JP5136831B2 - バイオマスから炭化水素を製造する装置 - Google Patents

バイオマスから炭化水素を製造する装置 Download PDF

Info

Publication number
JP5136831B2
JP5136831B2 JP2007212822A JP2007212822A JP5136831B2 JP 5136831 B2 JP5136831 B2 JP 5136831B2 JP 2007212822 A JP2007212822 A JP 2007212822A JP 2007212822 A JP2007212822 A JP 2007212822A JP 5136831 B2 JP5136831 B2 JP 5136831B2
Authority
JP
Japan
Prior art keywords
biomass
mixed gas
temperature
reaction chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007212822A
Other languages
English (en)
Other versions
JP2009046554A (ja
Inventor
坂井正康
横井正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIOMASS ENERGY CORPORATION
Original Assignee
BIOMASS ENERGY CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIOMASS ENERGY CORPORATION filed Critical BIOMASS ENERGY CORPORATION
Priority to JP2007212822A priority Critical patent/JP5136831B2/ja
Priority to PCT/JP2008/064524 priority patent/WO2009025222A1/ja
Priority to CN2008801036253A priority patent/CN101802134B/zh
Priority to US12/673,771 priority patent/US20110065815A1/en
Publication of JP2009046554A publication Critical patent/JP2009046554A/ja
Application granted granted Critical
Publication of JP5136831B2 publication Critical patent/JP5136831B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1684Integration of gasification processes with another plant or parts within the plant with electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1693Integration of gasification processes with another plant or parts within the plant with storage facilities for intermediate, feed and/or product
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1876Heat exchange between at least two process streams with one stream being combustion gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、草木等のバイオマスを原料として生成した水素や一酸化炭素を反応物とし、生成物として炭化水素系の液体又は気体を合成する装置に係り、特に炭化水素の合成方法としてフィッシャー・トロプシュ法(以下、FT法と称す)を利用した炭化水素の製造装置に関するものである。
従来、液体の炭化水素を合成するFT法による石油代替合成燃料の合成は、天然ガスを部分燃焼させたり、或いは水蒸気を石炭で還元することによって得た水素と一酸化炭素を、高温、高圧下で触媒反応させることによってなされていた。このFT法によれば、石油資源が枯渇した場合や高騰した際には、FT法で天然ガスや石炭から一時的に石油代替燃料を合成することができるということからも様々な検討や改良、調製が成されてきた。
ところが、従来のFT法による炭化水素燃料の合成方法及び合成装置では、非常に大きな圧力を必要とする上、高圧の要求に伴って装置が大型化してしまうという問題を呈していた。
他方、近年、再生可能資源の利用が強く求められるようになると共に、これに伴ってバイオマスのエネルギー利用の必要性が強く認識されるに至った。これは、石油代替燃料として、天然ガスや石炭の直接利用或いは先述のFT法を用いた天然ガスや石炭からの合成燃料は一定の有用性が認められるものの、二酸化炭素の放出に起因する地球温暖化や再生可能性などの観点から依然として大きな課題を残しているのに対し、バイオマスのエネルギー利用にあっては、炭素循環に基づく再生可能性や量的可能性という観点からも期待が大きいということによっている。
このような期待に応えるべく、これまでに本発明者等は、特許文献1や特許文献2に開示したバイオマスを原料や燃料として水素や一酸化炭素を生成するためのバイオマスのガス化装置や高温燃焼ガスの発生装置の開発を進行させてきている。
しかしながら、特許文献1などの従来のバイオマスガス化装置では、バイオマス原料から水素や一酸化炭素を得ることが量的にも質的にも困難であったこともあり、これまでバイオマスを原料として得た水素や一酸化炭素を反応物としつつ、FT法を用いることによって液体又は気体の炭化水素燃料を合成する装置は皆無であった。
本発明は、上記現状に鑑みてなされたものであり、草木等のバイオマスを原料として生成した水素と一酸化炭素とを反応物とし、小型で且つ低圧でありながら高い収率で、生成物としての液体乃至気体の炭化水素燃料を合成することができる、バイオマスから炭化水素を製造する装置を提供することを目的とする。
本発明のバイオマスから炭化水素を製造する装置は、バイオマスを原料及び燃料として水素と一酸化炭素とを主成分とする混合ガスを生成するバイオマスガス化装置と、このバイオマスガス化装置によって生成した該混合ガスを加圧する加圧手段と、該混合ガスを適温に調整するための温度調整手段と、該加圧手段によって加圧されつつ該温度調整手段によって適宜の温度に保たれた混合ガスを反応物として所定の触媒反応をさせることによって生成物として炭化水素を得るための触媒と、この触媒を配設して成り適宜の圧力と温度にした混合ガスを該触媒に接触させて所定の触媒反応をさせるための反応室と、該触媒反応によって生成した炭化水素を液化するための液化手段と、この液化手段によって液化した液化炭化水素を回収するための回収手段とからなる
反応室は、混合ガスを導入する導入口と、該反応室内において触媒反応したことによって生成した炭化水素と未反応の該混合ガスとを排出する排出口とを備え、該導入口から該排出口に至る経路上に触媒が配設されて成ることを特徴としている。
反応室は、該反応室の上部に混合ガスを導入する導入口を有し、該反応室の下部に、該反応室内において該混合ガスが触媒反応したことによって生成した炭化水素と未反応分の該混合ガスとを排出する排出口を有し、且つ、該導入口から上記排出口に至る経路上に前記触媒が配設されて成り、該反応室が複数配設され、最上流に位置する反応室の導入口はバイオマスガス化装置によって生成された混合ガスを導入し得るように該バイオマスガス化装置に連通され、該最上流に位置する反応室の排出口は該反応室の直下流に位置する反応室の導入口に連通し、以下、直上流に位置する反応室の排出口が、その直下流に位置する反応室の導入口に連通するように構成されることを特徴としている。
液化手段は、上流側に導入口を、下流側に未反応分の混合ガスを排出するための排出口と、液化した炭化水素を抽出する抽出口とを有する液化室と、この液化室を冷却するための冷却手段とを備え、導入口が該液化室の上流側に位置する反応室の排出口に連通し、該排出口が該液化室の下流側に位置する反応室の導入口に連通することを特徴としている。
液化した炭化水素を回収する回収手段は、複数の液化室の各抽出口に連通したパイプラインを含み、該パイプラインはその経路上に配設されたバルブによって開閉自在に構成されたものであることを特徴としている。
混合ガスを反応室内に導入するための導入口の上流側には、該反応室内に該混合ガスを導入する事前に該混合ガスを所定の温度に調整するための温度調整手段を介在させることを特徴としている。
反応室は、恒温室内温度調節手段によって所定の温度に調整された空気を取り入れるための空気取入口と空気を排出するための空気排出口とを有して成る、断熱材によって画成されて構成される恒温室の内部に配設されることを特徴としている。
触媒は、鉄、銅から選択される一方又は両方の物質の単体又は化合物を基本触媒とすると共に、マグネシウム、カルシウム、コバルト、ニッケル、カリウム、ナトリウムから選択される一つ以上の物質を助勢触媒として付加し、且つ、ゼオライト、アルミナ、シリカから選択される一つ以上の物質の単体又は化合物を担持させて成ることを特徴としている。
バイオマスガス化装置は、断熱性を有する壁材によって画成されて成る断熱室と、この断熱室内に熱伝導性を有する壁材によって画成され且つ直径約2cm以下に粗粉砕された原料バイオマスを内部に導入する原料バイオマス導入手段と過熱水蒸気を内部に導入する過熱水蒸気導入手段とを有するガス化反応室と、該断熱室と該ガス化反応室との間の空間に燃焼高温ガスを供給する燃焼高温ガス発生装置とを備え、該ガス化反応室内に導入した原料バイオマスと過熱水蒸気とを、該ガス化反応室を成す熱伝導を有する壁材を介して、該燃焼高温ガス発生装置から該断熱室と該ガス化反応室との間の空間に供給された燃焼高温ガスによって加熱し、該原料バイオマスと該過熱水蒸気とを吸熱反応させることによって、水素と一酸化炭素とを主成分とする混合ガスを生成するように構成されることを特徴としている。
燃焼高温ガス発生装置は、燃料バイオマスを完全燃焼させることによって800℃以上の温度の燃焼高温ガスを発生させ、発生させた該燃焼高温ガスを断熱室とガス化反応室との間の空間に供給することを特徴としている。
本発明のバイオマスから炭化水素を製造する装置は、複数の反応室を直列に連結して段階的に未反応分の混合ガスを触媒反応させるように構成したことによって、比較的低圧であるにも拘わらず、高い収率で炭化水素を得ることが可能であるという効果がある。
また、本発明は、反応室の温度維持を、簡便な方法で温度制御し得る恒温室の内部に該反応室を配設して行なうように構成したことによって、単純な構成でありながらも簡便に温度維持が可能となり、装置の複雑化を招くことなく、メンテナンスも容易で実用性が高く、バイオマスから炭化水素を製造する装置全体としての運転上の信頼性を向上させることができるという効果がある。
また、本発明においては、外部から隔壁を介して熱供給して原料バイオマスと過熱水蒸気とを反応させる方式のバイオマスガス化装置を採用することによって、高効率にバイオマスをガス化することが可能となり、それによって安定した生成量の水素と一酸化炭素とを主成分とする混合ガスを得ることができるという効果がある。
更に、再生可能型のエネルギによる水の電気分解によって得た水素を、バイオマスガス化装置から得られる水素と一酸化炭素を主成分とする混合ガスに補填するようにしたことによって、原料バイオマスからの炭化水素の収量を著しく増加させることができるという効果がある。
以下、本発明の好ましい実施の形態を、添付図面(図1乃至図5)を参照しながら詳細に説明する。
まず、バイオマスから炭化水素を製造する方法について、簡単に説明する。
粉状乃至チップ状にしたバイオマスを原料として、この原料バイオマスを800℃以上に加熱すると共に800℃以上の水蒸気と接触させることによって水素と一酸化炭素とを主成分とする混合ガスを生成し、このバイオマス由来の該混合ガスを反応物とし、この反応物をFT法によって炭化水素に転換し後、液化することによって、液体炭化水素系の合成燃料を得るものである。
具体的には、バイオマス由来の水素と一酸化炭素とを主成分とする混合ガスから液体炭化水素を合成する方法は、該混合ガスを150℃乃至300℃にすると共に、3MPa未満の圧力をかけて、所定の触媒に接触させ、化1に代表されるような所定の触媒反応をさせることによって、該水素と一酸化炭素とを気相の炭化水素に転換し、その気相炭化水素を水や空気等の冷媒物質との間で熱交換することによって冷却して液体の炭化水素を得るものである。
触媒は、鉄、銅から選択される一方又は両方の物質の単体又は化合物を基本触媒とすると共に、マグネシウム、カルシウム、コバルト、ニッケル、カリウム、ナトリウムから選択される一つ以上の物質の単体又は化合物を助勢触媒として付加し、且つ、ゼオライト、アルミナ、シリカから選択される一つ以上の物質を担持させて構成される。
例えば、触媒としては、従来公知のFT触媒と、ゼオライト等の固体酸触媒とを複合させて触媒を構成したものを用いることが可能であり、この場合、触媒反応としては、水素と一酸化炭素とから成る混合ガスが先ず、該FT触媒上において反応して重質炭化水素が生成する。
次いで、この重質炭化水素は、隣接する固体酸触媒上において分解し、より軽質な分岐炭化水素になる。このような構成の触媒によれば、水素と一酸化炭素とからなる混合ガスから炭化水素を合成することができる上、従来問題となっていたFT触媒上で蓄積してしまうワックスの分解除去が自動的になされ、触媒の失活やワックスによる混合ガスの拡散失速を抑制することができるという利点もある。
前記FT触媒は、予め空気中において200℃で2時間乾燥させたシリカゲルに硝酸コバルトをincipient wetness法で含浸させた後、120℃で12時間乾燥させ、その後、400℃で2時間焼成することによって調整して所要のコバルト担持量のコバルト系FT触媒を得ることが可能である。また、所定量の硝酸鉄、硝酸銅、硝酸マグネシウム、硝酸カルシウムを水500mLに溶解させて、この溶液と20g/500mLに調整した炭酸ナトリウム水溶液とを、60℃、ph8に調整してある500mLの水に、同時に攪拌しながら滴下し沈殿物を生成させ、全て溶液を滴下した後、更に1時間攪拌してから沈殿物を濾過し、蒸留水で洗浄して乾燥し、400℃で時間焼成することで鉄系FT触媒を調整して得ることも可能である。
更に、上述のようなゼオライトとFT触媒とを複合して成る複合触媒は、先に調整した前記コバルトFT触媒と、ゼオライトとを混合しつつ、テトラエチルオルトシリケート、硝酸アルミニウム、テトラプロピルアンモニウムヒドロキシド、水、エタノールを用いてゾル前駆溶液を調整し、これをオートクレーブに入れて180℃で水熱合成することによって調整して得ることが可能である。また、先に調整した前記鉄系FT触媒と、ゼオライトとを混合した後、一軸成形機で600kgf/cmの成形圧で20分間加圧することによって得ることが可能である。そして、これらコバルト系FT触媒とゼオライト系触媒とを複合して成るコバルト系複合触媒と、鉄系FT触媒とゼオライト系触媒とを複合して成る鉄系複合触媒とを混合して複合的に触媒として用いてもよい。
また、前記混合ガスを、前記触媒に接触させ、所定の触媒反応によって炭化水素に転換する方法は、単一の段階だけで行なってもよいが、より好ましくは、バイオマス由来の水素と一酸化炭素とを主成分として成る混合ガスを、先ず第一の段階として触媒に接触させて所定の反応によって炭化水素に転換しつつ、この段階を経た後、第一段階において残留した未反応分の混合ガスを再び前記触媒と同等の触媒に接触させて上記触媒反応によって炭化水素に転換するという第二段階を経て、更に、その後、同様の段階を第三段階、第四段階というように、予め設定された所定数段階経るようにして、混合ガスに対して繰り返し所定の触媒反応を施し、段階的に未反応分の混合ガスを炭化水素に転換しつつ、該混合ガスの量を減少させるようにする。
なお、バイオマス以外の再生可能型エネルギーの動力によって水を電気分解して得られた水素を、上記バイオマス由来の混合ガスに補填するようにしてもよく、この場合、原料バイオマス当たりの炭化水素の収量を著しく向上させることが可能となる。
以下に本発明のバイオマスから炭化水素を製造する方法を具体的に実施するための装置を説明する。
本実施形態におけるバイオマスから炭化水素を製造するための装置1は、図1に示すように、原料バイオマスMBとこの原料バイオマスMBのガス化用の過熱水蒸気S、及び、燃料バイオマスFBとこの燃料バイオマスFBの燃焼用の空気Aとを供給して、水素と一酸化炭素とを主成分とする混合ガスGを生成するバイオマスガス化装置101と、このバイオマスガス化装置101によって生成した混合ガスGを精製するクリーンアップ手段201と、クリーンアップされた混合ガスGを一時的に貯留するガスタンク301と、混合ガスGを加圧する加圧ポンプ401と、加圧された混合ガスGを炭化水素に転換するための炭化水素合成装置501とを備える。
バイオマスガス化装置101は、図2乃至図4に示すように、内外の熱の出入りを遮断するための断熱室110と、この断熱室110内に配設されるガス化反応室120と、このガス化反応室120内に直径約2cm以下に粗粉砕された原料バイオマスMBを導入するための原料バイオマス導入手段130と、該ガス化反応室120内に過熱水蒸気Sを導入するための過熱水蒸気導入手段140と、断熱室110とガス化反応室120との間の空間に燃焼高温ガスBを供給する燃焼高温ガス発生装置150とを備える。
ガス化反応室120内の適当な高さ位置には、上下に連通した複数の貫通穴を有し該ガス化反応室120内を上下に画成する多穴体121が配設される。またガス化反応室120には、該ガス化反応室120内に生じた灰分を外部に排出するための灰分排出手段122と、該ガス化反応室120内において生成した水素と一酸化炭素とを主成分とする混合ガスGを外部に排出するための混合ガス排出手段123とを備える。
断熱室110は、その内外の熱の出入りを遮断するためのものであり、特に該断熱室110の内側を高温にして所要の温度、好ましくは800℃以上に保持することが出来るように構成される。断熱室110は、従来公知の断熱材を利用して構成することが出来、該断熱室110内に配設されるガス化反応室120を囲繞することが出来るものであればよく、形状や大きさ等は適宜設定することが可能であるが該断熱室110の内面と該ガス化反応室120の外面との間に間隙を持たせて、該間隙に燃焼高温ガス発生装置150によって発生させた燃焼高温ガスBを導入してガス化反応室120をその壁外から加熱することができるようにする。
断熱室110には、原料バイオマス導入手段130や過熱水蒸気導入手段140、混合ガス排出手段123或いは灰分排出手段122を該断熱室110の外部に繋げるための内外に連通した連通口を、それぞれ原料バイオマス導入手段130、過熱水蒸気導入手段140、混合ガス排出手段123、灰分排出手段122等に密接させて熱が洩れないように形成する。
また、断熱室110には、その内外に連通した燃焼高温ガス導入口111と、燃焼高温ガス排出口112とを形成し、燃焼高温ガス発生装置150から該断熱室110内に燃焼高温ガスBを供給したり、或いは排出したりすることが出来るように構成する。
ガス化反応室120は、熱伝導性の壁材で画成されて成り、その内部に所定の容積及び表面積のガス化空間124を有し、該ガス化反応室120を構成する該壁材の外面は断熱室110の壁面によって囲繞される。このガス化反応室120には、外部から該ガス化反応室120内に原料バイオマスMBを導入するための原料バイオマス導入口125と、外部から該ガス化反応室120内に過熱水蒸気Sを導入するための過熱水蒸気導入口126とが形成され、それぞれ原料バイオマス導入手段130、過熱水蒸気導入手段140に連結され、原料バイオマスMBと過熱水蒸気Sとを、該ガス化反応室120内に導入することが出来るように構成される。
原料バイオマス導入口125は、ガス化反応室120の上部に形成され、該原料バイオマス導入口125を通じて外部から該ガス化反応室120内に導入される原料バイオマスMBが、該ガス化反応室120内において落下し、その落下過程においてガス化することが出来るように構成される。
過熱水蒸気導入口126は、ガス化反応室120の下部に形成され、該過熱水蒸気導入口126を通じて外部から該ガス化反応室120内に導入される過熱水蒸気Sが、該ガス化反応室120内において上昇流として導入することが出来るように構成される。
また、ガス化反応室120には、その内部において生成した混合ガスGを該ガス化反応室120から排出するための混合ガス排出口127と、該ガス化反応室120内において原料バイオマスMBと過熱水蒸気Sとのガス化に伴って微量ながら生じた灰分を排出するための灰分排出口128とを有し、それぞれ混合ガス排出手段123、灰分排出手段122に連結され、該ガス化反応室120内において生成した混合ガスGや灰分を外部に排出することが出来るように構成される。
混合ガス排出口127は、ガス化反応室120の側面の適当な高さ位置、好ましくは、多穴体121の配設高さ位置よりも上部位置に形成される。これに対して、灰分排出口128は、ガス化反応室120の底部に形成し、多穴体121よりも下側であり且つ灰分の堆積時には自重で落下して外部に取り出すことが出来るように構成される。
ガス化反応室120を成す壁材は、熱伝導性や耐熱性や熱衝撃性に優れた素材から成り、該ガス化反応室120の外部から内部に熱を伝達し易くすると共に、所要の温度や温度変化に耐え得るように構成する。ガス化反応室120内のガス化空間124の容積及び形状は、所要のガス化処理量に応じて適宜設定することが可能であるが、該ガス化空間124はガス化の対象である原料バイオマスMBを適宜量存在させることが出来る大きさ及び形状の空間に設定する。ガス化反応室120内の表面積は、所要のガス化処理量に応じて適宜設定することが可能である。
ガス化反応室120内は、上下方向の適当な高さ位置に配設される適当な厚さの多穴体121によって上下に画成される。この多穴体121は、所要の高温に耐え得る金属若しくはセラミックス製で全体として略板状を成し、その上下に貫通した多数の貫通穴を有して成る。この貫通穴の大きさは、水蒸気が難なく通過し得、未ガス化状態の原料バイオマスMBが通過し難い程度の直径に設定することが好ましい。また、多穴体121は、若干水平から傾斜させて配設してもよい。
原料バイオマス導入手段130は、ガス化反応室120に形成される原料バイオマス導入口125に連通し、断熱室110に形成される連通口を通して該断熱室110の外部までほぼ垂直に延出した所定の内径及び長さの、耐熱素材から成るパイプと、この上端に出口が連結され、ほぼ水平に延びたスクリュを内装して成るスクリュフィーダ131と、このスクリュフィーダ131に原料バイオマスMBを供給するためのホッパ132とを備える。
このスクリュフィーダ131は、ほぼ水平方向に所定の長さ延びた円筒体と、この円筒体の内部に回転自在に内装される該円筒体とほぼ同等の長さを有するスクリュと、このスクリュの一端に配設され、該スクリュを駆動するアクチュエータとを備える。アクチュエータを配設した逆側の先端部付近には、スクリュの回動によって送給された原料バイオマスMBをスクリュフィーダ131から排出するための出口が円筒体に形成され、該円筒体における該アクチュエータ付近の上部には、ホッパ132から該原料バイオマスMBを該スクリュフィーダ131に取り込むための入口が形成されるて成る。勿論、ホッパ132は、この入口に連設される。
過熱水蒸気導入手段140は、ガス化反応室120に形成される過熱水蒸気導入口126に連通し、断熱室110に形成される連通口を通して該断熱室110の外部まで延出した所定の内径及び長さの、耐熱性及び耐水蒸気性を有する素材から成るパイプを備える。このパイプの下流には、断熱室110から排出される燃焼高温ガスBを熱源として水を加熱することで生成する過熱水蒸気Sを得るためのボイラ141を連結して、過熱水蒸気Sをガス化反応室120に導入する事前に予め加熱して過熱水蒸気Sとすることが好ましい。ボイラ141を経由した燃焼高温ガスBは、ファンモータ142を介して煙突143から外部に排気する。
混合ガス排出手段123は、ガス化反応室120に形成される混合ガス排出口127に連通し、断熱室110に形成される連通口を通して断熱室110の外部まで延出した所定の内径及び長さの、耐熱性や耐食性を有する素材から成るパイプを備える。このパイプの下流には、生成された混合ガスを精製するクリーンアップ手段201を連結する。
灰分排出手段122は、ガス化反応室120に形成される灰分排出口128に連通し、断熱室に形成される連通口を通して該断熱室110の外部まで延出した所定の内径及び長さの、耐熱性を有する素材から成るパイプを備える。このパイプの下流には、該パイプを自在に開閉し得、該パイプにおけるガス化反応室120内外の連通状態を開通状態にしたり、不通状態にしたりするためのバルブを配設することが好ましい。
燃焼高温ガス発生装置150は、図4に示すように、内部に高さ方向のほぼ中央部に火格子151が配設されて成る縦型に形成される燃焼炉152と、この燃焼炉152内に導入する空気Aを予熱するための空気予熱器153とを備える。
燃焼炉152は、火格子151の上部に位置する上部燃焼室154と、火格子151の下部に位置する底部燃焼室155とを有する。燃焼炉152は、その上部に粗粉砕された燃料バイオマスFBをその内部に導入するための燃料バイオマス導入口156と、上部燃焼室154に導入した燃料バイオマスFBを燃焼させるための空気A1を吹き込むように導入するための第一の空気導入口157とを有する。燃焼炉152の高さ方向のほぼ中央部には、その内部に配設された火格子151内に空気A2を導入しつつ該火格子151から該空気A2を噴出させるための第二の空気導入口158が形成され、燃焼しつつ落下して来る燃料バイオマスFBを更に高効率に燃焼させるように構成される。燃焼炉152の底部付近には、火格子151を通過して降下して底部燃焼室155内に流下して来た燃焼高温ガスBを更に完全燃焼させるための空気A3を底部燃焼室155内に導入する第三の空気導入口159が形成され、導入された空気A3が燃焼炉152内において略水平方向に噴出するように構成される。底部燃焼室155の側壁には、第三の空気導入口159に対向する位置にほぼ完全燃焼した燃焼高温ガスBを送出するための燃焼高温ガス送出口160が形成される。燃焼炉152の底部には、燃料バイオマスFBの燃焼滓である灰分を溜めるための灰溜161が形成される。
火格子151は、その内部に第二の空気導入口158から導入された空気A2が流通し得る流路を有する金属製の格子状を成し、該格子状の火格子151の上下両表面には、複数の空気噴出口が形成され、第二の空気導入口158から導入された空気A2が上下方向に噴出するように構成される。
空気予熱器153は、燃焼高温ガス発生装置150によって発生した燃焼高温ガスBの一部を利用することによって、第一の空気導入口157や第二の空気導入口158や第三の空気導入口159から燃焼炉152内に導入する空気Aを予め450℃まで加熱することができるように構成される。
クリーンアップ手段201は、図2に示すように、熱交換器202と、サイクロン203と、水噴霧器204とを備え、これらを直列的に連結して、混合ガスGをそれら熱交換器202、サイクロン203、水噴霧器204内を通過させることで、熱交換器202において余分な熱を熱交換によって回収しつつ除熱し、これを通過した混合ガスGに微量ながらも混在する灰分や煤、タール或いは水分をサイクロン203と水噴霧器204で除去して精製するようにする。これら熱交換器202やサイクロン203、水噴霧器204等の一連の混合ガス精製手段の最下流部には、精製した混合ガスGを一時的に貯留するガスタンク301を連結する。
ガスタンク301は、図2に示すように、クリーンアップ手段201を通過して精製された水素と一酸化炭素を主成分とする混合ガスGを一時的に貯留することができるように構成され、精製された混合ガスGをその内部に導入するための精製混合ガス導入口302と、該ガスタンク301の下流に連結される加圧ポンプ401に混合ガスGを送出するための混合ガス送出口303と、炭化水素合成装置501において最後まで未反応で残留した未反応分の混合ガスGを再び該ガスタンク301内に導入する混合ガス再導入口304とを備える。
加圧ポンプ401は、図2に示すように、その直ぐ上流に連結されるガスタンク301の混合ガス送出口303に連結されて該ガスタンク301から一時的に貯留していた混合ガスGを流下させつつ、この混合ガスGを所要の圧力まで加圧することができるように構成され、所要圧力に加圧した混合ガスGを、該加圧ポンプ401の直ぐ下流に連結される炭化水素合成装置501に送給することができるように構成される。
炭化水素合成装置501は、図5に示すように、加圧ポンプ401によって所要の圧力に加圧された混合ガスGを導入する加圧混合ガス導入口510と、導入された混合ガスGを適温に調整するための温度調整手段520と、加圧ポンプ401によって加圧されつつ温度調整手段520によって適宜の温度に保たれた混合ガスGを反応物として上記説明の如くの所定の触媒反応をさせることによって生成物として炭化水素を得るための触媒531を配設して成り、適宜の圧力と温度にした混合ガスGを該触媒531に接触させて所定の触媒反応をさせるための反応室530と、所定の触媒反応によって生成した炭化水素を液化するための液化手段540と、この液化手段540によって液化した液化炭化水素を回収するための回収手段550とを備える。
温度調整手段520は、恒温室521と、この恒温室521内の温度を調整するための恒温室温度調整装置522とを備える。恒温室521は、断熱材で画成されて所定の容積を有し、その内部に加圧ポンプ401によって加圧された混合ガスGを導入するための加圧混合ガス導入口510と、恒温室温度調整装置522によって所要の温度に制御された温度制御空気TAを導入する温度制御空気導入口523と、恒温室521内に導入されて該恒温室521内を流下した温度制御空気TAを該恒温室521の外部に排出するための温度制御空気排出口524とを有する。恒温室521内には、互いに同等の第一乃至第五の反応室530a,530b,530c,530d,530eが配設され、これら第一乃至第五の反応室530a,530b,530c,530d,530eが一括的に所要の温度に保持することができるように構成される。
恒温室温度調整装置522は、高温ガスを導入する高温ガス導入ライン525と、空気導入ライン526と、この空気導入ライン526から導入した空気を、前記高温ガス導入ライン525から導入した高温ガスとを間接的或いは直接的に接触させて所要の温度に制御して温度制御空気TAを生成し、生成した温度制御空気TAを恒温室521内に送給する温度制御空気送給ライン527とを備える。恒温室521内温度は、この恒温室温度調整装置522によって生成された適宜温度の温度制御空気TAを、適宜量該恒温室521内に送給すると共に、温度制御空気TAを恒温室521内から排出してフローにすることによって所要の温度に保持することができるように構成される。これによって、恒温室521内に導入される混合ガスGや、恒温室521内に配設される第一乃至第五の反応室530a,530b,530c,530d,530eの温度を所要の温度に保持することができるようになっている。尚、高温ガスは、バイオマスガス化装置等から排出された燃焼高温ガスBを用いることができる。
第一乃至第五の反応室530a,530b,530c,530d,530eは、それぞれ所定の圧力に加圧された混合ガスGを、所定の温度にして該第一乃至第五の反応室530a,530b,530c,530d,530eの内部に導入する第一乃至第五の混合ガス導入ライン532a,532b,532c,532d,532eに連結される第一乃至第五の混合ガス導入口533a,533b,533c,533d,533eと、該第一乃至第五の反応室530a,530b,530c,530d,530e内部に導入された混合ガスGに所定の触媒反応をさせるために該第一乃至第五の反応室530a,530b,530c,530d,530e内に配設される触媒531と、該第一乃至第五の反応室530a,530b,530c,530d,530e内を流下した未反応分の混合ガスGや触媒反応によって生成した炭化水素を外部に排出する排出ライン534a,534b,534c,534d,534eとを有する。尚、触媒531としては、上記説明の触媒531を用いることができる。
第一乃至第五の混合ガス導入ライン532a,532b,532c,532d,532eは、混合ガスGを恒温室521内に導入された温度制御空気TAと間接的に接触させて、反応室530に導入する事前に該混合ガスGを所要の温度に調整するための第一乃至第五の温度調整部535a,535b,535c,535d,535eを備え、第一乃至第五の反応室530a,530b,530c,530d,530eにそれぞれ導入する事前に混合ガスGを所要の温度に調整することができるように構成される。
第一乃至第五の反応室530は、直列的に連結され、より上流側から下流側に流下する未反応分の混合ガスGを段階的に触媒反応させて炭化水素に転換すると共に、未反応分の混合ガスG量を減少させるように構成される。
本実施形態の炭化水素合成装置501においては、加圧混合ガス導入口510は、第一の混合ガス導入ライン532aを介して第一の反応室530aに連結され、この第一の反応室530aは、その下流に連結される第一の液化室541aとその更に下流に連結される第二の混合ガス導入ライン532bとを介して第二の反応室530bに連結される。そして、第二の反応室530bは、その下流に連結される第二の液化室541bとその更に下流に連結される第三の混合ガス導入ライン532cとを介して第三の反応室530cに連結される。同様に、第三の反応室530cは、その下流に連結される第三の液化室541cとその更に下流に連結される第四の混合ガス導入ライン532dとを介して第四の反応室530dに連結され、第四の反応室530dは、その下流に連結される第四の液化室541dとその更に下流に連結される第五の混合ガス導入ライン532eとを介して第五の反応室530eに連結されるという五段階の第一乃至第五の反応室530a,530b,530c,530d,530eが設定されている。ここで、反応室の設定段階数は五段階に設定されているが、勿論、五段階に限定されるものではなく、適宜の段階数に設定することが可能である。
第五の反応室530e内において生成した炭化水素と未反応分の混合ガスGとを排出する該第五の反応室530eの排出ライン534eの下流には、第五の液化室541eが連結される。
液化手段540は、冷却水Wを導入するための冷却水導入ライン542と、該冷却水Wを排出するための冷却水排出ライン543とを有し、且つ、内部に導入した冷却水Wを収容し得る冷却槽544を備える。冷却槽544の内部には、第一の液化室541aと、第二の液化室541bと、第三の液化室541cと、第四の液化室541dと、第五の液化室541eとが配設され、該冷却槽544内を流下する冷却水Wによって、これら第一乃至第五の液化室541a,541b,541c,541d,541eを一括的に冷却することができるように構成される。
第一乃至第四の液化室541a,541b,541c,541dは、互いに同等に構成されるものであり、それぞれ直ぐ上流に連結される第一乃至第四の反応室530a,530b,530c,530d,から流下して来る未反応分の混合ガスGと生成した炭化水素とを導入する導入ライン545a,545b,545c,545dと、第一乃至第四の液化室541a,541b,541c,541d内において冷却されて液化した炭化水素を排出する液化炭化水素排出口546a,546b,546c,546dと、冷却されつつもガス状の混合ガスGを直ぐ下流に連結される混合ガス導入ライン532b,532c,532d,532eに対して排気する冷却混合ガス排出口547a,547b,547c,547dとを有する。
第五の液化室541eは、その直ぐ上流に連結される第五の反応室530eから流下して来る未反応分の混合ガスGと生成した炭化水素とを、該第五の液化室541eの内部に導入するための導入ライン545eと、該第五の液化室541e内において冷却されて液化した炭化水素を排出する液化炭化水素排出口546eと、冷却されつつも最終的に未反応分として残留したガス状の混合ガスGを排出する最終的未反応分混合ガス排出口547eとを有する。この最終的未反応分混合ガス排出口127は、循環ライン548を介してガスタンク301の混合ガス再導入口304に連結され、最終的な未反応分の混合ガスGを再びガスタンク301に収容して循環させることができるように構成される。
液化手段540によって液化された液化炭化水素は、集合管状に構成された回収手段550によって回収される。この回収手段550は、第一乃至第五の各液化室530a,530b,530c,530d,530eの液化炭化水素排出口546a,546b,546c,546d,546eにそれぞれ連結される第一の回収管551aと、第二の回収管551bと、第三の回収管551cと、第四の回収管551d、第五の回収管551eと、これら第一乃至第五の回収管551a,551b,551c,551d,551eが連結される液化炭化水素抽出管552と、この液化炭化水素抽出管552の最下流部に配設されるバルブ553とを備え、全体として集合管状に構成され、液化した炭化水素を該バルブ553の開閉操作によって適宜取り出し得るように構成される。
本発明のバイオマスから炭化水素を製造する方法及び装置1は以上説明したように構成されるものであるが、その主旨を逸脱しない範囲において様々な形態で実施することができる。
バイオマスから炭化水素を製造する装置全体の構成を示す概略図である。 バイオマスガス化装置の全体的な構成を示す概略図である。 バイオマスのガス化装置の主要部であって、混合ガスを生成するための装置の構成を示す図である。 燃焼恒高温ガス発生装置の構成を示す図である。 炭化水素合成装置及び液化手段及び回収手段の構成を示す図である。
符号の説明
1 バイオマスから炭化水素を製造するための装置
101 バイオマスガス化装置
110 断熱室
111 燃焼高温ガス導入口
112 燃焼高温ガス排出口
120 ガス化反応室
121 多穴体
122 灰分排出手段
123 混合ガス排出手段
124 ガス化空間
125 原料バイオマス導入口
126 過熱水蒸気導入口
127 混合ガス排出口
128 灰分排出口
130 原料バイオマス導入手段
131 スクリュフィーダ
132 ホッパ
140 過熱水蒸気導入手段
141 ボイラ
142 ファンモータ
143 煙突
150 燃焼高温ガス発生装置
151 火格子
152 燃焼炉
153 空気予熱器
154 上部燃焼室
155 底部燃焼室
156 燃料バイオマス導入口
157 第一の空気導入口
158 第二の空気導入口
159 第三の空気導入口
160 燃焼高温ガス送出口
161 灰溜
201 クリーンアップ手段
202 熱交換器
203 サイクロン
204 水噴霧器
301 ガスタンク
302 精製混合ガス導入口
303 混合ガス送出口
304 混合ガス再導入口
401 加圧ポンプ
501 炭化水素合成装置
510 加圧混合ガス導入口
520 温度調整手段
521 恒温室
522 恒温室温度調整装置
523 温度制御空気導入口
524 温度制御空気排出口
525 高温ガス導入ライン
526 空気導入ライン
527 温度制御空気送給ライン
530a 第一の反応室
530b 第二の反応室
530c 第三の反応室
530d 第四の反応室
530e 第五の反応室
531 触媒
532a 第一の混合ガス導入ライン
532b 第二の混合ガス導入ライン
532c 第三の混合ガス導入ライン
532d 第四の混合ガス導入ライン
532e 第五の混合ガス導入ライン
533a 混合ガス導入口
533b 混合ガス導入口
533c 混合ガス導入口
533d 混合ガス導入口
533e 混合ガス導入口
534a 排出ライン
534b 排出ライン
534c 排出ライン
534d 排出ライン
534e 排出ライン
535a 温度調整部
535b 温度調整部
535c 温度調整部
535d 温度調整部
535e 温度調整部
540 液化手段
541a 第一の液化室
541b 第二の液化室
541c 第三の液化室
541d 第四の液化室
541e 第五の液化室
542 冷却水導入ライン
543 冷却水排出ライン
544 冷却槽
545a 導入ライン
545b 導入ライン
545c 導入ライン
545d 導入ライン
545e 導入ライン
546a 液化炭化水素排出口
546b 液化炭化水素排出口
546c 液化炭化水素排出口
546d 液化炭化水素排出口
546e 液化炭化水素排出口
547a 冷却混合ガス排出口
547b 冷却混合ガス排出口
547c 冷却混合ガス排出口
547d 冷却混合ガス排出口
547e 最終的未反応分混合ガス排出口
548 循環ライン
550 回収手段
551a 第一の回収管
551b 第二の回収管
551c 第三の回収管
551d 第四の回収管
551e 第五の回収管
552 液化炭化水素抽出管
553 バルブ
A 空気
A1 空気
A2 空気
A3 空気
B 燃焼高温ガス
FB 燃料バイオマス
G 混合ガス
MB 原料バイオマス
S 過熱水蒸気
TA 温度制御空気
W 冷却水

Claims (4)

  1. バイオマスを原料及び燃料として水素と一酸化炭素とを主成分とする混合ガスを生成するバイオマスガス化装置と、上記混合ガスを加圧する加圧手段と、該混合ガスを適温に調整するための温度調整手段と、上記加圧手段によって加圧されつつ上記温度調整手段によって適宜の温度に保たれた混合ガスを触媒反応をさせて炭化水素を得るための触媒と、該触媒を配設して成る反応室と、生成した炭化水素を液化するための液化手段と、液化した液化炭化水素を回収するための回収手段とからなり、
    記反応室は、恒温室内温度調節手段によって所定の温度に調整された空気を取り入れるための空気取入口と空気を排出するための空気排出口とを有して成り、断熱材によって画成されて構成される恒温室の内部に配設されることを特徴とするバイオマスから炭化水素を製造する装置。
  2. 前記触媒が、鉄、銅から選択される一方又は両方の物質の単体又は化合物を基本触媒とすると共に、マグネシウム、カルシウム、コバルト、ニッケル、カリウム、ナトリウムから選択される一つ以上の物質の単体又は化合物を助勢触媒として付加し、且つ、ゼオライト、アルミナ、シリカから選択される一つ以上の物質を担持させて成ることを特徴とする、請求項に記載のバイオマスから炭化水素を製造する装置。
  3. 前記バイオマスガス化装置は、断熱性を有する壁材によって画成されて成る断熱室と、この断熱室内に熱伝導性を有する壁材によって画成され且つ直径約2cm以下に粗粉砕された原料バイオマスを内部に導入する原料バイオマス導入手段と過熱水蒸気を内部に導入する過熱水蒸気導入手段とを有するガス化反応室と、上記断熱室と上記ガス化反応室との間の空間に燃焼高温ガスを供給する燃焼高温ガス発生装置とを備え、該ガス化反応室内に導入した原料バイオマスと過熱水蒸気とを、該ガス化反応室を成す熱伝導性を有する壁材を介して、該燃焼高温ガス発生装置から該断熱室と該ガス化反応室との間の空間に供給された上記燃焼高温ガスによって加熱し、該原料バイオマスと該過熱水蒸気とを吸熱反応させることによって、水素と一酸化炭素とを主成分とする混合ガスを生成するように構成されることを特徴とする、請求項1又は2に記載のバイオマスから炭化水素を製造する装置。
  4. 前記燃焼高温ガス発生装置は、燃料バイオマスを完全燃焼させることによって800℃以上の温度の前記燃焼高温ガスを発生させ、発生させた該燃焼高温ガスを前記断熱室と前記ガス化反応室との間の空間に供給することを特徴とする、請求項3に記載のバイオマスから炭化水素を製造する装置。
JP2007212822A 2007-08-17 2007-08-17 バイオマスから炭化水素を製造する装置 Expired - Fee Related JP5136831B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007212822A JP5136831B2 (ja) 2007-08-17 2007-08-17 バイオマスから炭化水素を製造する装置
PCT/JP2008/064524 WO2009025222A1 (ja) 2007-08-17 2008-08-13 バイオマスから炭化水素を製造する方法と装置
CN2008801036253A CN101802134B (zh) 2007-08-17 2008-08-13 由生物质制造烃的方法和装置
US12/673,771 US20110065815A1 (en) 2007-08-17 2008-08-13 Method and apparatus for production of hydrocarbon from biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212822A JP5136831B2 (ja) 2007-08-17 2007-08-17 バイオマスから炭化水素を製造する装置

Publications (2)

Publication Number Publication Date
JP2009046554A JP2009046554A (ja) 2009-03-05
JP5136831B2 true JP5136831B2 (ja) 2013-02-06

Family

ID=40378128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212822A Expired - Fee Related JP5136831B2 (ja) 2007-08-17 2007-08-17 バイオマスから炭化水素を製造する装置

Country Status (4)

Country Link
US (1) US20110065815A1 (ja)
JP (1) JP5136831B2 (ja)
CN (1) CN101802134B (ja)
WO (1) WO2009025222A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010119973A1 (ja) * 2009-04-14 2012-10-22 Ggiジャパン株式会社 炭化水素オイル製造システム及び炭化水素オイルの製造方法
JP2011111511A (ja) * 2009-11-25 2011-06-09 Micro Energy:Kk 炭素化合物の再生処理方法、ガス化装置および再生処理システム
CN102367391A (zh) * 2011-06-24 2012-03-07 广州迪森热能技术股份有限公司 生物质空气-水蒸汽气化方法
US20130110291A1 (en) * 2011-10-28 2013-05-02 Agni Corporation (Cayman Islands) Novel systems and methods for producing biofuel from one or more values of process parameters
CN103194267B (zh) * 2013-04-10 2014-07-09 山西鑫立能源科技有限公司 煤矸石热解气化的水煤气反应方法
CN105152825B (zh) * 2015-10-16 2018-10-16 中国矿业大学 一种基于单组元推进剂催化分解的压缩气体生成装置
WO2021163458A1 (en) * 2020-02-14 2021-08-19 Colorado State University Research Foundation Combustion system for solid biomass fuel
JP7036852B2 (ja) * 2020-03-19 2022-03-15 本田技研工業株式会社 燃料製造システム
JP7036853B2 (ja) * 2020-03-19 2022-03-15 本田技研工業株式会社 燃料製造システム
JP7098675B2 (ja) * 2020-03-19 2022-07-11 本田技研工業株式会社 燃料製造システム
CN114433168B (zh) * 2020-10-30 2024-02-09 中国石油化工股份有限公司 生物焦气化反应用催化剂及生物焦气化原料

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153091B2 (ja) * 1994-03-10 2001-04-03 株式会社荏原製作所 廃棄物の処理方法及びガス化及び熔融燃焼装置
NL190574C (nl) * 1979-07-13 1994-05-02 Shell Int Research Werkwijze voor de bereiding van ijzermagnesium katalysatoren en de toepassing daarvan bij de bereiding van koolwaterstoffen.
US4678860A (en) * 1985-10-04 1987-07-07 Arizona Board Of Regents Process of producing liquid hydrocarbon fuels from biomass
US5922090A (en) * 1994-03-10 1999-07-13 Ebara Corporation Method and apparatus for treating wastes by gasification
EP0776962B1 (en) * 1995-11-28 2002-10-02 Ebara Corporation Method and apparatus for treating wastes by gasification
CA2247414A1 (en) * 1996-03-11 1997-09-18 Kenneth L. Agee Turbine-powered, synthesis-gas system and method
US6306917B1 (en) * 1998-12-16 2001-10-23 Rentech, Inc. Processes for the production of hydrocarbons, power and carbon dioxide from carbon-containing materials
AU1671702A (en) * 2000-11-17 2002-05-27 Future Energy Resources Corp Small scale high throughput biomass gasification system and method
JP2002193858A (ja) * 2000-12-28 2002-07-10 Mitsubishi Heavy Ind Ltd バイオマス原料によるメタノール製造方法及びその装置
PL204168B1 (pl) * 2002-02-05 2009-12-31 Univ California Sposób i urządzenie do wytwarzania gazu syntezowego do zastosowania jako paliwo gazowe lub jako surowiec do wytwarzania paliwa ciekłego w reaktorze Fischera-Tropscha
US7300642B1 (en) * 2003-12-03 2007-11-27 Rentech, Inc. Process for the production of ammonia and Fischer-Tropsch liquids
GB0423037D0 (en) * 2004-10-18 2004-11-17 Accentus Plc Process and plant for treating biomass
JP4698343B2 (ja) * 2005-09-01 2011-06-08 新日本製鐵株式会社 合成ガスから炭化水素を製造する触媒とその触媒の製造方法、及び当該触媒を用いた合成ガスから炭化水素を製造する方法
US7811341B2 (en) * 2005-12-28 2010-10-12 Casio Computer Co., Ltd. Reaction device, heat-insulating container, fuel cell device, and electronic apparatus
US8100992B2 (en) * 2006-10-23 2012-01-24 Nagasaki Institute Of Applied Science Biomass gasification apparatus
US8217210B2 (en) * 2007-08-27 2012-07-10 Purdue Research Foundation Integrated gasification—pyrolysis process

Also Published As

Publication number Publication date
JP2009046554A (ja) 2009-03-05
CN101802134A (zh) 2010-08-11
CN101802134B (zh) 2013-11-13
US20110065815A1 (en) 2011-03-17
WO2009025222A1 (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5136831B2 (ja) バイオマスから炭化水素を製造する装置
US9663363B2 (en) Various methods and apparatuses for multi-stage synthesis gas generation
US20220026113A1 (en) Heat utilization system and heat generating device
KR101497750B1 (ko) 대체 천연 가스를 용이하게 제조하는 방법 및 장치
RU2516533C2 (ru) Способ и устройство для получения синтез-газа с низким содержанием смол из биомассы
JP5777887B2 (ja) 炭素原材料を変換するための方法および装置
RU2670761C9 (ru) Регулирование кислого газа в процессе производства жидкого топлива
US20090320368A1 (en) Methods and Systems for Gasifying a Process Stream
WO2008069251A1 (ja) バイオマスからの液体燃料製造装置および製造方法
US20100301273A1 (en) Biomass gasification method and apparatus for production of syngas with a rich hydrogen content
CN105969434A (zh) 用于制造生物甲烷和生态甲烷以及热和电的方法和系统
RU2007108085A (ru) Способ превращения углеродистых материалов в энергетические газы, способ получения синтез-газа (варианты), способ получения жидкого топлива (варианты), установка для получения синтез-газа (варианты)
JP2005325337A5 (ja)
BRPI0708721B1 (pt) aparelho e método para controlar a composição gasosa produzida durante a gaseificação de alimentações contendo carbono
WO2017002096A1 (en) Method and system for the manufacture of bio-methane and eco-methane
EP3896364A1 (en) Heat utilization system, and heat generating device
JP4665021B2 (ja) バイオマスのガス化方法
WO2020166659A1 (ja) バイオマスガス製造方法、水素製造方法、バイオマスガス製造システム及び水素製造システム
TWI397580B (zh) 具有原位焦油移除作用的氣化方法及系統
JP7291677B2 (ja) 水性ガス生成システム、バイオマス発電システム及びバイオマス水素供給システム
JP2008285557A (ja) 輻射吸熱反応装置
WO2010055582A1 (ja) 輻射吸熱反応装置
CN115197751A (zh) 一种由生物质制备高品质燃气的方法及装置
JP2015503497A (ja) 合成ガスの生成方法及び装置
NO338230B1 (no) Fullstendig integrert redoks-assistert gassifisering (RAG) for produktiv konvertering av karbonholdig materiale

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees