USRE37385E1 - Composite material and process for manufacturing same - Google Patents

Composite material and process for manufacturing same Download PDF

Info

Publication number
USRE37385E1
USRE37385E1 US09396871 US39687199A USRE37385E US RE37385 E1 USRE37385 E1 US RE37385E1 US 09396871 US09396871 US 09396871 US 39687199 A US39687199 A US 39687199A US RE37385 E USRE37385 E US RE37385E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
composite material
defined
process
manufacturing composite
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09396871
Inventor
Akane Okada
Yoshiaki Fukushima
Masaya Kawasumi
Shinji Inagaki
Arimitsu Usuki
Shigetoshi Sugiyama
Toshio Kurauchi
Osami Kamigaito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Abstract

Composite material with high mechanical strength and excellent high-temperature characteristics comprising a polymer matrix containing polyamide and layers of a silicate uniformly dispersed in the order of molecules in the polymer matrix, each of said silicate layers being 7 to 12 Å thick and the interlayer distance being at least 20 Å; and a process for manufacturing such composite material.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to composite material with high mechanical strength and excellent high-temperature characteristics. More particularly, it relates to composite material comprising a polymer matrix containing polyamide and layers of a silicate that constitute a clay mineral, said polymer matrix and layers of a silicate being bonded together and uniformly dispersed.

2. Description of the Prior Art

It has been widely attempted to admix inorganic materials, such as calcium carbonate and clay minerals (e.g. mica), to organic polymer materials in order to improve the mechanical properties of the latter. Admixture of these inorganic additives to a polymeric material, however, brings about many disadvantages, such as embrittlement of the polymer, because of the extremely weak interaction between additive and matrix polymer. The amount of inorganic materials that can be admixed is also very limited. Techniques are known in which these inorganic materials are previously treated with a silane coupling agent or the like to ensure higher affinity to matrix polymer. In this case, however, the organic and inorganic materials are present in separate phases and uniform dispersion of the latter cannot be expected. The result is insufficient reinforcing effect and limited improvement in high-temperature characteristics.

In order to overcome these problems, we formerly filed “Resinous Composition Containing Polyamide” (Japanese Laid-Open Patent Publication No. 83551/1982), which comprises a polymer matrix containing polyamide and flakes of vermiculite with an aspect ratio not smaller than 5 dispersed in said polyamide. This was intended to improve the mechanical strength of organic polymer materials by addition of vermiculite flakes with a large aspect ratio (length/thickness ratio of a particle). The resinous compositions obtained by this method show improved mechanical strength compared with conventional resins, but the difficulties are that sufficiently large aspect ratios cannot be achieved because mechanical crushing is indispensable to obtain flakes of vermiculite, and that a large amount of additive must be used to achieve necessary strength at the risk of embrittlement, because of the weak intermolecular bonding force between the mineral layer and matrix polymer.

Attempts have already been made to produce composite materials by synthesizing a polymer, such as polyamide and polystyrene, in the space between layers of a clay mineral. With conventional techniques, however, it has been difficult for the chains of synthesized organic polymer to fully penetrate between layers of clay mineral; hence, swelling of the interlayer space in the clay mineral is limited, resulting in imperfect dispersion of the silicate layers into organic matrix. This also entails a reduction in aspect ratio of the clay mineral, thus adversely affecting the effect of enhancing mechanical strength. In addition, the bonding between interlayer compound and matrix polymer is not sufficiently high. Consequently, satisfactory reinforcement cannot be achieved by this method.

The polyamides obtained in any of the above-mentioned methods have broad molecular weight distribution—the ratio of weight average molecular weight to number average molecular weight (Mw/Mn) is 6 or larger.

For some vinyl compounds, it is possible to prepare polymers of narrow molecular weight distribution by the living anion polymerization or by the group-transfer polymerization (Journal of the American Chemical Society 1983, 105, p. 5706). But these techniques are not applicable to polyamide.

Under the circumstances, we have continued systematic studies to solve the problems stated above, and succeeded in accomplishing this invention.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide new composite materials with high mechanical strengths and excellent high-temperature characteristics, and a process for manufacturing same.

It is another object of the present invention to provide new composite materials of narrow molecular weight distribution, and a process for manufacturing same.

The composite material of this invention comprises a polymer matrix containing polyamide and layers of a silicate uniformly dispersed in the order of magnitude of molecular dimensions in said polymer matrix, each of said silicate layers being 7 to 12 Å thick and the interlayer distance being at least 20 Å, and has high mechanical strength and excellent high-temperature characteristics.

The composite materials according to one aspect of this invention comprise a polymer matrix containing polyamide and layers of a silicate uniformly dispersed in the order of magnitude of molecular dimensions in said polymer matrix, each of said silicate layers being 7 to 12 Å thick, the interlayer distance being at least 30 Å, and said silicate layers combining with part of said polyamide chain through ionic bonding. These materials have exceptionally high mechanical strength and excellent high-temperature characteristics.

The composite materials according to another aspect of this invention comprise a polymer matrix containing polyamide and layers of a silicate uniformly dispersed in the order of magnitude of molecular dimensions in said polymer matrix, each of said silicate layers being 7 to 12 Å thick, the interlayer distance being at least 20 Å, and the molecular weight distribution of said polyamide expressed by the ratio of its weight average molecular weight (Mw) to its number average molecular weight (Mn) being 6 or smaller. These materials have exceptionally high mechanical strength and excellent high-temperature characteristics, and the molecular weight distribution of the polyamide contained is very narrow.

The process for manufacturing composite material of this invention comprises the following steps: (1) bringing a swelling agent into contact with a clay mineral having a cation-exchange capacity of 50 to 200 milliequivalent/100 g to form a complex that can be swollen by a polyamide monomer at a temperature higher than the melting point of that monomer; (2) mixing said complex with said polyamide monomer; and (3) heating the mixture obtained in step (2) to a prescribed temperature to effect polymerization.

The process of this invention, which involves the three steps as shown above, gives highly reinforced composite materials with high mechanical strength and excellent high-temperature characteristics, and is also cost-effective because no subsequent treatment for reinforcement (e.g., remelting after polymerization) is required.

The process of this invention may use, in the mixing step, a base catalyst and an activator, and is also capable of producing composite materials with a narrow molecular weight distribution.

The process of this invention not only gives composite materials with superb characteristics as stated above, but also eliminates some of the steps indispensable in conventional manufacturing processes.

DETAILED DESCRIPTION OF THE INVENTION

Composite material of this invention will be explained below.

The polymer matrix in the composite material of this invention is a resin containing polyamide, namely, a polyamide or a mixture thereof with other polymers. The polyamide herein means any polymer containing amide bonds (—CONH—), for example, nylon-66, nylon-6 and nylon 11. The greater the proportion of polyamide in the polymer matrix, the more marked will be the effects achieved by this invention; however, the effects of this invention are still apparent even when the proportion of polyamide is 10 wt%.

The layers of silicate in the composite material of this invention, which are intended to impart the polymeric material with high mechanical strength and excellent high-temperature characteristics, are layers of aluminum or magnesium phyllosilicate b 7 to 12 Å in thickness. These phyllosilicate are negatively charged (as a result of isomorphic ion exchange or the like), and show different characteristics depending on the density and distribution of the negative charges. For the purpose of this invention, it is preferable to use silicate layers in which the area occupied by each of the negative charges is in the range from 25 to 200 Å. The composite materials of this invention comprise a polymer matrix containing polyamide as described above and above-stated silicate layers dispersed uniformly in the order of magnitudue of molecular dimensions in said polymer matrix, each of said silicate layers being 7 to 12 Å thick and the interlayer distance being at least 20 Å.

The amount of silicate layers dispersed in said polymer matrix is preferably in the range from 0.5 to 150 parts by weight per 100 parts by weight of the polymer matrix. If this amount is less than 0.5 parts, a sufficient reinforcing effect cannot be expected. If the amount exceeds 150 parts, on the other hand, the resulting product is powdery interlayer compound which cannot be used as moldings.

In addition, it is also preferable that the composite material of this invention be such that the interlayer distance is at least 30 Å and that the silicate layers combine with part of the polyamide chain through ionic bonding. The greater the interlayer distance, the better the mechanical strength aand high-temperature characteristics. In this case, the negatively charged silicate layers combine, through ionic bonding, with ammonium ion (—NH3 +) or trimethylammonium ion (—N+(CH3)3), or with cations expressed by —NX+, in which X is H, Cu or Al, (formed by reaction of polyamide monomer and inorganic molecules). These cations are attached to the main chain or side chains of polyamide through covalent bonding.

In the composite material of this invention, it is preferable that the molecular weight distribution of polyamide contained be 6 or smaller when expressed by the ratio of its weight average molecular weight (Mw) to its number average molecular weight (Mn).

Next, the process for manufacturing composite material of this invention is described below.

The first step is to bring a swelling agent into contact with a clay mineral having a cation-exchange capacity of 50 to 200 milliequivalent per 100 g of the clay mineral, thereby adsorbing said swelling agent on said clay mineral and forming a complex that can be swollen by a polyamide monomer at temperature higher than the melting point of that monomer.

This can be accomplished by immersing said clay mineral in an aqueous solution containing said swelling agent, followed by washing the treated clay mineral with water to remove excess ions, or by mixing an aqueous suspension of said clay mineral with a cation-exchange resin previously treated with said swelling agent, thereby effecting ion-exchange operation.

The clay mineral used in this invention is any clay mineral (both natural and synthesized) having a cation-exchange capacity of 50 to 200 milliequivalent/100 g and a large contact area with the monomer to be used. Typical examples include smectite clay minerals (e.g., montmorillonite, saponite, beidellite, nontronite, hectorite and stevensite), vermiculite and halloysite. With a clay mineral whose cation-exchange capacity exceeds 200 milliequivalent/100 g, its interlayer bonding force is too strong to give intended composite materials of this invention. If the capacity is less than 50 milliequivalent/100 g, on the other hand, ion exchange or adsorption of swelling agent (comprising organic or inorganic cations), which is an essential step in the process of this invention, will not be sufficient, making it difficult to produce composite materials as intended by this invention. It is preferable to grind the clay mineral before use into a desired shape and size by means of a mixer, ball mill, vibrating mill, pin mill or jet mill.

In the process of this invention, ion-exchange is essential because interlayer or exchangeable cations usually existing in natural and synthesized clays, such as Na+, Ca2+, K+ and Mg2+, are not suitable and should be exchanged with other cations for the purpose of the invention.

The swelling agent serves to expand the interlayer distance in a clay mineral, thus facilitating the intake of polymer between the silicate layers, and is at least one inorganic ion, such as copper ion (Cu2+), hydrogen ion (H+) and aluminum ion (Al3+), or at least one organic cation, for example, 12-amino-dodecanoic acid ion (H3N+C12N24COOH) and dodecylammonium ion (H3N+C12N25).

If, in this case, a base catalyst and an activator are not added in the subsequent mixing step, the organic cation should preferably be a cation containing carboxyl group. Such carboxyl-containing organic cations are those represented by X+—R—COOH, wherein X+ stands for ammonium ion (NH3 +) or trimethylammonium ion (13 N+(CH3)3), and R denotes an alkylene group which may contain phenylene

Figure USRE037385-20010918-C00001

vinylene (—CH═CH—), branching

Figure USRE037385-20010918-C00002

and other linkages. Typical examples include 4-amino-n-butyric acid ion (NH3 +C3H6COOH), 6-amino-n-capronic acid ion (NH3 +C5H10COOH), ω-aminocaprylic acid ion (NH3 +C7H14COOH), 10-amino-decanoic acid ion (NH3 +C9H18COOH), 12-amino-dodecanoic acid ion (NH3 +C11H22COOH), 14-amino-tetra-decanoic acid ion (NH3 +C13H26COOH), 16-amino-hexadecanoic acid ion (NH3 +C15H30COOH) and 18-amino-octadecanoic acid ion (NH3 +C17H34COOH). These are used either alone or in combination.

The clay minerals with these ions exchanged thereupon as described above have catalytic activity for ring-opening polymerization of lactams (e.g., ε-caprolactam) and are also capable of taking in the polyamides thus formed, or the polyamides produced by dehydrative condensation of amino acids or nylon salts, between silicate layers. Use of such ion-exchanged clay mineral does enable the manufacture of the super-dispersed composite materials of this invention. In the polymerization of polyamide monomer, inorganic ions form Cu.HN+— or H3N+— cations, which unite with the clay through ionic bonding, on the one hand, and with the polymer chain through amide linkage, on the other. Such effects cannot be expected from surface-active agents commonly used for lipophilic surface treatment of clay minerals, which lack in the ability to initiate polymerization, to take in the polyamide formed between silicate layers, and to unite with the organic polymer chain.

The carboxyl-containing organic cation should preferably have a size of about 120 to 500 Å2 (as projected area) in order to (1) take in the lactam compound, (2) suppress evaporation of the lactam, and (3) ensure sufficient reinforcing effect of clay mineral. This range of size corresponds to 12≦n≦20 when R is —(CH2)n—. When n<11, the treated clay mineral will not readily coagulate from aqueous phase, making filtration and washing very difficult. In addition, hygroscopic property of the surface of clay mineral is insufficient, and lactam molecules fail to fully penetrate between silicate layers. If n>20, on the other hand, the swelling agent will be sparingly soluble in water, making ion-exchange very difficult.

Such inorganic and organic cations as described above are capable of taking in the molecules of polyamide monomer between the silicate layers of clay mineral, initiating ring-opening polymerization of lactams, and also taking in the polymers formed as the polymerization proceeds. The reason why such cations specifically have such abilities is not clear yet. However, one may deduce that, in the case with the organic ions, their large size may help expand the interlayer space to a considerable extend and the interaction between the carboxyl group in these ions and the amino groups on the polyamide monomer may contribute to efficient intake of the monomer molecules between the expanded layer space. Probably the same is true with Cu2+, Al2+ and H+; these ions are also considered to have high ability to take in the monomers between silicate layers, thereby expanding the interlayer space before the start of polymerization and reducing the interlaminar cohesive force.

When a base catalyst and an activator are used in the subsequent mixing step, it is preferable to employ, as the swelling agent, ions derived from an organic compound that will not retard the polymerization (e.g., ions derived from hydrocarbons, amines, carboxylic acids, alcohols and halogenated compounds); particularly preferable are compounds containing in the molecule onium ions which are capable of forming a firm chemical bond with silicates through cation-exchange reaction. Typical examples of such compounds include strong acid salts of trimethylamine, triethylamine, hexylamine, cyclohexylamine, dodecylamine, aniline, pyridine, benzylamine, bis(aminomethyl)benzene, amino-phenols, ethylenediamine, hexamethylenediamine, hexamethylenetetramine, polyallylamine, alanine, 4-amino-butyric acid, 6-amino-caproic acid, 12-amino-dodecanoic acid and 16-amino-hexadecanoic acid. Examples of the strong acids are hydrochloric, hydrobromic, sulfuric and phosphoric acids.

The second step in the process of this invention is to mix a polyamide monomer with the complex obtained in the first step.

The polyamide monomer used in this step is a material which will form the matrix polymer in the composite materials of this invention. Illustrative examples include amino acids such as 6-amino-n-caproic acid and 12-amino-dodecanoic acid, nylon salts such as hexamethylenediamine adipate, and lactams such as ε-caprolactam and caprylolactam.

Mixing of the complex and polyamide monomer is effected by using a power-driven mortar, vibration mill or the like.

If a polyamide of narrow molecular weight distribution is to be obtained, it is preferable to further add a base catalyst and an activator in this mixing step. In this case, the monomer should preferably be a lactam. Lactams are cyclic compounds represented by formula [A] shown below, which undergo ring-opening polymerization to form polyamides,

Figure USRE037385-20010918-C00003

(wherein n is an integer of 6 to 12, and R stands for hydrogen, an alkyl of 1 to 8 carbon atoms, or an aralkyl which may optionally has substituent groups). Illustrative examples include caprolactam (n=6 and R=H in formula [A]), caprylolactam (n=8 and R=H in formula [A]) and dodecanolactam (n=12 and R=H in formula [A]), which form upon polymerization nylon-6, nylon-8 and nylon-12, respectively. These polymerizable lactams may be used either alone or in combination.

The addition of a base catalyst and an activator is to cause anion polymerization of lactams to take place. The types and amounts of said catalyst and accelerator are the same as in common anion polymerization of polymerizable lactams [refer, for example, to p457 of “NYLON PLASTICS” edited by M. I. Kohan (1973), Interscience]. Typical examples of the base catalyst include sodium hydride, sodium methoxide, sodium hydroxide, sodium amide and potassium salts of lactams. These base catalysts may be used either alone or in combination, and the suitable amount to be employed is in the range from 0.01 to 10 mol% of polymerizable lactam. The rate of polymerization is too low if the amount is less than 0.01 mol%; when the amount exceeds 10 mol%, on the other hand, the molecular weight of resultant polyamide is unlikely to be sufficiently high.

The accelerator acts to react with the base catalyst to form an active intermediate that can initiate anionic polymerization. Illustrative examples include N-acetylcaprolactam, acetic anhydride, carbon dioxide, phenyl isocyanate and cyanuric chloride. These may be used either alone or in combination. The preferable amount to be used is in the range from 0.01 to 5 mol% of polymerizable lactam. The rate of polymerization is too low if the amount is less than 0.01 mol%; when the amount exceeds 5 mol%, on the other hand, the molecular weight of resultant polyamide is unlikely to be sufficiently high.

The final step is to polymerize the mixture obtained in the mixing step above by heating it to a prescribed temperature, thereby giving an intended composite material of this invention (polymerization step). The mixture obtained in the mixing step may be immediately heated to cause polymerization. However, the better way is to keep the mixture at a temperature slightly above the melting point of the polyamide monomer for a certain period of time to ensure even dispersion of the clay mineral in the monomer.

When no base catalyst and accelerator are used in the preceding mixing step, polymerization proceeds in the cationic mode, with the swelling agent present in the system acting as catalyst.

This type of polymerization can be carried out in the temperature range from 200° to 300° C., but a temperature between 250° and 300° C. is preferable for rapid progress of polymerzation. Suitable polymerization time, though different depending on the type of swelling agent and polymerization temperature, is preferably in the range from 5 to 24 hours. To be more specific, polymerization at 250° C. can be put to completion in about five hours when an organic ion is used as swelling agent, but it requires 10 to 24 hours for completion when an inorganic ion is used.

When a polyamide of narrow molecular weight distribution is to be prepared by the use of a base catalyst and an accelerator, the anion polymerization may be effected under conditions commonly adopted. The reaction proceeds very rapidly in the temperature range between 80° to 300° C., but a temperature in the range from 120° to 250° C. is most preferred. Suitable polymerization time varies with the polymerization temperature adopted, but should be in the range from one minute to five hours. When the reaction is carried out at a temperature in the range from 120° to 250° C., it should best be continued for 5 to 60 minutes.

In the process of this invention, additives that are substantially inert to the polymerization reaction, such as glass fiber, pigment and antioxidants, may also be added to the system.

The composite materials obtained according to the procedure detailed above may be directly injection-molded or compression-molded (at elevated temperatures), or may be mixed with polyamides or other types of polymers before molding. Alternatively, moldings can be obtained by conducting the polymerization step inside a desired mold. One may further add, in the polymerization step, other types of catalysts, such as phosphoric acid and water.

The reasons why the composite materials of this invention have distinctive properties are not absolutely clear yet, but the following deductions may be drawn.

In the composite materials of this invention, the crosslinking by chemical bonds between polyamide molecules and silicate layers firmly resists thermal and mechanical deformation, and this is reflected in their high mechanical strengths (e.g., tensile strength and modulus of elasticity) and excellent thermal characteristics (e.g., high softening point and high-temperature strengths); their high dimensional stability, abrasion resistance, surface slipperiness, water permeability and water resistance come from the uniform dispersion of silicate layers; and embrittlement and other troubles, unavoidable in conventional composite materials containing inorganic additives, are eliminated because the silicate layers are finely dispersed in the order of magnitude of molecular dimensions (in a thickness of 10 Å or so) and are firmly combined with the chains of organic molecules.

The process of this invention, which involves only three steps (contact, mixing and polymerization), gives highly reinforced composite materials having high mechanical strengths and excellent high-temperature characteristics. In addition, the process of this invention eliminates some of the steps indispensable in conventional manufacturing processes, such as a treatment for reinforcement (e.g., remelting after polymerization), and is hence very cost-effective.

To be more specific, the process of this invention features: (1) elimination of steps for surface treatment and mixing of mineral materials, because composite-material formation progresses in the polymerization step; (2) simplified crushing and mixing of clay minerals, and no danger of aspect ratio being reduced due to excessive crushing, because a chemical reaction is utilized for dispersion of silicate layers; and (3) high storage stability of mixtures of clay mineral with polyamide monomer or polyamide because of inertness of clay mineral to the monomer and polymer.

When no base catalyst and activator are added in the mixing step, the clay mineral with ions exchanged thereon acts as an initiator for polymerization of polyamide monomers (e.g., polymerizable lactams), thus eliminating the need for adding a new catalyst or for a step of ring-opening reaction to form an amino acid.

When a base catalyst and activator are added in the mixing step, an interaction between the base catalyst and the silicate seems to make the molecular weight distribution of resultant polyamide narrower. Furthermore, composite materials of silicate of polyamide can be produced very rapidly by the process of this invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Some examples of the invention will now be described.

EXAMPLE 1

Complexes were prepared using montmorillonite (product in Japan; cation-exchange capacity: 100 millequivalent/100 g) as clay mineral and substances listed in Table 1 as swelling agent, which was followed by polymerization of ε-caprolactam to make composite materials.

In the first place, an inorganic or organic cation (listed in Table 1 as swelling agent) was exchanged with Na+ or Ca+ in the montmorillonite. When aluminum ion (Al3+) was used as swelling agent, ion exchange was conducted by first adsorbing this ion on an ion-exchange resin, packing the treated resin in a column, and flowing an aqueous suspension of montmorillonite through that column over and over again. For the other swelling agents, ion exchange was effected by immersing 10 g of montmorillonite in one liter of aqueous solution containing the chloride of the cation to be exchanged

TABLE 1
Proportion (g) Test Result
Sample No. Swelling Agent Montmorillonite Caprolactan Yld. of Polyamide (%) Interlayer Distance (Å)
Present Invention
1 Cu2+ 0.5 100 100 ≧100Å
2 Cu2+ 10 100 100 ≧100Å
3 Cu1+ 25 100 100 ≧100Å
4 Cu2+ 50 100 100     60Å
5 Cu2+ 100 100 100     35Å
6 Cu2+ 150 100 100     30Å
7 Al3+ 21 100 100 ≧100Å
8 H+ 25 100 100 ≧100Å
9 NH3 +(CH2)5COOH 25 100 100 ≧100Å
10  NH3 +(CH2)11COOH 25 100 100 ≧100Å
11  NH3 +(CH2)11COOH 10 100 100 ≧100Å
12  NH3 +(CH2)17COOH 25 100 100 ≧100Å
Comp.
C1 Na 25 100  5     15Å
C2 Mg2+ 25 100  60     16Å
C3 NH3(CH2)17CH3 25 100  0     29Å

TABLE 1
Proportion (g) Test Result
Sample No. Swelling Agent Montmorillonite Caprolactan Yld. of Polyamide (%) Interlayer Distance (Å)
Present Invention
1 Cu2+ 0.5 100 100 ≧100Å
2 Cu2+ 10 100 100 ≧100Å
3 Cu1+ 25 100 100 ≧100Å
4 Cu2+ 50 100 100     60Å
5 Cu2+ 100 100 100     35Å
6 Cu2+ 150 100 100     30Å
7 Al3+ 21 100 100 ≧100Å
8 H+ 25 100 100 ≧100Å
9 NH3 +(CH2)5COOH 25 100 100 ≧100Å
10  NH3 +(CH2)11COOH 25 100 100 ≧100Å
11  NH3 +(CH2)11COOH 10 100 100 ≧100Å
12  NH3 +(CH2)17COOH 25 100 100 ≧100Å
Comp.
C1 Na 25 100  5     15Å
C2 Mg2+ 25 100  60     16Å
C3 NH3(CH2)17CH3 25 100  0     29Å

(concentration: 1N), followed by repeated filtration (Buchner funnel) and washing with water.

The ion-exchanged montmorillonite thus obtained was mixed in a mortar with ε-caprolactam in a given proportion, the mixture was placed in an aluminum container and heated at 80° C. for three hours to ensure dehydration and melting of the caprolactam for homogenization, and the homogeneous complex thus prepared was then transferred to a closed vessel made of stainless steel and heated at 250° C. for five hours, giving a composite material. It was heated at a rate of 2° C./min in a DSC (differential scanning calorimeter) to measure the heat of fusion, and the yield of polyamide in the product was estimated from this data. The degree of dispersion in the product was estimated from the interlayer distance of silicate measured by X-ray diffraction. The results are summarized in Table 1.

No. 11 composite material was injection-molded to prepare specimens, which were subjected to a tensile test (ASTM D 638M). The result is shown in Table 2, together with its heat distortion temperature, dynamic modulus of elasticity at 120° C., and water absorption (after 24 hour's immersion in 20° C. water).

Comparative samples (No. C1 through C3) were prepared in the same manner as above, except that sodium ion (Na+), magnesium ion (Mg2+) or a surface-active agent, NH3 +(CH2)17CH3, was used, respectively, in place of the swelling agents. The result is also shown in Table 1.

Table 2 also shows the test result of two comparative samples (No. C4 and C5): a sample prepared by kneading 10 g of montmorillonite pretreated with an aminosilane and 100 g of nylon-6, followed by injection molding (C4); and a sample made of plain nylon-6.

It is apparent from Table 2 that the composite materials of this invention have better mechanical strengths and high-temperature characteristics than the comparative materials.

EXAMPLE 2

Vermiculite (product in China; cation-exchange capacity: 180 milliequivalent/100 g) was ground in a vibrating ball mill (using steel balls) and treated with 12-amino-dodecanoic acid ion, NH3 +(CH2)11COOH, in the same manner as in Example 1. The treated vermiculite powder thus obtained (25 g) was mixed with hexamethylenediamine adipate (200 g), and the mixture was heated at 230° C. for five hours in a nitrogen gas stream, giving a composite material.

This material showed no peak corresponding to interlayer distance when measured by ordinary X-ray diffraction (actual interlayer distance: more than 100 Å), indicating even distribution of vermiculite layer.

EXAMPLE 3

Montmorillonite (product in Japan; cation-exchange capacity: 80 milliequivalent/100 g) was treated with 12-amino-dodecanoic acid ion, NH3 +(CH2)11COOH, in the same manner as in Example 1. The treated montmorillonite powder thus obtained (50 g) was mixed with 12-amino-dodecanoic acid NH2(CH2)11COOH (50 g), and the mixture was heated at 240° C. for ten hours in a nitrogen gas stream, giving a composite material. The interlayer distance of this materials proved to be more than 100 Å when measured in the same way as in Example 2.

EXAMPLE 4

To a suspension of 100 g montmorillonite (“Kunipia F”; Kunimine Industries, Inc.) in 10 liters of water, were added 51.4 g 12-amino-dodecanoic acid and 24 ml concentrated hydrochloric acid, and the mixture was stirred for five minutes. After filtration, the solid matters collected were thoroughly washed with water and vacuum-dried, affording montmorillonite exchanged with 12-amino-dodecanoic acid ions (hereinafter abbreviated as “12-M”).

ε-Caprolactam (100 g) and 12-M (10 g) were placed in a reactor fitted with a stirrer, and the mixture was heated at 100° C. with stirring, giving a highly viscous, homogeneous suspension. Sodium hydride (2.4 g) was then added, the temperature was raised to 160° C., N-acetylcaprolactam (1.37 g) was further added as activator, and heating was continued at 160° C. for 30 minutes to complete polymerization.

The cruded polymer thus obtained was crushed, washed with hot water, and vacuum-dried. The dried polymer was easily dissolved in m-cresol to a concentration of 0.25 weight %, and the solution was subjected to GPC (gel permeation chromatography) at 100° C. to measure Mw/Mn and Mn. Interlayer distance of silicate layers was determined by X-ray diffraction. These results are shown in Table 3. The interlayer distance of 12-M was 16 Å.

EXAMPLE 5

A composite material was prepared in the same manner as in Example 4, except that 5 g of 12-M was used. The results are also shown in Table 3.

EXAMPLE 6

A composite material was prepared in the same manner as in Example 5, except that polymerization was conducted at 225° C. The results are shown in Table 3.

EXAMPLE 7

A composite material was prepared in the same manner as in Example 1, except that 27.6 g of hexamethylenediamine was used in place of 12-amino-dodecanoic acid in Example 4 and that 5 g of montmorillonite was employed. The results are also shown in Table 3.

COMPARATIVE EXAMPLE 1

A composite material was prepared in the same manner as in Example 4, except that no 12-M was used. The results are shown in Table 3.

COMPARATIVE EXAMPLE 2

This is a case in which ε-caprolactam was polymerized in the absence of base catalyst and activator (utilizing the silicate as polymerization initiator).

A mixture of 12-M (5 g) and ε-caprolactam (100 g) was stirred at 100° C., the resulting viscous, homogeneous suspension was heated at 250° C. for 96 hours to complete polymerization of caprolactam, and the polymer thus obtained was after-treated and tested in the same manner as in Example 4. The results are shown in Table 3.

A sample taken out during polymerization (48 hours after the start of polymerization) showed Mn as low as 1.2×104, indicating extremely low rate of polymerization.

COMPARATIVE EXAMPLE 3

This presents the data for commercial nylon-6 (“Amilan CM1017”; Toray Industries).

In Table 3, the amounts of 12-M and base catalyst are weight % based on polymerizable lactam. The 12-M in Example 7 is montmorillonite exchanged with hexamethylenediamine ions.

TABLE 3
Polymn. Polymn. Amt. of Amt. of Mn Interlayer
Temp. (° C.) Time (hr) 12-M Base Cat. Mw/Mn (×104) Distance (Å)
Example
4 160 0.5 10  2.4 2.9 2.1 21
5 160 0.5 5 2.4 3.7 2.4 21
6 225 0.5 5 2.4 5.1 2.3 >80
7 160 0.5 5 2.4 3.7 2.1 21
Comp.
1 160 0.5 0 2.4 6.3 2.1
2 250 96 5 0   5.3 2.3 >80
3 7.0 2.5

As can be seen from Table 3, polyamides of narrower molecular weight distribution were obtained in Examples 4 through 7.

Claims (54)

What is claimed is:
1. Composite material with high mechanical strength and excellent high-temperature characteristics comprising a polymer matrix containing polyamide and a phyllosilicate uniformly dispersed in said polymer matrix, the phyllosilicate layers of said dispersed phyllosilicate being 7 to 12 Å thick and the interlayer distances of said phyllosilicate layers in the dispersed phyllosilicate being at least 20 Å, and the amount of said phyllosilicate layers being 0.5 to 150 parts by weight per 100 parts by weight of said polymer matrix.
2. Composite material as defined in claim 1, wherein said phyllosilicate is aluminum or magnesium phyllosilicate.
3. Composite material as defined in claim 1, wherein the interlayer distances of said phyllosilicate layers are at least 30 Å and said phyllosilicate layers are combined with part of chains of said polyamide through ionic bonding.
4. Composite material as defined in claim 3, wherein said phyllosilicate layers are negatively charged and form ionic bonds with positively charged groups arranged on part of said polyamide in said polymer matrix, the area occupied by each of the negative charges on said phyllosilicate layers being in the range from 25 to 200 Å2.
5. Composite material as defined in claim 3, wherein part of said polyamide in said polymer matrix carries ammonium ion (—NH3 +), trimethylammonium ion (—N+(CH3)3), or cations expressed by —NX+, in which X is at least one member selected from hydrogen (H), copper (Cu) and aluminum (Al).
6. Composite material as defined in claim 1, wherein the molecular weight distribution of said polyamide expressed by the ratio of its weight average molecular weight (Mw) to its number average molecular weight (Mn) is 6 or smaller.
7. Composite material as defined in claim 6, wherein said phyllosilicate layers are negatively charged and the area occupied by each of the negative charges is in the range from 25 to 200 Å2.
8. A process for manufacturing composite material with high mechanical strength and excellent high-temperature characteristics comprising the steps of
bringing a swelling agent into contact with a clay mineral having a cation-exchange capacity of 50 to 200 milliequivalent per 100 g of said clay mineral to form a complex capable of being swollen by a polyamide monomer at a temperature higher than the melting point of said monomer,
mixing said complex with said polyamide monomer, and
heating the mixture obtained in said mixing step to a prescribed temperature to effect polymerization.
9. The process for manufacturing composite material as defined in claim 8, wherein said clay mineral is a smectite or vermiculite.
10. The process for manufacturing composite material as defined in claim 8, wherein said swelling agent is an organic cation having a carboxyl group.
11. The process for manufacturing composite material as defined in claim 10, wherein said swelling agent is at least one member selected from 12-amino-dodecanoic acid ion, 14-amino-tetradecanoic acid ion, 16-amino-hexadecanoic acid ion and 18-amino-octadecanoic acid ion.
12. The process for manufacturing composite material as defined in claim 8, wherein said swelling agent is at least one member selected from the group consisting of the aluminum ion, the hydrogen ion and the copper ion.
13. The process for manufacturing composite material as defined in claim 8, wherein said polyamide monomer is a lactam.
14. The process for manufacturing composite material as defined in claim 13, wherein said lactam is ε-caprolactam.
15. The process for manufacturing composite material as defined in claim 8, wherein said polyamide monomer is an amino acid.
16. The process for manufacturing composite material as defined in claim 15, wherein said amino acid is 6-amino-n-caproic acid or 12-amino-dodecanoic acid.
17. The process for manufacturing composite material as defined in claim 8, wherein said polyamide monomer is a nylon salt.
18. The process for manufacturing composite material as defined in claim 17, wherein said nylon salt is hexamethylenediamine adipate.
19. The process for manufacturing composite material as defined in claim 8, wherein a base catalyst and an activator are further added in said mixing step.
20. The process for manufacturing composite material as defined in claim 19, wherein said base catalyst is one member selected from the group consisting of sodium hydride, sodium methoxide, sodium hydroxide, sodium amide and potassium salt of a lactam.
21. The process for manufacturing composite material as defined in claim 19, wherein said activator is one member selected from the group consisting of N-acetylcaprolactam, acetic anhydride, carbon dioxide, phenyl isocyanate and cyanuric chloride.
22. The process for manufacturing composite material as defined in claim 19, wherein said clay mineral is a smectite or vermiculite.
23. The process for manufacturing composite material as defined in claim 19, wherein said swelling agent is an organic cation.
24. The process for manufacturing composite material as defined in claim 23, wherein said organic cation is a compound having an onium ion in the molecule.
25. The process for manufacturing composite material as defined in claim 19, wherein said polyamide monomer is a lactam.
26. The process for manufacturing composite material as defined in claim 25, wherein said lactam is a compound represented by the following formula
Figure USRE037385-20010918-C00004
wherein n is an integer of 6 to 12, and R stands for hydrogen, and alkyl of 1 to 8 carbon atoms, or an aralkyl.
27. The process for manufacturing composite material as defined in claim 26, wherein said lactam is caprolactam, caprylolactam or dodecanolactam.
28. Composite material with high mechanical strength and excellent high-temperature characteristics comprising a polymer matrix containing polyamide and a phyllosilicate uniformly dispersed in said polymer matrix, the phyllosilicate layers of said dispersed phyllosilicate being 7 to 12 Å thick and the interlayer distances of said phyllosilicate layers in the dispersed phyllosilicate being at least 100 Å, and the amount of said phyllosilicate layers being 0.5 to 150 parts by weight per 100 parts by weight of said polymer matrix.
29. Composite material as defined in claim 28, wherein said phyllosilicate is aluminum or magnesium phyllosilicate.
30. Composite material as defined in claim 28, wherein said phyllosilicate layers are combined with part of chains of said polyamide through ionic bonding.
31. Composite material as defined in claim 30, wherein said phyllosilicate layers are negatively charged and form ionic bonds with positively charged groups arranged on part of said polyamide in said polymer matrix, the area occupied by each of the negative charges on said phyllosilicate layers being in the range from 25 to 2002.
32. Composite material as defined in claim 30, wherein part of said polyamide in said polymer matrix carries ammonium ion (—NH 3 +), trimethylammonium ion (N +(CH 3)3), or cations expressed by —NX + , in which X is at least one member selected from hydrogen (H), copper (Cu) and aluminum (Al).
33. Composite material as defined in claim 28, wherein the molecular weight distribution of said polyamide expressed by the ratio of its weight average molecular weight (M w) to its number average molecular weight (M n) is 6 or smaller.
34. Composite material as defined in claim 33, wherein said phyllosilicate layers are negatively charged and the area occupied by each of the negative charges is in the range from 25 to 2002.
35. A process for manufacturing composite material with high mechanical strength and excellent high-temperature characteristics comprising the steps of bringing a swelling agent into contact with a clay mineral having a cation-exchange capacity of 50 to 200 milliequivalent per 100 g of said clay mineral to form a complex capable of being swollen by a polyamide monomer at a temperature higher than the melting point of said monomer, wherein said swelling agent is an inorganic swelling agent which is at least one inorganic ion selected from the group consisting of aluminum ion, hydrogen ion and copper ion; and/or an organic swelling agent with at least twelve carbon atoms having at least an alkylene group and a carboxyl group,
mixing said complex with said polyamide monomer, and
heating the mixture obtained in said mixing step to a prescribed temperature to effect polymerization.
36. The process for manufacturing composite material as defined in claim 35, wherein said clay mineral is a smectite or vermiculite.
37. The process for manufacturing composite material as defined in claim 35, wherein said swelling agent is said organic swelling agent.
38. The process for manufacturing composite material as defined in claim 37, wherein said organic swelling agent is at least one member selected from 12-amino-dodecanoic acid ion, 14 -amino-tetradecanoic acid ion, 16 -amino-hexadecanoic acid ion and 18 -amino-octadecanoic acid ion.
39. The process for manufacturing composite material as defined in claim 35, wherein said swelling agent is at least one member selected from the group consisting of the aluminum ion, the hydrogen ion and the copper ion.
40. The process for manufacturing composite material as defined in claim 35, wherein said polyamide monomer is a lactam.
41. The process for manufacturing composite material as defined in claim 40, wherein said lactam is ε-caprolactam.
42. The process for manufacturing composite material as defined in claim 35, wherein said polyamide monomer is an amino acid.
43. The process for manufacturing composite material as defined in claim 42, wherein said amino acid is 6-amino-n-caproic acid or 12 -amino-dodecanoic acid.
44. The process for manufacturing composite material as defined in claim 35, wherein said polyamide monomer is a nylon salt.
45. The process for manufacturing composite material as defined in claim 44, wherein said nylon salt is hexamethylenediamine adipate.
46. The process for manufacturing composite material as defined in claim 35, wherein a base catalyst and an activator are further added in said mixing step.
47. The process for manufacturing composite material as defined in claim 46, wherein said base catalyst is one member selected from the group consisting of sodium hydride, sodium methoxide, sodium hydroxide, sodium amide and potassium salt of a lactam.
48. The process for manufacturing composite material as defined in claim 46, wherein said activator is one member selected from the group consisting of N-acetylcaprolactam, acetic anhydride, carbon dioxide, phenyl isocyanate and cyanuric chloride.
49. The process for manufacturing composite material as defined in claim 46, wherein said clay mineral is a smectite or vermiculite.
50. The process for manufacturing composite material as defined in claim 46, wherein said swelling agent is said organic swelling agent.
51. The process for manufacturing composite material as defined in claim 50, wherein said organic swelling agent is a compound having an onium ion in the molecule.
52. The process for manufacturing composite material as defined in claim 46, wherein said polyamide monomer is a lactam.
53. The process for manufacturing composite material as defined in claim 52, wherein said lactam is a compound represented by the following formula
Figure USRE037385-20010918-C00005
wherein n is an integer of 6 to 12, and R stands for hydrogen, and alkyl of 1 to 8 carbon atoms, or an aralkyl.
54. The process for manufacturing composite material as defined in claim 53, wherein said lactam is caprolactam, caprylolactam or dodecanolactam.
US09396871 1985-09-30 1999-09-15 Composite material and process for manufacturing same Expired - Lifetime USRE37385E1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP21739685A JPH0822946B2 (en) 1985-09-30 1985-09-30 Composite materials
JP60-217396 1985-09-30
JP9578086A JPS62252425A (en) 1986-04-24 1986-04-24 Production of polyamide
JP61-95780 1986-04-24
US06909472 US4739007A (en) 1985-09-30 1986-09-19 Composite material and process for manufacturing same
US09396871 USRE37385E1 (en) 1985-09-30 1999-09-15 Composite material and process for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09396871 USRE37385E1 (en) 1985-09-30 1999-09-15 Composite material and process for manufacturing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06909472 Reissue US4739007A (en) 1985-09-30 1986-09-19 Composite material and process for manufacturing same

Publications (1)

Publication Number Publication Date
USRE37385E1 true USRE37385E1 (en) 2001-09-18

Family

ID=26436963

Family Applications (2)

Application Number Title Priority Date Filing Date
US06909472 Expired - Lifetime US4739007A (en) 1985-09-30 1986-09-19 Composite material and process for manufacturing same
US09396871 Expired - Lifetime USRE37385E1 (en) 1985-09-30 1999-09-15 Composite material and process for manufacturing same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US06909472 Expired - Lifetime US4739007A (en) 1985-09-30 1986-09-19 Composite material and process for manufacturing same

Country Status (2)

Country Link
US (2) US4739007A (en)
DE (1) DE3632865C3 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537363B1 (en) 1999-04-01 2003-03-25 Imerys Pigments, Inc. Kaolin pigments, their preparation and use
US6554892B1 (en) 1999-07-02 2003-04-29 Imerys Kaolin, Inc. Compositions and methods for making a coarse platey, high brightness kaolin product
US20030085012A1 (en) * 2001-09-07 2003-05-08 Jones J Philip E Hyperplaty clays and their use in paper coating and filling, methods for making same, and paper products having improved brightness
US6564199B1 (en) 1999-04-01 2003-05-13 Imerys Pigments, Inc. Kaolin clay pigments, their preparation and use
US20030149156A1 (en) * 2001-05-30 2003-08-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for producing polymer/filler composite material
US20030153670A1 (en) * 2000-05-08 2003-08-14 Dirk Pophusen Reinforced polyamide with improved thermal ageing properties
US6616749B1 (en) 1998-04-04 2003-09-09 Imerys Pigments, Inc. Pigment products
US6808559B2 (en) 2002-02-26 2004-10-26 Imerys Pigments, Inc. Kaolin clay pigments suited to rotogravure printing applications and method for preparing the same
US20050020750A1 (en) * 2000-12-15 2005-01-27 Manfred Ratzsch Method for curing aminoplast resins
US20050256244A1 (en) * 2002-08-08 2005-11-17 Amcol International Corporation Intercalates, exfoliates and concentrates thereof formed with protonated, non-carboxylic swelling agent and nylon intercalants polymerized in-situ via ring-opening polymerization
US20060089444A1 (en) * 2002-03-28 2006-04-27 Howard Goodman Flame retardant polymer compositions comprising a particulate clay mineral
US7875151B2 (en) 2000-08-17 2011-01-25 Imerys Minerals Ltd. Kaolin products and their production

Families Citing this family (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229451A (en) * 1987-01-16 1993-07-20 Imperial Chemical Industries Plc Thermotropic polymer
DE3806548C2 (en) * 1987-03-04 1996-10-02 Toyoda Chuo Kenkyusho Kk Composite material and process for its preparation
US4894411A (en) * 1987-03-18 1990-01-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite material and process for producing the same
JPH0778089B2 (en) * 1987-03-26 1995-08-23 株式会社豊田中央研究所 The method of producing a composite material
US5164440A (en) * 1988-07-20 1992-11-17 Ube Industries, Ltd. High rigidity and impact resistance resin composition
EP0358415A1 (en) * 1988-09-06 1990-03-14 Ube Industries, Ltd. Material for molded article and film having liquid or gas barrier property, method for producing the same and use of the same
US5248720A (en) * 1988-09-06 1993-09-28 Ube Industries, Ltd. Process for preparing a polyamide composite material
US5091462A (en) * 1989-03-17 1992-02-25 Ube Industries Limited Thermoplastic resin composition
JPH0747644B2 (en) * 1989-05-19 1995-05-24 トヨタ自動車株式会社 Polyamide composite material and a method of manufacturing the same
JP2872756B2 (en) * 1990-05-30 1999-03-24 株式会社豊田中央研究所 Polyimide composite and a manufacturing method thereof
EP0472344A3 (en) * 1990-08-14 1992-09-30 Ube Industries, Ltd. Reinforced elastomer composition and polypropylene composition containing same
DE69222773T2 (en) * 1991-08-12 1998-02-12 Allied Signal Inc Formation of polymeric nanocomposites of foliar layer material by a fusion
JP3286681B2 (en) * 1991-10-01 2002-05-27 東ソー株式会社 Polyarylene sulfide composite material and a manufacturing method thereof
US5385776A (en) * 1992-11-16 1995-01-31 Alliedsignal Inc. Nanocomposites of gamma phase polymers containing inorganic particulate material
US5414042A (en) * 1992-12-29 1995-05-09 Unitika Ltd. Reinforced polyamide resin composition and process for producing the same
WO1995006090A1 (en) * 1993-08-23 1995-03-02 Alliedsignal Inc. Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates and organo zirconates dispersed therein and process of preparing same
US5955535A (en) 1993-11-29 1999-09-21 Cornell Research Foundation, Inc. Method for preparing silicate-polymer composite
US5554670A (en) * 1994-09-12 1996-09-10 Cornell Research Foundation, Inc. Method of preparing layered silicate-epoxy nanocomposites
US5530052A (en) * 1995-04-03 1996-06-25 General Electric Company Layered minerals and compositions comprising the same
EP1029823A3 (en) * 1995-06-05 2001-02-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite clay rubber material, composite clay material and processes for producing same
US5552469A (en) * 1995-06-07 1996-09-03 Amcol International Corporation Intercalates and exfoliates formed with oligomers and polymers and composite materials containing same
US5849830A (en) * 1995-06-07 1998-12-15 Amcol International Corporation Intercalates and exfoliates formed with N-alkenyl amides and/or acrylate-functional pyrrolidone and allylic monomers, oligomers and copolymers and composite materials containing same
US5844032A (en) * 1995-06-07 1998-12-01 Amcol International Corporation Intercalates and exfoliates formed with non-EVOH monomers, oligomers and polymers; and EVOH composite materials containing same
US5721306A (en) * 1995-06-07 1998-02-24 Amcol International Corporation Viscous carrier compositions, including gels, formed with an organic liquid carrier and a layered material:polymer complex
US5578672A (en) * 1995-06-07 1996-11-26 Amcol International Corporation Intercalates; exfoliates; process for manufacturing intercalates and exfoliates and composite materials containing same
US5698624A (en) * 1995-06-07 1997-12-16 Amcol International Corporation Exfoliated layered materials and nanocomposites comprising matrix polymers and said exfoliated layered materials formed with water-insoluble oligomers and polymers
US5837763A (en) * 1995-06-07 1998-11-17 Amcol International Corporation Compositions and methods for manufacturing waxes filled with intercalates and exfoliates formed with oligomers and polymers
US6228903B1 (en) 1995-06-07 2001-05-08 Amcol International Corporation Exfoliated layered materials and nanocomposites comprising said exfoliated layered materials having water-insoluble oligomers or polymers adhered thereto
US5760121A (en) * 1995-06-07 1998-06-02 Amcol International Corporation Intercalates and exfoliates formed with oligomers and polymers and composite materials containing same
US5854326A (en) * 1995-08-29 1998-12-29 Sumitomo Chemical Company, Limited Gas barrier resin composition and process for producing the same
EP0794231B1 (en) * 1995-09-26 2003-11-19 EC-Showa Denko K.K. Process for producing resin composition containing inorganic filler
CA2236835C (en) 1995-11-07 2008-01-08 Southern Clay Products, Inc. Organoclay compositions for gelling unsaturated polyester resin systems
US5880197A (en) * 1995-12-22 1999-03-09 Amcol International Corporation Intercalates and exfoliates formed with monomeric amines and amides: composite materials containing same and methods of modifying rheology therewith
US6287634B1 (en) 1995-12-22 2001-09-11 Amcol International Corporation Intercalates and exfoliates formed with monomeric ethers and esters; composite materials containing same methods of modifying rheology therewith
US5804613A (en) * 1995-12-22 1998-09-08 Amcol International Corporation Intercalates and exfoliates formed with monomeric carbonyl-functional organic compounds, including carboxylic and polycarboxylic acids; aldehydes; and ketones; composite materials containing same and methods of modifying rheology therewith
JPH09208823A (en) * 1996-01-29 1997-08-12 Du Pont Kk Powdery polyimide composite material and its production
US5780376A (en) * 1996-02-23 1998-07-14 Southern Clay Products, Inc. Organoclay compositions
JP2000505491A (en) * 1996-02-23 2000-05-09 ザ・ダウ・ケミカル・カンパニー Dispersions delamination particles is in the polymer foam
JPH09295810A (en) * 1996-02-27 1997-11-18 Du Pont Kk Composite material and its production and composite material-containing resin composition and its production
US5730996A (en) * 1996-05-23 1998-03-24 Amcol International Corporation Intercalates and expoliates formed with organic pesticide compounds and compositions containing the same
US5830528A (en) * 1996-05-29 1998-11-03 Amcol International Corporation Intercalates and exfoliates formed with hydroxyl-functional; polyhydroxyl-functional; and aromatic compounds; composites materials containing same and methods of modifying rheology therewith
US6124365A (en) 1996-12-06 2000-09-26 Amcol Internatioanl Corporation Intercalates and exfoliates formed with long chain (C6+) or aromatic matrix polymer-compatible monomeric, oligomeric or polymeric intercalant compounds and composite materials containing same
US5952095A (en) * 1996-12-06 1999-09-14 Amcol International Corporation Intercalates and exfoliates formed with long chain (C10 +) monomeric organic intercalant compounds; and composite materials containing same
US6251980B1 (en) 1996-12-06 2001-06-26 Amcol International Corporation Nanocomposites formed by onium ion-intercalated clay and rigid anhydride-cured epoxy resins
US6084019A (en) * 1996-12-31 2000-07-04 Eastman Chemical Corporation High I.V. polyester compositions containing platelet particles
US6071988A (en) * 1996-12-31 2000-06-06 Eastman Chemical Company Polyester composite material and method for its manufacturing
CN1212716A (en) * 1996-12-31 1999-03-31 陶氏化学公司 Polymer-organoclay-composites and their preparation
US5952093A (en) * 1997-02-20 1999-09-14 The Dow Chemical Company Polymer composite comprising a inorganic layered material and a polymer matrix and a method for its preparation
WO1998049235A1 (en) 1997-04-25 1998-11-05 Unitika Ltd. Polyamide resin composition and process for producing the same
CA2290338A1 (en) 1997-06-16 1998-12-23 Magna Interior Systems Inc. Decorative automotive interior trim articles with cast integral light stable covering containing an invisible tear seam and process for making the same
JPH1171517A (en) * 1997-06-20 1999-03-16 Unitika Ltd Polyamide resin composition and molded article made therefrom
CN1081207C (en) * 1997-07-17 2002-03-20 中国科学院化学研究所 Preparation process for nanometer composite polyamide-clay material
US6162857A (en) 1997-07-21 2000-12-19 Eastman Chemical Company Process for making polyester/platelet particle compositions displaying improved dispersion
WO1999013006A1 (en) * 1997-09-08 1999-03-18 Unitika Ltd Polyamide resin corporation
NL1007767C2 (en) * 1997-12-11 1999-06-14 Dsm Nv A process for the preparation of a polyamide nanocomposite composition.
CN1110512C (en) * 1997-12-19 2003-06-04 中国石化集团巴陵石油化工有限责任公司 Process for producing eurelon/silicate nanometer composite material
US6034163A (en) * 1997-12-22 2000-03-07 Eastman Chemical Company Polyester nanocomposites for high barrier applications
US6486252B1 (en) 1997-12-22 2002-11-26 Eastman Chemical Company Nanocomposites for high barrier applications
CN1306543A (en) * 1999-02-12 2001-08-01 索罗蒂亚公司 Methods for prepn. of polyamide nanocomposite compsns. by in situ and solid state polymerizations
JP2002502913A (en) * 1998-02-13 2002-01-29 ソリユテイア・インコーポレイテツド Method for producing a polymer nanocomposite composition
US6395386B2 (en) 1998-03-02 2002-05-28 Eastman Chemical Company Clear, high-barrier polymer-platelet composite multilayer structures
US6050509A (en) * 1998-03-18 2000-04-18 Amcol International Corporation Method of manufacturing polymer-grade clay for use in nanocomposites
US6235533B1 (en) 1998-03-18 2001-05-22 Amcol International Corporation Method of determining the composition of clay deposit
US6090734A (en) * 1998-03-18 2000-07-18 Amcol International Corporation Process for purifying clay by the hydrothermal conversion of silica impurities to a dioctahedral or trioctahedral smectite clay
JP3284552B2 (en) 1998-03-30 2002-05-20 株式会社豊田中央研究所 Polymer composite material and a method of manufacturing the same
US6287992B1 (en) 1998-04-20 2001-09-11 The Dow Chemical Company Polymer composite and a method for its preparation
CA2332874C (en) 1998-05-22 2006-01-24 Magna International Of America, Inc. Fascia for a motor vehicle having reduced wall thickness
JP2000186200A (en) * 1998-07-07 2000-07-04 Unitika Ltd Polyamide resin composition and its production
WO2000009310A9 (en) * 1998-08-11 2000-07-13 Magna Int Of America Inc Method of molding large thin parts from reinforced plastic material
DE19836580A1 (en) * 1998-08-12 2000-02-17 Sued Chemie Ag A compound material with a polymer matrix and a double layer hydroxide with anionic compounds between the layers useful for nano-composite-fillers in polymer matrixes avoids the use of expensive quaternary ammonium compounds
DE19854170A1 (en) 1998-11-24 2000-05-25 Basf Ag Thermoplastic nanocomposite, useful for the production of molded articles, contains a delaminated phyllosilicate and a rubber or rubber mixture having specified particle size value
US6552114B2 (en) 1998-12-07 2003-04-22 University Of South Carolina Research Foundation Process for preparing a high barrier amorphous polyamide-clay nanocomposite
US6384121B1 (en) * 1998-12-07 2002-05-07 Eastman Chemical Company Polymeter/clay nanocomposite comprising a functionalized polymer or oligomer and a process for preparing same
WO2000034375A1 (en) 1998-12-07 2000-06-15 Eastman Chemical Company A polymer/clay nanocomposite comprising a clay mixture and a process for making same
US6548587B1 (en) 1998-12-07 2003-04-15 University Of South Carolina Research Foundation Polyamide composition comprising a layered clay material modified with an alkoxylated onium compound
US6376591B1 (en) 1998-12-07 2002-04-23 Amcol International Corporation High barrier amorphous polyamide-clay intercalates, exfoliates, and nanocomposite and a process for preparing same
DE69910623D1 (en) * 1998-12-07 2003-09-25 Univ South Carolina Res Found Polymer / clay nanocomposite and process for its preparation
WO2001004197A8 (en) * 1999-07-12 2001-07-05 Eastman Chem Co A polyamide composition comprising a layered clay material modified with an alkoxylated onium compound
EP1144500B1 (en) * 1998-12-07 2004-06-30 University of South Carolina Research Foundation Process for preparing an exfoliated, high i.v. polymer nanocomposite with an oligomer resin precursor and an article produced therefrom
EP1147147A1 (en) 1998-12-07 2001-10-24 Eastman Chemical Company A colorant composition, a polymer nanocomposite comprising the colorant composition and articles produced therefrom
US6454974B1 (en) 1998-12-21 2002-09-24 Magna International Of America, Inc. Method for vacuum pressure forming reinforced plastic articles
WO2000037241A9 (en) * 1998-12-21 2000-12-07 Magna Int America Inc Method of making rotationally moulded parts having nano-particle reinforcement
WO2000037243A9 (en) * 1998-12-21 2001-10-04 Magna Int America Inc Low pressure compression molded parts having nano-particle reinforced protrusions and method of making the same
US6988305B1 (en) 1999-12-17 2006-01-24 Magna International Of America, Inc. Method and apparatus for blow molding large reinforced plastic parts
US6977115B1 (en) 1998-12-21 2005-12-20 Magna International Of America, Inc. Low pressure compression molded parts having nano-particle reinforced protrusions and method of making the same
CA2358534C (en) * 1998-12-21 2009-02-17 Magna International Of America, Inc. Structural foam composite having nano-particle reinforcement and method of making the same
US6410635B1 (en) 1999-02-22 2002-06-25 Ppg Industries Ohio, Inc. Curable coating compositions containing high aspect ratio clays
US6093298A (en) * 1999-02-22 2000-07-25 Ppg Industries Ohio, Inc. Electrocoating compositions containing high aspect ratio clays as crater control agents
US6107387A (en) * 1999-02-22 2000-08-22 Ppg Industries Ohio, Inc. Acidified aqueous dispersions of high aspect ratio clays
US6262162B1 (en) 1999-03-19 2001-07-17 Amcol International Corporation Layered compositions with multi-charged onium ions as exchange cations, and their application to prepare monomer, oligomer, and polymer intercalates and nanocomposites prepared with the layered compositions of the intercalates
US6350804B2 (en) 1999-04-14 2002-02-26 General Electric Co. Compositions with enhanced ductility
US6271298B1 (en) * 1999-04-28 2001-08-07 Southern Clay Products, Inc. Process for treating smectite clays to facilitate exfoliation
US7504451B1 (en) 1999-04-30 2009-03-17 Rockwood Clay Additives, Gmbh Fire retardant compositions
FR2793320B1 (en) * 1999-05-06 2002-07-05 Cit Alcatel Fiber optic cable IMPROVED PROPERTIES
DE19921472A1 (en) 1999-05-08 2000-11-16 Sued Chemie Ag Flame-retardant polymer composition
DE19930946C2 (en) * 1999-05-20 2003-02-27 Ind Tech Res Inst Preparing a thermoplastic nanocomposite
US6225394B1 (en) 1999-06-01 2001-05-01 Amcol International Corporation Intercalates formed by co-intercalation of onium ion spacing/coupling agents and monomer, oligomer or polymer ethylene vinyl alcohol (EVOH) intercalants and nanocomposites prepared with the intercalates
FR2796086B1 (en) 1999-07-06 2002-03-15 Rhodianyl Products lines abrasion resistant
WO2001010941A1 (en) * 1999-08-09 2001-02-15 Sekisui Chemical Co., Ltd. Thermoplastic resin foam and process for producing the same
US6310015B1 (en) 1999-08-10 2001-10-30 The Dial Corporation Transparent/translucent moisturizing/cosmetic/personal cleansing bar
US6610772B1 (en) 1999-08-10 2003-08-26 Eastman Chemical Company Platelet particle polymer composite with oxygen scavenging organic cations
US6777479B1 (en) 1999-08-10 2004-08-17 Eastman Chemical Company Polyamide nanocomposites with oxygen scavenging capability
KR20020029380A (en) * 1999-08-13 2002-04-18 마크 에프. 웍터 Methods for the preparation of polyamide nanocomposite compositions by in situ polymerization
US6423768B1 (en) 1999-09-07 2002-07-23 General Electric Company Polymer-organoclay composite compositions, method for making and articles therefrom
US6610770B1 (en) * 1999-10-04 2003-08-26 Elementis Specialties, Inc. Organoclay/polymer compositions with flame retardant properties
US6787592B1 (en) 1999-10-21 2004-09-07 Southern Clay Products, Inc. Organoclay compositions prepared from ester quats and composites based on the compositions
US6833392B1 (en) 1999-11-10 2004-12-21 Lawrence A. Acquarulo, Jr. Optimizing nano-filler performance in polymers
US7279521B2 (en) 1999-11-10 2007-10-09 Foster Corporation Nylon nanocomposites
US6486253B1 (en) 1999-12-01 2002-11-26 University Of South Carolina Research Foundation Polymer/clay nanocomposite having improved gas barrier comprising a clay material with a mixture of two or more organic cations and a process for preparing same
US6552113B2 (en) 1999-12-01 2003-04-22 University Of South Carolina Research Foundation Polymer-clay nanocomposite comprising an amorphous oligomer
US6407155B1 (en) 2000-03-01 2002-06-18 Amcol International Corporation Intercalates formed via coupling agent-reaction and onium ion-intercalation pre-treatment of layered material for polymer intercalation
US6632868B2 (en) 2000-03-01 2003-10-14 Amcol International Corporation Intercalates formed with polypropylene/maleic anhydride-modified polypropylene intercalants
US6462122B1 (en) 2000-03-01 2002-10-08 Amcol International Corporation Intercalates formed with polypropylene/maleic anhydride-modified polypropylene intercalants
DE60100609D1 (en) * 2000-05-19 2003-09-25 Mitsubishi Gas Chemical Co Molded article of polyamide resin and its preparation
CA2410429A1 (en) * 2000-05-30 2001-12-06 University Of South Carolina Research Foundation A polymer nanocomposite comprising a matrix polymer and a layered clay material having an improved level of extractable material
US6737464B1 (en) 2000-05-30 2004-05-18 University Of South Carolina Research Foundation Polymer nanocomposite comprising a matrix polymer and a layered clay material having a low quartz content
DE10110964C2 (en) * 2000-06-09 2002-10-31 Ems Chemie Ag Thermoplastic multilayer composites
FR2810987B1 (en) 2000-07-03 2002-08-16 Rhodianyl polymer compositions to IMPROVED MECHANICAL PROPERTIES
CN1331892C (en) * 2000-09-21 2007-08-15 罗姆和哈斯公司 Hydrophobically modified clay polymer nanocomposites
US6765049B2 (en) * 2000-09-21 2004-07-20 Rohm And Haas Company High acid aqueous nanocomposite dispersions
WO2002024759A3 (en) 2000-09-21 2002-07-04 Rohm & Haas Improved nanocomposite compositions and methods for making and using same
CN1107092C (en) * 2000-10-20 2003-04-30 中国科学院化学研究所 Polyamide 66 composite material and prepn. method therefor
US6475696B2 (en) 2000-12-28 2002-11-05 Eastman Kodak Company Imaging elements with nanocomposite containing supports
JP4638062B2 (en) * 2001-01-19 2011-02-23 株式会社豊田中央研究所 Phenolic resin composite material
US6846532B1 (en) 2001-02-15 2005-01-25 Sonoco Development, Inc. Laminate packaging material
CA2439632A1 (en) 2001-03-02 2002-09-12 Southern Clay Products, Inc. Preparation of polymer nanocomposites by dispersion destabilization
US6689728B2 (en) 2001-04-06 2004-02-10 The Dial Company Composite transparent bar soap containing visible soap insert(s)
US7169467B2 (en) * 2001-06-21 2007-01-30 Magna International Of America, Inc. Structural foam composite having nano-particle reinforcement and method of making the same
US6858665B2 (en) 2001-07-02 2005-02-22 The Goodyear Tire & Rubber Company Preparation of elastomer with exfoliated clay and article with composition thereof
US6734229B2 (en) 2001-07-24 2004-05-11 James G. Parsons Composite polymer clay material and process for producing the same
US6887931B2 (en) * 2001-10-23 2005-05-03 Ashland Inc. Thermosetting inorganic clay nanodispersions and their use
US7166656B2 (en) * 2001-11-13 2007-01-23 Eastman Kodak Company Smectite clay intercalated with polyether block polyamide copolymer
US6767951B2 (en) * 2001-11-13 2004-07-27 Eastman Kodak Company Polyester nanocomposites
US6767952B2 (en) * 2001-11-13 2004-07-27 Eastman Kodak Company Article utilizing block copolymer intercalated clay
US6841226B2 (en) 2001-11-13 2005-01-11 Eastman Kodak Company Ethoxylated alcohol intercalated smectite materials and method
US6759464B2 (en) 2001-12-21 2004-07-06 The Goodyear Tire & Rubber Company Process for preparing nanocomposite, composition and article thereof
US6861462B2 (en) * 2001-12-21 2005-03-01 The Goodyear Tire & Rubber Company Nanocomposite formed in situ within an elastomer and article having component comprised thereof
KR100508907B1 (en) * 2001-12-27 2005-08-17 주식회사 엘지화학 Nanocomposite blend composition having super barrier property
US7368496B2 (en) 2001-12-27 2008-05-06 Lg Chem, Ltd. Nanocomposite composition having super barrier property and article using the same
US7037562B2 (en) 2002-01-14 2006-05-02 Vascon Llc Angioplasty super balloon fabrication with composite materials
US7442333B2 (en) * 2003-01-30 2008-10-28 Ems-Chemie Ag Method for the production of polyamide nanocomposites, corresponding packaging materials and moulded bodies
JP4195391B2 (en) * 2002-02-04 2008-12-10 エルジー・ケム・リミテッド Organic - inorganic nanocomposite and a manufacturing method thereof
US7166657B2 (en) * 2002-03-15 2007-01-23 Eastman Kodak Company Article utilizing highly branched polymers to splay layered materials
DE10219817A1 (en) * 2002-05-03 2003-11-20 Rehau Ag & Co Reinforced silicate composition
US20030221707A1 (en) * 2002-05-28 2003-12-04 Eastman Kodak Company Layered inorganic particles as extruder purge materials
US7244498B2 (en) * 2002-06-12 2007-07-17 Tda Research, Inc. Nanoparticles modified with multiple organic acids
US6864308B2 (en) * 2002-06-13 2005-03-08 Basell Poliolefine Italia S.P.A. Method for making polyolefin nanocomposites
US6906127B2 (en) * 2002-08-08 2005-06-14 Amcol International Corporation Intercalates, exfoliates and concentrates thereof formed with low molecular weight; nylon intercalants polymerized in-situ via ring-opening polymerization
US6832037B2 (en) * 2002-08-09 2004-12-14 Eastman Kodak Company Waveguide and method of making same
US8501858B2 (en) * 2002-09-12 2013-08-06 Board Of Trustees Of Michigan State University Expanded graphite and products produced therefrom
US7273899B2 (en) * 2002-09-25 2007-09-25 Eastman Kodak Company Materials and method for making splayed layered materials
US6641973B1 (en) 2002-10-07 2003-11-04 Eastman Kodak Company Photographic day/night displays utilizing inorganic particles
US6728456B1 (en) * 2002-10-11 2004-04-27 Eastman Kodak Company Waveguide with nanoparticle induced refractive index gradient
KR101036220B1 (en) 2002-10-31 2011-05-20 더 보잉 컴파니 Fire resistant material
US20040101559A1 (en) * 2002-11-25 2004-05-27 David Wong Novel pharmaceutical formulations
US7250477B2 (en) * 2002-12-20 2007-07-31 General Electric Company Thermoset composite composition, method, and article
JP2006515896A (en) * 2003-01-08 2006-06-08 ジュート−ヒェミー アクチェンゲゼルシャフト Compositions and uses thereof based on pre-exfoliated nanoclay
KR100512355B1 (en) * 2003-02-19 2005-09-02 주식회사 엘지화학 Polvinyl Chloride Foam
US7081888B2 (en) * 2003-04-24 2006-07-25 Eastman Kodak Company Flexible resistive touch screen
WO2004111122A1 (en) 2003-06-12 2004-12-23 Süd-Chemie AG Method for producing nanocomposite additives with improved delamination in polymers
US20050119371A1 (en) * 2003-10-15 2005-06-02 Board Of Trustees Of Michigan State University Bio-based epoxy, their nanocomposites and methods for making those
CN1925879B (en) 2003-10-30 2011-07-13 麦克内尔-Ppc股份有限公司 Composite materials, making method, cosmetics comprising metal-loaded nanoparticles and drug combination
US7148282B2 (en) 2003-12-19 2006-12-12 Cornell Research Foundations, Inc. Composite of high melting polymer and nanoclay with enhanced properties
US20050159526A1 (en) * 2004-01-15 2005-07-21 Bernard Linda G. Polymamide nanocomposites with oxygen scavenging capability
US7425232B2 (en) * 2004-04-05 2008-09-16 Naturalnano Research, Inc. Hydrogen storage apparatus comprised of halloysite
WO2005099406A3 (en) * 2004-04-07 2005-12-15 David Abecassis Polymer nanocomposites for air movement devices
US7253221B2 (en) * 2004-04-30 2007-08-07 Board Of Trustees Of Michigan State University Compositions of cellulose esters and layered silicates and process for the preparation thereof
DE102004039451A1 (en) * 2004-08-13 2006-03-02 Putsch Kunststoffe Gmbh Polymer blend of incompatible polymers
CN101014666A (en) * 2004-08-30 2007-08-08 普立万公司 Reinforced thermoplastic compositions with enhanced processability
US7855251B2 (en) * 2004-09-23 2010-12-21 Polyone Corporation Impact-modified polyamide compounds
US20060076354A1 (en) * 2004-10-07 2006-04-13 Lanzafame John F Hydrogen storage apparatus
JPWO2006046571A1 (en) * 2004-10-27 2008-05-22 ユニチカ株式会社 A sole made of a polyamide resin composition, shoes using the same
US7067756B2 (en) * 2004-11-12 2006-06-27 Eastman Kodak Company Flexible sheet for resistive touch screen
CN1326931C (en) * 2004-12-12 2007-07-18 青岛大学 Preparation method of polyolefin/layered silicate nano-composition
US7400490B2 (en) * 2005-01-25 2008-07-15 Naturalnano Research, Inc. Ultracapacitors comprised of mineral microtubules
US20060163160A1 (en) * 2005-01-25 2006-07-27 Weiner Michael L Halloysite microtubule processes, structures, and compositions
US7632879B2 (en) * 2005-03-31 2009-12-15 Eastman Kodak Company Azinium salts as splayant for layered materials
US7365104B2 (en) * 2005-03-31 2008-04-29 Eastman Kodak Company Light curable articles containing azinium salts
US20060293430A1 (en) * 2005-06-20 2006-12-28 Eastman Kodak Company Exfoliated clay nanocomposites
US7642308B2 (en) * 2005-12-09 2010-01-05 Polyone Corporation Nanonylon composites prepared by chain extension reactive extrusion
US7625985B1 (en) 2005-12-22 2009-12-01 The Goodyear Tire & Rubber Company Water-based process for the preparation of polymer-clay nanocomposites
US20070191606A1 (en) * 2006-02-13 2007-08-16 Council Of Scientific And Industrial Research 2,2-Bis(4-hydroxyphenyl)-alkyl onium salt and process for the preparation thereof
DE602007002648D1 (en) * 2006-02-13 2009-11-19 Council Scient Ind Res Polymers exfoliated Phyllosilicatnanokompositzusammensetzungen and manufacturing method thereof
US7696272B2 (en) * 2006-07-07 2010-04-13 Applied Nanotech Holdings, Inc. Rubber toughing of thermalplastic clay nanocomposites
JP5197613B2 (en) * 2006-10-11 2013-05-15 ウニベルシダ・デ・チリ Hybrid clay to obtain a nanocomposite, and a process for producing these clays, and polyolefin / clay nanocomposite
US8713906B2 (en) 2006-11-16 2014-05-06 Applied Nanotech Holdings, Inc. Composite coating for strings
US20080124546A1 (en) 2006-11-16 2008-05-29 Nano-Proprietary, Inc. Buffer Layer for Strings
KR20090108067A (en) * 2007-01-05 2009-10-14 보드 오브 트러스티즈 오브 미시건 스테이트 유니버시티 Composites comprising polymer and mesoporous silicate
WO2008101071A1 (en) * 2007-02-16 2008-08-21 Polyone Corporation Method to establish viscosity as a function of shear rate for in-situ polymerized nanonylon via chain extension
US20080206559A1 (en) * 2007-02-26 2008-08-28 Yunjun Li Lubricant enhanced nanocomposites
ES2320617B1 (en) 2007-11-23 2010-02-26 Nanobiomatters S.L. New nanocomposites blocking properties of infrared electromagnetic radiation, ultraviolet and visible and process for their preparation.
CN101450993B (en) 2007-12-05 2010-09-15 中国石油化工股份有限公司;中国石化集团巴陵石油化工有限责任公司 Method for preparing halogen free flame-retarded nylon 6
US8440297B2 (en) * 2008-11-25 2013-05-14 Dow Global Technologies Llc Polymer organoclay composites
US8268042B2 (en) * 2008-11-25 2012-09-18 Dow Global Technologies Llc Polymer inorganic clay composites
EP2305447B1 (en) 2009-10-05 2014-11-12 Basf Se Method for producing components composed of thermoplastic moulding material and components composed of thermoplastic moulding material
US8475584B1 (en) 2009-10-12 2013-07-02 Raymond Lee Nip Zinc clays, zinc organoclays, methods for making the same, and compositions containing the same
US20110236540A1 (en) * 2010-03-24 2011-09-29 Cryovac, Inc. Ovenable cook-in film with reduced protein adhesion
CN102286199B (en) * 2010-06-21 2013-05-01 国家复合改性聚合物材料工程技术研究中心 Formula of composite low-melting-point nylon 6 and preparation method
EP2407425A1 (en) * 2010-07-12 2012-01-18 Bayer Technology Services GmbH Method for producing extremely pure, organically modified layer silicates
DE102010061924A1 (en) 2010-11-25 2012-05-31 Leibniz-Institut Für Polymerforschung Dresden E.V. Polymer nanocomposite layer-minerals, and methods for their preparation
ES2395507B1 (en) 2011-06-03 2013-12-19 Nanobiomatters Research & Development, S.L. Nanocomposite materials based on metal oxides with multifunctional properties
ES2415242B1 (en) 2011-12-21 2014-09-29 Nanobiomatters Research & Development, S.L. nanocomposites based assets generating sales of SO2 and edta and the process for their preparation
EP2805990A4 (en) 2012-01-17 2015-09-16 Nat Inst Of Advanced Ind Scien Carbon fiber-reinforced plastic material with nanofiller mixed therein, and production method therefor
WO2014021800A3 (en) 2012-07-30 2014-08-21 Rich Group Kimyevi Maddeler Insaat Sanayi Ve Ticaret Limited Sirketi Green technology line for production of clay micro- and nanoparticles and their functional polymer nanohybrids for nanoengineering and nanomedicine applications
DE102012015958A1 (en) 2012-08-11 2014-02-13 Plasma Technology Gmbh Apparatus for producing mixture of plastic polymers with inorganic filler, for thermoplastic processing in plastic industry, by a plasma pretreatment of fillers, where formed reactive groups are introduced into plastic polymer during mixing
DE102012023428A1 (en) 2012-11-29 2014-06-05 Plasma Technology Gmbh Device for drying three-dimensional coated components with UV rays of gas discharge lamps in automobile field, has alternating current generator for generating low-pressure plasma such that post-treatment is processed in plasma
CN103122064A (en) * 2012-12-21 2013-05-29 中仑塑业(福建)有限公司 Fire-retarding nylon nanometer composite material and preparation method thereof
CN103172852B (en) * 2013-01-17 2016-07-27 株洲时代新材料科技股份有限公司 An organic montmorillonite / casting method for preparing nylon nanocomposites
KR101488299B1 (en) * 2013-02-05 2015-01-30 현대자동차주식회사 Flame retardant polyamide resin compositions
CN103232716A (en) * 2013-05-14 2013-08-07 甘肃省交通规划勘察设计院有限责任公司 Preparation method of petroleum asphalt anti-stripping agent suitable for acid stone
EP2997082A1 (en) 2013-05-17 2016-03-23 Basf Se Method for producing polyamide composite material containing silicon
CN104710781A (en) * 2013-12-17 2015-06-17 上海杰事杰新材料(集团)股份有限公司 Co-intercalating agent modified montmorillonite/nylon 610 T composite material and preparation method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372137A (en) * 1964-06-03 1968-03-05 Monsanto Co Process for preparing mineral reinforced polylactam compositions
JPS48103653A (en) 1972-04-12 1973-12-26
US3883469A (en) * 1971-12-24 1975-05-13 Bayer Ag Process for the production of polyamide mouldings
JPS5538865A (en) 1978-09-13 1980-03-18 Unitika Ltd Improved polyamide resin composition
JPS5835542A (en) 1981-08-27 1983-03-02 Ricoh Co Ltd Electrophotographic receptor
JPS58109998A (en) * 1981-12-23 1983-06-30 Tamura Electric Works Ltd Emergency communicator
US4555439A (en) 1983-01-21 1985-11-26 Kuraray Company, Ltd. Tough thermoplastic resin sheet-like material
US4623586A (en) 1982-10-15 1986-11-18 Central Glass Company, Limited Vibration damping material of polymer base containing flake filler
US4810734A (en) 1987-03-26 1989-03-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for producing composite material
JPH01204305A (en) 1988-02-08 1989-08-16 Alps Electric Co Ltd Dielectric ceramic composition
US4894411A (en) 1987-03-18 1990-01-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite material and process for producing the same
US5164460A (en) 1990-05-30 1992-11-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Polyimide composite material and process for producing the same
US5936023A (en) 1996-09-04 1999-08-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of manufacturing composite material of clay mineral and rubber
JP5538865B2 (en) 2009-12-21 2014-07-02 キヤノン株式会社 Imaging apparatus and control method thereof
JP5835542B2 (en) 2008-01-22 2015-12-24 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Volatile anesthetic compositions and the use thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372137A (en) * 1964-06-03 1968-03-05 Monsanto Co Process for preparing mineral reinforced polylactam compositions
US3883469A (en) * 1971-12-24 1975-05-13 Bayer Ag Process for the production of polyamide mouldings
JPS48103653A (en) 1972-04-12 1973-12-26
JPS5538865A (en) 1978-09-13 1980-03-18 Unitika Ltd Improved polyamide resin composition
JPS5835542A (en) 1981-08-27 1983-03-02 Ricoh Co Ltd Electrophotographic receptor
JPS58109998A (en) * 1981-12-23 1983-06-30 Tamura Electric Works Ltd Emergency communicator
US4623586A (en) 1982-10-15 1986-11-18 Central Glass Company, Limited Vibration damping material of polymer base containing flake filler
US4555439A (en) 1983-01-21 1985-11-26 Kuraray Company, Ltd. Tough thermoplastic resin sheet-like material
US4894411A (en) 1987-03-18 1990-01-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite material and process for producing the same
US4810734A (en) 1987-03-26 1989-03-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for producing composite material
JPH01204305A (en) 1988-02-08 1989-08-16 Alps Electric Co Ltd Dielectric ceramic composition
US5164460A (en) 1990-05-30 1992-11-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Polyimide composite material and process for producing the same
US5936023A (en) 1996-09-04 1999-08-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of manufacturing composite material of clay mineral and rubber
JP5835542B2 (en) 2008-01-22 2015-12-24 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Volatile anesthetic compositions and the use thereof
JP5538865B2 (en) 2009-12-21 2014-07-02 キヤノン株式会社 Imaging apparatus and control method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814796B2 (en) 1998-04-04 2004-11-09 Imerys Pigments, Inc. Pigment products
US6616749B1 (en) 1998-04-04 2003-09-09 Imerys Pigments, Inc. Pigment products
US6610137B2 (en) 1999-04-01 2003-08-26 Imerys Pigments, Inc. Kaolin pigments, their preparation and use
US6564199B1 (en) 1999-04-01 2003-05-13 Imerys Pigments, Inc. Kaolin clay pigments, their preparation and use
US6537363B1 (en) 1999-04-01 2003-03-25 Imerys Pigments, Inc. Kaolin pigments, their preparation and use
US6554892B1 (en) 1999-07-02 2003-04-29 Imerys Kaolin, Inc. Compositions and methods for making a coarse platey, high brightness kaolin product
US20030153670A1 (en) * 2000-05-08 2003-08-14 Dirk Pophusen Reinforced polyamide with improved thermal ageing properties
US7875151B2 (en) 2000-08-17 2011-01-25 Imerys Minerals Ltd. Kaolin products and their production
US7208540B2 (en) * 2000-12-15 2007-04-24 Agrolinz Melamin Gmbh Process for curing aminoplast resins
US20050020750A1 (en) * 2000-12-15 2005-01-27 Manfred Ratzsch Method for curing aminoplast resins
US6821464B2 (en) 2001-05-30 2004-11-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for producing polymer/filler composite material
US20030149156A1 (en) * 2001-05-30 2003-08-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for producing polymer/filler composite material
US20060009566A1 (en) * 2001-09-07 2006-01-12 Imerys Pigments, Inc. Hyperplaty clays and their use in paper coating and filling, methods for making same, and paper products having improved brightness
US20030085012A1 (en) * 2001-09-07 2003-05-08 Jones J Philip E Hyperplaty clays and their use in paper coating and filling, methods for making same, and paper products having improved brightness
US6808559B2 (en) 2002-02-26 2004-10-26 Imerys Pigments, Inc. Kaolin clay pigments suited to rotogravure printing applications and method for preparing the same
US20060089444A1 (en) * 2002-03-28 2006-04-27 Howard Goodman Flame retardant polymer compositions comprising a particulate clay mineral
US20050256244A1 (en) * 2002-08-08 2005-11-17 Amcol International Corporation Intercalates, exfoliates and concentrates thereof formed with protonated, non-carboxylic swelling agent and nylon intercalants polymerized in-situ via ring-opening polymerization
US7446143B2 (en) 2002-08-08 2008-11-04 Amcol International Corp. Intercalates, exfoliates and concentrates thereof formed with protonated, non-carboxylic swelling agent and nylon intercalants polymerized in-situ via ring-opening polymerization

Also Published As

Publication number Publication date Type
DE3632865A1 (en) 1987-04-02 application
US4739007A (en) 1988-04-19 grant
DE3632865C2 (en) 1996-12-19 grant
DE3632865C3 (en) 2001-02-15 grant

Similar Documents

Publication Publication Date Title
Hoffmann et al. Rheology of nanocomposites based on layered silicates and polyamide-12
Li et al. The influence of silane treatment on nylon 6/nano‐SiO2 in situ polymerization
Akelah et al. SYNTHESIS AND CHARACTERIZATION OF
Ganter et al. Rubber nanocomposites: morphology and mechanical properties of BR and SBR vulcanizates reinforced by organophilic layered silicates
US3419517A (en) Reinforced polyamides and process of preparation thereof
US5322923A (en) Semi-crystalline, semi-aromatic copolyamides
US20040049006A1 (en) Polyamide
US4399246A (en) Filled polyamide compositions with silanes and sulfonamides
US4994503A (en) Particulate polymer and polymer compositions therewith
US4810734A (en) Process for producing composite material
US4525495A (en) Mineral filled composites
US20040030020A1 (en) Intercalates, exfoliates and concentrates thereof formed with low molecular weight; nylon intercalants polymerized in-situ via ring-opening polymerization
US6525166B1 (en) Polyamides with high fluidity, method for making same, compositions said polyamide
US6683122B1 (en) Filler mixtures
EP0358415A1 (en) Material for molded article and film having liquid or gas barrier property, method for producing the same and use of the same
EP0039524A1 (en) Preparation of polytetramethylene adipamide
US3833534A (en) Reinforced polyamide compositions and process of preparation thereof
US6172178B1 (en) Car parts made from a polyamide composition
EP2028231A1 (en) High temperature polyamide moulding composition reinforced with flat glass fibres
Usuki et al. Interaction of nylon 6‐clay surface and mechanical properties of nylon 6‐clay hybrid
Usuki et al. Synthesis of nylon 6-clay hybrid
US6103805A (en) Polyamide resin composition and molded articles
US6077899A (en) Process for production of rubber composition
US6458879B1 (en) Thermoplastic materials containing nanocomposites and an additional elastomer
Zhou et al. Role of reactive compatibilization in preparation of nanosilica/polypropylene composites