USRE40419E1 - Production of synthetic transportation fuels from carbonaceous material using self-sustained hydro-gasification - Google Patents
Production of synthetic transportation fuels from carbonaceous material using self-sustained hydro-gasification Download PDFInfo
- Publication number
- USRE40419E1 USRE40419E1 US11/805,576 US80557603A USRE40419E US RE40419 E1 USRE40419 E1 US RE40419E1 US 80557603 A US80557603 A US 80557603A US RE40419 E USRE40419 E US RE40419E
- Authority
- US
- United States
- Prior art keywords
- hydrogen
- steam
- hydro
- fischer
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 126
- 238000002309 gasification Methods 0.000 title claims abstract description 62
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title description 69
- 238000000034 method Methods 0.000 claims abstract description 121
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 116
- 230000008569 process Effects 0.000 claims abstract description 108
- 239000007789 gas Substances 0.000 claims abstract description 79
- 239000001257 hydrogen Substances 0.000 claims abstract description 79
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 79
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 71
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 70
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 68
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 56
- 239000007788 liquid Substances 0.000 claims abstract description 50
- 230000005611 electricity Effects 0.000 claims abstract description 34
- 239000002002 slurry Substances 0.000 claims abstract description 32
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 6
- 238000000746 purification Methods 0.000 claims abstract description 5
- 239000002028 Biomass Substances 0.000 claims description 64
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 6
- 239000010813 municipal solid waste Substances 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 5
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000006194 liquid suspension Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 82
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 44
- 239000002699 waste material Substances 0.000 description 39
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 32
- 239000002283 diesel fuel Substances 0.000 description 27
- 229910052799 carbon Inorganic materials 0.000 description 25
- 238000010586 diagram Methods 0.000 description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 23
- 229910002092 carbon dioxide Inorganic materials 0.000 description 23
- 239000000047 product Substances 0.000 description 22
- 239000000126 substance Substances 0.000 description 22
- 239000002918 waste heat Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 150000002431 hydrogen Chemical class 0.000 description 14
- 239000002023 wood Substances 0.000 description 14
- 239000012188 paraffin wax Substances 0.000 description 13
- 239000003208 petroleum Substances 0.000 description 11
- 238000002485 combustion reaction Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 239000001993 wax Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000003245 coal Substances 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000000197 pyrolysis Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000002352 steam pyrolysis Methods 0.000 description 6
- 238000000629 steam reforming Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000010893 paper waste Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000011021 bench scale process Methods 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010814 metallic waste Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000009275 open burning Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 239000013502 plastic waste Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000004514 thermodynamic simulation Methods 0.000 description 1
- -1 tires Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000010518 undesired secondary reaction Methods 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002916 wood waste Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/002—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/54—Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/58—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
- C10J3/60—Processes
- C10J3/64—Processes with decomposition of the distillation products
- C10J3/66—Processes with decomposition of the distillation products by introducing them into the gasification zone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/721—Multistage gasification, e.g. plural parallel or serial gasification stages
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/723—Controlling or regulating the gasification process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0495—Composition of the impurity the impurity being water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/062—Hydrocarbon production, e.g. Fischer-Tropsch process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0827—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0833—Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0838—Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0872—Methods of cooling
- C01B2203/0883—Methods of cooling by indirect heat exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0872—Methods of cooling
- C01B2203/0888—Methods of cooling by evaporation of a fluid
- C01B2203/0894—Generation of steam
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1258—Pre-treatment of the feed
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1276—Mixing of different feed components
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/146—At least two purification steps in series
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/148—Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/80—Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
- C01B2203/84—Energy production
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/06—Modeling or simulation of processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0903—Feed preparation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0903—Feed preparation
- C10J2300/0906—Physical processes, e.g. shredding, comminuting, chopping, sorting
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0903—Feed preparation
- C10J2300/0909—Drying
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
- C10J2300/092—Wood, cellulose
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0943—Coke
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0946—Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0966—Hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
- C10J2300/0976—Water as steam
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0983—Additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/1253—Heating the gasifier by injecting hot gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1643—Conversion of synthesis gas to energy
- C10J2300/165—Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1656—Conversion of synthesis gas to chemicals
- C10J2300/1659—Conversion of synthesis gas to chemicals to liquid hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
- C10J2300/1675—Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1693—Integration of gasification processes with another plant or parts within the plant with storage facilities for intermediate, feed and/or product
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1807—Recycle loops, e.g. gas, solids, heating medium, water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1853—Steam reforming, i.e. injection of steam only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1884—Heat exchange between at least two process streams with one stream being synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1892—Heat exchange between at least two process streams with one stream being water/steam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- This invention was made with support from the City of Riverside.
- the City of Riverside has certain tights to this invention.
- the field of the invention is the synthesis of transportation fuel from carbonaceous feed stocks.
- Liquid transportation fuels have inherent advantages over gaseous fuels, having higher energy densities than gaseous fuels at the same pressure and temperature. Liquid fuels can be stored at atmospheric or low pressures whereas to achieve liquid fuel energy densities, a gaseous fuel would have to be stored in a tank on a vehicle at high pressures that can be a safety concern in the case of leaks or sudden rupture. The distribution of liquid fuels is much easier than gaseous fuels, using simple pumps and pipelines. The liquid fueling infrastructure of the existing transportation sector ensures easy integration into the existing market of any production of clean-burning synthetic liquid transportation fuels.
- Biomass material is the most commonly processed carbonaceous waste feed stock used to produce renewable fuels. Waste plastic, rubber, manure, crop residues, forestry, tree and grass cuttings and biosolids from waster water (sewage) treatment are also candidate feed stocks for conversion processes. Biomass feed stocks can be converted to produce electricity, heat, valuable chemicals or fuels. California tops the nation in the use and development of several biomass utilization technologies. Each year in California, more than 45 million tons of municipal solid waste is discarded for treatment by waste management facilities. Approximately half this waste ends up in landfills. For example, in just the Riverside County, California area, it is estimated that about 4000 tons of waste wood are disposed of per day. According to other estimates, over 100,000 tons of biomass per day are dumped into landfills in the Riverside County collection area.
- This municipal waste comprises about 30% waste paper or cardboard, 40% organic (green and food) waste, and 30% combinations of wood, paper, plastic and metal waste.
- the carbonaceous components of this waste material have chemical energy that could be used to reduce the need for other energy sources if it can be converted into a clean-burning fuel.
- These waste sources of carbonaceous material are not the only sources available. While many existing carbonaceous waste materials, such as paper, can be sorted, reused and recycled, for other materials, the waste producer would not need to pay a tipping fee, if the waste were to be delivered directly to a conversion facility. A tipping fee, presently at $30-$35 per ton, is usually charged by the waste management agency to offset disposal costs. Consequently not only can disposal costs be reduced by transporting the waste to a waste-to-synthetic fuels processing plant, but additional waste would be made available because of the lowered cost of disposal.
- An example of the latter process is the Hynol Methanol Process, which uses hydro-gasification and steam reformer reactors to synthesize methanol using a co-feed of solid carbonaceous materials and natural gas, and which has a demonstrated carbon conversion efficiency of >85% in bench-scale demonstrations.
- the present invention makes use of steam pyrolysis, hydro-gasification and steam reformer reactors to produce a synthesis gas that can be converted into a synthetic paraffinic fuel, preferably a diesel fuel, although synthetic gasolines and jet propulsion fuels can also be made, using a Fischer-Tropsch paraffin fuel synthesis reactor.
- the synthesis gas may be used in a co-generated power conversion and process heat system.
- the present invention provides comprehensive equilibrium thermo-chemical analyses for a general class of co-production processes for the synthesis of clean-burning liquid transportation fuels, thermal process energy and electric power generation from feeds of coal, or other carbonaceous materials, and liquid water. It enables a unique design, efficiency of operation and comprehensive analysis of coal, or any other carbonaceous feed materials to co-produced fuel, power and heat systems.
- the invention provides a process and apparatus for producing a synthesis gas for use as a gaseous fuel or as feed into a Fischer-Tropsch reactor to produce a liquid paraffinic fuel, recycled water and sensible heat, in a substantially self-sustaining process.
- a slurry of particles of carbonaceous material suspended in liquid water, and hydrogen from an internal source are fed into a steam generator for pyrolysis and hydro-gasification reactor under conditions whereby super-heated steam, methane, carbon dioxide and carbon monoxide are generated and fed into a steam reformer under conditions whereby synthesis gas comprising primarily of hydrogen and carbon monoxide are generated.
- a portion of the hydrogen generated by the steam reformed is fed into the hydro-gasification reactor as the hydrogen from an internal source.
- the remaining synthesis gas generated by the steam reformer is either used as fuel for a gaseous fueled engine or gas turbine to produce electricity and process heat, or is fed into a Fischer-Tropsch fuel synthesis reactor under conditions to produce a liquid fuel, and recycled water.
- the correct stoichiometric ratio of hydrogen to carbon monoxide molecules fed into the Fischer-Tropsch fuel synthesis reactor is controlled by the water to carbon ratio in the feed stocks.
- Molten salt loops are used to transfer heat from the exothermic hydro-gasification reactor (and from the exothermic Fischer-Tropsch reactor if liquid fuel is produced) to the exothermic steam generator for pyrolysis and the steam reformer reactor vessels.
- the present invention provides the following features.
- a general purpose solid carbonaceous material feed system that can accept arbitrary combinations of coal, urban and agricultural biomass, and municipal solid waste for hydro-gasification.
- a steam reformer as a second stage reactor to produce hydrogen rich synthesis gas from the output of the first stage steam generator for pyrolysis and hydro-gasification unit.
- the molal steam to carbon ratio is maintained as necessary to bring the chemical reactions close to equilibrium;
- thermo-chemical process reactors are operated to produce nearly pure paraffinic hydrocarbon liquids (similar to petroleum derived diesel fuels) and was-like compounds (similar to petroleum derived USP paraffinic jellies, which can be further refined into more diesel-like fuels using conventional methods) from carbonaceous feed stocks (such as waste wood) in a continuous self-sustainable fashion without the need for additional fuels or external energy sources.
- the reactor configurations can also be optimized for the production of other synthetic fuels, such as dimethyl ether (a fuel similar to propane, that can be used as a transportation fuel in diesel engines and gas turbines) and gaseous fuel grade hydrogen (a fuel that can be used in engines and turbines, and if purified to remove carbon monoxide, as an electrochemical fuel in a fuel cell), as well as energetic synthesis gases for combined cycle power conversion and electric power production.
- synthetic fuels such as dimethyl ether (a fuel similar to propane, that can be used as a transportation fuel in diesel engines and gas turbines) and gaseous fuel grade hydrogen (a fuel that can be used in engines and turbines, and if purified to remove carbon monoxide, as an electrochemical fuel in a fuel cell), as well as energetic synthesis gases for combined cycle power conversion and electric power production.
- FIG. 1 is a flow diagram showing the overall modeling of the present invention
- FIG. 2 is a graph showing a plot of carbon conversion vs. H 2 /C and H 2 O/C ratios at 800° C. and 30 atm. in HPR;
- FIG. 3 is a graph showing a plot of CH 4 /C feed ratio vs. H 2 /C and H 2 O/C ratios at 800° C. and 30 atm. in HPR;
- FIG. 4 is a graph showing a plot of CO 2 /C feed ratio vs. H 2 /C and H 2 O/C ratio sat 800° C. and 30 atm. in HPR;
- FIG. 5 is a graph showing a plot of CO/C feed ratio vs. H 2 /C and H 2 O/C ratios at 800° C. and 30 atm. in HPR;
- FIG. 6 is a graph showing the effects of Temperature and Pressure conditions on CO 2 /H ration the hydro-gasifier reactor (HGR) at fixed feed of 2.629 moles of H 2 and 0.0657 moles of H 2 O per mole of C;
- FIG. 7 is a graph showing the effect of Temperature and Pressure conditions on CH 4 /H ratio in the HGR at fixed feed of 2.629 moles of H 2 and 0.0657 moles of H 2 O per mole of C;
- FIG. 8 is a graph showing the effect of Temperature and Pressure conditions on H 2 /C ratio in the HGR at fixed feed of 2.629 moles of H 2 and 0.0657 moles of H 2 O per mole of C;
- FIG. 9 is a graph showing the effect of Temperature and Pressure conditions on CO/H in the HGR at fixed feed of 2.629 moles of H 2 and 0.0657 moles of H 2 O per mole of C;
- FIG. 10 is a graph showing the effect of input H 2 O/C ratio on steam reformer (SPR) performance measure by the net H 2 /CO ratio after H2 recycling for the HGR at 1000° C. and 30 atm;
- FIG. 11 is a graph shown the effect of changing the input H 2 O/C ratio on SPR products, CO, CO 2 and CH 4 in the SPR at 1000° C. and 30 atm;
- FIG. 12 is a graph showing the effect of Temperature and Pressure conditions on H 2 /CO ratio in the SPR (2.76 moles of H 2 O/mole of C added to the SPR);
- FIG. 13 is a graph showing the effect of Temperature and Pressure conditions on CH 4 /C ratio in the SPR (2.76 moles of H 2 O/mole of C added to the SPR);
- FIG. 14 is a diagram showing the Mass Flow Schematic of Biomass Hydro-gasification for production of Fischer-Tropsch paraffin fuels
- FIG. 15 is a diagram showing the Molal Flow Schematic of Biomass Hydro-gasification for production of Fischer-Tropsch paraffin fuels
- FIG. 16 is a diagram showing the Thermal Energy Management Schematic of Biomass Hydro-gasification for production of Fischer-Tropsch paraffin fuels
- FIG. 17 is a diagram showing the Water/Steam Flow Schematic of Biomass Hydro-gasification for production of Fischer-Tropsch paraffin fuels
- FIG. 18 is a diagram showing Molten Salt Flow Schematic of Biomass Hydro-gasification for production of Fischer-Tropsch paraffin fuels
- FIG. 19 is a diagram showing Mass Flow Schematic of Biomass Hydro-gasification for production of dimethyl ether
- FIG. 20 is a diagram showing Mole Flow Schematic of Biomass Hydro-gasification for production of dimethyl ether
- FIG. 21 is a diagram showing Thermal Energy Management Schematic of Biomass Hydro-gasification for production of dimethyl ether
- FIG. 22 is a diagram showing Water/Steam Flow Schematic of Biomass Hydro-gasification for production of dimethyl ether
- FIG. 23 is a diagram showing Molten Salt Flow Schematic of Biomass Hydro-gasification for production of dimethyl ether
- FIG. 24 is a diagram showing Mass Flow Schematic of Biomass Hydro-gasification for production of gaseous hydrogen fuel
- FIG. 25 is a diagram showing Mole Flow Schematic of Biomass Hydro-gasification for production of gaseous hydrogen fuel
- FIG. 26 is a diagram showing Thermal Energy Management Schematic of Biomass Hydro-gasification for production of gaseous hydrogen fuel
- FIG. 27 is a diagram showing Water/Steam Flow Schematic of Biomass Hydro-gasification for production of gaseous hydrogen fuel
- FIG. 28 is a diagram showing Molten Salt Flow Schematic of Biomass Hydro-gasification for production of gaseous hydrogen fuel
- FIG. 29 is a diagram showing Mass Flow Schematic of Biomass Hydro-gasification for production of electricity
- FIG. 30 is a diagram showing Mole Flow Schematic of Biomass Hydro-gasification for production of electricity
- FIG. 31 is a diagram showing Thermal energy Management Schematic of Biomass Hydro-gasification for production of electricity
- FIG. 32 is a diagram showing Water/Steam Flow Schematic of Biomass Hydro-gasification for production of electricity
- FIG. 33 is a diagram showing Molten Salt Flow Schematic of Biomass Hydro-gasification for production of electricity
- FIG. 34 is a mass flow schematic of biomass hydro-gasification for Fischer-Tropsch paraffin fuel production using an adiabatic HGR and a 9:1 water feed;
- FIG. 35 is a molal flow schematic of biomass hydro-gasification for Fischer-Tropsch paraffin fuel production using an adiabatic HGR and a 9:1 water feed;
- FIG. 36 is a thermal energy management schematic of biomass hydro-gasification for Fischer-Tropsch paraffin fuel production using an adiabatic HGR and a 9:1 water feed;
- FIG. 37 is a water/steam flow schematic of biomass hydro-gasification for Fischer-Tropsch paraffin fuel production using an adiabatic HGR and a 9:1 water feed;
- FIG. 38 is a molten salt flow schematic of biomass hydro-gasification for Fischer-Tropsch paraffin fuel production using an adiabatic HGR and a 9:1 water feed.
- a steam generator for pyrolysis, hydro-gasification reactor (HGR) and steam pyrolytic reformer (SPR) may be utilized to produce the synthesis gas (syngas) through steam pyrolysis of the feed stock, hydro-gasification and steam reforming reactions.
- the reactions start in the HGR to convert carbon in the carbonaceous matter into a methane rich producer gas and continue through the SPR to produce synthesis gas with the correct hydrogen and carbon monoxide stiochiometry for efficient operation of the Fischer-Tropsch process.
- the Fischer-Tropsch process as the final step in processing, products such as synthetic gasoline, synthetic diesel fuel and recycled water can be produced.
- the feedstock requirement is highly flexible. Many feeds that consist of different carbonaceous materials can be wet milled to form a water slurry that can be fed at high pressure into a steam pyrolyzer, hydro-gasifier and steam reformer reactors for synthesis gas production.
- the feed to water mass ratio can even vary during the running of the process, with a knowledge of the chemical content of the feed, to maintain the carbon-hydrogen stiochiometry required for an optimized fuel synthesis process.
- Appropriate carbonaceous materials include biomass, natural gas, oil, petroleum coke, coal, petrochemical and refinery by-products and wastes, plastics, tires, sewage sludge and other organic wastes.
- wood is an example of waste biomass material that is readily available in Riverside County, California. This particular waste stream could be augmented with other carbonaceous materials, such as green waste and biosolids from water treatment that are available in Riverside County, and would otherwise go to landfill.
- the process When used to make a transportation fuel, such as diesel fuel, the process is designed so that the feedstock makes the maximum amount of Fischer-Tropsch paraffinic product required.
- the desired output consists of a liquid hydrocarbon, such as cetane, C 16 H 34 , within the carbon number range, 12 to 20, suitable as a diesel fuel.
- Excess synthesis gas output from the SPR i.e., “leftover” chemical energy from the Fischer Tropsch synthetic fuel producing process, can be used as an energetic fuel to run a gas turbine for electricity production.
- the synthesis gas output after recycling enough hydrogen to sustain the hydro-gasifier may be used for this purpose also, depending on the needs of the user.
- the following provides a method for maximizing the economic potential from the present invention in the conversion of carbonaceous materials to a usable transportation fuels and inclusive of the possibility for direct electric power production through a gas turbine combined cycle.
- thermo-chemical conversion of carbonaceous materials occurs by two main processes: hydro-gasification and steam reformation, with steam pyrolysis of the feedstock occurring within the steam generator to pre-treat feedstock and activate the carbon contained therein.
- the hydro-gasifier requires an input of the pyrolyzed carbonaceous waste, hydrogen, steam, reacting in a vessel at high temperature and pressure, which in a specific implementation is approximately 30 atmospheres and 1000 degrees Celsius.
- Steam reforming of the methane rich effluent gas from the HGR also requires an approximate pressure of 30 atmospheres and 1000 degrees Celsius. More generally, each process can be conducted over a temperature range of about 700 to 1200 degrees Celsius and a pressure of about 20 to 50 atmospheres. Lower temperatures and pressures can produce useful reaction rates with the use of appropriate reaction catalysts.
- FIG. 1 is an overall flow diagram, the order of general processes that carry out these main reaction processes is shown (specific amounts for a particular embodiment are in the flow diagrams shown in FIGS. 14 through 38 ). Piping is used to convey the materials through the process.
- the feed 11 is chopped, milled or ground in a grinder 10 into small particles, mixed with the recycled water 12 and placed in a receptacle or tank 14 as a liquid, suspension slurry 16 that is transportable as a compressed fluid by a pump 18 to a steam generator 20 where the slurry 16 is superheated and pyrolyzed, followed by either separation of the steam in a steam separator 22 so that steam goes through piping 24 that is separate from piping that delivers the pumped, dense slurry paste 26 , or a direct steam pyrolysis feed through piping 27 .
- the dense slurry paste feed 26 enters the HGR 28 .
- Hydrogen from an internal source from the steam reformer via a hydrogen separation filter described below
- the output gases consists largely of methane, hydrogen, carbon monoxide, and super-heated steam.
- the gases produced by the HGR 28 leaves the chamber and is pumped over to the SPR 30 .
- the un-reacted residue (or ash) from the HGR is periodically removed from the bottom of the reactor vessel using a double buffered lock-hopper arrangement, that is commonly used in comparable high pressure gasification systems.
- the ash is expected to be comprised of sand, SiO 2 , and alumina, Al 2 O 3 , with trace amounts of metals.
- the input to the SPR 30 is delivered from either the steam separator 22 by piping 32 through a heater 34 and further piping 36 , or via the HGR 28 output piping, to provide greater-than-theoretical steam to carbon ratio into the SPR 30 , to mitigate coking in the reactor.
- the output is a higher amount of hydrogen, and CO, with the appropriate stiochiometry for the desired hydrocarbon fuel synthesis process described below.
- the output of the SPR 30 is directed via piping 38 through heat exchangers 40 and 42 .
- Condensed water 44 is separated and removed from the SPR output, via a heat exchanger and liquid water expander 47 .
- the non-condensable gaseous output of SPR 30 is then conveyed to a hydrogen separation filter 46 .
- a portion of the hydrogen from the SPR output, about one-half in this embodiment, is carried from the filter 46 , passed through the heat exchanger 40 with a resultant rise in its temperature (in the embodiment from 220 degrees centigrade to 970 degrees Centigrade) and delivered to the HGR 28 as its hydrogen input.
- the hot effluent from the SPR output is cooled by passing through heat exchangers 40 and 42 , used to heat the recycled hydrogen, and make steam respectively.
- the condensed water 44 leaving the heat exchanger 47 is recycled back to make the water supply 12 for the slurry feed.
- the fuel synthesis gas is then used for one of two options. Based on the calorific value, the synthesis gas may go through a gas turbine combined cycle for direct energy production or through a fuel synthesis reactor (in this embodiment, a Fischer-Tropsch process to produce a clean diesel fuel and recycled water). In accordance with a specific embodiment of the invention, the synthesis gas is directed through an expansion turbine 48 , to recover mechanical energy by lowering the pressure of the gaseous feed into the Fischer-Tropsch reactor 50 .
- the mechanical power produced by the liquid state turbine, the Brayton and Rankine cycle turbines can be used to provide power for internal slurry, water feed pumps, air compressor, with the surplus exported via electricity generation, see Tables 1 through 7.
- Efficiency may be maximized by adjusting input and process parameters.
- the biomass/coal varying-mixture feed is synthesized into a slurry by adding water whereby after steam separation the carbon to hydrogen ratio will be appropriate for the process.
- a slurry feed needs enough water to run the hydro-gasifier, the steam reformer, and to keep the feed in a viable slurry after steam separation.
- Prior art attempts at biomass conversion using solid dry feed had many mechanical problems of feeding a solid into the high pressure, and high temperature HGR reaction chamber. This method of slurry feed has already been demonstrated and studied, according to the results for the “Hydrothermal Treatment of Municipal Solid Waste to Form High Solids Slurries in a Pilot Scale System”, by C. B.
- the main purpose of the HGR process is to maximize the carbon conversion from the feed stock into the energetic gases CH 4 and CO.
- hydrogen is produced by reacting superheated steam with CH 4 and CO within the SPR.
- half the hydrogen is obtained from the superheated steam and the remainder from the CH 4 .
- the principle reactions in the SPR are considered to be: CH 4 +H 2 O ⁇ CO+3H 2 (4) CO 2 +H 2 ⁇ CO+H 2 O ⁇ CO 2 +H 2 (5)
- the steam reforming reactions (4 and 5) are often run with steam concentrations higher than required for the stiochiometry shown above. This is done to avoid coke formation and to improve conversion efficiency.
- the required steam concentration is usually specified in the form of the steam-to-carbon mole ratio (S:C), the ratio of water steam molecules per carbon atom in the HGR feed.
- S:C steam-to-carbon mole ratio
- the preferred (S:C) ratio for the SPR operation is greater than 3.
- This steam rich condition favors the water-gas shift reaction.
- the present invention using the Fischer-Tropsch process can produce a zero-sulfur, ultrahigh cetane value diesel-like fuel and valuable paraffin wax products.
- the absence of sulfur enables low pollutant and particle emitting diesel fuels to be realized.
- the Fischer-Tropsch reactions also produce tail gas that contains hydrogen, CO, CO 2 , and some light hydrocarbon gases. Hydrogen can be stripped out of the tail gas and recycled either to the HGR or the Fischer-Tropsch reactor. Any small amounts of other gases such as CO and CO 2 may be flared off.
- Fischer-Tropsch Two main products of Fischer-Tropsch may be characterized as synthetic oil and petroleum wax. According to Rentech, in the above report for their particular implementation of the Fischer-Tropsch process, the mix of solid wax to liquid ratio is about 50/50. Fischer-Tropsch products are totally free of sulfur, nitrogen, nickel, vanadium, asphaltenes, and aromatics that are typically found in crude oil. The products are almost exclusively paraffins and olefins with very few, or no, complex cyclic hydrocarbons or oxygenates that would otherwise require further separation and/or processing in order to be usable end-products. The absence of sulfur, nitrogen, and aromatics substantially reduces harmful emissions.
- California's Air Resources Board (CARB) specifications for diesel fuel require a minimum cetane value of 48 and reduced sulfur content.
- the above Rentech study with Shell diesel flue produced from a Fischer-Tropsch process has a cetane value of 76.
- the CARB standard for sulfur in diesel fuel placed in the vehicle tank is 500 ppm by weight, and Shell's Fischer-Tropsch process diesel fuel has no detectable amount in the ppm range.
- the CARB standard for aromatic content is no more than 10% by volume (20% for small refineries).
- the Shell Fischer-Tropsch process diesel fuel had no detectable aromatics.
- a gas turbine combined cycle for electric power production is an option. If the Fischer-Tropsch product is unexpectedly too costly, the use of the synthesis gas heating value can be a viable option, based on an overall efficiency of 65% of the synthesis gas energy converting to electric energy. This number is reasonable since the synthesis gas starts at a high temperature as opposed to taking natural gas in from a pipeline.
- Process modeling can be used to reasonably produce a synthesis gas maximized for a yield high in CO and stoichiometric hydrogen.
- the unit operation reactions of the hydro-gasifier, steam reformer, and Fischer-Tropsch reactors are modeled. This may be accomplished by using Stanjan, a DOS-based computer program that uses equilibrium modeling.
- Stanjan a DOS-based computer program that uses equilibrium modeling.
- the hydro-gasifier variables were modified for the maximum practical carbon conversion efficiency.
- the steam reformer variables were modified for maximum practical CO output, enough hydrogen for recycling output, and minimum CO 2 production.
- FIG. 5 shows the effect of H 2 and H 2 O on CO in the HGR at 800° C. and 30 atm.
- FIGS. 6 , 7 , 8 and 9 show the effects of varying temperature and pressure on the chemical composition of the effluent gases from the HGR at feed of 2.76 mol H 2 and 0.066 mol H 2 O per mole C in the feed stock.
- the carbon conversion efficiency is estimated to close to 100% in a temperature range of 800 to 1000° C. and a pressure range of 30 atm. to 50 atm, for equilibrium chemistry.
- FIG. 10 shows the ratio of H 2 and CO available for feed into the Fischer-Tropsch fuel synthesis reactor, against the steam content added to the SPR at 800° C. and 30 atm. This ratio increases with the increasing amount of steam added to the SPR and reaches 2.1 at about 3.94 mol steam (or water) added per mol C in feedstock. With this amount of steam added, the system will achieve chemical and thermal self-substantiality and provide a proper ratio of H 2 and CO for Fischer-Tropsch synthesis of cetane.
- FIG. 11 shows the effect of H 2 O added to the SPR at 800° C. and 30 atm.
- FIGS. 12 and 13 show the effect of temperature and pressure on the H 2 and CO ratio and the conversion of CH 4 in the SPR. At higher temperature and lower pressure, this ratio is higher. In a similar trend with the H 2 and CO ratio, the conversion of CH 4 increases with increasing temperature and with decreasing pressure. It is thus high temperature and low pressure favored in the SPR.
- the products of Fischer-Tropsch paraffinic liquid fuels are in a wide range of carbon number. According to the above Rentech report, about half of the products are diesel fuel. Also about half of the products come in the form of wax, with minor amounts of gases such as un-reacted reactants and hydrocarbon gases (methane, ethane, propane and so forth). To exemplify the present invention, cetane, which is in middle position of diesel range (C 11 to C 20 ), was chosen as diesel fuel.
- Tables 1 through 5 show the overall energy transfer rates into and out from each heat exchanger and power conversion component for each operating mode of the conversion process.
- the mass flow, molal flow, thermal energy management, water/steam and molten slat schematic diagrams for each of the five operating modes of the conversion process are also shown as FIGS. 14-18 , 19 - 23 , 24 - 28 , 29 - 33 and 34 - 38 respectively.
- Tables 6 and 7 summarize the results of the performance studies and process configuration parameters for each of the five operating modes of the conversion process.
- the carbonaceous material feed process initially described above uses a water slurry suspension feed technology, originally developed by Texaco for use in its partial-oxidation gasifiers, that can accept a wide variety of carbonaceous materials, and can be metered by controlled pumping into the first stage hydrogen gasification reactor (HGR) to produce a methane rich gas with high conversion efficiency (measured to have at least 85% carbon feed chemical utilization efficiency). Enough heat is available to be able to generate super-heated steam from the biomass-water slurry feed to supply and operate the second stage steam-methane reformer.
- the reformer product gas is fed into a hydrogen membrane filter that allows almost pure hydrogen to pass back into the first stage reactor to sustain the hydro-gasification of the biomass.
- the remaining second stage product gas not passing through the hydrogen filter, is cooled to condense and re-cycle any water vapor present back into the slurry carbonaceous feed system.
- the unfiltered gas is fed into the fuel synthesis reactors, which comprise a Fischer-Tropsch paraffin hydro-carbon synthesis reactor, which operates at 200° C. and 10 atmospheres pressure.
- the fuel synthesis reactors comprise a Fischer-Tropsch paraffin hydro-carbon synthesis reactor, which operates at 200° C. and 10 atmospheres pressure.
- Process modeling reveals that the hydrogen/carbon molecular feed ratio must be at least 2.1:1 to optimize production of chemically pure and clean-burning [sulfur-free] diesel-like liquid fuels and high value chemically pure paraffin-like waxes, without additional fuel or energy.
- Fischer-Tropsch products 0.199 ton wax per ton of feedstock; 68.3 gallons of cetane (C 16 H 34 )diesel per ton of feedstock.
- H2/C H2O/C CO/H2 CH4/CO HGR 1000 30 3.48 0.07 SPR 1000 30 2.47 4.15 0.21 0.93 synthesis reactor 200 10 1.4 0.47 0.03 overall energy utilization 50.7% 2 Dimethyl ether (DME) bbl/day # water fed needed 184387 4425 2.2 dimethyl ether produced 20045 481 4530 160.6 33.9% electricity exported 110.3 23.3% process water recovered 207334 4976 Input conditions: T deg. C. P atm.
- H2/C H2O/C CO/H2 CH4/CO HGR 1000 30 3.48 0.07 SPR 1000 30 2.47 2.91 0.21 0.93 synthesis reactor 260 70 1.2 0.58 0.05 overall energy utilization 57.3% 3 Gaseous Hydrogen (GH2) cu m/day+ water fed needed 184387 4425 2.2 gaseous hydrogen (GH2) 5618 135 1899 221.4 46.8% electricity exported 96.4 20.4% water produced 180601 4334 Input conditions: T deg. C. P atm.
- H2/C H2O/C CO/H2 CH4/CO HGR 1000 30 3.48 0.07 SPR 1000 30 2.47 2.91 0.21 0.93 overall energy utilization 67.2% 4 All Electric Power (AEP) MW eh/day water fed needed 260393 6249 3.1 electricity exported 4335 180.6 38.2% water produced 311110 7647 Input conditions: T deg. C. P atm.
- H2/C H2O/C CO/H2 CH4/CO HGR 1000 30 3.48 0.07 SPR 1000 30 2.47 4.15 0.21 0.93 overall energy utilization 38.2% 5 FTL with water:biomass at 9:1 and adiabatic HGR (AHGR) bbl/day water fed used 753975 18095 9.0 synthetic diesel fuel 18147 436 3512 182.7 38.6% electricity exported 155.1 32.8% process water recovered 775890 18621 Input conditions: T deg. C. P atm. H2/C H2O/C CO/H2 CH4/CO adiabatic HGR 738 30 1.67 0.43 SPR 900 30 0.84 3.08 0.18 4.47 synthesis reactor 200 10 1.38 0.47 0.17 overall energy utilization 71.4% revision Oct.
- AHGR adiabatic HGR
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Processing Of Solid Wastes (AREA)
- Hydrogen, Water And Hydrids (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/805,576 USRE40419E1 (en) | 2002-02-05 | 2003-02-04 | Production of synthetic transportation fuels from carbonaceous material using self-sustained hydro-gasification |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35540502P | 2002-02-05 | 2002-02-05 | |
US11/805,576 USRE40419E1 (en) | 2002-02-05 | 2003-02-04 | Production of synthetic transportation fuels from carbonaceous material using self-sustained hydro-gasification |
PCT/US2003/003489 WO2003066517A1 (en) | 2002-02-05 | 2003-02-04 | Production of synthetic transportation fuels from carbonaceous materials using self-sustained hydro-gasification |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/503,435 Reissue US7208530B2 (en) | 2002-02-05 | 2003-02-04 | Production of synthetic transportation fuels from carbonaceous material using self-sustained hydro-gasification |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE40419E1 true USRE40419E1 (en) | 2008-07-01 |
Family
ID=27734515
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/503,435 Ceased US7208530B2 (en) | 2002-02-05 | 2003-02-04 | Production of synthetic transportation fuels from carbonaceous material using self-sustained hydro-gasification |
US11/805,576 Expired - Fee Related USRE40419E1 (en) | 2002-02-05 | 2003-02-04 | Production of synthetic transportation fuels from carbonaceous material using self-sustained hydro-gasification |
US11/725,048 Abandoned US20070227069A1 (en) | 2002-02-05 | 2007-03-16 | Production of synthetic transportation fuels from carbonaceous materials using self-sustained hydro-gasification |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/503,435 Ceased US7208530B2 (en) | 2002-02-05 | 2003-02-04 | Production of synthetic transportation fuels from carbonaceous material using self-sustained hydro-gasification |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/725,048 Abandoned US20070227069A1 (en) | 2002-02-05 | 2007-03-16 | Production of synthetic transportation fuels from carbonaceous materials using self-sustained hydro-gasification |
Country Status (14)
Country | Link |
---|---|
US (3) | US7208530B2 (zh) |
EP (1) | EP1483197A4 (zh) |
JP (1) | JP2005517053A (zh) |
CN (1) | CN1642851B (zh) |
AU (1) | AU2003215059B2 (zh) |
BR (1) | BR0307553A (zh) |
CA (1) | CA2475015A1 (zh) |
CZ (1) | CZ2004930A3 (zh) |
HK (1) | HK1078842A1 (zh) |
HU (1) | HUP0500320A3 (zh) |
MX (1) | MXPA04007656A (zh) |
NZ (1) | NZ534897A (zh) |
PL (1) | PL204168B1 (zh) |
WO (1) | WO2003066517A1 (zh) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070131567A1 (en) * | 2005-12-09 | 2007-06-14 | Park Chan S | High temperature and pressure sensor |
US20070227069A1 (en) * | 2002-02-05 | 2007-10-04 | The Regents Of The University Of California | Production of synthetic transportation fuels from carbonaceous materials using self-sustained hydro-gasification |
US20080016752A1 (en) * | 2006-07-18 | 2008-01-24 | Norbeck Joseph M | Method for high energy density biomass-water slurry |
US20080021123A1 (en) * | 2006-07-18 | 2008-01-24 | Norbeck Joseph M | Method and apparatus for steam hydro-gasification in a fluidized bed reactor |
US20080021122A1 (en) * | 2006-07-18 | 2008-01-24 | Norbeck Joseph M | Operation of a steam methane reformer by direct feeding of steam rich producer gas from steam hydro-gasification |
US20080021121A1 (en) * | 2006-07-18 | 2008-01-24 | Norbeck Joseph M | Controlling the synthesis gas composition of a steam methane reformer |
US20080139675A1 (en) * | 2006-12-06 | 2008-06-12 | Joseph Norbeck | Process for enhancing the operability of hot gas cleanup for the production of synthesis gas from steam-hydrogasification producer gas |
US20080312348A1 (en) * | 2006-07-18 | 2008-12-18 | Chan Seung Park | Method and apparatus for steam hydro-gasification with increased conversion times |
US20090094892A1 (en) * | 2006-07-18 | 2009-04-16 | Norbeck Joseph M | Commingled coal and biomass slurries |
US20090221721A1 (en) * | 2002-02-05 | 2009-09-03 | Norbeck Joseph M | Controlling the synthesis gas composition of a steam methane reformer |
US20100170147A1 (en) * | 2008-11-12 | 2010-07-08 | Mcneff Clayton V | Systems and methods for producing fuels from biomass |
US20100170143A1 (en) * | 2008-10-07 | 2010-07-08 | Sartec Corporation | Catalysts, systems, and methods for producing fuels and fuel additives from polyols |
US7866060B2 (en) * | 2004-07-19 | 2011-01-11 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US7966741B2 (en) * | 2004-07-19 | 2011-06-28 | Earthrenew, Inc. | Process and apparatus for manufacture of fertilizer products from manure and sewage |
US7975398B2 (en) | 2004-07-19 | 2011-07-12 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US20110184201A1 (en) * | 2007-09-28 | 2011-07-28 | Mcneff Research Consultants, Inc. | Methods and compositions for refining lipid feed stocks |
US8156662B2 (en) | 2006-01-18 | 2012-04-17 | Earthrenew, Inc. | Systems for prevention of HAP emissions and for efficient drying/dehydration processes |
US8686171B2 (en) | 2006-08-04 | 2014-04-01 | Mcneff Research Consultants, Inc. | Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same |
US9187385B1 (en) | 2011-10-07 | 2015-11-17 | InnoVerdant, LLC | Charcoal ignition fluid |
US9605211B2 (en) | 2012-09-11 | 2017-03-28 | D4 Energy Group, Inc. | Process and device for devolatizing feedstock |
US9976097B2 (en) | 2015-03-04 | 2018-05-22 | InnoVerdant, LLC | Charcoal ignition fluid |
US10239812B2 (en) | 2017-04-27 | 2019-03-26 | Sartec Corporation | Systems and methods for synthesis of phenolics and ketones |
US10544381B2 (en) | 2018-02-07 | 2020-01-28 | Sartec Corporation | Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid |
US10696923B2 (en) | 2018-02-07 | 2020-06-30 | Sartec Corporation | Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids |
US20230374394A1 (en) * | 2021-04-22 | 2023-11-23 | Iogen Corporation | Process and system for producing fuel |
Families Citing this family (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7500997B2 (en) * | 2002-02-05 | 2009-03-10 | The Regents Of The University Of California | Steam pyrolysis as a process to enhance the hydro-gasification of carbonaceous materials |
US20080021120A1 (en) * | 2006-07-18 | 2008-01-24 | Norbeck Joseph M | Operation of a steam hydro-gasifier in a fluidized bed reactor |
US8771388B2 (en) * | 2004-08-03 | 2014-07-08 | The Regents Of The University Of California | Method to produce methane rich fuel gas from carbonaceous feedstocks using a steam hydrogasification reactor and a water gas shift reactor |
JP4418257B2 (ja) * | 2004-02-26 | 2010-02-17 | 独立行政法人海洋研究開発機構 | 潜水機及び温度差発電方法 |
GB0423037D0 (en) * | 2004-10-18 | 2004-11-17 | Accentus Plc | Process and plant for treating biomass |
US7037485B1 (en) * | 2004-11-18 | 2006-05-02 | Praxair Technology, Inc. | Steam methane reforming method |
US20070220810A1 (en) * | 2006-03-24 | 2007-09-27 | Leveson Philip D | Method for improving gasification efficiency through the use of waste heat |
FR2899238B1 (fr) * | 2006-03-31 | 2012-07-27 | Electricite De France | Installation de gazeification de biomasse avec dispositif de craquage des goudrons dans le gaz de synthese produit |
JP2007268504A (ja) * | 2006-03-31 | 2007-10-18 | Osaka Gas Co Ltd | 廃水処理方法 |
AP2435A (en) * | 2006-04-24 | 2012-08-31 | Univ Witwatersrand Jhb | Improvement of carbon efficiences in hydrocarbon production |
NZ573217A (en) | 2006-05-05 | 2011-11-25 | Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch | A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2 |
MX2008014186A (es) | 2006-05-05 | 2009-02-25 | Plascoenergy Ip Holdings Slb | Sistema de control para la conversion de materias primas carbonaceas a gas. |
WO2007131241A2 (en) | 2006-05-05 | 2007-11-15 | Plasco Energy Group Inc. | A horizontally-oriented gasifier with lateral transfer system |
BRPI0711330A2 (pt) * | 2006-05-05 | 2013-01-08 | Plascoenergy Group Inc | sistema de reformulaÇço de gÁs usando aquecimento por tocha de plasma |
US20070284453A1 (en) * | 2006-05-05 | 2007-12-13 | Andreas Tsangaris | Heat Recycling System for Use with a Gasifier |
FR2910488B1 (fr) * | 2006-12-20 | 2010-06-04 | Inst Francais Du Petrole | Procede de conversion de biomasse pour la production de gaz de synthese. |
US20100175320A1 (en) * | 2006-12-29 | 2010-07-15 | Pacific Renewable Fuels Llc | Energy efficient system and process for the continuous production of fuels and energy from syngas |
CN102057222B (zh) * | 2007-02-27 | 2013-08-21 | 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 | 具有加工过的原料/焦炭转化和气体重组的气化系统 |
US20110158858A1 (en) * | 2007-04-18 | 2011-06-30 | Alves Ramalho Gomes Mario Luis | Waste to liquid hydrocarbon refinery system |
US8038746B2 (en) * | 2007-05-04 | 2011-10-18 | Clark Steve L | Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production |
US7749291B2 (en) * | 2007-05-07 | 2010-07-06 | Seidel Research and Development Co, LLC | Three-stage gasification—biomass-to-electricity process with an acetylene process |
US9359567B2 (en) | 2007-07-10 | 2016-06-07 | Stratean, Inc. | Gasification method using feedstock comprising gaseous fuel |
US8105401B2 (en) | 2007-07-10 | 2012-01-31 | Refill Energy, Inc. | Parallel path, downdraft gasifier apparatus and method |
US20100154304A1 (en) * | 2007-07-17 | 2010-06-24 | Plasco Energy Group Inc. | Gasifier comprising one or more fluid conduits |
US20090031615A1 (en) * | 2007-08-01 | 2009-02-05 | General Electric Company | Integrated method for producing a fuel component from biomass and system therefor |
JP5136831B2 (ja) * | 2007-08-17 | 2013-02-06 | バイオマスエナジー株式会社 | バイオマスから炭化水素を製造する装置 |
US20090056225A1 (en) * | 2007-08-30 | 2009-03-05 | Chevron U.S.A. Inc. | Process for Introducing Biomass Into a Conventional Refinery |
US8641991B2 (en) * | 2007-08-30 | 2014-02-04 | Chevron U.S.A. Inc. | Hybrid refinery for co-processing biomass with conventional refinery streams |
US8828325B2 (en) * | 2007-08-31 | 2014-09-09 | Caterpillar Inc. | Exhaust system having catalytically active particulate filter |
US20090158663A1 (en) * | 2007-12-21 | 2009-06-25 | General Electric Company | Method of biomass gasification |
US9698439B2 (en) * | 2008-02-19 | 2017-07-04 | Proton Power, Inc. | Cellulosic biomass processing for hydrogen extraction |
US8303676B1 (en) | 2008-02-19 | 2012-11-06 | Proton Power, Inc. | Conversion of C-O-H compounds into hydrogen for power or heat generation |
US20110035990A1 (en) * | 2008-02-28 | 2011-02-17 | Krones Ag | Method and device for converting carbonaceous raw materials |
GB0805020D0 (en) * | 2008-03-18 | 2008-04-16 | Al Chalabi Rifat | Active reformer |
US20110203537A1 (en) * | 2008-05-07 | 2011-08-25 | Aen Autarke Energie Gmbh | Device and Method for the Electrothermal-Chemical Gasification of Biomass |
DE102008032957A1 (de) * | 2008-07-12 | 2010-01-14 | Dinano Ecotechnology Llc | Verfahren zur Gewinnung von synthetischem Diesel |
FI125812B (fi) * | 2008-10-31 | 2016-02-29 | Upm Kymmene Corp | Menetelmä ja laitteisto nestemäisen biopolttoaineen tuottamiseksi kiinteästä biomassasta |
US9150799B2 (en) * | 2008-12-23 | 2015-10-06 | Estech Usa, Llc | Waste processing apparatus and method featuring power generation, water recycling and water use in steam generation |
US8541637B2 (en) | 2009-03-05 | 2013-09-24 | G4 Insights Inc. | Process and system for thermochemical conversion of biomass |
US8769961B2 (en) * | 2009-04-17 | 2014-07-08 | Gtlpetrol Llc | Generating power from natural gas with carbon dioxide capture |
US20100319255A1 (en) * | 2009-06-18 | 2010-12-23 | Douglas Struble | Process and system for production of synthesis gas |
KR101570882B1 (ko) * | 2009-08-04 | 2015-11-23 | 에스케이이노베이션 주식회사 | 메탄의 열분해 및 이산화탄소 전환 반응을 포함하는 탄소 함유 물질의 가스화 방법 |
WO2011041756A2 (en) * | 2009-10-01 | 2011-04-07 | Mississippi State University | Method of increasing anhydrosugars, pyroligneous fractions and esterified bio-oil |
US8450090B2 (en) | 2009-10-06 | 2013-05-28 | The Regents Of The University Of Colorado, A Body Corporate | Compositions and methods for promoting fatty acid production in plants |
EP2501788A4 (en) | 2009-11-18 | 2013-12-04 | G4 Insights Inc | BY SORPTION REINFORCED METHANIZATION OF BIOMASS |
CA2781195C (en) | 2009-11-18 | 2018-09-18 | G4 Insights Inc. | Method and system for biomass hydrogasification |
US11525097B2 (en) | 2010-02-08 | 2022-12-13 | Fulcrum Bioenergy, Inc. | Feedstock processing systems and methods for producing fischer-tropsch liquids and transportation fuels |
US8614257B2 (en) * | 2010-02-08 | 2013-12-24 | Fulcrum Bioenergy, Inc. | Product recycle loops in process for converting municipal solid waste into ethanol |
US20110245937A1 (en) * | 2010-03-31 | 2011-10-06 | General Electric Company | System and method for interoperability between carbon capture system, carbon emission system, carbon transport system, and carbon usage system |
US8673135B2 (en) * | 2010-05-28 | 2014-03-18 | Axens | Coal liquefaction complex with minimal carbon dioxide emissions |
CN103249817B (zh) * | 2010-07-29 | 2015-08-26 | 中央研究院 | 生质变成生质煤的超级烘焙法 |
US9321640B2 (en) | 2010-10-29 | 2016-04-26 | Plasco Energy Group Inc. | Gasification system with processed feedstock/char conversion and gas reformulation |
US9193926B2 (en) | 2010-12-15 | 2015-11-24 | Uop Llc | Fuel compositions and methods based on biomass pyrolysis |
US9039790B2 (en) | 2010-12-15 | 2015-05-26 | Uop Llc | Hydroprocessing of fats, oils, and waxes to produce low carbon footprint distillate fuels |
FI20115038L (fi) * | 2011-01-14 | 2012-07-15 | Vapo Oy | Menetelmä btl-tehtaassa muodostuvien kaasujen sisältämän lämpöenergian hyödyntämiseksi |
US9115324B2 (en) | 2011-02-10 | 2015-08-25 | Expander Energy Inc. | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation |
WO2012118511A1 (en) * | 2011-03-03 | 2012-09-07 | Sri International | Gasification of a carbonaceous material |
US9169443B2 (en) | 2011-04-20 | 2015-10-27 | Expander Energy Inc. | Process for heavy oil and bitumen upgrading |
US9156691B2 (en) | 2011-04-20 | 2015-10-13 | Expander Energy Inc. | Process for co-producing commercially valuable products from byproducts of heavy oil and bitumen upgrading process |
US9050588B2 (en) | 2011-05-27 | 2015-06-09 | Gi—Gasification International, S.A. | Fischer-tropsch catalyst activation procedure |
WO2012168945A1 (en) * | 2011-06-10 | 2012-12-13 | Bharat Petroleum Corporation Limited | Process for co-gasification of two or more carbonaceous feedstocks and apparatus thereof |
JP6652694B2 (ja) * | 2011-08-04 | 2020-02-26 | カニンガム,スティーブン,エル. | プラズマアーク炉および応用 |
US8889746B2 (en) | 2011-09-08 | 2014-11-18 | Expander Energy Inc. | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment |
WO2013033812A1 (en) | 2011-09-08 | 2013-03-14 | Steve Kresnyak | Enhancement of fischer-tropsch process for hydrocarbon fuel formulation in a gtl environment |
US9315452B2 (en) | 2011-09-08 | 2016-04-19 | Expander Energy Inc. | Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a GTL environment |
EP2825503B1 (en) * | 2012-03-16 | 2020-03-11 | Stamicarbon B.V. acting under the name of MT Innovation Center | Method and system for the production of hydrogen |
CA2776369C (en) | 2012-05-09 | 2014-01-21 | Steve Kresnyak | Enhancement of fischer-tropsch process for hydrocarbon fuel formulation in a gtl environment |
JP2015523061A (ja) * | 2012-05-17 | 2015-08-13 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap | バイオマス材料を処理する方法およびシステム |
US8569554B1 (en) | 2012-07-12 | 2013-10-29 | Primus Green Energy Inc | Fuel composition |
US9023243B2 (en) | 2012-08-27 | 2015-05-05 | Proton Power, Inc. | Methods, systems, and devices for synthesis gas recapture |
US10005961B2 (en) | 2012-08-28 | 2018-06-26 | Proton Power, Inc. | Methods, systems, and devices for continuous liquid fuel production from biomass |
US9266730B2 (en) | 2013-03-13 | 2016-02-23 | Expander Energy Inc. | Partial upgrading process for heavy oil and bitumen |
US9708556B2 (en) * | 2013-04-12 | 2017-07-18 | Elwha Llc | Systems, methods, and apparatuses related to the use of gas clathrates |
CA2818322C (en) | 2013-05-24 | 2015-03-10 | Expander Energy Inc. | Refinery process for heavy oil and bitumen |
US10563128B2 (en) | 2014-01-10 | 2020-02-18 | Proton Power, Inc. | Methods for aerosol capture |
EP2902466A1 (de) * | 2014-02-04 | 2015-08-05 | Linde Aktiengesellschaft | Verfahren und Anlage zur Gewinnung von Oxygenaten mit Dampferzeugung |
US9382482B2 (en) | 2014-03-05 | 2016-07-05 | Proton Power, Inc. | Continuous liquid fuel production methods, systems, and devices |
EP3140601A4 (en) | 2014-05-09 | 2017-11-08 | Stephen Lee Cunningham | Arc furnace smeltering system & method |
DE102014006996A1 (de) * | 2014-05-13 | 2015-11-19 | CCP Technology GmbH | Verfahren und Vorrichtung zur Herstellung von synthetischen Kohlenwasserstoffen |
US10538709B2 (en) | 2018-01-05 | 2020-01-21 | Raven Sr, Llc | Production of renewable fuels and energy by steam/CO2 reforming of wastes |
CA2971889A1 (en) | 2014-12-23 | 2016-06-30 | Greenfield Specialty Alcohols Inc. | Conversion of biomass, organic waste and carbon dioxide into synthetic hydrocarbons |
US9890332B2 (en) | 2015-03-08 | 2018-02-13 | Proton Power, Inc. | Biochar products and production |
PL224909B1 (pl) * | 2015-03-12 | 2017-02-28 | Jjra Spółka Z Ograniczoną Odpowiedzialnością | Sposób i układ do wytwarzania biometanu i ekometanu oraz energii elektrycznej i cieplnej |
CN108865285A (zh) * | 2018-07-16 | 2018-11-23 | 西南石油大学 | 一种以煤和天然气为原料的油-电联产工艺 |
US10544936B1 (en) | 2018-12-04 | 2020-01-28 | Hélio Da Igreja | Thermochemical treatment system for plastic and/or elastomeric waste |
JP7136523B1 (ja) * | 2021-09-09 | 2022-09-13 | 株式会社 ユーリカ エンジニアリング | カーボンニュートラルメタン使用液体燃料製造システム |
WO2023037461A1 (ja) * | 2021-09-09 | 2023-03-16 | 株式会社 ユーリカ エンジニアリング | カーボンニュートラル液体燃料製造システム |
US11572329B1 (en) * | 2021-11-22 | 2023-02-07 | King Fahd University Of Petroleum And Minerals | System and method for methanol production using energy mix systems |
JP7557759B1 (ja) | 2023-10-23 | 2024-09-30 | 株式会社 ユーリカ エンジニアリング | 熱電併給一体型合成ガス製造システムおよび熱電併給一体型合成ガス製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3985519A (en) * | 1972-03-28 | 1976-10-12 | Exxon Research And Engineering Company | Hydrogasification process |
US4152122A (en) * | 1977-12-05 | 1979-05-01 | Syngas International, Ltd. | Apparatus for the production of methane containing gas by hydrogasification |
US4158697A (en) * | 1975-12-29 | 1979-06-19 | Clean Energy Corporation | Coal treatment apparatus |
US4678860A (en) * | 1985-10-04 | 1987-07-07 | Arizona Board Of Regents | Process of producing liquid hydrocarbon fuels from biomass |
US4822935A (en) * | 1986-08-26 | 1989-04-18 | Scott Donald S | Hydrogasification of biomass to produce high yields of methane |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3153091B2 (ja) * | 1994-03-10 | 2001-04-03 | 株式会社荏原製作所 | 廃棄物の処理方法及びガス化及び熔融燃焼装置 |
US2888330A (en) * | 1957-03-20 | 1959-05-26 | Standard Oil Co | Hydrocarbon gas analyzer and method |
US2987387A (en) * | 1958-12-30 | 1961-06-06 | Texaco Inc | Method for the production of carbon monoxide from solid fuels |
CA1003218A (en) * | 1972-09-08 | 1977-01-11 | Robert E. Pennington | Manufcture of synthetic natural gas |
NL171597C (nl) * | 1972-12-15 | 1983-04-18 | Shell Int Research | Werkwijze en inrichting voor de bereiding van gas door partiele verbranding gevolgd door carbureren. |
US4005001A (en) * | 1973-03-27 | 1977-01-25 | Westinghouse Electric Corporation | Combustibles sensor |
US3847567A (en) * | 1973-08-27 | 1974-11-12 | Exxon Research Engineering Co | Catalytic coal hydrogasification process |
US3926775A (en) * | 1973-11-01 | 1975-12-16 | Wilburn C Schroeder | Hydrogenation of coal |
US4012692A (en) * | 1974-09-12 | 1977-03-15 | Westfalische Berggewerkschaftskasse | Method and apparatus for determining the concentration of one gaseous component in a mixture of gases |
US3971639A (en) * | 1974-12-23 | 1976-07-27 | Gulf Oil Corporation | Fluid bed coal gasification |
GB1508712A (en) * | 1975-03-31 | 1978-04-26 | Battelle Memorial Institute | Treating solid fuel |
US3957460A (en) * | 1975-09-09 | 1976-05-18 | The United States Of America As Represented By The United States Energy Research And Development Administration | Oxidation of coal-water slurry feed to hydrogasifier |
US4012311A (en) * | 1975-10-30 | 1977-03-15 | Cities Service Company | Short residence time low pressure hydropyrolysis of carbonaceous materials |
US4170455A (en) * | 1976-03-11 | 1979-10-09 | Rockwell International Corporation | Gas monitoring method and apparatus therefor |
US4056373A (en) * | 1976-05-12 | 1977-11-01 | Resource Systems, Inc. | Hydrogen-purification apparatus with palladium-alloy filter coil |
US4118204A (en) * | 1977-02-25 | 1978-10-03 | Exxon Research & Engineering Co. | Process for the production of an intermediate Btu gas |
US4372755A (en) * | 1978-07-27 | 1983-02-08 | Enrecon, Inc. | Production of a fuel gas with a stabilized metal carbide catalyst |
US4211540A (en) * | 1978-12-29 | 1980-07-08 | Fluor Corporation | Process for the manufacture of fuel gas |
US4244706A (en) * | 1979-09-10 | 1981-01-13 | The United States Of America As Represented By The United States Department Of Energy | Process for gasifying carbonaceous material from a recycled condensate slurry |
US4341530A (en) * | 1979-12-05 | 1982-07-27 | The United States Of America As Represented By The Department Of Energy | Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure |
US4385905A (en) * | 1980-04-04 | 1983-05-31 | Everett Metal Products, Inc. | System and method for gasification of solid carbonaceous fuels |
GB2078251B (en) * | 1980-06-19 | 1984-02-15 | Gen Electric | System for gasifying coal and reforming gaseous products thereof |
US4526903A (en) * | 1981-01-23 | 1985-07-02 | Dut Pty Limited | Process for the production of synthesis gas from coal |
US4833171A (en) * | 1981-01-27 | 1989-05-23 | Sweeney Maxwell P | Synthesis gas system |
US4348487A (en) * | 1981-11-02 | 1982-09-07 | Exxon Research And Engineering Co. | Production of methanol via catalytic coal gasification |
US4483691A (en) * | 1982-09-30 | 1984-11-20 | Engelhard Corporation | Production of synthetic natural gas from coal gasification liquid by-products |
US4597776A (en) * | 1982-10-01 | 1986-07-01 | Rockwell International Corporation | Hydropyrolysis process |
US5055266A (en) * | 1984-03-02 | 1991-10-08 | Arch Development Corporation | Method for detecting toxic gases |
US4668645A (en) * | 1984-07-05 | 1987-05-26 | Arup Khaund | Sintered low density gas and oil well proppants from a low cost unblended clay material of selected composition |
US4761165A (en) * | 1987-09-01 | 1988-08-02 | Union Carbide Corporation | Pressure swing adsorption control method and apparatus |
US4983296A (en) * | 1989-08-03 | 1991-01-08 | Texaco Inc. | Partial oxidation of sewage sludge |
US5354547A (en) * | 1989-11-14 | 1994-10-11 | Air Products And Chemicals, Inc. | Hydrogen recovery by adsorbent membranes |
US5250175A (en) * | 1989-11-29 | 1993-10-05 | Seaview Thermal Systems | Process for recovery and treatment of hazardous and non-hazardous components from a waste stream |
US5656044A (en) * | 1992-05-07 | 1997-08-12 | Hylsa S.A. De C.V. | Method and apparatus for gasification of organic materials |
USRE35377E (en) * | 1993-05-27 | 1996-11-12 | Steinberg; Meyer | Process and apparatus for the production of methanol from condensed carbonaceous material |
US5344848A (en) * | 1993-05-27 | 1994-09-06 | Meyer Steinberg | Process and apparatus for the production of methanol from condensed carbonaceous material |
US5496859A (en) * | 1995-01-28 | 1996-03-05 | Texaco Inc. | Gasification process combined with steam methane reforming to produce syngas suitable for methanol production |
US6053954A (en) * | 1996-06-14 | 2000-04-25 | Energy & Environmental Research Center | Methods to enhance the characteristics of hydrothermally prepared slurry fuels |
JPH10121061A (ja) * | 1996-10-17 | 1998-05-12 | Ube Ammonia Kogyo Kk | ガス化炉壁へのアッシュ分の付着防止法 |
US6187465B1 (en) * | 1997-11-07 | 2001-02-13 | Terry R. Galloway | Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions |
US20030022035A1 (en) * | 1997-11-07 | 2003-01-30 | Galloway Terry R. | Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions |
US6147126A (en) * | 1998-02-10 | 2000-11-14 | Exxon Research And Engineering Company | Gas conversion using hydrogen from syngas gas and hydroconversion tail gas |
ITMI980865A1 (it) * | 1998-04-23 | 1999-10-23 | Eniricerche S P A Ora Enitecno | Procedimento per la preparazione di idrocarburi da gas di sintesi |
JPH11323352A (ja) * | 1998-05-20 | 1999-11-26 | Chiyoda Corp | 炭化水素油の製造方法 |
US6126726A (en) * | 1998-07-06 | 2000-10-03 | Siemens Westinghouse Power Corporation | Generator hydrogen purge gas economizer with membrane filter |
DK173742B1 (da) * | 1998-09-01 | 2001-08-27 | Topsoe Haldor As | Fremgangsmåde og reaktorsystem til fremstilling af syntesegas |
US6257980B1 (en) * | 1998-12-24 | 2001-07-10 | B.I.S., L.L.C. | Method and apparatus for identifying a winner in a bingo game |
US6225358B1 (en) * | 1999-02-16 | 2001-05-01 | Syntroleum Corporation | System and method for converting light hydrocarbons to heavier hydrocarbons with improved water disposal |
CN1125866C (zh) * | 2000-03-03 | 2003-10-29 | 石油大学(北京) | 一种天然气合成液态烃的方法 |
US6495610B1 (en) * | 2000-06-19 | 2002-12-17 | Imperial Chemical Industries Plc | Methanol and hydrocarbons |
JP2002155288A (ja) * | 2000-11-21 | 2002-05-28 | Yukuo Katayama | 石炭ガス化方法 |
US7619012B2 (en) * | 2006-07-18 | 2009-11-17 | The Regents Of The University Of California | Method and apparatus for steam hydro-gasification in a fluidized bed reactor |
PL204168B1 (pl) * | 2002-02-05 | 2009-12-31 | Univ California | Sposób i urządzenie do wytwarzania gazu syntezowego do zastosowania jako paliwo gazowe lub jako surowiec do wytwarzania paliwa ciekłego w reaktorze Fischera-Tropscha |
US7500997B2 (en) * | 2002-02-05 | 2009-03-10 | The Regents Of The University Of California | Steam pyrolysis as a process to enhance the hydro-gasification of carbonaceous materials |
US20050165261A1 (en) * | 2003-03-14 | 2005-07-28 | Syntroleum Corporation | Synthetic transportation fuel and method for its production |
-
2003
- 2003-02-04 PL PL371744A patent/PL204168B1/pl not_active IP Right Cessation
- 2003-02-04 CZ CZ2004930A patent/CZ2004930A3/cs unknown
- 2003-02-04 AU AU2003215059A patent/AU2003215059B2/en not_active Ceased
- 2003-02-04 MX MXPA04007656A patent/MXPA04007656A/es active IP Right Grant
- 2003-02-04 CA CA002475015A patent/CA2475015A1/en not_active Abandoned
- 2003-02-04 JP JP2003565904A patent/JP2005517053A/ja active Pending
- 2003-02-04 EP EP03710875A patent/EP1483197A4/en not_active Withdrawn
- 2003-02-04 HU HU0500320A patent/HUP0500320A3/hu unknown
- 2003-02-04 WO PCT/US2003/003489 patent/WO2003066517A1/en active IP Right Grant
- 2003-02-04 NZ NZ534897A patent/NZ534897A/en not_active IP Right Cessation
- 2003-02-04 CN CN038073722A patent/CN1642851B/zh not_active Expired - Fee Related
- 2003-02-04 US US10/503,435 patent/US7208530B2/en not_active Ceased
- 2003-02-04 US US11/805,576 patent/USRE40419E1/en not_active Expired - Fee Related
- 2003-02-04 BR BR0307553-2A patent/BR0307553A/pt not_active Application Discontinuation
-
2005
- 2005-12-01 HK HK05110937.0A patent/HK1078842A1/xx not_active IP Right Cessation
-
2007
- 2007-03-16 US US11/725,048 patent/US20070227069A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3985519A (en) * | 1972-03-28 | 1976-10-12 | Exxon Research And Engineering Company | Hydrogasification process |
US4158697A (en) * | 1975-12-29 | 1979-06-19 | Clean Energy Corporation | Coal treatment apparatus |
US4152122A (en) * | 1977-12-05 | 1979-05-01 | Syngas International, Ltd. | Apparatus for the production of methane containing gas by hydrogasification |
US4678860A (en) * | 1985-10-04 | 1987-07-07 | Arizona Board Of Regents | Process of producing liquid hydrocarbon fuels from biomass |
US4822935A (en) * | 1986-08-26 | 1989-04-18 | Scott Donald S | Hydrogasification of biomass to produce high yields of methane |
Non-Patent Citations (1)
Title |
---|
Olsen et al, Unit processes and principles of Chemical Engineering, D.Van Nostrand Company, 1932, pp. 1-3. * |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070227069A1 (en) * | 2002-02-05 | 2007-10-04 | The Regents Of The University Of California | Production of synthetic transportation fuels from carbonaceous materials using self-sustained hydro-gasification |
US8603430B2 (en) | 2002-02-05 | 2013-12-10 | The Regents Of The University Of California | Controlling the synthesis gas composition of a steam methane reformer |
US20090221721A1 (en) * | 2002-02-05 | 2009-09-03 | Norbeck Joseph M | Controlling the synthesis gas composition of a steam methane reformer |
US10094616B2 (en) | 2004-07-19 | 2018-10-09 | 2292055 Ontario Inc. | Process and system for drying and heat treating materials |
US8407911B2 (en) | 2004-07-19 | 2013-04-02 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US7975398B2 (en) | 2004-07-19 | 2011-07-12 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US7966741B2 (en) * | 2004-07-19 | 2011-06-28 | Earthrenew, Inc. | Process and apparatus for manufacture of fertilizer products from manure and sewage |
US7882646B2 (en) | 2004-07-19 | 2011-02-08 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US7866060B2 (en) * | 2004-07-19 | 2011-01-11 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US7754491B2 (en) | 2005-12-09 | 2010-07-13 | The Regents Of The University Of Calif. | Sensor for measuring syngas ratios under high temperature and pressure conditions |
US20070131567A1 (en) * | 2005-12-09 | 2007-06-14 | Park Chan S | High temperature and pressure sensor |
US8156662B2 (en) | 2006-01-18 | 2012-04-17 | Earthrenew, Inc. | Systems for prevention of HAP emissions and for efficient drying/dehydration processes |
US8118894B2 (en) | 2006-07-18 | 2012-02-21 | The Regents Of The University Of California | Commingled coal and biomass slurries |
US20080021122A1 (en) * | 2006-07-18 | 2008-01-24 | Norbeck Joseph M | Operation of a steam methane reformer by direct feeding of steam rich producer gas from steam hydro-gasification |
US20080016752A1 (en) * | 2006-07-18 | 2008-01-24 | Norbeck Joseph M | Method for high energy density biomass-water slurry |
US7619012B2 (en) | 2006-07-18 | 2009-11-17 | The Regents Of The University Of California | Method and apparatus for steam hydro-gasification in a fluidized bed reactor |
US7897649B2 (en) | 2006-07-18 | 2011-03-01 | The Regents Of The University Of California | Operation of a steam methane reformer by direct feeding of steam rich producer gas from steam hydro-gasification |
US20090094892A1 (en) * | 2006-07-18 | 2009-04-16 | Norbeck Joseph M | Commingled coal and biomass slurries |
US20080312348A1 (en) * | 2006-07-18 | 2008-12-18 | Chan Seung Park | Method and apparatus for steam hydro-gasification with increased conversion times |
US20080021123A1 (en) * | 2006-07-18 | 2008-01-24 | Norbeck Joseph M | Method and apparatus for steam hydro-gasification in a fluidized bed reactor |
US8143319B2 (en) | 2006-07-18 | 2012-03-27 | The Regents Of The University Of California | Method and apparatus for steam hydro-gasification with increased conversion times |
US20080021121A1 (en) * | 2006-07-18 | 2008-01-24 | Norbeck Joseph M | Controlling the synthesis gas composition of a steam methane reformer |
US8268026B2 (en) | 2006-07-18 | 2012-09-18 | The Regents Of The University Of California | Controlling the synthesis gas composition of a steam methane reformer |
US8686171B2 (en) | 2006-08-04 | 2014-04-01 | Mcneff Research Consultants, Inc. | Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same |
US20080139675A1 (en) * | 2006-12-06 | 2008-06-12 | Joseph Norbeck | Process for enhancing the operability of hot gas cleanup for the production of synthesis gas from steam-hydrogasification producer gas |
US8349288B2 (en) | 2006-12-06 | 2013-01-08 | The Regents Of The University Of California | Process for enhancing the operability of hot gas cleanup for the production of synthesis gas from steam-hydrogasification producer gas |
US8466305B2 (en) | 2007-09-28 | 2013-06-18 | Mcneff Research Consultants, Inc. | Methods and compositions for refining lipid feed stocks |
US20110184201A1 (en) * | 2007-09-28 | 2011-07-28 | Mcneff Research Consultants, Inc. | Methods and compositions for refining lipid feed stocks |
US20100170143A1 (en) * | 2008-10-07 | 2010-07-08 | Sartec Corporation | Catalysts, systems, and methods for producing fuels and fuel additives from polyols |
US8361174B2 (en) | 2008-10-07 | 2013-01-29 | Sartec Corporation | Catalysts, systems, and methods for producing fuels and fuel additives from polyols |
US9102877B2 (en) | 2008-11-12 | 2015-08-11 | Sartec Corporation | Systems and methods for producing fuels from biomass |
US20100170147A1 (en) * | 2008-11-12 | 2010-07-08 | Mcneff Clayton V | Systems and methods for producing fuels from biomass |
US9187385B1 (en) | 2011-10-07 | 2015-11-17 | InnoVerdant, LLC | Charcoal ignition fluid |
US10240091B2 (en) | 2012-09-11 | 2019-03-26 | D4 Energy Group, Inc. | Process for devolatizing a feedstock |
US9605211B2 (en) | 2012-09-11 | 2017-03-28 | D4 Energy Group, Inc. | Process and device for devolatizing feedstock |
US9976097B2 (en) | 2015-03-04 | 2018-05-22 | InnoVerdant, LLC | Charcoal ignition fluid |
US10239812B2 (en) | 2017-04-27 | 2019-03-26 | Sartec Corporation | Systems and methods for synthesis of phenolics and ketones |
US10544381B2 (en) | 2018-02-07 | 2020-01-28 | Sartec Corporation | Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid |
US10696923B2 (en) | 2018-02-07 | 2020-06-30 | Sartec Corporation | Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids |
US20230374394A1 (en) * | 2021-04-22 | 2023-11-23 | Iogen Corporation | Process and system for producing fuel |
US11946001B2 (en) * | 2021-04-22 | 2024-04-02 | Iogen Corporation | Process and system for producing fuel |
Also Published As
Publication number | Publication date |
---|---|
CA2475015A1 (en) | 2003-08-14 |
EP1483197A4 (en) | 2010-05-05 |
BR0307553A (pt) | 2005-01-11 |
US7208530B2 (en) | 2007-04-24 |
US20050256212A1 (en) | 2005-11-17 |
CZ2004930A3 (cs) | 2005-02-16 |
PL204168B1 (pl) | 2009-12-31 |
CN1642851A (zh) | 2005-07-20 |
JP2005517053A (ja) | 2005-06-09 |
CN1642851B (zh) | 2010-04-14 |
EP1483197A1 (en) | 2004-12-08 |
HUP0500320A3 (en) | 2008-09-29 |
AU2003215059A1 (en) | 2003-09-02 |
PL371744A1 (en) | 2005-06-27 |
US20070227069A1 (en) | 2007-10-04 |
HUP0500320A2 (en) | 2006-09-28 |
MXPA04007656A (es) | 2004-11-10 |
NZ534897A (en) | 2006-02-24 |
HK1078842A1 (en) | 2006-03-24 |
WO2003066517A1 (en) | 2003-08-14 |
AU2003215059B2 (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE40419E1 (en) | Production of synthetic transportation fuels from carbonaceous material using self-sustained hydro-gasification | |
US7500997B2 (en) | Steam pyrolysis as a process to enhance the hydro-gasification of carbonaceous materials | |
US7619012B2 (en) | Method and apparatus for steam hydro-gasification in a fluidized bed reactor | |
AU2007275752B2 (en) | Controlling the synthesis gas composition of a steam methane reformer | |
US20080021122A1 (en) | Operation of a steam methane reformer by direct feeding of steam rich producer gas from steam hydro-gasification | |
US20080021120A1 (en) | Operation of a steam hydro-gasifier in a fluidized bed reactor | |
US8143319B2 (en) | Method and apparatus for steam hydro-gasification with increased conversion times | |
Park et al. | Operation of a steam hydro-gasifier in a fluidized bed reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, CALI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NORBECK, JOSEPH N.;HACKETT, COLIN E.;HAUMANN, JAMES EDWARD;AND OTHERS;REEL/FRAME:019400/0906;SIGNING DATES FROM 20030114 TO 20030130 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |