JPH09208823A - Powdery polyimide composite material and its production - Google Patents

Powdery polyimide composite material and its production

Info

Publication number
JPH09208823A
JPH09208823A JP1292396A JP1292396A JPH09208823A JP H09208823 A JPH09208823 A JP H09208823A JP 1292396 A JP1292396 A JP 1292396A JP 1292396 A JP1292396 A JP 1292396A JP H09208823 A JPH09208823 A JP H09208823A
Authority
JP
Japan
Prior art keywords
polyimide
clay mineral
composite material
material powder
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1292396A
Other languages
Japanese (ja)
Inventor
Mitsuru Nakano
充 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont KK
Toyota Motor Corp
Toyota Central R&D Labs Inc
EIDP Inc
Original Assignee
Du Pont KK
Toyota Motor Corp
Toyota Central R&D Labs Inc
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont KK, Toyota Motor Corp, Toyota Central R&D Labs Inc, EI Du Pont de Nemours and Co filed Critical Du Pont KK
Priority to JP1292396A priority Critical patent/JPH09208823A/en
Priority to PCT/US1997/001270 priority patent/WO1997027155A1/en
Publication of JPH09208823A publication Critical patent/JPH09208823A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Abstract

PROBLEM TO BE SOLVED: To provide a powdery polyimide composite material which contains a clay mineral homogeneously dispersed therein and gives a molding excellent in dimensional stability and to provide a process for producing the same.
SOLUTION: This powdery material comprises a polyimide and a minute org.-modified clay mineral dispersed therein and is prepd. by a process comprising a mixing step wherein a polyimide intermediate polymer and the clay mineral are dissolved and dispersed in an aprotic polar solvent to give a slurried mixture and a powdering step wherein the slurried mixture is spray dried to form a finely powdered polyimide-clay hybrid comprising a polyimide resin and the mineral dispersed therein. Since the mineral disperses homogeneously in the polyimide, a molding with a low coefficient of thermal expansion can be easily obtd. from the composite powder.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリイミド複合材料粉
末およびその製造方法、詳しくはポリイミド樹脂中に有
機化粘土鉱物を分散させた粉末で、寸法安定性に優れた
ポリイミド複合材料成形品を得る原料粉末およびその製
造方法に係るものである。
FIELD OF THE INVENTION The present invention relates to a polyimide composite material powder and a method for producing the same, more specifically, a powder obtained by dispersing organic clay mineral in a polyimide resin to obtain a polyimide composite material molded article excellent in dimensional stability. The present invention relates to a raw material powder and a manufacturing method thereof.

【0002】[0002]

【従来の技術】ポリイミドは熱的性質、機械的性質、電
気絶縁性、耐薬品性などに優れているため、フィルム、
フレキシブルプリント基板、電動機の絶縁体、電線被覆
材などの用途に適するが、実用にあたっては、気体の透
過性が大きいこと、熱膨張係数の大きい点などの問題が
ある。
2. Description of the Related Art Polyimide has excellent thermal properties, mechanical properties, electrical insulation properties, chemical resistance, etc.
It is suitable for applications such as flexible printed boards, electric motor insulators, and wire coatings, but in practical use, it has problems such as high gas permeability and high thermal expansion coefficient.

【0003】ポリイミド成形物に関しては、特開平1−
292035号公報に、ポリイミドの中間重合体である
ポリアミド酸を塩基性溶媒(ピリジンまたはβ−ピコリ
ン)中で合成し、続いてポリアミド酸の貧溶媒(アセト
ン)と接触・沈殿させることで、微細且つ非晶質のポリ
アミド酸粉末を形成し、次いで得られた粉末を熱閉環反
応によりポリイミド粉末状態にし、これを圧縮/焼結成
形して樹脂成形物とする方法の開示がある。また、ポリ
イミド粉末中に充填剤としてグラファイトのような炭素
質を用いると耐摩耗性が向上する旨の開示があるが、他
の無機充填剤を添加して樹脂特性の向上を図る記載はな
い。
Regarding the polyimide molded article, JP-A-1-
292035 discloses that a polyamic acid, which is an intermediate polymer of polyimide, is synthesized in a basic solvent (pyridine or β-picoline), and then contacted and precipitated with a poor solvent for polyamic acid (acetone) to form fine and fine particles. There is a disclosure of a method of forming an amorphous polyamic acid powder, and then subjecting the obtained powder to a polyimide powder state by a thermal cyclization reaction, and compressing / sintering this to obtain a resin molded product. Further, there is a disclosure that when a carbonaceous material such as graphite is used as a filler in the polyimide powder, the abrasion resistance is improved, but there is no description to improve the resin characteristics by adding another inorganic filler.

【0004】一方、ポリイミド複合材料としては、特開
平4−33955号公報にポリイミドの中間重合体であ
るポリアミド酸と、有機オニウムイオンで有機化した粘
土を、非プロトン性極性溶媒(たとえば、N,N−ジメ
チルアセトアミド、N−メチルピロリドン)中で均一に
混合し、混合液をキャストしてポリアミド酸フィルムを
得、得られたポリアミド酸フィルムを熱閉環反応をおこ
なって有機化した粘土鉱物が均一に分散したポリイミド
フィルムを得る開示がある。
On the other hand, as a polyimide composite material, polyamic acid, which is an intermediate polymer of polyimide, and clay organically modified with an organic onium ion are disclosed in JP-A-4-33955, and an aprotic polar solvent (for example, N, (N-dimethylacetamide, N-methylpyrrolidone) are uniformly mixed, the mixed solution is cast to obtain a polyamic acid film, and the polyamic acid film obtained is subjected to a thermal cyclization reaction to homogenize clay minerals that have been organized. There is a disclosure to obtain a dispersed polyimide film.

【0005】[0005]

【発明が解決しようとする課題】上記特開平1−292
035号公報のポリイミド成形体の製造方法に基づい
て、有機化粘土を塩基性溶媒のポリアミド酸溶液に混合
すると有機化粘土の凝集が起こりポリイミドマトリック
ス中に有機化粘土が均一に分散せず、寸法安定性の高い
所望のポリイミド複合材料を得ることができなかった。
これは有機化粘土が非プロトン性極性溶媒中には均一に
分散するが塩基性溶媒中では均一に分散しないからであ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the method for producing a polyimide molded article of Japanese Patent No. 035, when the organized clay is mixed with a polyamic acid solution of a basic solvent, the organized clay aggregates and the organized clay is not uniformly dispersed in the polyimide matrix. It was not possible to obtain the desired highly stable polyimide composite material.
This is because the organized clay is uniformly dispersed in the aprotic polar solvent but not uniformly dispersed in the basic solvent.

【0006】また、有機化粘土が均一に分散する非プロ
トン性極性溶媒で、ポリアミド酸と有機化粘土の混合液
を作製し、この混合液から粉末を析出させる沈殿析出法
では、非プロトン性極性溶媒が塩基性溶媒に比べてポリ
アミド酸の溶解度が高く、ポリイミドの成形に適した微
粉末を得ることができなかった。本発明は、上記の事情
に鑑みてなされたもので、ポリイミド成形体中に有機化
粘土鉱物が均一に分散し寸法安定性に優れた複合材料粉
末およびその製造方法を提供することを目的とする。
Further, in the precipitation method in which a mixed solution of polyamic acid and organized clay is prepared in an aprotic polar solvent in which the organized clay is uniformly dispersed, and powder is deposited from this mixed solution, an aprotic polar solvent is used. Since the solvent had a higher solubility of polyamic acid than the basic solvent, it was not possible to obtain fine powder suitable for molding polyimide. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composite material powder in which an organically modified clay mineral is uniformly dispersed in a polyimide molded body and is excellent in dimensional stability, and a method for producing the same. .

【0007】[0007]

【課題を解決するための手段】本発明者は、非プロトン
性極性溶媒中では、有機化粘土が均一に分散することお
よびポリアミド酸が溶解することに注目した。そしてこ
の有機化粘土を分散しポリアミド酸を溶解した非プロト
ン性極性溶媒のスラリーをそのまま噴霧・乾燥すると、
有機化粘土とポリアミド酸が均一に分散した微粉末が形
成できることを見いだし本発明を完成した。
DISCLOSURE OF THE INVENTION The present inventors have noticed that the organized clay is uniformly dispersed and the polyamic acid is dissolved in the aprotic polar solvent. Then, by spraying and drying the slurry of the aprotic polar solvent in which the organized clay is dispersed and the polyamic acid is dissolved,
The inventors have found that a fine powder in which the organized clay and the polyamic acid are uniformly dispersed can be formed and completed the present invention.

【0008】本発明のポリイミド複合材料粉末は、微小
粘土鉱物を有機化した有機化微小粘土鉱物と該有機化微
小粘土鉱物を覆うポリイミドとで構成されていることを
特徴とする。また、本発明のポリイミド複合材料粉末の
製造方法は、ポリイミドの中間重合体と微小粘土鉱物を
有機化した有機化微小粘土鉱物とを非プロトン性極性溶
媒中に溶解分散させてスラリー状混合液とする混合工程
と、該スラリー状混合液を噴霧乾燥して該有機化微小粘
土鉱物がポリイミド樹脂に分散した微細粉末状のポリイ
ミド−粘土鉱物複合材料を形成する粉末化工程とからな
ることを特徴とする。
The polyimide composite material powder of the present invention is characterized by being composed of an organized micro clay mineral obtained by organizing a micro clay mineral and a polyimide covering the organic micro clay mineral. Further, the method for producing a polyimide composite material powder of the present invention is a slurry-like liquid mixture obtained by dissolving and dispersing an intermediate polymer of polyimide and an organized micro clay mineral obtained by organizing a micro clay mineral in an aprotic polar solvent. And a powdering step of spray-drying the slurry-like mixed liquid to form a fine powdery polyimide-clay mineral composite material in which the organically modified fine clay mineral is dispersed in a polyimide resin. To do.

【0009】有機化粘土鉱物とは、たとえば、有機オニ
ウムイオンを有する化合物で処理して、粘土鉱物に有機
オニウムイオンを結合させたものを言う。有機オニウム
イオンとは、主鎖の一端にオニウムイオンを有する有機
化合物をいう。オニウムイオンとしては、アンモニウム
イオン、ピリジニウムイオン、スルホニウムイオン、ホ
スホニウムイオンなどが挙げられる。主鎖は、直鎖状ま
たは分岐状の炭素鎖で構成され、主鎖の一部に環状構造
を含んでもよい。主鎖の他端は、必ずしも水素である必
要はなく、水酸基、アミノ基、カルボキシル基、ニトロ
基、スルホン基、あるいはこれらの誘導体であってもよ
い。粘土鉱物の層間隔を拡張して、その分散効果を十分
に確保するためには、主鎖の炭素数が6以上であること
が望ましく、非プロトン性極性溶媒との親和性を保つた
めには、主鎖の炭素数が20以下であることが望まし
い。以上の点を総合すると、最も望ましい有機オニウム
イオンとして、ラウリルアミンイオン、ミリスチルアミ
ンイオン、パルミチルアミンイオン、ステアリルアミン
イオンなどのアルキルアンモニウムイオンが挙げられ
る。
Organized clay mineral refers to, for example, one obtained by treating an organic onium ion with a compound treated with a compound having an organic onium ion. The organic onium ion refers to an organic compound having an onium ion at one end of the main chain. Examples of the onium ion include ammonium ion, pyridinium ion, sulfonium ion and phosphonium ion. The main chain is composed of a linear or branched carbon chain, and a part of the main chain may include a cyclic structure. The other end of the main chain does not necessarily have to be hydrogen, and may be a hydroxyl group, amino group, carboxyl group, nitro group, sulfone group, or derivative thereof. In order to extend the layer spacing of the clay mineral and ensure its dispersion effect sufficiently, it is desirable that the main chain has 6 or more carbon atoms, and in order to maintain the affinity with the aprotic polar solvent, It is desirable that the main chain has 20 or less carbon atoms. Taking the above points together, the most preferable organic onium ions include alkylammonium ions such as laurylamine ion, myristylamine ion, palmitylamine ion, and stearylamine ion.

【0010】有機オニウムイオンによる粘土鉱物の有機
化、すなわち、有機化粘土の生成は、粘土鉱物の交換性
無機イオンが有機オニウムイオンによって置換されるこ
とによりおこなわれる。有機オニウムイオンと粘土鉱物
との重量割合は、特に制限がないが、少なくとも上記交
換性無機イオンが有機オニウムイオンによって十分に置
換されていることが望ましい。
Organization of clay minerals with organic onium ions, that is, formation of organized clay, is carried out by replacing exchangeable inorganic ions of clay minerals with organic onium ions. The weight ratio of the organic onium ion to the clay mineral is not particularly limited, but it is desirable that at least the exchangeable inorganic ion is sufficiently replaced by the organic onium ion.

【0011】有機オニウムイオンを含む粘土鉱物の合成
に関しては特に制限はなく、種々の方法により合成する
ことができる。たとえば、水、メタノール、エタノー
ル、プロパノール、エチレングリコール、1,4−ブタ
ンジオール、グリセリンなどのうちの1種または2種以
上の溶媒中で粘土鉱物と有機オニウムイオンを混合する
ことにより合成することができる。たとえば、粘土鉱物
がモンモリロナイトの場合、水、メタノール、エタノー
ルのうちの1種または2種以上をもちいることが望まし
い。
There is no particular limitation on the synthesis of the clay mineral containing an organic onium ion, and it can be synthesized by various methods. For example, it can be synthesized by mixing a clay mineral and an organic onium ion in a solvent of one or more of water, methanol, ethanol, propanol, ethylene glycol, 1,4-butanediol, glycerin and the like. it can. For example, when the clay mineral is montmorillonite, it is desirable to use one or more of water, methanol and ethanol.

【0012】本発明で使用される粘土鉱物は、層状粘土
鉱物が好ましい。この層状粘土鉱物としては、たとえ
ば、モンモリロナイト、サポナイト、バイデライト、ス
ティブンサイトなどのスメクタイト系粘土鉱物や、バー
ミキュライト、ハロサイト、膨潤性マイカなどが挙げら
れる。なお、層状粘土鉱物の陽イオン交換容量は、50
〜300meq/100g程度であって、反応させるポ
リイミドまたはその原料モノマーとの接触面積の大きい
ものが望ましい。陽イオン交換容量が300meq/1
00gを超えるものは、層状粘土鉱物の層間結合力が強
すぎるために層間陽拡張が困難なことから、ポリイミド
中での分散性が悪く、また50meq/100gに満た
ないものは、有機オニウムイオンの吸着量が不十分とな
るため、ポリイミドとの親和性が不足する。
The clay mineral used in the present invention is preferably a layered clay mineral. Examples of the layered clay mineral include smectite clay minerals such as montmorillonite, saponite, beidellite, and stevensite, vermiculite, halosite, swelling mica, and the like. The cation exchange capacity of the layered clay mineral is 50
Approximately 300 meq / 100 g, which has a large contact area with the polyimide to be reacted or the raw material monomer thereof is desirable. Cation exchange capacity is 300 meq / 1
If the amount is more than 00 g, the interlayer bond strength of the layered clay mineral is too strong and the interlayer positive expansion is difficult, so the dispersibility in the polyimide is poor, and if less than 50 meq / 100 g, the organic onium ion Since the amount of adsorption is insufficient, the affinity with polyimide is insufficient.

【0013】粘土鉱物の粒径は、0.1〜100μm、
好ましくは1〜20μmのものがよい。またこの粘土鉱
物は前記した粒径をもち、薄片状のものが好ましい。粒
径が100μmを越す粉末は、表面積が小さく、圧縮/
焼結成形時に良好な成形体が得られない。一方、粒径が
0.1μmに満たない粉末は、細かすぎるため成形時の
操作性が低下する。具体的には、微小粘土鉱物として
は、層状粘土鉱物でその層が5層以下のもの、理想的に
は層状粘土鉱物が単層に剥離した単層の粘土鉱物が最も
好ましい。また、粘土鉱物全体を100%とした場合、
層状粘土鉱物でその層が5層以下のものが50%以上占
めるもの、より好ましくは70%以上占めるものがよ
い。
The particle size of the clay mineral is 0.1 to 100 μm,
It is preferably 1 to 20 μm. The clay mineral preferably has the above-mentioned particle size and is flaky. A powder with a particle size of more than 100 μm has a small surface area and is compressed /
A good compact cannot be obtained during sintering. On the other hand, a powder having a particle size of less than 0.1 μm is too fine and the operability during molding is deteriorated. Specifically, the fine clay mineral is preferably a layered clay mineral having 5 or less layers, and ideally, a single layer clay mineral in which the layered clay mineral is exfoliated into a single layer. Also, when the whole clay mineral is 100%,
Layered clay minerals having 5 or less layers account for 50% or more, more preferably 70% or more.

【0014】本発明で使用されるポリイミドの中間重合
体としては、ジアミンと酸の二無水物の縮重合反応で得
られるもので、たとえば、ポリアミド酸などである。ポ
リイミドは、この中間重合体を閉環反応により形成され
るものである。この中間重合体の原料モノマーとして
は、公知のポリイミド原料であるすべての酸無水物およ
びジアミンが使用可能であり、たとえば、酸無水物とし
てはピロメリット酸二無水物、ビフェニルテトラカルボ
ン酸二無水物、ベンゾフェノンテトラカルボン酸二無水
物などが挙げられ、ジアミンとしては、4、4’−ジア
ミノジフェニルエーテル、3、4’−ジアミノジフェニ
ルエーテル、P−フェニレンジアミン、m−フェニレン
ジアミンなどが挙げられる。
The polyimide intermediate polymer used in the present invention is obtained by the polycondensation reaction of a dianhydride with a diamine and an acid, such as polyamic acid. Polyimide is formed by subjecting this intermediate polymer to a ring-closing reaction. As the raw material monomer of this intermediate polymer, all acid anhydrides and diamines that are known polyimide raw materials can be used. For example, as the acid anhydride, pyromellitic dianhydride and biphenyltetracarboxylic dianhydride can be used. Benzophenone tetracarboxylic acid dianhydride and the like, and diamines include 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, P-phenylenediamine, m-phenylenediamine and the like.

【0015】ポリイミドの中間重合体は、これらを単独
重合してホモポリマーを合成しても良い。あるいは、数
種のモノマーからなる共重合体を合成しても良い。ま
た、ジカルボン酸、ジオール、およびそれらの誘導体な
どを共重合してポリアミドイミド、ポリエステルアミド
イミド、ポリエステルイミドの中間重合体として使用す
ることも可能である。
The intermediate polyimide polymer may be homopolymerized to synthesize a homopolymer. Alternatively, a copolymer composed of several kinds of monomers may be synthesized. It is also possible to copolymerize a dicarboxylic acid, a diol, or a derivative thereof, and use it as an intermediate polymer of polyamideimide, polyesteramideimide, or polyesterimide.

【0016】非プロトン性極性溶媒は、有機オニウムイ
オンを含む層状粘土鉱物を分散させる分散媒となるとと
もに中間重合体のポリアミド酸を溶解する溶媒となるも
のである。この非プロトン性極性溶媒としては、N,N
−ジメチルアセトアミド、N−メチルピロリドン、N,
N−ジメチルホルムアミド、1,3−ジメチルイミダゾ
リノンなどを用いることができる。非プロトン性極性溶
媒はポリイミド原料モノマーや中間重合体を溶解し有機
化粘土鉱物とも親和性がある。このため非プロトン性極
性溶媒中でポリイミドの中間重合体と有機化粘土鉱物と
は互いに分子レベルで良く分散混合できる。
The aprotic polar solvent serves as a dispersion medium for dispersing the layered clay mineral containing an organic onium ion and a solvent for dissolving the polyamic acid of the intermediate polymer. As this aprotic polar solvent, N, N
-Dimethylacetamide, N-methylpyrrolidone, N,
N-dimethylformamide, 1,3-dimethylimidazolinone, etc. can be used. The aprotic polar solvent dissolves the polyimide raw material monomer and the intermediate polymer and has an affinity with the organized clay mineral. For this reason, the intermediate polymer of polyimide and the organized clay mineral can be well dispersed and mixed with each other at the molecular level in the aprotic polar solvent.

【0017】本発明の製造方法はポリイミドの中間重合
体と有機化微小粘土鉱物とを非プロトン性極性溶媒中に
溶解分散させてスラリー状混合液とする混合工程とこの
混合液を噴霧乾燥して微細粉末状のポリイミド−粘土鉱
物複合材料を形成する粉末化工程とからなる。この混合
工程は中間重合体のポリアミド酸溶液中に直接有機化微
小粘土鉱物を加え攪拌して分散させるか、あるいは、ポ
リアミド酸溶液と有機化微小粘土鉱物を予め分散したス
ラリー液とを混合することにより得られる。なお、層状
粘土鉱物の使用にあたっては、分散を十分に行わせるた
めの補助手段として予めミキサー、ミル、擂解機などを
用いて所望の状態に粉砕しておくことが望ましい。
The production method of the present invention comprises a mixing step of dissolving and dispersing an intermediate polymer of polyimide and an organized fine clay mineral in an aprotic polar solvent to form a slurry-like mixed solution, and spray-drying the mixed solution. And a powdering step of forming a fine powdery polyimide-clay mineral composite material. In this mixing step, the organically modified fine clay mineral is directly added to the polyamic acid solution of the intermediate polymer and dispersed by stirring, or the polyamic acid solution and the slurry liquid in which the organized fine clay mineral is previously dispersed are mixed. Is obtained by When using the layered clay mineral, it is desirable to previously grind it into a desired state by using a mixer, a mill, a disintegrator, etc. as an auxiliary means for sufficiently performing the dispersion.

【0018】また、ポリアミド酸溶液は、非プロトン性
極性溶媒中にポリアミド酸の原料モノマーであるジアミ
ンと酸二無水物とを溶解しこの溶液中で縮重合して得ら
れる。粉末化工程はスプレードライ法を採用し、混合液
を微細な液滴にスプレーし、この状態で液体を蒸散させ
ることにより得られる。これにより、本発明のポリイミ
ド複合材料粉末が得られる。有機化粘土鉱物は混合液中
で安定に最小単位(分子レベル)で均一に分散している
ので、この混合溶液を噴霧乾燥すると溶媒のみが除去さ
れ、粘土鉱物は分子レベル分散状態を保持したポリアミ
ド酸の微粉末として単離することができる。
The polyamic acid solution can be obtained by dissolving a diamine, which is a raw material monomer for polyamic acid, and an acid dianhydride in an aprotic polar solvent, and polycondensating in this solution. The powdering step adopts a spray dry method, sprays the mixed liquid into fine droplets, and evaporates the liquid in this state. Thereby, the polyimide composite material powder of the present invention is obtained. Organized clay minerals are stably dispersed uniformly in the mixed solution at the minimum unit (molecular level), so spray drying this mixed solution removes only the solvent, and the clay mineral is a polyamide that maintains the molecular level dispersed state. It can be isolated as a fine powder of acid.

【0019】粉末化したのち加熱して中間重合体のポリ
アミド酸の閉環重合を進めてもよい。なお、閉環重合は
非酸化性雰囲気下で150℃〜400℃、0.1〜20
時間加熱することによりなされる。なお、ポリアミド酸
の閉環反応によって粘土鉱物の分散状態は変化しない。
また、ポリイミドが結晶化することなく低結晶度を保つ
ことができる。
The powder may be pulverized and then heated to proceed the ring-closing polymerization of the polyamic acid of the intermediate polymer. The ring-closing polymerization is carried out in a non-oxidizing atmosphere at 150 ° C to 400 ° C, 0.1 to 20 ° C.
It is made by heating for a time. The dispersion state of the clay mineral does not change due to the ring closure reaction of the polyamic acid.
Moreover, the low crystallinity can be maintained without crystallization of the polyimide.

【0020】本発明のポリイミド複合材料粉末は有機化
微小粘土鉱物とこの有機化微小粘土鉱物を覆うポリイミ
ドで構成されている。このポリイミド複合材料粉末の一
つの粉末が複数の粒子微小粘土鉱物粒子を含むものでも
よい。かかる場合は、各粘土鉱物粒子はポリイミドの中
に各々分離して分散しているのがよい。ポリイミド中の
有機化粘土鉱物の分散とは、個々の粘土鉱物粒子が互い
に凝結することなく個々に分散していることをいう。粘
土鉱物が層状粘土鉱物では、層状粘土鉱物の一枚一枚、
若しくは平均的な重なりが5層以下の複層物がランダム
に混在した状態をいう。実用上、個々の粒子の50%以
上が、好ましくは70%以上が凝結して塊を形成するこ
となく分散している状態が良い。
The polyimide composite material powder of the present invention is composed of an organized micro clay mineral and a polyimide covering the organized micro clay mineral. One powder of this polyimide composite material powder may contain a plurality of particle fine clay mineral particles. In such a case, it is preferable that the clay mineral particles are separately dispersed in the polyimide. Dispersion of the organized clay mineral in the polyimide means that the individual clay mineral particles are individually dispersed without coagulating with each other. If the clay mineral is a layered clay mineral, one by one,
Alternatively, it means a state in which multi-layered products having an average overlap of 5 layers or less are randomly mixed. Practically, it is preferable that 50% or more, preferably 70% or more of the individual particles are dispersed without being aggregated to form a lump.

【0021】ポリイミド複合材料粉末は、圧縮/焼結成
形に適する微粉末で、粉末粒径が0.1〜100μm、
好ましくは1〜20μmである。粉末粒径が100μm
を超えると表面積が小さくなり圧縮/焼結成形において
良好な成形体を得ることができない。一方、0.1μm
に満たない粒径の粉末は、細かすぎるため成形時のハン
ドリングが低下するので好ましくない。
The polyimide composite material powder is a fine powder suitable for compression / sinter molding and has a powder particle size of 0.1 to 100 μm.
It is preferably 1 to 20 μm. Powder particle size is 100μm
If it exceeds, the surface area becomes small and a good molded product cannot be obtained in compression / sinter molding. On the other hand, 0.1 μm
A powder having a particle size of less than is not preferable because handling at the time of molding is reduced because the powder is too fine.

【0022】このポリイミド複合材料粉末において有機
化粘土鉱物の重量割合は、全体を100重量%としたと
き、ポリイミドが50〜99.99重量部、有機化粘土
鉱物が0.01〜50重量部である。ポリイミドが50
重量部未満および有機化粘土鉱物が50重量部以上の場
合は、得られる複合材料中の層状粘土鉱物の量が多くな
るために、ポリイミドの優れた機械的性質および表面平
滑性が損なわれるので好ましくない。有機化粘土鉱物が
0.01重量部未満の場合は、有機オニウムイオンを含
む粘土鉱物の量が少なすぎるためにポリイミドマトリッ
クスにおよぼす影響が少なく改質までにはいたらない。
In the polyimide composite material powder, the weight ratio of the organized clay mineral is 50 to 99.99 parts by weight of polyimide and 0.01 to 50 parts by weight of the organized clay mineral, based on 100% by weight as a whole. is there. 50 polyimide
When the amount is less than 50 parts by weight and the amount of the organized clay mineral is 50 parts by weight or more, the amount of the layered clay mineral in the obtained composite material is large, and the excellent mechanical properties and surface smoothness of the polyimide are impaired, which is preferable. Absent. When the amount of the organized clay mineral is less than 0.01 part by weight, the amount of the clay mineral containing the organic onium ion is too small, so that the effect on the polyimide matrix is small and the modification cannot be achieved.

【0023】このポリイミド複合材料粉末は、噴霧乾燥
で形成されるので閉環反応の加熱によっても特に樹脂が
低結晶度を保持しており成形性に優れる。このことはX
線回折における2θ=10−35°の範囲に、顕著なポ
リイミド結晶のピークが観測されないことにより確認で
きる。本発明のポリイミド複合材料粉末には、ポリイミ
ド、粘土鉱物の他に必要に応じてポリエーテルケトン、
ポリスルホン、ポリアミドイミドなどの他、ポリイミド
以外の樹脂を適宜混合することによってさらに望ましい
物性、特性を調整することができる。また、目的に応じ
て顔料や染料、ガラス繊維、金属繊維、金属フレーク、
炭素繊維などの補強材や充填材、熱安定剤、酸化防止
剤、紫外線防止剤、光安定剤、滑剤、可塑剤、帯電防止
剤、および難燃剤などを添加することができる。
Since this polyimide composite material powder is formed by spray drying, the resin retains a low crystallinity even when heated in the ring-closing reaction, and is excellent in moldability. This is X
This can be confirmed by the fact that no remarkable peaks of the polyimide crystal are observed in the range of 2θ = 10-35 ° in the line diffraction. The polyimide composite material powder of the present invention, polyimide, polyetherketone if necessary, in addition to clay minerals,
Further desired physical properties and characteristics can be adjusted by appropriately mixing a resin other than polyimide in addition to polysulfone, polyamide-imide and the like. Also, depending on the purpose, pigments and dyes, glass fibers, metal fibers, metal flakes,
Reinforcing materials and fillers such as carbon fibers, heat stabilizers, antioxidants, UV inhibitors, light stabilizers, lubricants, plasticizers, antistatic agents, flame retardants and the like can be added.

【0024】[0024]

【発明の作用および効果】本発明のポリイミド複合材料
粉末は、ポリイミドマトリックス中に有機化粘土鉱物が
分子レベルの分散状態を保持して分散している。したが
って、このポリイミド複合材料粉末は、圧縮/焼結成形
などにより粘土鉱物が均一に分散して寸法安定性のよい
ポリイミド樹脂成形物を得ることができる。たとえば、
圧縮/焼結成形すると、圧縮成形方向に対して垂直方向
の線膨張率が最大70%以上低減し寸法安定性を高める
ことができる。
In the polyimide composite material powder of the present invention, the organized clay mineral is dispersed in the polyimide matrix while maintaining the dispersed state at the molecular level. Therefore, in this polyimide composite material powder, a clay mineral is uniformly dispersed by compression / sintering molding or the like, and a polyimide resin molded product having good dimensional stability can be obtained. For example,
When compression / sinter molding is performed, the linear expansion coefficient in the direction perpendicular to the compression molding direction can be reduced by 70% or more at the maximum, and dimensional stability can be improved.

【0025】また、粘土鉱物は、層状粘土鉱物を用い
て、層を5層以下と小さくできるのでより均一に分散で
き粘土鉱物の添加効果がより高まった複合材料粉末とす
ることができる。本発明のポリイミド複合材料粉末の製
造方法は、ポリイミドの中間重合体を溶解し有機化粘土
鉱物を均一に分散させたスラリー状の非プロトン性極性
溶媒の混合液を噴霧乾燥するので、混合液中で形成した
有機化粘土鉱物の分散状態を保持して微細な液滴中から
溶媒が急速に除去されて微粉末が形成できる。したがっ
て、この生成ポリイミド複合材料の粉末は、粘土鉱物が
均一に分散したポリイミド−粘土鉱物複合材料となり上
記の成形用に使用することができる。
As the clay mineral, a layered clay mineral can be used, and since the number of layers can be made as small as 5 layers or less, it is possible to obtain a composite material powder which can be more uniformly dispersed and the clay mineral addition effect is further enhanced. The method for producing the polyimide composite material powder of the present invention is spray-drying a mixed solution of an aprotic polar solvent in the form of a slurry in which an intermediate polymer of polyimide is dissolved and an organized clay mineral is uniformly dispersed. While maintaining the dispersed state of the organized clay mineral formed in step 2, the solvent is rapidly removed from the fine droplets to form a fine powder. Therefore, the powder of the generated polyimide composite material becomes a polyimide-clay mineral composite material in which clay minerals are uniformly dispersed and can be used for the above molding.

【0026】このポリイミド−粘土鉱物複合材料は単独
でも他の組成物との混合体としても成形できる。他の組
成物としてはポリイミド樹脂、ポリアミド樹脂等の合成
樹脂、粘土鉱物粉末等の無機フッイラー、ガラス繊維、
ウイスカー等の補強材料を挙げることができる。
This polyimide-clay mineral composite material can be molded alone or as a mixture with other compositions. Other compositions include polyimide resins, synthetic resins such as polyamide resins, inorganic fillers such as clay mineral powder, glass fibers,
Reinforcing materials such as whiskers can be mentioned.

【0027】[0027]

【実施例】以下、実施例により具体的に説明する。 (実施例1)ジアミノジフェニルエーテル120.14
g(0.6モル)をN,N−ジメチルアセトアミド(D
MAc)1153gに溶解した。次いで無水ピロメリッ
ト酸130.22g(0.597モル)を添加し室温で
約1時間攪拌した。重合反応は発熱しながら進行して、
ポリイミドの中間重合体であるポリアミド酸の12重量
%DMAc溶液を得た。
The present invention will be specifically described below with reference to examples. (Example 1) Diaminodiphenyl ether 120.14
g (0.6 mol) of N, N-dimethylacetamide (D
MAc) dissolved in 1153 g. Next, 130.22 g (0.597 mol) of pyromellitic anhydride was added, and the mixture was stirred at room temperature for about 1 hour. The polymerization reaction proceeds while generating heat,
A 12 wt% DMAc solution of polyamic acid, which is an intermediate polymer of polyimide, was obtained.

【0028】100gのNa−モンモリロナイト(クニ
ミネ工業(株)製クニピアF)を3リットルの水に分散
し、これに44.1gのラウリルアミンと24.1gの
濃塩酸を加え、室温で60分間攪拌した。水洗した後、
ブフナーロートを用いて吸引濾過して含水状態の複合物
を得た。この含水複合物を凍結乾燥してラウリルアンモ
ニウムイオンを含むモンモリロナイトの有機化粘土鉱物
を合成した。
100 g of Na-montmorillonite (Kunipia F manufactured by Kunimine Industries Co., Ltd.) was dispersed in 3 liters of water, to which 44.1 g of laurylamine and 24.1 g of concentrated hydrochloric acid were added, and the mixture was stirred at room temperature for 60 minutes. did. After washing with water
Suction filtration was performed using a Buchner funnel to obtain a water-containing composite. This hydrous composite was freeze-dried to synthesize an organic clay mineral of montmorillonite containing lauryl ammonium ion.

【0029】上記で調製した、ラウリルアンモニウムイ
オンで有機化したNa−モンモリロナイト30.03g
(有機分を除いたモンモリロナイト量21.77g)を
DMAc683g中に加え、1時間ホモジナイザーで強
力攪拌して(最終的に樹脂粉末中の粘土含量が8重量%
になるように分散液を調整した)モンモリロナイト分散
液とした。
30.03 g of Na-montmorillonite organically prepared with lauryl ammonium ion prepared above
(The amount of montmorillonite excluding the organic component was 21.77 g) was added to 683 g of DMAc, and the mixture was vigorously stirred for 1 hour with a homogenizer (finally, the clay content in the resin powder was 8% by weight).
The montmorillonite dispersion was prepared by adjusting the dispersion so that

【0030】上記で得たポリアミド酸のDMAc溶液に
有機化したモンモリロナイト分散液を添加して、回転数
800rpmで2時間強力に攪拌して均一な混合スラリ
ーを調整した。この混合スラリー原液1に対して1.5
〜2の割合でDMAcを加えて希釈し、混合スラリー溶
液の粘度を100c.p(センチポイズ)程度に調整し
た。
The organically modified montmorillonite dispersion was added to the DMAc solution of the polyamic acid obtained above and vigorously stirred at a rotation speed of 800 rpm for 2 hours to prepare a uniform mixed slurry. 1.5 against 1 of this mixed slurry stock solution
DMAc was added at a ratio of 2 to dilute, and the viscosity of the mixed slurry solution was adjusted to 100 c. It was adjusted to about p (centipoise).

【0031】希釈後のスラリーを噴霧乾燥法により微粉
化した。この時の噴霧条件は以下のとおりである。 噴霧装置:有機溶剤用スプレードライ装置(坂本技研製
DA2SW−16N)、噴霧方式:二流体ノズル方式、
熱風温度:170℃、エアーおよびノズル圧:4kg/
cm2 、雰囲気:乾燥窒素下(酸素濃度0.8%) 上記の条件で得られた有機化粘土鉱物含有ポリアミド酸
粉末の粒径は、光学顕微鏡観察の結果1〜20μmであ
った。また、灼残法により粉末中の粘土鉱物(モンモリ
ロナイト)含有量を定量したところ、仕込み量どおりの
粘土鉱物が含まれていた。
The diluted slurry was pulverized by a spray drying method. The spraying conditions at this time are as follows. Spraying device: Spray drying device for organic solvent (DA2SW-16N manufactured by Sakamoto Giken), Spraying system: Two-fluid nozzle system,
Hot air temperature: 170 ° C, air and nozzle pressure: 4 kg /
cm 2 , atmosphere: under dry nitrogen (oxygen concentration 0.8%) The particle size of the organic clay mineral-containing polyamic acid powder obtained under the above conditions was 1 to 20 μm as a result of optical microscope observation. Moreover, when the content of the clay mineral (montmorillonite) in the powder was quantified by the cauterization method, it was found that the clay mineral was contained according to the charged amount.

【0032】灼残法:粘土含有ポリイミド酸粉末を坩堝
に0.1g入れ、ガスバーナーで3時間加熱する方法で
有機物を全て焼却し、粘土鉱物のみを残留させてポリイ
ミド酸粉末中の無機物量が定量した。この粉末を160
℃、15時間真空中で乾燥させ、ポリアミド酸粉末を閉
環反応によりポリイミド粉末に変換した。
Cauterization method: 0.1 g of clay-containing polyimide acid powder was put into a crucible, and all organic substances were incinerated by a method of heating with a gas burner for 3 hours, leaving only the clay minerals to reduce the amount of inorganic substances in the polyimide acid powder. It was quantified. 160 of this powder
The polyamic acid powder was converted to a polyimide powder by a ring-closing reaction by drying in a vacuum at 15 ° C. for 15 hours.

【0033】生成した粘土含有ポリイミド粉末のX線回
折測定をおこなったところ、2θ=10−35°の角度
領域において顕著な回折ピークは観測されず、低結晶度
のポリイミド粉末が得られていることがわかった。次に
この粉末10gを抵抗加熱式真空加圧ホットプレス(富
士電波工業(株)製FVPHP−R−10)を用いて圧
縮/焼結成形した。
When the X-ray diffraction measurement of the produced clay-containing polyimide powder was carried out, no remarkable diffraction peak was observed in the angle region of 2θ = 10-35 °, and a polyimide powder of low crystallinity was obtained. I understood. Next, 10 g of this powder was compression / sinter-molded using a resistance heating type vacuum pressure hot press (FVPHP-R-10 manufactured by Fuji Denpa Kogyo KK).

【0034】10gの粉末試料を直径40mmの円筒型
の金型に入れ、室温で5分間真空にした。徐々に加圧し
ていき200atmにした後、10℃/minで400
℃まで昇温した。この状態で2時間保持した後圧力を除
去して自然放冷した。成形片は、型温が100℃以下に
なってから取り出した。この成形片を透過型電子顕微鏡
(TEM)で観察したところ、ポリイミド中に粘土が1
〜数層単位で均一に分散していることが確認された。
10 g of the powder sample was placed in a cylindrical mold having a diameter of 40 mm, and vacuum was applied at room temperature for 5 minutes. Gradually pressurize to 200 atm and then 400 at 10 ° C / min
The temperature was raised to ° C. After maintaining in this state for 2 hours, the pressure was removed and the mixture was naturally cooled. The molded piece was taken out after the mold temperature reached 100 ° C or lower. Observation of this molded piece with a transmission electron microscope (TEM) revealed that 1
~ It was confirmed that they were uniformly dispersed in units of several layers.

【0035】成形体の線膨張率を測定するため、上記の
成形片から縦5mm×横5mm×厚み15mmの試験片
を切り出した。なお、試験片の厚み方向が、圧縮成形方
向に対する垂直方向と一致させた。線膨張係数の測定条
件は以下のとおりである。 測定装置:熱応力歪み測定装置(島津製作所製DT−3
0) 温度範囲: 室温〜300℃、昇温速度:2℃/mi
n、荷重:500mg 線膨張係数の測定値は、100℃:41μm/m/℃
(1.0)、150℃:42μm/m/℃ (0.9
5)、200℃:44μm/m/℃ (0.92)、2
50℃:50μm/m/℃ (0.98)であった。な
お、括弧内の値は、比較例に示す粘土を含有しないポリ
イミドの線膨張係数測定値を基準とした相対値である。
すなわち、0.92は線膨張係数が8%低減したことを
示す。
In order to measure the linear expansion coefficient of the molded body, a test piece measuring 5 mm in length × 5 mm in width × 15 mm in thickness was cut out from the above-mentioned molded piece. The thickness direction of the test piece was made to coincide with the direction perpendicular to the compression molding direction. The measurement conditions of the linear expansion coefficient are as follows. Measuring device: Thermal stress strain measuring device (DT-3 manufactured by Shimadzu Corporation
0) Temperature range: room temperature to 300 ° C, heating rate: 2 ° C / mi
n, load: 500 mg The measured value of the linear expansion coefficient is 100 ° C .: 41 μm / m / ° C.
(1.0), 150 ° C .: 42 μm / m / ° C. (0.9
5), 200 ° C .: 44 μm / m / ° C. (0.92), 2
The temperature was 50 ° C .: 50 μm / m / ° C. (0.98). The values in parentheses are relative values based on the measured linear expansion coefficient of the clay-free polyimide shown in Comparative Examples.
That is, 0.92 indicates that the linear expansion coefficient is reduced by 8%.

【0036】(実施例2)実施例1における有機化粘土
鉱物の添加量が47.54g(有機分を除いたモンモリ
ロナイト量34.14g)であることを除いて、ハイブ
リッド作製の手順(スラリーの調整、スプレードライ、
圧縮/焼結成形)は全て同様の方法でおこなった(この
とき粘土含有量は12重量%になる)。得られた有機化
粘土鉱物含有ポリイミド粉末は、1〜20μmの微細且
つ低結晶度の粉末で、仕込み量通りの粘土鉱物を含有し
ていた。また成形片のTEM観察から、粘土鉱物がポリ
イミド中分子レベルで均一に分散していることが確認さ
れた。実施例1と同様に線膨張率の測定をおこなった結
果、100℃:37μm/m/℃ (0.90)、15
0℃:41μm/m/℃ (0.92)、200℃:4
6μm/m/℃ (0.96)、250℃:47μm/
m/℃ (0.92)であり線膨張係数が低減したこと
を示している。
Example 2 A procedure for preparing a hybrid (preparation of slurry) except that the addition amount of the organized clay mineral in Example 1 was 47.54 g (the amount of montmorillonite excluding the organic component was 34.14 g). , Spray dry,
All the compression / sintering moldings were carried out by the same method (at this time, the clay content was 12% by weight). The obtained organically modified clay mineral-containing polyimide powder was a fine and low-crystallinity powder having a particle size of 1 to 20 μm and contained the clay mineral in an amount as charged. Further, from the TEM observation of the molded piece, it was confirmed that the clay mineral was uniformly dispersed in the polyimide at the molecular level. The linear expansion coefficient was measured in the same manner as in Example 1, and as a result, 100 ° C .: 37 μm / m / ° C. (0.90), 15
0 ° C: 41 μm / m / ° C (0.92), 200 ° C: 4
6 μm / m / ° C. (0.96), 250 ° C .: 47 μm /
It was m / ° C (0.92), indicating that the linear expansion coefficient was reduced.

【0037】(実施例3)実施例1と同様な方法でオク
チルアンモニウムイオンで有機化したNa−テトラシリ
ックマイカ(コープケミカル社製膨潤性マイカME10
0T2)(以下8CH3−Mic)で添加量が26.6
5g(有機分を除いたマイカ量21.77g)であるこ
とを除いて、ハイブリッド作製の手順(スラリーの調
整、スプレードライ、圧縮/焼結成形)は全て同様の方
法でおこなった(このとき粘土含有量は8重量%にな
る)。得られた粘土含有ポリイミド粉末は、1〜20μ
mの微細かつ低結晶度の粉末で、仕込み量通りの粘土を
含有していた。また、成形片のTEM観察から、粘土が
ポリイミド中分子レベルで均一に分散していることが確
認された。実施例1と同様に線膨張率の測定をおこなっ
た結果、100℃:35μm/m/℃ (0.85)、
150℃:39μm/m/℃ (0.89)、200
℃:39μm/m/℃ (0.81)、250℃:44
μm/m/℃ (0.86)であり線膨張係数が低減し
たことを示している。
Example 3 Na-tetrasilicic mica (swelling mica ME10 manufactured by Cope Chemical Co., Ltd.) organized by octyl ammonium ion in the same manner as in Example 1 was used.
0T2) (hereinafter 8CH3-Mic) with an addition amount of 26.6.
The procedure of hybrid preparation (slurry adjustment, spray drying, compression / sinter molding) was all performed in the same manner except that the amount was 5 g (21.77 g of mica excluding organic matter). The content is 8% by weight). The obtained clay-containing polyimide powder is 1 to 20 μm.
It was a fine, low-crystallinity powder of m and contained as much clay as it was charged. In addition, TEM observation of the molded piece confirmed that clay was uniformly dispersed in the polyimide at the molecular level. The linear expansion coefficient was measured in the same manner as in Example 1, and as a result, 100 ° C .: 35 μm / m / ° C. (0.85),
150 ° C .: 39 μm / m / ° C. (0.89), 200
℃: 39μm / m / ℃ (0.81), 250 ℃: 44
μm / m / ° C. (0.86), indicating that the linear expansion coefficient was reduced.

【0038】(比較例)ジアミノジフェニルエーテル1
20.14gをDMAc1836gに溶解させること、
および有機粘土混合過程を含まないことを除いて、実施
例1のハイブリッド作製手順を同様に実施してポリイミ
ド粉末を得た。この粉末は1〜20μmの微細かつ低結
晶度の粉末であった。線膨張率の測定を行った結果、1
00℃:41μm/m/℃、150℃:44μm/m/
℃、200℃:48μm/m/℃、250℃:51μm
/m/℃であった。
(Comparative Example) Diaminodiphenyl ether 1
Dissolving 20.14 g in DMAc 1836 g,
And the procedure for preparing the hybrid of Example 1 was carried out in the same manner except that the step of mixing the organic clay and the step of mixing the organic clay were not included to obtain a polyimide powder. This powder was a fine and low crystallinity powder having a size of 1 to 20 μm. As a result of measuring the coefficient of linear expansion, 1
00 ° C: 41 μm / m / ° C, 150 ° C: 44 μm / m /
℃, 200 ℃: 48μm / m / ℃, 250 ℃: 51μm
/ M / ° C.

【0039】したがって、実施例では比較例に比べて線
膨張係数がいずれも低減し、成形物の寸法安定性に優れ
ていることを示している。
Therefore, the examples show that the linear expansion coefficient is lower than that of the comparative examples, and the molded products are excellent in dimensional stability.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 390023674 イー・アイ・デュポン・ドウ・ヌムール・ アンド・カンパニー E.I.DU PONT DE NEMO URS AND COMPANY アメリカ合衆国、デラウエア州、ウイルミ ントン、マーケット・ストリート 1007 (71)出願人 393025921 デュポン株式会社 東京都目黒区下目黒1丁目8番1号 (72)発明者 中野 充 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (71) Applicant 390023674 Ei DuPont Do Nemours & Company E. I. DU PONT DE NEMO URS AND COMPANY 1007 Market Street, Wilmington, Delaware, USA 1007 (71) Applicant 393025921 DuPont Co., Ltd. 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo Mitsuru Nakano Aichi, Aichi Prefecture 1 of 41 Yokomichi, Nagakute-cho, Nagakute-cho, Gunma Toyota Central Research Institute Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 微小粘土鉱物を有機化した有機化微小粘
土鉱物と該有機化微小粘土鉱物を覆うポリイミドで構成
されていることを特徴とするポリイミド複合材料粉末。
1. A polyimide composite material powder comprising an organized microclay mineral obtained by organizing a microclay mineral and a polyimide covering the organized microclay mineral.
【請求項2】 該有機化微小粘土鉱物は、有機化した層
状粘土鉱物で構成され、該層状粘土鉱物全体を100%
としたとき少なくとも50%が5層以下である請求項1
に記載のポリイミド複合材料粉末。
2. The organically modified fine clay mineral is composed of an organically modified layered clay mineral, and the total amount of the layered clay mineral is 100%.
At least 50% is 5 layers or less.
The polyimide composite material powder according to item 1.
【請求項3】 該層状粘土鉱物は、該層状粘土鉱物全体
を100%としたとき少なくとも50%が単層である請
求項1に記載のポリイミド複合材料粉末。
3. The polyimide composite material powder according to claim 1, wherein at least 50% of the layered clay mineral is a single layer based on 100% of the entire layered clay mineral.
【請求項4】 微小粘土鉱物を有機化した有機化微小粘
土鉱物と該有機化微小粘土鉱物を覆う閉環反応前のポリ
イミド中間重合体とで構成されていることを特徴とする
ポリイミド中間重合体複合材料粉末。
4. A polyimide intermediate polymer composite comprising an organized micro clay mineral obtained by organizing a micro clay mineral and a polyimide intermediate polymer before the ring closure reaction covering the organic micro clay mineral. Material powder.
【請求項5】 ポリイミドの中間重合体と微小粘土鉱物
を有機化した有機化微小粘土鉱物とを非プロトン性極性
溶媒中に溶解分散させてスラリー状混合液とする混合工
程と、 該スラリー状混合液を噴霧乾燥して該有機化微小粘土鉱
物がポリイミド樹脂に分散した微細粉末状のポリイミド
−粘土鉱物複合材料を形成する粉末化工程とからなるこ
とを特徴とするポリイミド複合材料粉末の製造方法。
5. A mixing step of dissolving and dispersing an intermediate polymer of polyimide and an organized fine clay mineral obtained by organizing a fine clay mineral in an aprotic polar solvent to obtain a slurry mixture, and the slurry mixture. A method for producing a polyimide composite material powder, which comprises a step of spray-drying a liquid to form a fine powdery polyimide-clay mineral composite material in which the organically converted fine clay mineral is dispersed in a polyimide resin.
【請求項6】 該粉末化工程の後で該ポリイミドの中間
重合体を加熱して少なくとも一部閉環重合させる閉環重
合工程を含む請求項5記載のポリイミド複合材料粉末の
製造方法。
6. The method for producing a polyimide composite material powder according to claim 5, further comprising a ring-closing polymerization step of heating at least a part of the intermediate polymer of the polyimide by ring-closing polymerization after the powderizing step.
【請求項7】 該非プロトン性極性溶媒はN,N−ジメ
チルアセトアミド、N−メチルピロリドン、N,N−ジ
メチルホルムアミド、1,3−ジメチルイミダゾリノン
の少なくとも1種からなる請求項5記載のポリイミド複
合材料粉末の製造方法。
7. The polyimide composite according to claim 5, wherein the aprotic polar solvent comprises at least one of N, N-dimethylacetamide, N-methylpyrrolidone, N, N-dimethylformamide and 1,3-dimethylimidazolinone. Method of manufacturing material powder.
【請求項8】 請求項1〜3のいずれかに記載したポリ
イミド複合材料粉末あるいはこれと他の組成物との混合
体を成形したことを特徴とするポリイミド複合材料成形
体。
8. A molded body of a polyimide composite material, which is formed by molding the polyimide composite material powder according to any one of claims 1 to 3 or a mixture thereof with another composition.
【請求項9】 請求項5又は6に記載したポリイミド複
合材料粉末を圧縮/焼結することを特徴とするポリイミ
ド複合材料成形体の製造方法。
9. A method for producing a polyimide composite material molded body, comprising compressing / sintering the polyimide composite material powder according to claim 5 or 6.
JP1292396A 1996-01-29 1996-01-29 Powdery polyimide composite material and its production Pending JPH09208823A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1292396A JPH09208823A (en) 1996-01-29 1996-01-29 Powdery polyimide composite material and its production
PCT/US1997/001270 WO1997027155A1 (en) 1996-01-29 1997-01-29 Polyimide composite powder, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292396A JPH09208823A (en) 1996-01-29 1996-01-29 Powdery polyimide composite material and its production

Publications (1)

Publication Number Publication Date
JPH09208823A true JPH09208823A (en) 1997-08-12

Family

ID=11818866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292396A Pending JPH09208823A (en) 1996-01-29 1996-01-29 Powdery polyimide composite material and its production

Country Status (2)

Country Link
JP (1) JPH09208823A (en)
WO (1) WO1997027155A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249581A (en) * 2001-02-23 2002-09-06 Nitto Denko Corp Process for producing polyimide composite
JP2006307146A (en) * 2005-03-29 2006-11-09 Osaka Prefecture Method for producing functional polyamic acid composite particle and functional polyimide composite particle
JP2007042694A (en) * 2005-07-29 2007-02-15 National Institute Of Advanced Industrial & Technology Flexible printed board
JP2007042693A (en) * 2005-07-29 2007-02-15 National Institute Of Advanced Industrial & Technology Flexible substrate
JP2010533362A (en) * 2007-07-10 2010-10-21 三井化学株式会社 Circuit board
KR101107585B1 (en) * 2009-06-19 2012-01-25 강원대학교산학협력단 Preparation Method of Layer-Structured Clay/Polyolefin Nanocomposites at High Pressure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892900A (en) 1996-08-30 1999-04-06 Intertrust Technologies Corp. Systems and methods for secure transaction management and electronic rights protection
DE69637733D1 (en) 1995-02-13 2008-12-11 Intertrust Tech Corp SYSTEMS AND METHOD FOR SAFE TRANSMISSION
US6157721A (en) 1996-08-12 2000-12-05 Intertrust Technologies Corp. Systems and methods using cryptography to protect secure computing environments

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836447A (en) * 1981-08-27 1983-03-03 株式会社フジクラ Heat-resisting coating structure
US4739007A (en) * 1985-09-30 1988-04-19 Kabushiki Kaisha Toyota Chou Kenkyusho Composite material and process for manufacturing same
US4775586A (en) * 1987-02-17 1988-10-04 Armstrong World Industries, Inc. Paper, paper products, films composites and other silicate-polymer, construction materials
JPH0778089B2 (en) * 1987-03-26 1995-08-23 株式会社豊田中央研究所 Method of manufacturing composite material
DE3803075A1 (en) * 1988-02-03 1989-08-17 Basf Ag Process for the preparation of prepregs
JP2872756B2 (en) * 1990-05-30 1999-03-24 株式会社豊田中央研究所 Polyimide composite material and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249581A (en) * 2001-02-23 2002-09-06 Nitto Denko Corp Process for producing polyimide composite
JP2006307146A (en) * 2005-03-29 2006-11-09 Osaka Prefecture Method for producing functional polyamic acid composite particle and functional polyimide composite particle
JP2007042694A (en) * 2005-07-29 2007-02-15 National Institute Of Advanced Industrial & Technology Flexible printed board
JP2007042693A (en) * 2005-07-29 2007-02-15 National Institute Of Advanced Industrial & Technology Flexible substrate
JP4701438B2 (en) * 2005-07-29 2011-06-15 独立行政法人産業技術総合研究所 Flexible printed circuit board
JP2010533362A (en) * 2007-07-10 2010-10-21 三井化学株式会社 Circuit board
KR101107585B1 (en) * 2009-06-19 2012-01-25 강원대학교산학협력단 Preparation Method of Layer-Structured Clay/Polyolefin Nanocomposites at High Pressure

Also Published As

Publication number Publication date
WO1997027155A1 (en) 1997-07-31

Similar Documents

Publication Publication Date Title
Carey et al. MXene polymer nanocomposites: a review
JP2872756B2 (en) Polyimide composite material and method for producing the same
Fu et al. Recent advances in graphene/polyamide 6 composites: a review
EP2520607B1 (en) Method for manufacturing a wholly aromatic polyimide powder having an antistatic or conductive property
Chen et al. Preparation of polyetherimide nanocomposites with improved thermal, mechanical and dielectric properties
Abdalla et al. Viscoelastic and mechanical properties of thermoset PMR-type polyimide–clay nanocomposites
Huang et al. Preparation and properties of montmorillonite/organo-soluble polyimide hybrid materials prepared by a one-step approach
KR20150129803A (en) Oligomer-grafted nanofillers and advanced composite materials
Liu et al. Preparation and dielectric properties of polyimide/silica nanocomposite films prepared from sol–gel and blending process
Kim et al. Preparation and characterization of polyimide/carbon-nanotube composites
Aram et al. Functionalization of graphene nanosheets and its dispersion in PMMA/PEO blend: Thermal, electrical, morphological and rheological analyses
JPH09208823A (en) Powdery polyimide composite material and its production
Ghorpade et al. Synthesis of novel silica-polyimide nanocomposite films using aromatic-amino modified silica nanoparticles: Mechanical, thermal and morphological investigations.
Mallakpour et al. Bionanocomposites preparation and characterization: dispersion of surface-modified ZnO nanoparticles in optically active poly (amide-imide) derived from 3, 5-diamino-N-(4-hydroxyphenyl) benzamide and amino acid
CN113813796B (en) Nano composite dispersion liquid, high-gas-barrier nano composite film and preparation method thereof
Xue et al. Impact of modification of carbon black on morphology and performance of polyimide/carbon black hybrid composites
Gopala Krishnan et al. Synthesis and properties of BCDA‐based polyimide–clay nanocomposites
JP3651711B2 (en) POLYIMIDE COMPOSITE POWDER AND PROCESS FOR PRODUCING THE SAME
Ni et al. A novel poly (p-phenylene benzobisoxazole)(PBO)-based three-phase silk-cocoon network structure nanocomposites with enhanced dielectric properties
KR100366147B1 (en) Polyimide nanocomposite powder with high crystallinity and a method for preparing the same
Yuan et al. Effect of polyaspartic acid‐functionalized graphene oxide on the mechanical performance of polyimide‐based composites
Wang et al. Controlling the structure and rheology of polyimide/nanoclay composites by condensation polymerization
Park et al. Preparation and properties of fluorine-containing colorless polyimide nanocomposite films with organo-modified montmorillonites for potential flexible substrate
Sahoo et al. Effect of carbon nanotubes and processing methods on the properties of carbon nanotube/polypropylene composites
Li et al. Synthesis and characterization of bismaleimide‐polyetherimide‐silica hybrid by sol‐gel process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Effective date: 20060124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060327

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327