the endoscope can be guided to the distal end of the endoscope.
  • surgical procedures such as a tissue resection, can be performed under endoscopic vision.
  • the endoscope may for example have one or 2 working channels. As a result of the arrangement within the endoscope, these inner working channels have very small sizes, in order to achieve the smallest possible device diameter for the endoscope.
  • a preferred embodiment provides for a guide sleeve, which is attached to the endoscope, at its distal end, for instance, and provides an additional external insertion accessory for endoscopic instruments or accessories and/or a flushing and aspiration channel.
  • the sleeve is a dimensionally stable hose or a tubular structure, which does not collapse or break off as a result of kinking. It is flexible, in order to allow following the movements of the endoscope.
  • Another advantage over the internally located guide channels is the fact that an outer guide channel may have a larger diameter. With this guide sleeve, the endoscope is equipped with additional outer working channels, which allows extending the endoscopic treatment options.
  • the guide sleeve may be sealed by a valve, in order to prevent the escape of an examination gas.
  • the guide sleeve allows simultaneous attachment of an outer guide channel or a plurality thereof. It may be produced with different diameters.
  • the fastening accessory on the endoscope may be designed in the form of a sleeve encompassing the endoscope, elastic, adhesive tape or any other type of fastening device.
  • the fastening accessory can be designed in such a way that even removal of the external guide accessory would be possible in the inserted endoscope.
  • New endscopic treatment options result from the possibility of removability of the guide sleeve.
  • the outer insertion accessory can, for instance, also be used for pushing forward a guidewire for other endoscopic accessories.
  • the outer working channel can be removed and, for instance, a stent can be introduced via the guidewire subject to optical monitoring of the endoscope that is in place within.
  • the endoscope need not be removed to perform the procedure.
  • the vacuum drainage device in analogy to the inner working channel of the endoscope, it can instead be directly inserted through the lumen of the outer working channel at the placement site.
  • the lumen of the outer working channel is wider than in the case of an inner working channel, so that, utilizing the advantages of direct endoscopic guidance, a vacuum drainage device may be more bulky.
  • the working channel is distally provided with lateral perforation openings and connected to a fluid collection element and can thus, by itself, be used as a sponge drainage device.
  • the insertion sleeve may also be produced longitudinally slotted. This allows for an instrument inserted through the sleeve, with the endoscope horizontal, to be laterally released from the sleeve and additional removable instruments could be inserted via the slotted insertion accessory.
  • the sensor can be applied in both the vacuum therapy sponge therapy on external visible wounds and on intracorporeal wounds which are not visible from the outside, in order to measure the vacuum that is actually being applied to the wound.
  • the sensor can be inserted both in wound treatment using the fluid collection element.
  • the sensor one sensors are connected, either wired or wireless, to the pressure regulating unit of the vacuum system, in one variant directly connected to the vacuum pump, so that preset required negative pump pressure values to be generated can be monitored and regulated.
  • the sensor can be placed on the polyurethane sponge, be applied abutting the sponge, or between sponge and drainage. But it may instead be arranged within the fluid-conducting system of the drainage hose.
  • a plurality of sensors exist for measuring the generated negative pressure. If multiple sensors exist, they can also perform measurements at different locations and transmit them, for example at the negative pressure side pump output, in the secretion container, at the fluid collection element or in a fluid communication element.
  • At least one of the sensors is permanently integrated in the pump system.
  • at least one of the sensors is designed so as to be retroactively introducible, for example into a fluid communication element.
  • the drainage unit can be designed in such a way that the sensor is integrated in the system from the start, but it can instead be retroactively applied to/in the fluid collection element, after the fluid collection element has been inserted into the wound.
  • it can be conducted all the way to the fluid collection element or the wound inside the fluid communication element, or it can be conducted to the wound site separately in a second fluid communication element.
  • FIG. 1a is a schematic representation of an exemplary embodiment of a vacuum system
  • FIG. 1b is a block diagram with further details of the pressure regulating unit of the vacuum system of FIG. 1a ;
  • FIG. 2 is a partial longitudinal section of the vacuum system of FIG. 1a ;
  • FIG. 3 is a schematic representation of another exemplary embodiment of a vacuum system
  • FIG. 4 is a schematic representation of an arrangement of a fluid collection element
  • FIG. 5 is a schematic partial longitudinal section of the arrangement of FIG. 4 ;
  • FIG. 6 is a longitudinal section of a fluid collection element 64 , which is connected, fluid conducting, to two fluid communication elements 63 ,
  • FIG. 7 is a longitudinal section of a fluid collection element, in which both a fluid conducting fluid communication element and imposed on it, a wire-like negative pressure sensor is arranged.
  • FIG. 8 shows an embodiment of a longitudinally slotted overtube
  • FIG. 9 is a longitudinal section of FIG. 8 ;
  • FIG. 10 is a cross-section of an overtube
  • FIG. 11 is a cross-section of a different variant of an overtube
  • FIG. 12 shows an additional embodiment of an overtube
  • FIG. 13 is a cross-section of the overtube of FIG. 12 ;
  • FIG. 14 is a different representation of the embodiment of FIGS. 12 and 13 ;
  • FIG. 15 is a longitudinal representation of FIG. 14 ;
  • FIG. 16 is a representation of an overtube, which forms a variant of the overtube of FIGS. 12 to 15 ;
  • FIG. 17 is a representation of a different variant of an overtube
  • FIG. 18 is a longitudinal section of the overtube of FIG. 17 ;
  • FIG. 19 shows a variant of the representations of the embodiments of FIG. 17 and FIG. 18 ;
  • FIG. 20 is a longitudinal section of the overtube FIGS. 18 and 19 ;
  • FIG. 21 is an additional longitudinal section of the overtube of FIGS. 18 to 20 ;
  • FIG. 22 is a representation of a distal end of an endoscope
  • FIG. 23 is a longitudinal section of the endoscope of FIG. 22 ;
  • FIG. 24 is an additional longitudinal section of the endoscope of FIG. 22 ;
  • FIG. 25 is a representation of a fluid collection element suitable for use on the overtube, the endoscope and the support sleeve;
  • FIG. 26 is a longitudinal section of the fluid collection element of FIG. 25 ;
  • FIG. 27 is a representation of a different fluid collection element
  • FIG. 28 is a longitudinal section of FIG. 27 ;
  • FIG. 29 is a representation of a support sleeve for a fluid collection element
  • FIG. 30 is a longitudinal section of the support sleeve of FIG. 29 ;
  • FIG. 31 is a representation of a support sleeve having, attached on it between lip-like rings, a longitudinally slotted fluid collection element;
  • FIG. 32 is a longitudinal section of the support sleeve FIG. 31 ;
  • FIGS. 33 a-i show different variants of cross-sectional profiles of lip-like ring closures
  • FIG. 34 is a representation for explaining, how a flexible endoscope is inserted or removed via the longitudinal slot of the overtube;
  • FIG. 35 shows an endoscopy arrangement according to a different exemplary embodiment
  • FIGS. 36 a-n show a schematic representation of the examination process of a video endoscopy treatment
  • FIG. 37 is a representation of a vacuum drainage with partial surface sealing of the sponge body
  • FIG. 38 is a longitudinal section of the fluid collection element of FIG. 37 ;
  • FIG. 39 is a representation of a different embodiment of a vacuum drainage
  • FIG. 40 is a longitudinal section of the vacuum drainage of FIG. 39 ;
  • FIG. 41 is a representation of a vacuum drainage with a profiled surface seal
  • FIG. 42 is a cross section of the vacuum drainage of FIG. 41 ;
  • FIG. 43 is a representation of a vacuum drainage with a tube attached in a sponge body
  • FIG. 44 is a representation of a different embodiment of a vacuum drainage having a tube attached in a sponge body
  • FIG. 45 is a longitudinal section of the vacuum drainage of FIG. 43 ;
  • FIG. 46 is a representation of an additional embodiment of a vacuum drainage having a drainage hose in a sponge body
  • FIG. 47 is a longitudinal section of an additional vacuum drainage having a tube situated in the sponge body
  • FIG. 48 is a representation of the vacuum drainage of FIG. 47 , in this representation, a negative pressure being applied to the drainage hose;
  • FIG. 49 is a representation of an additional embodiment of a sponge drainage
  • FIG. 50 is a longitudinal section of the sponge drainage of FIG. 49 ;
  • FIG. 51 is a representation of an additional embodiment of a sponge drainage
  • FIG. 52 is a longitudinal section of the sponge drainage of FIG. 51 ;
  • FIG. 53 is a representation of an additional embodiment of a sponge drainage
  • FIG. 54 is a longitudinal section of the sponge drainage of FIG. 53 ;
  • FIGS. 55 a to h show different variants of a distal end of a sponge drainage, each in a longitudinal section.
  • FIGS. 56 a to f are different representations of a drainage hose and pointed top-seated attachments
  • FIGS. 57 a to f are different representations of an endoscopic insertion instrument
  • FIGS. 58 a to e are different representations of an additional endoscopic insertion instrument
  • FIG. 59 is a representation of insertion accessory with a sleeve for attachment to a distal end of an endoscope
  • FIG. 60 is a representation of two different different-size insertion accessories
  • FIG. 61 shows a cross section of an insertion accessory and of an attachment sleeve with a valve
  • FIG. 62 shows a representation of an insertion accessory with an attachment sleeve on a distal end of an endoscope
  • FIG. 63 is a representation of an insertion accessory with an attachment sleeve on a distal end of an endoscope.
  • FIG. 1a is a schematic representation of an exemplary embodiment of a vacuum system having a vacuum pump 11 , a secretion container 12 on the pump, a fluid communication element 13 , which leads from the vacuum pump to a fluid collection element 14 .
  • a negative pressure sensor 16 is introduced, which electronically transmits to the vacuum pump, via a pressure regulating unit 17 , measured values for adjusting, presetting and controlling via connecting elements 18 .
  • the pressure regulating unit 17 has a test signal input for receiving test signals from negative pressure sensor 16 .
  • the latter is designed to control the vacuum pump 11 during operation for generating and maintaining a vacuum at the hollow space to be treated at a predetermined negative pressure of, in this example, between 60 mm Hg and 500 mm Hg, within a predetermined evacuation period between 0.5 and 5 seconds.
  • the vacuum pump 11 has a control input 11 . 1 .
  • FIG. 1b shows a simplified block diagram with further details of the pressure regulating unit 17 of the vacuum system of FIG. 1a .
  • the pressure regulating unit 17 has a control unit 17 . 1 implemented as a programmable microprocessor or a microcontroller or a special integrated circuit (ASIC).
  • the control unit receives test signals generated by the negative pressure sensor 16 .
  • the user input unit UI Via the user input unit UI, the physician can input parameters, such as a negative pressure to be set, an evacuation period and a potentially present dead volume. This input need not necessarily take the form of specific values.
  • predefined therapy or examination type by menu selection or text input, for which purpose, in a memory 17 . 2 of the pressure regulating unit, predefined negative pressure parameters (if applicable, of its development over time) and the evacuation period are stored and can be called up via the input.
  • predefined negative pressure parameters if applicable, of its development over time
  • the dead volume that may have to be taken into account for determining a suction capacity of the connected vacuum pump 11 can be either input quasi automatically by user input, alternatively instead by reading in a code.
  • the pressure regulating unit is designed to determine the required suction capacity of the pump using the negative pressure value on the hollow space to be treated, which (value) is selectable from a predefined negative pressure value interval (automatic value monitoring for reliability after input, using prestored threshold values) and an evacuation period, the value between 0.5 and 5 seconds of which is selectable.
  • a predefined negative pressure value interval automatic value monitoring for reliability after input, using prestored threshold values
  • an evacuation period the value between 0.5 and 5 seconds of which is selectable.
  • the dead volume must, as a principle, be taken into account as well. It can be neglected for mere maintenance of a vacuum in a variant. In case iii) it must, however, preferably be taken into account.
  • a switch S which may even be directly integrated into the user input unit UI, it is possible to switch from an endoscopy mode to a therapy mode and back.
  • the difference between the modes lies in the range of values available for the negative pressure. No patient should be exposed to high negative pressure values in the therapy mode without a physician present. Such higher negative pressure values are, therefore, only available in the endoscopy mode.
  • Another difference lies in the input options via the user input unit UI. They are limited in the therapy mode, so that the patient cannot make any undesirable, harmful parameter changes.
  • the switch is secured by a key and can only be activated by the treating physician.
  • FIG. 2 is a partial longitudinal section of the vacuum system of FIG. 1 .
  • the negative pressure sensor 16 is inserted, which, via the pressure regulating unit 17 , transmits the measured values for regulating, preadjusting and controlling to the vacuum pump by means of connecting elements 18 .
  • FIG. 3 is a schematic representation of a different exemplary embodiment of a vacuum system with a presecretion container 39 for faster suction build-up and with secretion container 32 .
  • the presecretion container is connected to the secretion container via a filter/valve 310 .
  • the pressure regulating unit 37 for the negative pressure values, time settings, evacuation periods and for alarm functions is connected to vacuum pump 31 by means of connecting elements 38 .
  • a fluid collection element 34 is connected to the pump unit by means of a fluid communication element 33 .
  • FIG. 4 is a schematic representation of an arrangement of a fluid collection element 44 , which is fluid-conducting and connected to a fluid communication element 43 .
  • a wire-like negative pressure sensor 46 has been pushed forward up to the fluid collection element 44 .
  • the negative pressure sensor is connected to a measuring and pressure regulating unit 47 , which can forward the test signals of the negative pressure sensor via an electronic connection 48 .
  • FIG. 5 is a schematic partial longitudinal section of the arrangement of FIG. 4 .
  • the fluid collection element 44 is connected to the fluid communication element 43 , at the distal end of which fluid-conducting openings 412 exist for suction.
  • a wire-like negative pressure sensor 46 has been advanced up to the fluid collection element.
  • the test probe is connected to a measuring and pressure regulating unit 47 , which can forward the information via an electric connection 48 .
  • FIG. 6 is a longitudinal section of a fluid collection element 64 , which is fluid-conducting and connected to two fluid communication elements 63 into one of the fluid communication elements, a wire-like negative pressure measuring sensor 66 has been advanced up to the fluid collection element. At its distal end, a negative pressure sensor 613 is attached. Another negative pressure sensor 613 a exists in the fluid collection medium.
  • FIG. 7 is a longitudinal section of a fluid collection element 74 , in which is arranged both, a fluid-conducting fluid communication element 73 and, imposed on it, a wire-like negative pressure sensor 76 .
  • the negative pressure sensor 76 is connected to a pressure regulating unit 77 and is equipped, at its distal end, with a negative pressure sensor 713 which is located in the fluid collection element.
  • the pressure regulating unit is enhanced by an alarm function. Electronic control signals are transmitted for regulation of the negative pressure, in particular to the vacuum pump. Alarms regarding a malfunction can be triggered.
  • FIG. 8 is a representation showing an embodiment of a longitudinally slotted overtube 81 .
  • overtube 81 is conically tapered to prevent injury during insertion. Over the entire length, a complete slot 86 V exists.
  • overtube 81 is designed funnel-shaped to facilitate insertion of an endoscope.
  • the overtube is provided with a fluid communication element 84 V in the form of a drainage line, which is integrated in the wall and extends from proximal to distal. It ends at the distal end in lateral openings 85 V and perforates the wall of the overtube by means of them. At the proximal end, it exits hose-like ( 84 V) and can be connected here to the vacuum device.
  • FIG. 9 is a longitudinal section of the overtube 81 of FIG. 8 , including representation of overtube 81 , which tapers at the distal end 82 , widens funnel-shaped at the proximal end 83 , and includes fluid communication element 84 V, which ends at its distal end in fluid-conducting wall openings 85 V, and is conducted out hose-like from the wall.
  • FIG. 10 is a cross-section of a different exemplary embodiment of an overtube 101 with a fluid communication element 104 V integrated in the wall.
  • the overtube 101 is shown with a longitudinal slot 106 V.
  • FIG. 11 is a cross-section of a different variant of an overtube 111 , having, integrated in the wall, a fluid communication element 114 V, which is fluid-conducting and perforates the wall by means of an opening 115 V and is fluid-conducting and connected to the outside wall of overtube 111 .
  • the cross-section is drawn at the level of wall opening 115 V.
  • the overtube is represented with a longitudinal slot 116 V.
  • FIG. 12 is a representation showing an embodiment of an overtube 121 . Over entire length, a longitudinal slot 126 V exists. Overtube 121 is equipped with a fluid communication element 124 V in the form of a working channel integrated in the wall and extending from a proximal wall opening 127 of the overtube to the distal tip and ends here with a distal wall opening 128 .
  • FIG. 13 is a cross-section of the overtube 121 of FIG. 12 , the channel-type fluid communication element 124 V being provided with a longitudinal slot 1210 .
  • the fluid communication element is integrated into the wall of overtube 121 .
  • the overtube is also represented with the longitudinal slot 126 V.
  • FIG. 14 is a different representation of the embodiment of FIGS. 12 and 13 , into the fluid communication element 124 V, via the proximal opening 127 , a medical instrument 1220 , herein a guidewire, having been introduced and conducted out through it via the distal opening 128 .
  • FIG. 15 is a longitudinal section of overtube 121 which shows the working channel 129 that is integrated into the wall of overtube 121 as well as the proximal wall opening 127 and the distal wall opening 128 .
  • FIG. 16 is a representation of an overtube 161 that embodies a variant of the overtube of FIGS. 12 to 15 .
  • a working channel integrated into the wall of overtube 161 has, over the entire length between proximal wall opening 167 and distal wall opening 168 , a longitudinal slot 1610 .
  • Overtube 161 also has a longitudinal slot 166 V over the entire length in this embodiment.
  • FIG. 17 is a representation of an overtube 171 , over the entire length of which a complete slot 176 V exists.
  • Overtube 171 is equipped with two fluid communication elements 174 V in the form of drainage lines, which are integrated into the wall of the overtube. They end in lateral openings 175 V at the distal end of the overtube.
  • the proximal ends 1711 of the fluid communication elements are fluid-conducting and connected to the vacuum unit. Attached to the overtube, proximal and distal relative to the lateral openings 175 V of the fluid communication elements are annular lip-like swells 1712 V.
  • FIG. 18 is a longitudinal section of overtube 171 of FIG. 17 , which shows the two fluid communication elements 174 V, which are fluid-conducting and end laterally in the distal end of the overtube with openings 175 V. Proximal and distal of these, the annular lip-shaped swells 1712 V are attached to the overtube.
  • FIG. 19 shows a variant of the representations of the embodiments of FIG. 17 and FIG. 18 , here, at the level of the distal wall openings 175 V, between the annular swells 1712 V, additionally, the fluid collection element 1713 V being attached.
  • the fluid collection element is also provided with a longitudinal slot 176 V on the longitudinal axis of overtube 171 .
  • FIG. 20 is a longitudinal section of overtube 171 of FIGS. 18 and 19 , which shows clearly the fluid communication elements 174 V with the fluid-conducting wall openings 175 V, fluid collection element 1713 V attached above and proximal and distal lip-like swells 1712 V.
  • FIG. 21 is an additional longitudinal section of the overtube of FIGS. 18 to 20 , which shows the fluid communication elements 174 V, with the fluid-conducting wall openings 175 V and the proximal and distal lip-like swells 1712 V.
  • a wire-like measuring sensor 1719 is represented, which was introduced into one of the fluid communication elements and which ends distally in a negative pressure measuring unit 1721 .
  • the measuring sensor 1719 has been introduced into the fluid communication element 174 V via a valve 1722 .
  • FIG. 22 is a representation of a distal end of an endoscope 2214 .
  • lateral fluid-conducting wall openings 225 E of a fluid communication element incorporated in the endoscope are represented. Proximal and distal relative to these wall openings 225 E, lip-like rings 2212 E are attached to endoscope 2214 .
  • FIG. 23 is a longitudinal section of endoscope 2214 of FIG. 22 showing the internally-situated fluid communication element 224 E, the lip-like rings 2212 E proximal and distal relative to the lateral openings 225 E of fluid communication element 224 E.
  • FIG. 24 is an additional longitudinal section of endoscope 2214 of FIG. 22 .
  • a fluid collection element 2213 E is inserted.
  • FIG. 25 is a representation of a fluid collection element 2513 V, 2513 E, 2513 T, which is suitable for use on the overtube, the endoscope and the support sleeve.
  • the fluid collection element has, at its ends, a conical taper 2515 .
  • a channel 2516 is arranged centrally along the longitudinal axis of the fluid collection element.
  • FIG. 26 is a longitudinal section of fluid collection element 2513 V, 2513 E, 2513 T of FIG. 25 .
  • the conical taper 2515 can be recognized at the ends and at the central channel 2516 along the longitudinal axis.
  • FIG. 27 is a representation of another fluid collection element 2713 V, 2713 E, 2713 T for overtube, endoscope and support sleeve, a lip-like ring 2712 V, 2712 E, 2712 T being attached to each end of the element.
  • a joint central channel 2716 extends through the fluid collection element.
  • FIG. 28 is a longitudinal section of FIG. 27 with fluid collection element 2713 , 2713 E, 2713 T, a lip-like ring ( 2712 V, 2712 E, 2712 T) being attached to each end.
  • FIG. 29 is a representation of a support sleeve 2917 for a fluid collection element, shown with a longitudinal slot 296 T, fluid-conducting wall perforations 295 T and lip-like rings 2912 ST proximal and distal relative to the wall perforations 295 T.
  • the rings are also slotted.
  • FIG. 30 is a longitudinal section of the support sleeve of FIG. 29 and shows the fluid-conducting wall perforations 295 T and the lip-like rings 2912 T proximal and distal relative to the wall perforations 295 T.
  • FIG. 31 is a representation of a support sleeve 3117 having, attached on it, between lip-like rings 3112 T, a longitudinally slotted fluid collection element 3113 T. Wall perforations 315 of the support sleeve are indicated by dashed lines.
  • FIG. 32 is a longitudinal section of the support sleeve of FIG. 31 , on support sleeve 3117 , between the lip-like rings 3112 T and fluid-conducting with the wall perforations 315 T, fluid collection element 3113 T being attached.
  • FIGS. 33 a-i show different variants of cross-sectional profiles of the lip-like ring closures 3112 V, 3112 E, 3112 T, which are mounted to an exterior wall 3118 V, 3118 E, 3118 T of overtube, endoscope or support sleeve.
  • FIG. 34 shows a flexible endoscope 3414 in a state, in which it is introduced and removed via longitudinal slot 346 V of an overtube 341 .
  • fluid collection elements 3413 E, 3413 V are mounted, in each case at the distal end.
  • the fluid communication element 344 V is connected fluid-conductive to the fluid collection element of overtube 3413 V.
  • FIG. 35 shows an endoscopy arrangement according to an additional exemplary embodiment.
  • a vacuum pump unit 3521 having a secretion collection container 3522 , to which an overtube 351 and an endoscope 5614 are connected.
  • fluid collection elements 3513 V and 3513 E are attached, which are connected to vacuum pump unit 3521 via the fluid-communication elements 354 V (overtube) and 354 E (endoscope).
  • FIG. 36 a-n is a schematic representation of the examination process of a vacuum endoscopy.
  • the treatment comprises the following steps:
  • Step i) the examination can be continued using Step i) and following.
  • FIG. 37 is a representation of a fluid collection element (a vacuum drainage device) in the form of a sponge body 371 with partial surface seal 374 of sponge body 371 .
  • a fluid collection element a vacuum drainage device
  • FIG. 37 Into a drainage hose 372 , which is introduced into sponge body 371 , a guidewire 373 is introduced in this representation.
  • FIG. 38 is a longitudinal section of fluid collection element 371 of FIG. 37 .
  • the surface seal 374 of sponge body 371 with drainage hose 372 which has lateral perforation openings 372 a and into which a guidewire 373 is introduced, are shown.
  • FIG. 39 is a representation of a different embodiment of a vacuum drainage device 391 with a drainage hose 392 and a guidewire 393 situated therein.
  • a bowl-shaped seal 395 is arranged, which has a funnel-shaped flare 395 a at its proximal end.
  • FIG. 40 is a longitudinal section of the vacuum drainage device 391 of FIG. 39 and also shows the bowl-shaped seal 395 on the outside of the sponge body of vacuum drainage device 391 which is flared funnel-like at the proximal end ( 395 a). Also shown is drainage hose 392 , which has lateral perforation openings 392 a and in which a guidewire 393 is situated.
  • FIG. 41 is a representation of a vacuum drainage device in the form of a sponge body 411 having a profiled surface seal 416 of sponge body 411 .
  • a guidewire 413 is introduced in drainage hose 412 .
  • the surface seal 416 has a riffled profile 416 a with longitudinal grooves running side by side in the longitudinal direction of sponge body 411 .
  • FIG. 42 is a cross section of the vacuum drainage device of FIG. 41 .
  • guidewire 413 is situated in drainage hose 412 .
  • the surface seal shows its longitudinal profile 416 a.
  • FIG. 43 is a representation of a vacuum drainage device having a tube 437 attached in sponge body 431 .
  • a drainage hose 432 is inserted, in which a guidewire 433 is situated.
  • a funnel-shaped flare 437 a exists.
  • an insertion rod 438 is introduced, which is conically tapered at its distal end 438 a.
  • an additional guidewire is inserted.
  • a pusher 439 is imposed.
  • FIG. 44 is a representation of a different embodiment of a vacuum drainage device having, attached in a sponge body 441 , a tube 447 , which has a funnel-shaped flare at its proximal end.
  • an endoscope 4410 is introduced in the tube.
  • a pusher 449 is imposed on the proximal end of endoscope 4410 .
  • Tube 447 , sponge body 441 and pusher 449 are provided with a complete lateral longitudinal slot 4412 .
  • a drainage hose 442 is inserted; in it, a guidewire 443 is situated.
  • FIG. 45 is a longitudinal section of the vacuum drainage device of FIG. 43 .
  • sponge body 431 lies tube 437 , which has its funnel-like flare 437 a at the proximal end.
  • insertion rod 438 is situated in tube 437 .
  • a guidewire 433 is introduced in insertion rod 438 .
  • pusher 439 is imposed in sponge body 431 in insertion rod 438 .
  • sponge body 431 lies the drainage hose 432 with lateral openings 432 a.
  • In drainage hose 432 lies an additional guidewire 433 a.
  • FIG. 46 is a representation of an additional embodiment of a vacuum drainage device with drainage hose 462 in sponge body 461 .
  • a tube 467 is situated, which has proximal and distally split ends 467 b. Arrows indicate, in which direction the split ends 467 b can open.
  • FIG. 47 is a longitudinal section of an additional vacuum drainage device having, situated in sponge body 471 , a tube which, subject to suction, can be opened outward by its ends 477 b.
  • an endoscope 4710 is introduced into tube 477 .
  • sponge body 471 lies a drainage hose 472 with lateral openings 472 a.
  • the vacuum drainage device is situated in a section of the intestine, of which an intestinal wall 4713 is indicated.
  • FIG. 48 is a representation of the vacuum drainage device of FIG. 47 , in this representation, a negative pressure being applied to drainage hose 472 .
  • Sponge body 471 has, therefore, collapsed and intestinal wall 4713 abuts sponge body 471 .
  • Movable ends 477 b of tube 477 are folded outward in the direction of the arrows.
  • FIG. 49 is a representation of an additional embodiment of a vacuum drainage (device), which is identified as sponge drainage (device), with the same meaning, within the framework of the application herein.
  • a sponge body 491 is attached to a drainage hose 492 a. Drainage hose 492 exits proximally and distally from the sponge body. Into drainage hose 492 a, a guidewire 493 was introduced.
  • FIG. 50 is a cross-section of the sponge drainage device of FIG. 49 .
  • Sponge body 491 is attached on drainage hose 492 a above the perforation openings 494 .
  • a guidewire 493 is introduced into the drainage hose.
  • FIG. 51 is a representation of an additional embodiment of a sponge drainage device.
  • Two sponge bodies 511 are attached on a drainage hose 512 a at a (certain) distance (from each other).
  • a guidewire 513 was introduced into drainage hose 512 a. This embodiment is advantageous, if, for instance, a section of the intestine is to be functionally disabled by means of a fistula.
  • FIG. 52 is a cross-section of the sponge of the drainage device of FIG. 51 .
  • Guidewire 513 is introduced into the drainage hose.
  • FIG. 53 is a representation of an additional embodiment of a sponge drainage device.
  • a sponge body 531 is attached on a drainage hose 532 a.
  • Drainage hose 532 a tapers to form a small-lumen drainage hose 532 b.
  • a guidewire 533 is introduced in the drainage hose.
  • FIG. 54 is a cross-section of the sponge drainage device of FIG. 53 .
  • Sponge body 531 is attached on drainage hose 532 a above perforation openings 534 .
  • Drainage hose 532 a tapers toward a small-lumen drainage hose 532 b.
  • Guidewire 533 is introduced into the drainage hose.
  • FIGS. 55 a to h show different variants of a distal end of a sponge drainage device 551 , each in a corresponding cross-section.
  • Sponge body 551 is attached on a drainage hose 552 a above perforation opening 554 .
  • Drainage hose 552 a ends in a tip 555 .
  • a string 556 is attached to tip 555 .
  • a string or wire loop 557 is attached to tip 555 .
  • a string 556 is attached to tip 555 .
  • the tip has a channel 558 , through which a guidewire 553 can be conducted.
  • sponge body 551 is designed as a tip at its distal end.
  • the sponge body has a channel 558 , through which a guidewire was installed.
  • sponge body 551 is also designed as a tip at the distal end.
  • Sponge body 551 has a channel 558 , through which a guidewire 553 was installed.
  • a string or wire loop 57 is attached to the sponge body.
  • a grasping bead 559 is attached to tip 555 .
  • an eyelet 5510 is attached, through which a string 5511 was pulled.
  • grasping bead 559 lies in sponge body 551 .
  • FIGS. 56 a to f are different representations of a drainage hose 562 a and pointed top-seated attachments 5612 .
  • FIG. 56a is a representation of a drainage hose 562 a and a pointed top-seated attachment 5612 .
  • the pointed top-seated attachment has, at its distal end, a grasping bead 569 , at the proximal end a screw string 5612 a.
  • FIG. 56b is a representation, in which pointed top-seated attachment 5612 is screwed to drainage hose 562 a.
  • FIG. 56c is a longitudinal section of FIG. 56a with drainage hose 562 a and pointed top-seated attachment 5612 .
  • FIG. 56d is a longitudinal section of FIG.
  • FIG. 56e is a longitudinal section of pointed top-seated attachment 5612 which is screwed onto drainage hose 562 a and is equipped with a transverse channel 5612 b.
  • FIG. 56f is a longitudinal section of a variant of pointed top-seated attachment 5612 which is screwed onto drainage channel 562 a.
  • the pointed top-seated attachment is equipped with a channel 5612 c. Through channel 5612 c and the drainage hose, a guidewire 563 is inserted.
  • Endoscopic insertion or grasping instruments are used for the placement of vacuum drainage devices.
  • the placement can either be made using an orthograde forward-push technique or a pull-(through) technique.
  • an endoscopic insertion instrument is introduced into the working channel of the endoscope and an outer working channel. It is performed on the distal end of the endoscope.
  • the placement of the drainage device using the pull-(through) technique is used, if the wound to be treated can, on the one hand, be endoscopically reached from the inside via a natural or artificial access route and, on the other hand, an additional external access route, for example in the form of an external fistula, exists.
  • the pull-(through) technique is also used, if the endoscopic vacuum therapy is used in combination with open or laparothoracoscopic surgery (rendezvous procedure). It can also be used for inserting conventional drains in laparoscopy.
  • the pull-through technique will be explained.
  • the insertion instrument Using a guidewire or an endoscope, the insertion instrument will be preplaced from the outside above the fistula opening up to the esophagus.
  • an endoscope is inserted through the mouth into the esophagus and moved forward to the leakage point.
  • the insertion instrument When the insertion instrument has arrived at the leak of the esophagus, it is grasped using a loop and moved back out retrograde through the mouth.
  • the insertion instrument will be coupled and attached by its attachment mechanism to the distal end of the fluid communication element, the pointed top-seated attachment or the sponge body.
  • the insertion instrument Under endoscopic vision, the insertion instrument is then subjected to a pull, the drainage occurs subject to pull by way of the mouth into the esophagus. The exact positioning is endoscopically controlled via the esophagus. The insertion instrument will be detached from the coupling to the drainage device and removed by further pulling. If the tip of the fluid communication element, the pointed top-seated attachment or the sponge body is reinforced by a string, the maneuver above can be performed using the string subject to application of the above technique.
  • the application of the pull-(through) procedure is particularly advantageous if a drainage device design was selected, in which the sponge body lies in the central section of the fluid communication element.
  • the sponge body can be positioned by pulling on one end of the fluid communication element. Aspiration is then possible via only one leg of the fluid communication element, simultaneously via both legs or alternating.
  • the insertion instrument consists of a bead grabber.
  • a metal or plastic core is introduced in a plastic sleeve.
  • the distal end of the core splits into two or a plurality of leaves.
  • an outward tension of the leaves exists so that it opens blossom-like when it emerges from the distal end of the sleeve and closes during retraction into the sleeve.
  • the leaves are molded spoon-like, so that upon closing of the core, a spherical or lenticular cavity forms. At the distal end, after closing, a small opening remains.
  • the grasping bead of the pointed top-seated attachment the fluid communication element or the fluid collection element can be introduced.
  • the bead is firmly seated. During opening, it detaches easily again and insertion instrument and grasping bead are uncoupled.
  • the insertion instrument is designed to receive a guidewire.
  • the bead grabber may be introduced into the working channel of an endoscope.
  • the insertion instrument is particularly 80 cm to 250 cm long.
  • An additional insertion instrument consists of a hook.
  • a wire-like metal or plastic core is introduced into a plastic sleeve.
  • the core is provided with a hook, by means of which a string loop or an eyelet can be grasped.
  • the string loop or eyelet of the pointed top-seated attachment the fluid communication element or the fluid collection element can be attached by retracting the hook.
  • the connection releases again. It is particularly advantageous to introduce a guidewire into the insertion instrument.
  • the hook can be inserted into the working channel of an endoscope.
  • FIGS. 57 a to f are different representations of an endoscopic insertion instrument 5713 a/b, by means of which a grasping bead 579 can be grasped.
  • FIG. 57a is a representation of an opened instrument. Out of a sleeve 5713 a, a dual-leaf core 5713 b, which has opened, is conducted out. Moreover, a guidewire 573 exits from the sleeve. In FIG. 57b , the guidewire 573 is retracted, the grasping bead 579 is grasped using core 5713 b.
  • FIG. 57c shows how the grasping bead was grasped.
  • the core 5713 b was retracted into sleeve 5713 a; during this process, core 5713 b has closed.
  • the closed core 5713 b is represented having grasped grasping bead 579 and being retracted into sleeve 5713 a.
  • FIG. 57e is a longitudinal section of 57 a with sleeve 5713 a, opened core 5713 b, guidewire 573 and grasping bead 579 .
  • FIG. 57f is a longitudinal section of 57 d.
  • the closed core 5713 b with the grasped grasping bead 579 has been retracted into sleeve 5713 a.
  • FIGS. 58 a to e are different representations of an additional endoscopic insertion instrument, by means of which an eyelet 5810 can be grasped.
  • FIG. 58a is a representation of the opened instrument. Out of a sleeve 5814 a, a hook 5814 b is conducted out. Moreover, a guidewire 583 is conducted out of the sleeve. In FIG. 58b , the guidewire 583 is withdrawn, the eyelet 5810 is grasped using hook 5814 b.
  • FIG. 58c shows how the hook was retracted into sleeve 5814 a using the grasped eyelet 5810 .
  • FIG. 58d is a longitudinal section of the insertion instrument of FIG.
  • FIG. 58e is a longitudinal section of FIG. 58c .
  • the hook 5814 b has been retracted back into the sleeve 5814 a using the grasped eyelet 5810 .
  • FIG. 59 is a representation of insertion aid 591 with a sleeve 592 for attachment to a distal end of an endoscope. Insertion aid 591 is beveled at its distal end, the longer side of the bevel coming to lie on the endoscope, in order to avoid injury during insertion of the endoscope. At the proximal end, a valve 593 is located to prevent leakage of the examination gas.
  • 60 is a representation with 2 insertion aids 601 of different sizes.
  • FIG. 61 shows a longitudinal section of an insertion aid 611 , an attachment sleeve 612 with valve 613 .
  • FIG. 62 shows a representation of an insertion aid 621 having an attachment sleeve 622 at a distal end of an endoscope 624
  • FIG. 63 is a representation of an insertion aid 631 having an attachment sleeve 632 at a distal end of an endoscope 634 .
  • endoscopic forceps 635 were introduced into the insertion aid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • External Artificial Organs (AREA)
  • Endoscopes (AREA)
US15/846,725 2011-03-11 2012-03-12 Vacuum system and endoscopy arrangement for endoscopic vacuum therapy Active 2032-09-11 USRE47285E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/846,725 USRE47285E1 (en) 2011-03-11 2012-03-12 Vacuum system and endoscopy arrangement for endoscopic vacuum therapy

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
DE102011013743A DE102011013743A1 (de) 2011-03-11 2011-03-11 Vakuumsystem zur intraluminalen, intracavitären, intracorporalen, endoskopischen Vakuumtherapie
DE102011013743 2011-03-11
DE102011013744A DE102011013744A1 (de) 2011-03-11 2011-03-11 Vakuumsystem zur Vakuumendoskopie
DE102011013744 2011-03-11
DE102011120411 2011-12-08
DE102011120411 2011-12-08
DE201210003129 DE102012003129A1 (de) 2012-02-17 2012-02-17 Drainagen und Platzierungssysteme zur endoskopischen Vakuumtherapie
DE102012003129 2012-02-17
US14/004,313 US9215964B2 (en) 2011-03-11 2012-03-12 Vacuum system and endoscopy arrangement for endoscopic vacuum therapy
US15/846,725 USRE47285E1 (en) 2011-03-11 2012-03-12 Vacuum system and endoscopy arrangement for endoscopic vacuum therapy
PCT/EP2012/054276 WO2012123414A1 (de) 2011-03-11 2012-03-12 Vakuumsystem und endoskopie-anordnung für die endoskopische vakuumtherapie

Publications (1)

Publication Number Publication Date
USRE47285E1 true USRE47285E1 (en) 2019-03-12

Family

ID=45855755

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/846,725 Active 2032-09-11 USRE47285E1 (en) 2011-03-11 2012-03-12 Vacuum system and endoscopy arrangement for endoscopic vacuum therapy

Country Status (15)

Country Link
US (1) USRE47285E1 (zh)
EP (1) EP2683285B1 (zh)
JP (1) JP5923122B2 (zh)
CN (1) CN103517665B (zh)
AU (1) AU2012228360B2 (zh)
BR (1) BR112013023118B1 (zh)
CA (1) CA2829512C (zh)
DK (1) DK2683285T3 (zh)
ES (1) ES2534790T3 (zh)
HK (1) HK1188103A1 (zh)
MX (1) MX2013010387A (zh)
PL (1) PL2683285T3 (zh)
RU (1) RU2562680C2 (zh)
WO (1) WO2012123414A1 (zh)
ZA (1) ZA201306485B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112704770A (zh) * 2020-12-27 2021-04-27 李凤娇 一种术后护理重症监护护理引流器
US11547782B2 (en) * 2020-01-31 2023-01-10 Covidien Lp Fluid collecting sheaths for endoscopic devices and systems
EP4076564B1 (en) * 2019-12-19 2023-11-22 Lohmann & Rauscher GmbH Vacuum sponge drainage

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241877B2 (ja) 2010-12-01 2017-12-06 ダニエル・エデュアード・クライナー 管腔内減圧療法に使用される器具
RU2014136477A (ru) 2012-03-12 2016-05-10 СМИТ ЭНД НЕФЬЮ ПиЭлСи Устройство и способы сниженного давления
JP6230166B2 (ja) * 2012-06-03 2017-11-15 ダニエル・エデュアード・クレイナー 管腔内陰圧治療デバイス
DE102013202849A1 (de) * 2013-02-21 2014-08-21 Aesculap Ag Medizinisches Produkt sowie medizinisches Set zur Ableitung von pathologischen Fluidansammlungen
WO2014201563A1 (en) * 2013-06-18 2014-12-24 The Hospital For Sick Children Tissue gripping device
AT514060B1 (de) * 2013-10-03 2014-10-15 Ami Agency Medical Innovations Gmbh Einrichtung zur Behandlung von intraluminalen Verletzungen des Gastro-Intestinal-Trakts
DE102014005679A1 (de) 2014-04-16 2015-10-22 Lohmann & Rauscher Gmbh & Co. Kg Drainage und Unterdruckpumpe zur intrauterinen Unterdrucktherapie
EP3166533B1 (en) * 2014-08-14 2020-07-29 Coeo Labs Private Limited Systems for automatically removing fluid from multiple regions of a respiratory tract
CN104490430B (zh) * 2015-01-05 2016-09-07 四川大学华西医院 一种用于内镜粘膜下剥离的隧道支撑器
SG11201707188XA (en) 2015-04-27 2017-11-29 Smith & Nephew Reduced pressure apparatuses
JP6568648B2 (ja) * 2015-08-27 2019-08-28 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 医療デバイス及び方法
CN114053031A (zh) 2016-03-07 2022-02-18 史密夫及内修公开有限公司 利用整合到伤口敷料中的负压源的伤口治疗设备和方法
EP4049692A1 (en) 2016-04-26 2022-08-31 Smith & Nephew PLC Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component
WO2017191154A1 (en) 2016-05-03 2017-11-09 Smith & Nephew Plc Negative pressure wound therapy device activation and control
US11305047B2 (en) 2016-05-03 2022-04-19 Smith & Nephew Plc Systems and methods for driving negative pressure sources in negative pressure therapy systems
CA3038206A1 (en) 2016-05-03 2017-11-09 Smith & Nephew Plc Optimizing power transfer to negative pressure sources in negative pressure therapy systems
RU2655206C2 (ru) * 2016-06-10 2018-05-24 Государственное бюджетное учреждение здравоохранения города Москвы Московский клинический научно-практический центр Департамента здравоохранения города Москвы Устройство для коррекции нарушений целостности желудочно-кишечного тракта
CN109561994B (zh) 2016-08-25 2022-03-15 史密夫及内修公开有限公司 吸收性负压伤口疗法敷料
AU2017336310B2 (en) 2016-09-30 2022-12-08 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US12005181B2 (en) 2016-12-12 2024-06-11 Smith & Nephew Plc Pressure wound therapy status indication via external device
CA3055664A1 (en) 2017-03-08 2018-09-13 Smith & Nephew Plc Negative pressure wound therapy device control in presence of fault condition
US11160915B2 (en) 2017-05-09 2021-11-02 Smith & Nephew Plc Redundant controls for negative pressure wound therapy systems
JP7394746B2 (ja) 2017-09-13 2023-12-08 スミス アンド ネフュー ピーエルシー 一体化された電子機器を備えた陰圧創傷治療装置及び方法
GB201718070D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
EP3703632B1 (en) 2017-11-01 2024-04-03 Smith & Nephew plc Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718072D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718054D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods
CN108061023A (zh) * 2018-01-24 2018-05-22 昆山华亿丰涂装设备科技有限公司 一种复合轴三球隔膜泵
KR101940792B1 (ko) * 2018-04-24 2019-01-22 서현배 멀티 진공작동체액펌프의 제어방법
DE202018104602U1 (de) 2018-08-10 2018-08-17 Lohmann & Rauscher Gmbh Schutzhülse
USD898925S1 (en) 2018-09-13 2020-10-13 Smith & Nephew Plc Medical dressing
CN113766865A (zh) * 2018-10-31 2021-12-07 内基因有限公司 自推进内窥镜探头及包含其的系统
CN110115780B (zh) * 2019-05-21 2021-08-13 齐从虎 一种肠道引流保护器
GB201907716D0 (en) 2019-05-31 2019-07-17 Smith & Nephew Systems and methods for extending operational time of negative pressure wound treatment apparatuses
CN110575572A (zh) * 2019-09-23 2019-12-17 王冬 一种有效防止吻合口漏的装置
RU2734545C1 (ru) * 2019-12-23 2020-10-20 Александр Геннадьевич Барышев Способ устранения повреждений стенки пищевода и несостоятельности анастомозов проксимальных отделов пищеварительной трубки
RU204450U1 (ru) * 2020-11-30 2021-05-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный медицинский университет" Министерства здравоохранения Российской Федерации Устройство для проведения вакуум-терапии
EP4385389A1 (en) * 2022-12-16 2024-06-19 Boston Scientific Medical Device Limited Medical device and medical kit, in particular for carrying out an intracorporal vacuum therapy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449347A (en) * 1994-07-05 1995-09-12 The United States Of America As Represented By The Secretary Of The Air Force Patient transport, plural power source suction apparatus
US6547724B1 (en) * 1999-05-26 2003-04-15 Scimed Life Systems, Inc. Flexible sleeve slidingly transformable into a large suction sleeve
US20040093026A1 (en) 2002-11-07 2004-05-13 Rolf Weidenhagen Endoscopic wound care treatment system and method
US7022113B2 (en) * 2001-07-12 2006-04-04 Hill-Rom Services, Inc. Control of vacuum level rate of change
US20090264837A1 (en) * 2005-07-24 2009-10-22 Carmeli Adahan Wound closure and drainage system
US7857806B2 (en) * 2005-07-14 2010-12-28 Boehringer Technologies, L.P. Pump system for negative pressure wound therapy
DE102009039515A1 (de) 2009-08-31 2011-03-03 Vcs Medical Technology Gmbh Vakuumtherapievorrichtung
US8743425B2 (en) * 2009-02-26 2014-06-03 Hewlett-Packard Development Company, L.P. Method for using void pantographs

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1662487A1 (ru) * 1988-02-26 1991-07-15 Всесоюзный Научно-Исследовательский Институт Медицинского Приборостроения Эндоскоп
US7004915B2 (en) * 2001-08-24 2006-02-28 Kci Licensing, Inc. Negative pressure assisted tissue treatment system
SE524111C2 (sv) * 2001-09-28 2004-06-29 Jan Otto Solem En metod och en anordning för organåterställning
US7625362B2 (en) * 2003-09-16 2009-12-01 Boehringer Technologies, L.P. Apparatus and method for suction-assisted wound healing
CN101065051A (zh) * 2004-09-03 2007-10-31 斯特赖克Gi有限公司 用于向内窥镜供给流体介质的控制系统
MX2008002882A (es) * 2005-09-07 2008-03-27 Tyco Healthcare Aposito de herida con deposito de vacio.
EP2438935B1 (en) * 2006-10-13 2014-01-15 BlueSky Medical Group Incorporated Pressure control of a medical vacuum pump
CA2673842C (en) * 2007-02-09 2012-12-04 Kci Licensing, Inc. System and method for managing reduced pressure at a tissue site
GB0715276D0 (en) * 2007-08-06 2007-09-12 Smith & Nephew Pump control
US20100049166A1 (en) * 2008-08-19 2010-02-25 Aesculap AG a corporation of Germany Medical product for treatment of sinusitis
US20100318071A1 (en) * 2009-06-10 2010-12-16 Tyco Healthcare Group Lp Fluid Collection Canister Including Canister Top with Filter Membrane and Negative Pressure Wound Therapy Systems Including Same
EP3272386A1 (de) * 2009-09-30 2018-01-24 Lohmann & Rauscher GmbH & Co. KG Vakuumschwammdrainage

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449347A (en) * 1994-07-05 1995-09-12 The United States Of America As Represented By The Secretary Of The Air Force Patient transport, plural power source suction apparatus
US6547724B1 (en) * 1999-05-26 2003-04-15 Scimed Life Systems, Inc. Flexible sleeve slidingly transformable into a large suction sleeve
US7022113B2 (en) * 2001-07-12 2006-04-04 Hill-Rom Services, Inc. Control of vacuum level rate of change
US20040093026A1 (en) 2002-11-07 2004-05-13 Rolf Weidenhagen Endoscopic wound care treatment system and method
US8900268B2 (en) * 2002-11-07 2014-12-02 Rolf Weidenhagen Endoscopic wound care treatment system and method
US7857806B2 (en) * 2005-07-14 2010-12-28 Boehringer Technologies, L.P. Pump system for negative pressure wound therapy
US20090264837A1 (en) * 2005-07-24 2009-10-22 Carmeli Adahan Wound closure and drainage system
US8743425B2 (en) * 2009-02-26 2014-06-03 Hewlett-Packard Development Company, L.P. Method for using void pantographs
DE102009039515A1 (de) 2009-08-31 2011-03-03 Vcs Medical Technology Gmbh Vakuumtherapievorrichtung

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
International Search Report for priority application PCT/EP2012/054276 dated Nov. 6, 2012 (3 pgs).
ROLF WEIDENHAGEN, WOLFGANG H. HARTL, KLAUS U. GRUETZNER, MARTIN E. EICHHORN, FRITZ SPELSBERG, KARL W. JAUCH: "Anastomotic Leakage After Esophageal Resection: New Treatment Options by Endoluminal Vacuum Therapy", THE ANNALS OF THORACIC SURGERY, ELSEVIER INC, UNITED STATES, vol. 90, no. 5, 1 November 2010 (2010-11-01), United States, pages 1674 - 1681, XP002676647, ISSN: 0003-4975, DOI: 10.1016/J.ATHORACSUR.2010.07.007
Translation of the International Preliminary Report on Patentability for priority application PCT/EP2012/054276 dated Sep. 26, 2013 (8 pgs).
Weidenhagen, Rolf et al: "Anastomotic leakage after esophageal resection: new treatment options by endoluminal vacuum therapy.", Nov. 2010 (Nov. 2010), The Annals of Thoracic Surgery Nov. 2010, LNKD-PUBMED:20971288, vol. 90, NR. 5, pp. 1674-1681, XP002676647, ISN: 1552-6259 (8 pgs).

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4076564B1 (en) * 2019-12-19 2023-11-22 Lohmann & Rauscher GmbH Vacuum sponge drainage
US11547782B2 (en) * 2020-01-31 2023-01-10 Covidien Lp Fluid collecting sheaths for endoscopic devices and systems
CN112704770A (zh) * 2020-12-27 2021-04-27 李凤娇 一种术后护理重症监护护理引流器

Also Published As

Publication number Publication date
ES2534790T3 (es) 2015-04-28
CN103517665A (zh) 2014-01-15
DK2683285T3 (da) 2015-04-13
EP2683285A1 (de) 2014-01-15
PL2683285T3 (pl) 2015-06-30
BR112013023118B1 (pt) 2021-01-26
RU2013145563A (ru) 2015-04-20
WO2012123414A1 (de) 2012-09-20
AU2012228360A1 (en) 2013-10-17
EP2683285B1 (de) 2015-02-18
JP2014512896A (ja) 2014-05-29
AU2012228360B2 (en) 2015-08-20
JP5923122B2 (ja) 2016-05-24
BR112013023118A2 (pt) 2017-06-27
CA2829512A1 (en) 2012-09-20
RU2562680C2 (ru) 2015-09-10
ZA201306485B (en) 2014-06-25
CN103517665B (zh) 2016-06-29
HK1188103A1 (zh) 2014-04-25
MX2013010387A (es) 2014-03-27
CA2829512C (en) 2019-01-29

Similar Documents

Publication Publication Date Title
USRE47285E1 (en) Vacuum system and endoscopy arrangement for endoscopic vacuum therapy
US9215964B2 (en) Vacuum system and endoscopy arrangement for endoscopic vacuum therapy
US11793922B2 (en) Vacuum treatment array and film for producing a vacuum treatment array
US10675391B2 (en) Vacuum sponge drainage
KR101326417B1 (ko) 내시경용 오버튜브
US11937777B2 (en) Vacuum sponge drainage
JP5124287B2 (ja) 医療用留置部材
US20190160210A1 (en) Vacuum Wound Device
EP3134143B1 (en) Vacuum wound device
RU124550U1 (ru) Зонд для выполнения лаважа толстой кишки
US20230012427A1 (en) Vacuum sponge drainage
RU55269U1 (ru) Устройство для временной двухбаллонной эндоскопической обтурации перфорации желудка
CN117815523A (zh) 一种消化道造瘘用球囊抽吸装置

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8