US9242413B2 - Device and method for constructing a laminar body comprising at least one position adjustable body defining the working area - Google Patents
Device and method for constructing a laminar body comprising at least one position adjustable body defining the working area Download PDFInfo
- Publication number
- US9242413B2 US9242413B2 US13/883,397 US201113883397A US9242413B2 US 9242413 B2 US9242413 B2 US 9242413B2 US 201113883397 A US201113883397 A US 201113883397A US 9242413 B2 US9242413 B2 US 9242413B2
- Authority
- US
- United States
- Prior art keywords
- discharging device
- free
- layer
- flowing material
- discharge opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B29C67/0081—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/14—Formation of a green body by jetting of binder onto a bed of metal powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/16—Formation of a green body by embedding the binder within the powder bed
-
- B22F3/1055—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B29C67/0077—
-
- B29C67/0096—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/68—Cleaning or washing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/46—Radiation means with translatory movement
- B22F12/47—Radiation means with translatory movement parallel to the deposition plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/50—Means for feeding of material, e.g. heads
- B22F12/55—Two or more means for feeding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/35—Cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/16—Fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2509/00—Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
Definitions
- the invention relates to a device and a method for constructing a layer body from a plurality of superimposed layers of free-flowing material.
- particulate material on a build platform within a build space, the layers being solidified and joined together in locally predetermined areas by the action of a tender so that at least one molding is formed fey the solidified and joined areas of the layers
- the device comprising a discharging device which is movable back and forth over the build space in at least one discharge direction and which has at least one discharge opening from which the free-flowing material is dischargeable in individual superimposed layers during the movement of the discharging device, according to the definition of the species in the alternative independent Patent Claims 1 and 12 .
- a computer-controlled method for producing three-dimensional moldings is described in EP 0 431 924 B1.
- Free-flowing particulate material is applied in a thin layer to a build space which is surrounded, as appropriate, by container walls and applied to a build platform, and a binder is selectively printed thereon, using a print head, according to computer data.
- the particle area onto which the binder is printed sticks together and solidifies under the influence of the binder and, if necessary, an additional hardener.
- the build platform is then lowered by a distance of one layer thickness into a build cylinder and provided with a new layer of particulate material, which is also printed as described above.
- the molding produced from solidified particulate material is embedded in loose particulate material and is subsequently removed therefrom. This is done, for example, using an extractor. This leaves the desired molding from which the remaining adhering particles are removed, for example by brushing.
- powder-supported rapid prototyping processes work in an identical or similar manner, for example, selective laser sintering or electron beam sintering, in which a loose particulate material is also applied in layers and selectively solidified with the aid of a controlled physical radiation source.
- selective laser sintering or electron beam sintering in which a loose particulate material is also applied in layers and selectively solidified with the aid of a controlled physical radiation source.
- the aforementioned method is summarized under the term, “three-dimensional printing” or “3D printing.”
- a build container or build cylinder having a build platform which may be lowered vertically into the build container requires a high degree of technical complexity for sealing the build container wall against the build platform to prevent uncontrolled outflow of the particulate material through the gap between the build platform and the build container wall.
- Another disadvantage of a lowerable build platform is the constantly increasing weight to be moved on the build platform as the building process progresses. In particular during application of another layer, it may be necessary to lower the build platform by a distance of more than one layer thickness and then to raise it again to the dimension required in order to adjust the layer thickness with sufficient accuracy.
- EP 1 872 928 A1 proposes to raise the discharging device and the print head relative to the build platform instead of lowering the build platform relative to the discharging device and print head for building larger three-dimensional moldings as the layering process progresses.
- This publication furthermore proposes to construct solid walls made of particulate material by solidifying the edge areas of the applied particulate material and by forming, from these walls, a build space-delimiting build container in whose inner chamber moldings of a selective size and shape may be constructed. It is alternatively proposed to construct moldings on the build space in a free-standing manner without using a build container for encompassing and supporting previously applied layers.
- the discharging device is designed as a dosing device which may undergo controlled activation and deactivation for the controlled output of a predetermined, preferably constant, linear volume flow of particulate material per length unit and per time unit, so that particulate material is not unnecessarily strewn around the molding to be built or is not “emptied” prematurely and thus does not lose its function while the layer is being deposited.
- a dosing device which may undergo controlled activation and deactivation for the controlled output of a predetermined, preferably constant, linear volume flow of particulate material per length unit and per time unit, so that particulate material is not unnecessarily strewn around the molding to be built or is not “emptied” prematurely and thus does not lose its function while the layer is being deposited.
- dosing-controlled and “intelligent” discharging devices have a relatively complex structure and are correspondingly expensive.
- Unintelligent discharging devices of a simpler design are unable to selectively dose particulate material or are not switchable.
- they include a scraper moving in the discharge direction or a counter-rotating roller or an oscillating blade.
- Design shapes may guide a quantity of material in two directions around the surface to be coated.
- These include discharging devices which comprise a simple, elongated hopper which has a slot on the underside as the discharge opening for discharging particulate material.
- at least one of the two hopper walls is replaced by a counter-rotating roller.
- the discharging device In order for the process to progress as described, the discharging device must pass completely over the area to be coated.
- a discharging device according to the aforementioned, simple and “unintelligent” design loses a remaining quantity of material in front of the discharging device in the discharge direction once the edge of the build space has been reached. This quantity of material would then be unavailable for the remaining building process. Nevertheless, it would be desirable to return this lost material to the discharging device for further layering.
- the discharging device carries along a predetermined material quantity which is sufficient for coating the desired surface without producing too many waste particles after passing over the edge of the build space.
- the quantity must be very precisely determined to avoid too small a dosing in each cases, which would result in insufficient layering.
- the continuous decrease in the quantity of material in the discharging device during travel has proven to be another disadvantage of this method, resulting in an unsteady coating process. This may cause the feedstock density to be greater at the beginning of discharging device travel than at the end of the travel, due to the greater weight of the material, when a residual amount is left over in the discharging device.
- the object of the invention is to refine a method and a device of the aforementioned type in such a way that a variable and coating material-saving adjustment of the build space size is possible while simultaneously maintaining high coating quality, despite a simple and cost-effective design of the discharging device.
- the invention is based on the idea that no free-flowing material or particulate material may flow out or be discharged through the discharge opening of a non-switchable discharging device, i.e., an “unintelligent” discharging device which has no way to turn the material flow through the discharge opening on and off, when the discharge opening is closed by a body which is located on an appropriate level and over which the discharging device passes.
- a non-switchable discharging device i.e., an “unintelligent” discharging device which has no way to turn the material flow through the discharge opening on and off, when the discharge opening is closed by a body which is located on an appropriate level and over which the discharging device passes.
- a body of this type then simulates an already discharged layer of free-flowing material, which prevents further discharge of material when this layer reaches the same level as the discharge opening of the discharging device. In this case, after all, the discharge opening has already been closed by the already discharged layer.
- the size of the build space may be easily limited by the body without requiring a build container which is laboriously adjusted to the particular size of the build space.
- the body is designed in such a way that it does not close the discharge opening but instead has means such as an opening to be controllably opened or closed, for example, for the purpose of discharging or conducting free-flowing material that is not used for layering from the discharge opening into a collecting container, so that it may be fed back into the layering process.
- At least one body delimiting the build space in at least one discharge direction of the discharging device and the build platform are vertically adjustable relative to each other according to the particular progress with which the layer body is being constructed, in such a way that a surface of the body facing the discharge opening is aligned flush with a topmost layer of the layer body which is yet to be produced or has already been produced, in order to close the discharge opening of discharging device and to prevent the discharging device from discharging free-flowing material or to discharge free-flowing material not used for layering into a collecting container when the discharge opening is located above the body.
- An only displacement-controlled and “unintelligent” discharging device is understood to be a discharging device which travels a certain computers-controlled discharge route, for example from a starting position to a reversing position, and which discharges or permits the outflow of free-flowing material along this discharge route and through the always open discharge opening onto the build space.
- the discharging device does not have any means of closing the discharge opening or, for instance, dosing the quantity of free-flowing material to be discharged, depending on the traveling distance.
- the at least one body is designed to foe adjustable within a horizontal plane parallel to the build platform for the purpose of variably delimiting the build space.
- the areal extension of the build space may then be delimited by the at least one body, in particular if one body is disposed in one discharge direction of the discharging device (e.g., the X direction) and another body is displayed in a discharge direction perpendicular thereto (e.g., the Y direction) in order to achieve a delimited build space in both directions.
- the discharging device is preferably an “unintelligent” discharging device and only displacement-controlled with regard to a predefined discharge distance extending from a starting position at one edge of the build space to a reversing position at the opposite edge of the build space. This additionally lowers costs.
- the reversing position may be predefined by the particular position of the at least one body, and the starting position is stationary. In this case, the coating operation is started from a stationary starting position, and the reversing position is defined as a function of the position of the at least one body on the horizontal plane.
- the starting position may be predefined by the particular position of the at least one body, and the reversing position is stationary.
- the coating operation is started from the at least one body and its direction is reversed at the stationary reversing position.
- the length of the discharge route to be traveled by the discharging device and thus the extension of the build space in this direction depends on the position of the at least one body.
- the starting position of the discharging device i.e., the place from which the discharging operation is started, is particularly preferably a filling position in which the discharging device may be filled or refilled with free-flowing material by means of a filling device.
- the position of the filling device on a horizontal plane parallel to the build platform is therefore also dependent on the position of the body.
- the filling device is then positioned, for example, above the discharging device.
- the container for collecting excess material is disposed, for example, at the reversing position or at the starting position.
- One body may then be disposed at the starting position and at least one other body may be disposed at the reversing position, means being provided in the one body or in the other body for introducing free-flowing material into the collecting container or for conducting it thereto.
- the one body closing the discharge opening of the discharging device is then used to prevent a discharge of free-flowing material at the edge of the build space, while the purpose of the other body on the opposite edge of the build space is to introduce excess, i.e., unused, free-flowing material into the collecting container, so that it may be supplied for reuse in the layering process.
- the at least one body is preferably a flat, plate-shaped body, for example a metal plate with or without a through-opening, depending on whether it is to prevent a discharge from the discharge opening of the discharging device or whether it is to discharge material into the collecting container.
- the build platform is particularly preferable to design the build platform to be adjustable vertically relative to the body and discharging device and to design the body and the discharging device to be adjustable horizontally relative to the build platform, in order to flexibly adapt the build space to the particularly requirements and, in particular, to the particular molding to be constructed, while minimizing the loss of free-flowing material.
- the invention additionally relates to a method for constructing a layer body from a plurality of superimposed layers of free-flowing material on a build platform within a build space.
- FIG. 1 shows a top view of a device for producing moldings with different build space sizes on a build platform
- FIGS. 2 a through 2 d show a schematic cross-sectional view of a device for producing moldings according to one preferred embodiment of the invention
- FIGS. 3 a through 3 g show a schematic cross-sectional view of another embodiment of the invention.
- FIG. 1 shows a preferred embodiment of a device 13 for constructing a layer body 5 from a plurality of superimposed layers of, for example, powdered, initially loose, particulate material on a build platform 6 within a build space 11 a through 11 d.
- Build spaces 11 a through 11 d of different sizes illustrated in FIG. 1 extend over a wide area in FIG. 1 parallel to build platform 8 in the horizontal X and Y directions, layer body 5 being constructed in the vertical Z direction, which is perpendicular to the drawing plane in FIG. 1 .
- Device 13 comprises a discharging device 1 which is movable back and forth over build space 11 a through 11 d in at least one discharge direction, in this case, for example, in the X direction and/or the Y direction, discharging device 1 having at least one discharge opening 14 , which is not visible in this view and from which the particulate material, may be discharged in individual superimposed layers during the movement of discharging device 1 .
- Discharging device 1 is preferably a non-switchable discharging device, i.e., without the option of turning the material flow through discharge opening 14 on and off, so that free-flowing material or particulate material may or may not flow out. Instead, particulate material continuously flows through discharge opening 14 in discharging device 1 unless discharge opening 14 is closed by means belonging to discharging device 1 or if no (more) particulate material is present in a reservoir of discharging device 1 .
- Device 13 furthermore comprises a print head 2 which is moveable back and forth over build space 11 , for example, in the X and V directions for the selective application of binder onto at least one discharged layer in order to solidify and join together discharged layers in locally predetermined areas of build space 11 a through 11 d by the action of binders, so that at least one molding 4 is formed by the solidified and joined areas of the layers of layer body 5 in a known manner.
- a print head 2 which is moveable back and forth over build space 11 , for example, in the X and V directions for the selective application of binder onto at least one discharged layer in order to solidify and join together discharged layers in locally predetermined areas of build space 11 a through 11 d by the action of binders, so that at least one molding 4 is formed by the solidified and joined areas of the layers of layer body 5 in a known manner.
- print head 2 could be replaced with a radiation source if the discharged, free-flowing material already contains a binder which is then hardened by selective irradiation with the radiation source for the purpose of creating molding 4 .
- the free-flowing material itself is fused or slightly melted by the irradiation and joined thereby.
- the extension of build space 11 a through 11 d in the X and Y directions is predefined by the application of material to build platform 6 , different sizes of build spaces 11 a through 11 d being illustrated in FIG. 1 . If build space 11 a through 11 d is described in the illustrated orthogonal coordinate system 9 , each extension or size of build spaces 11 a through 11 d may be displayed as a rectangle, starting from origin 10 . The dimensions of build platform 6 in the X and Y directions then correspond to a maximum displayable size of one build space 11 a.
- One rectangular side of a build space 11 of this type is generally determined, for example, by the discharge route or discharge travel of discharging device 1 in discharge direction X, so that, in the present case, the size of the build space is dependent on the length of this discharge route. Based on the example in FIG. 1 , the discharge route of discharging device 1 thus increases from 11 d to 11 a in the X direction.
- the other rectangular side of a build space 11 a through 11 d is determined, for example, by the width of discharge opening 14 of discharging device 1 in the Y direction, which may be formed in particular, by a an elongated slot.
- different lengths of discharge openings 14 of discharging device 1 are provided to obtain the variable-length rectangular side of build spaces 11 a through 11 d in the Y direction.
- one layer of layer body 5 may, on the whole, be completely produced in one pass of the discharge route in the X direction.
- the edges of build space 11 are preferably formed by printed walls 3 in the X and Y directions, i.e., the particulate material is selectively solidified here by print head 2 so that loose particulate material of layer body 5 located within the edges of build space 11 is hot able to flow off in areas outside build space 11 .
- print head 2 suitably prints, the edge areas of each discharged layer.
- a separate build container or separate build walls could be used to delimit build space 11 .
- build platform 6 is preferably lowered as the height of layer body 5 increases in the Z direction, in particular using drives and guides which are not illustrated. Discharging device 1 therefore remains on its initial level for each new layer to be discharged and is therefore movable relative to build platform 6 , for example only in the X direction and/or the Y direction.
- build platform 6 could, be designed to be stationary, and at least discharging device 1 could be designed to be movable relative to stationary build platform 6 in both the X and Y directions as well as the Z direction.
- build platform 6 is vertically adjustable relative to, for example, two bodies 8 , 8 a delimiting the build space in discharge direction X of the discharging device according to the particular progression of construction, in such a way that surfaces of bodies Bf 8 a facing discharge opening 14 of discharging device 1 are aligned flush with a topmost layer of layer body 5 yet to be produced or already produced.
- the purpose of the two bodies 8 , 8 a is to close discharge opening 14 of discharging device 1 and to prevent discharging device 1 from discharging free-flowing material (body 8 ) or to discharge free-flowing material that is not used for layering into a collecting container 7 (body 8 a ) when discharge opening 14 of discharging device 1 is located above particular body 8 , 8 a.
- At least one of bodies 8 , 8 a is designed to be adjustable within a horizontal plane parallel to build platform 6 and, in particular, in the X direction, for the purpose of variably delimiting build space 11 .
- the areal extension of build space 11 is then delimited by body 8 at least in the X direction, in particular when the position of body 8 is designed to be movable in discharge direction X of discharging device 1 .
- Build platform 6 is therefore particularly preferably designed to be adjustable relative to bodies 8 , 8 a , discharging device 1 and print head 2 in the vertical Z direction, and body 8 , discharging device 1 and print head 2 are designed to be movable relative to build platform 6 in the horizontal X direction.
- the position of body 8 is adjusted in the X direction in order to flexibly adapt build space 11 to the particular requirements and, in particular, to the one or more moldings 4 to be constructed, while minimizing losses of free-flowing material.
- the two bodies 8 , 8 a are consequently always on the same level in the Z direction, in particular through attachment to or guidance on a stationary frame of device 13 , which is not illustrated herein, while build platform 6 is being lowered as the construction of layer body 5 continues to progress.
- Bodies 8 , 8 a are preferably flat, plate-shaped bodies, for example metal plates with and without through-openings 12 , depending on whether the particular body 8 or 8 a is to prevent material from being discharged from discharge opening 14 of discharging device 1 or to permit or cause material to be discharged into collecting container 7 .
- Body 8 a is therefore preferably formed by a perforated plate having at least one through-opening 12 .
- Body 8 a may furthermore also comprise means for conducting particulate material into collecting container 7 .
- At least one through-opening 12 of body 8 a may be controllable, i.e., the at least one through-opening 12 may be opened or closed as a function of external electrical, pneumatic and/or mechanical control signals in order to discharge or conduct free-flowing material not used for layering from discharge opening 14 info collecting container 7 for the purpose of returning it to the layering process.
- discharging device 1 is displacement-controlled, for example, by an electronic control unit, which is not illustrated here, with regard to a predefined discharge route in the X direction, extending from an initial, starting or idle position 14 at one edge of build space 11 to a reversing position 16 at the opposite edge of build space 11 ; i.e., in response to a starting command, it first moves from its starting or idle position 14 in the X direction to reversing position 16 , at which the direction of movement is automatically reversed, if necessary upon expiry of a certain dwell time at reversing position 16 .
- an electronic control unit which is not illustrated here, with regard to a predefined discharge route in the X direction, extending from an initial, starting or idle position 14 at one edge of build space 11 to a reversing position 16 at the opposite edge of build space 11 ; i.e., in response to a starting command, it first moves from its starting or idle position 14 in the X direction to reversing position 16 , at which the direction of
- particulate material is preferably continuously applied to build platform 6 or to a previously layered part of layer body 5 via discharge opening 14 .
- discharging device 1 which in this case is, for example, a discharging hopper of a filling device which is not illustrated herein but is easy to picture, is preferably filled with a quantity of particulate material corresponding to a multiple of layers to be applied.
- starting position 15 is predefined by the position of body 8 adjustable in the X direction, while reversing position 16 , at which body 8 a is located, is stationary.
- the coating operation is started from the particular set position of body 8 , body 8 closing discharge opening 14 of discharging device 1 precisely at starting position 15 and preventing particulate material from being discharged, as is easily pictured on the basis of FIG. 2 a . Only after discharging device 1 has moved a distance from body 8 is free space the height or thickness of one layer provided below discharge opening 14 , into which particulate material may be discharged to form a single layer.
- the following method steps are carried out in the embodiment in FIGS. 2 a through 2 d;
- Build platform 6 is first positioned in the vertical direction relative to bodies 8 and 8 a , to discharging device 1 and to print head 2 , in such a way that the surfaces of body 8 , 8 a facing discharge opening 14 , discharge opening 14 of discharging device 1 and print head 2 are disposed higher than the current topmost layer of layer body 5 by a distance of one layer thickness.
- discharging device 1 When discharging device 1 is located in its starting position right above body 8 , its discharge opening 14 is closed by body 8 , as is easily pictured on the basis of FIG. 2 a .
- Print head 2 is then preferably located on the far side of opposite reversing position 16 of discharging device 1 , i.e., outside build space 11 , in order to avoid colliding later on with discharging device 1 once it has reached reversing position 16 .
- discharging device 1 is filled with free-flowing material at starting position 15 in a quantity sufficient to produce, for example, a single layer of layer body 5 .
- the filling device which is not illustrated herein, is then positioned, for example, above discharging device 1 .
- the control unit then activates discharging device 1 so that it moves from starting position 15 to reversing position 16 while discharging particulate material to construct one layer. This situation is illustrated in FIG. 2 a.
- discharge opening 14 is located right above opened through-opening 12 in body 8 a , so that any excess particulate material still remaining in discharging device 1 for producing a layer is able to flow into collecting container 7 , which is disposed, for example, below through-opening 12 in body 8 a .
- the control unit then returns emptied discharging device 1 to its starting position 15 , whereby it is followed by print head 2 in order to provide or print binder onto a locally predetermined area of the discharged layer. Since discharging device 1 is empty during this movement, i.e., it is moved without particulate material, an unwanted application of particulate material to layer body 5 is avoided. This operation is illustrated in FIG. 2 c.
- discharging device 1 Once discharging device 1 has reached starting position 15 , it is refilled with particulate material for one layer, and the described cycle begins all over again ( FIG. 2 d ). The cycle according to FIGS. 2 a through 2 d are repeated until the entire layer body 5 is created. Print head 2 also prints the areas that represent walls 3 of layer body 5 .
- reversing position 16 is determined by the position of body 8 set in the X direction, and starting position 25 , where body 8 a is located, is stationary. In this case, the coating operation is started at a stationary starting position 15 , and reversing position 16 is defined depending on the position of body 8 in the X direction.
- Build platform 6 is first positioned vertically (in the Z direction) relative to bodies 8 , 8 a , to discharging device 1 and to print head 2 , in such a way that, on the one hand, the surfaces of body 8 , 8 a facing discharge opening 14 and, on the other hand, discharge opening 14 are disposed higher than the current topmost layer of layer body 5 by a distance of one layer thickness.
- Body 8 a which has the at least one through-opening 12 , and collecting container 7 located thereunder are positioned at starting position 15
- body 8 which does not have a through-opening 12 of this type, is positioned at reversing position 16 .
- discharging device 1 is filled by a filling device, which is not illustrated herein, for example in a position located a short distance from starting position 15 in the X direction, in which a part of body 8 a facing build space 11 is able to close discharge opening 14 in discharging device 1 , as shown in FIG. 3 g .
- Discharging device 1 is filled with particulate material for producing, for example, two layers of layer body 5 .
- Print head 2 is located in the starting position, preferable on the near side of body 8 a , so that it does not collide with discharging device 1 .
- Discharging device 1 is then activated by the control unit in order to move from starting position 15 to reversing position 16 for the purpose of discharging particulate material in this matter to construct a layer ( FIG. 3 a ).
- body 8 closes discharge opening 14 in discharging device 1 .
- Print head 2 is subsequently activated by the control unit in order to print binder onto a locally determined area of the discharged layer as well as the areas that form walls 3 of layer body 5 ( FIG. 3 b ). Afterwards, print head 2 returns to its starting position.
- build platform 6 is lowered by a distance of one layer height or one layer thickness so that the surfaces of bodies 8 and 8 a facing discharge opening 14 , discharge opening 14 of discharging device 1 and print head 2 are again disposed higher than the current topmost layer of layer body 5 by a distance of one layer thickness.
- Discharging device 1 is then activated by the control unit in order to move from reversing position 16 back to starting position 15 while discharging particulate material for constructing another layer, as illustrated in FIG. 3 c.
- any particulate material that is not used for the two discharged layers may flow through the at least one through-opening 12 of body 8 a into collecting container 7 ( FIG. 3 d ).
- Print head 2 is subsequently activated so that it prints binder onto the areas of molding 4 and walls 3 of the additional discharged layer.
- Emptied discharging device 1 may then move in front of print head 2 , as shown in FIG. 3 e.
- discharging device 1 and print head 2 are moved back to their starting position 15 after the printing operation, build platform 6 preferably being simultaneously lowered by a distance of one layer height or one layer thickness for the purpose of making space in the vertical direction for a subsequent layering operation.
- bodies 8 , 8 a , discharging device 1 and the print head could, of course, also be designed to be movable relative to a stationary build platform 6 in the vertical 2 direction, according to another embodiment,
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011007957.2 | 2011-01-05 | ||
DE102011007957A DE102011007957A1 (de) | 2011-01-05 | 2011-01-05 | Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper |
DE102011007957 | 2011-01-05 | ||
PCT/DE2011/001850 WO2012092912A1 (fr) | 2011-01-05 | 2011-10-14 | Dispositif et procédé de construction d'un corps stratifié qui comporte au moins un corps délimitant la zone de construction et dont la position peut être réglée |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2011/001850 A-371-Of-International WO2012092912A1 (fr) | 2011-01-05 | 2011-10-14 | Dispositif et procédé de construction d'un corps stratifié qui comporte au moins un corps délimitant la zone de construction et dont la position peut être réglée |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/976,586 Continuation US9649812B2 (en) | 2011-01-05 | 2015-12-21 | Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130234355A1 US20130234355A1 (en) | 2013-09-12 |
US9242413B2 true US9242413B2 (en) | 2016-01-26 |
Family
ID=45688123
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/883,397 Active 2032-02-09 US9242413B2 (en) | 2011-01-05 | 2011-10-14 | Device and method for constructing a laminar body comprising at least one position adjustable body defining the working area |
US14/976,586 Active US9649812B2 (en) | 2011-01-05 | 2015-12-21 | Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area |
US15/487,827 Active 2032-09-18 US10513105B2 (en) | 2011-01-05 | 2017-04-14 | Device and method for constructing a layer body |
US16/688,394 Active US10946636B2 (en) | 2011-01-05 | 2019-11-19 | Device and method for constructing a layer body |
US17/193,549 Active US11407216B2 (en) | 2011-01-05 | 2021-03-05 | Device and method for constructing a layer body |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/976,586 Active US9649812B2 (en) | 2011-01-05 | 2015-12-21 | Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area |
US15/487,827 Active 2032-09-18 US10513105B2 (en) | 2011-01-05 | 2017-04-14 | Device and method for constructing a layer body |
US16/688,394 Active US10946636B2 (en) | 2011-01-05 | 2019-11-19 | Device and method for constructing a layer body |
US17/193,549 Active US11407216B2 (en) | 2011-01-05 | 2021-03-05 | Device and method for constructing a layer body |
Country Status (4)
Country | Link |
---|---|
US (5) | US9242413B2 (fr) |
EP (1) | EP2661354B1 (fr) |
DE (1) | DE102011007957A1 (fr) |
WO (1) | WO2012092912A1 (fr) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170028630A1 (en) * | 2007-10-21 | 2017-02-02 | Voxeljet Ag | Method and device for layer-wise production of patterns |
US9649812B2 (en) | 2011-01-05 | 2017-05-16 | Voxeljet Ag | Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area |
US9656423B2 (en) | 2010-03-31 | 2017-05-23 | Voxeljet Ag | Device and method for producing three-dimensional models |
EP3210760A1 (fr) * | 2016-01-29 | 2017-08-30 | XYZprinting, Inc. | Appareil d'impression en trois dimensions |
US9770867B2 (en) | 2010-12-29 | 2017-09-26 | Voxeljet Ag | Method and material system for building models in layers |
US9878494B2 (en) | 2011-08-31 | 2018-01-30 | Voxeljet Ag | Device for constructing models in layers |
US9914169B2 (en) | 2010-04-17 | 2018-03-13 | Voxeljet Ag | Method and device for producing three-dimensional models |
US9925721B2 (en) | 2010-02-04 | 2018-03-27 | Voxeljet Ag | Device for producing three-dimensional models |
US9943981B2 (en) | 2013-12-11 | 2018-04-17 | Voxeljet Ag | 3D infiltration method |
US9956612B1 (en) * | 2017-01-13 | 2018-05-01 | General Electric Company | Additive manufacturing using a mobile scan area |
US9962885B2 (en) | 2010-04-14 | 2018-05-08 | Voxeljet Ag | Device for producing three-dimensional models |
US10022795B1 (en) * | 2017-01-13 | 2018-07-17 | General Electric Company | Large scale additive machine |
US10022794B1 (en) * | 2017-01-13 | 2018-07-17 | General Electric Company | Additive manufacturing using a mobile build volume |
US20180200962A1 (en) * | 2017-01-13 | 2018-07-19 | General Electric Company | Additive manufacturing using a dynamically grown build envelope |
US10052682B2 (en) | 2012-10-12 | 2018-08-21 | Voxeljet Ag | 3D multi-stage method |
US10059058B2 (en) | 2012-06-22 | 2018-08-28 | Voxeljet Ag | Device for building a multilayer structure with storage container or filling container movable along the dispensing container |
US10059062B2 (en) | 2012-05-25 | 2018-08-28 | Voxeljet Ag | Device for producing three-dimensional models with special building platforms and drive systems |
US10213831B2 (en) | 2012-11-25 | 2019-02-26 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US10220568B2 (en) | 2013-12-02 | 2019-03-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US10220567B2 (en) | 2012-03-06 | 2019-03-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10226919B2 (en) | 2007-07-18 | 2019-03-12 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US10343301B2 (en) | 2013-02-28 | 2019-07-09 | Voxeljet Ag | Process for producing a moulding using a water-soluble casting mould and material system for the production thereof |
US10414093B2 (en) * | 2016-08-10 | 2019-09-17 | Toyota Jidosha Kabushiki Kaisha | Three-dimensional molding device and three-dimensional molding method |
US10442170B2 (en) | 2013-12-20 | 2019-10-15 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US10478893B1 (en) * | 2017-01-13 | 2019-11-19 | General Electric Company | Additive manufacturing using a selective recoater |
US10632732B2 (en) | 2016-11-08 | 2020-04-28 | 3Dbotics, Inc. | Method and apparatus for making three-dimensional objects using a dynamically adjustable retaining barrier |
US10682809B2 (en) | 2014-12-22 | 2020-06-16 | Voxeljet Ag | Method and device for producing 3D moulded parts by means of a layer construction technique |
US10786945B2 (en) | 2013-10-30 | 2020-09-29 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
US10843404B2 (en) | 2015-05-20 | 2020-11-24 | Voxeljet Ag | Phenolic resin method |
US10913207B2 (en) | 2014-05-26 | 2021-02-09 | Voxeljet Ag | 3D reverse printing method and device |
US10946556B2 (en) | 2014-08-02 | 2021-03-16 | Voxeljet Ag | Method and casting mold, in particular for use in cold casting methods |
US11097469B2 (en) | 2012-10-15 | 2021-08-24 | Voxeljet Ag | Method and device for producing three-dimensional models with a temperature-controllable print head |
US11097471B2 (en) | 2014-03-31 | 2021-08-24 | Voxeljet Ag | Method and device for 3D printing using temperature-controlled processing |
US11235518B2 (en) | 2015-12-01 | 2022-02-01 | Voxeljet Ag | Method and device for producing three-dimensional components with the aid of an overfeed sensor |
US11504879B2 (en) | 2020-04-17 | 2022-11-22 | Beehive Industries, LLC | Powder spreading apparatus and system |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE381398T1 (de) | 2000-09-25 | 2008-01-15 | Voxeljet Technology Gmbh | Verfahren zum herstellen eines bauteils in ablagerungstechnik |
DE102006038858A1 (de) | 2006-08-20 | 2008-02-21 | Voxeljet Technology Gmbh | Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen |
DE102007050953A1 (de) | 2007-10-23 | 2009-04-30 | Voxeljet Technology Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE102011105688A1 (de) | 2011-06-22 | 2012-12-27 | Hüttenes-Albertus Chemische Werke GmbH | Verfahren zum schichtweisen Aufbau von Modellen |
DE102013021091A1 (de) | 2013-12-18 | 2015-06-18 | Voxeljet Ag | 3D-Druckverfahren mit Schnelltrockenschritt |
DE102013021891A1 (de) | 2013-12-23 | 2015-06-25 | Voxeljet Ag | Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren |
JP2015171780A (ja) * | 2014-03-12 | 2015-10-01 | セイコーエプソン株式会社 | 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物 |
US10814608B2 (en) * | 2014-09-29 | 2020-10-27 | Hewlett-Packard Development Company, L.P. | Generating three-dimensional objects and generating images on substrates |
DE102015003372A1 (de) | 2015-03-17 | 2016-09-22 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater |
DE102015110264A1 (de) * | 2015-06-25 | 2016-12-29 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zur generativen Herstellung wenigstens eines dreidimensionalen Objekts |
DE102015011503A1 (de) | 2015-09-09 | 2017-03-09 | Voxeljet Ag | Verfahren zum Auftragen von Fluiden |
DE102015011790A1 (de) | 2015-09-16 | 2017-03-16 | Voxeljet Ag | Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile |
DE102016002777A1 (de) | 2016-03-09 | 2017-09-14 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen |
WO2018017082A1 (fr) * | 2016-07-20 | 2018-01-25 | Hewlett-Packard Development Company, L.P. | Impression d'objets tridimensionnels (3d) |
US9987682B2 (en) | 2016-08-03 | 2018-06-05 | 3Deo, Inc. | Devices and methods for three-dimensional printing |
DE102016013610A1 (de) | 2016-11-15 | 2018-05-17 | Voxeljet Ag | Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken |
DE102017006860A1 (de) | 2017-07-21 | 2019-01-24 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler |
US11420384B2 (en) | 2017-10-03 | 2022-08-23 | General Electric Company | Selective curing additive manufacturing method |
US11351724B2 (en) | 2017-10-03 | 2022-06-07 | General Electric Company | Selective sintering additive manufacturing method |
US11590691B2 (en) | 2017-11-02 | 2023-02-28 | General Electric Company | Plate-based additive manufacturing apparatus and method |
US11254052B2 (en) | 2017-11-02 | 2022-02-22 | General Electric Company | Vatless additive manufacturing apparatus and method |
DE102017126274B4 (de) * | 2017-11-09 | 2019-06-19 | Bundesrepublik Deutschland, vertreten durch die Bundesministerin für Wirtschaft und Energie, diese vertreten durch den Präsidenten der Bundesanstalt für Materialforschung und-prüfung (BAM) | Schlickerauftragseinheit und Verfahren zum Schichtauftrag für die schlickerbasierte additive Fertigung |
US10821668B2 (en) | 2018-01-26 | 2020-11-03 | General Electric Company | Method for producing a component layer-by- layer |
US10821669B2 (en) | 2018-01-26 | 2020-11-03 | General Electric Company | Method for producing a component layer-by-layer |
US11072039B2 (en) | 2018-06-13 | 2021-07-27 | General Electric Company | Systems and methods for additive manufacturing |
DE102018006473A1 (de) | 2018-08-16 | 2020-02-20 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik mittels Verschlussvorrichtung |
DE102019000796A1 (de) | 2019-02-05 | 2020-08-06 | Voxeljet Ag | Wechselbare Prozesseinheit |
US11498283B2 (en) | 2019-02-20 | 2022-11-15 | General Electric Company | Method and apparatus for build thickness control in additive manufacturing |
US11794412B2 (en) | 2019-02-20 | 2023-10-24 | General Electric Company | Method and apparatus for layer thickness control in additive manufacturing |
US11179891B2 (en) | 2019-03-15 | 2021-11-23 | General Electric Company | Method and apparatus for additive manufacturing with shared components |
DE102019007595A1 (de) | 2019-11-01 | 2021-05-06 | Voxeljet Ag | 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat |
US11951679B2 (en) | 2021-06-16 | 2024-04-09 | General Electric Company | Additive manufacturing system |
US11731367B2 (en) | 2021-06-23 | 2023-08-22 | General Electric Company | Drive system for additive manufacturing |
US11958249B2 (en) | 2021-06-24 | 2024-04-16 | General Electric Company | Reclamation system for additive manufacturing |
US11958250B2 (en) | 2021-06-24 | 2024-04-16 | General Electric Company | Reclamation system for additive manufacturing |
US11826950B2 (en) | 2021-07-09 | 2023-11-28 | General Electric Company | Resin management system for additive manufacturing |
US11813799B2 (en) | 2021-09-01 | 2023-11-14 | General Electric Company | Control systems and methods for additive manufacturing |
Citations (188)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2640629A (en) | 1947-01-25 | 1953-06-02 | Foster Wheeler Corp | Fuel feeding apparatus with vibratory hopper |
US2692142A (en) | 1950-04-06 | 1954-10-19 | Henry G Hunter | Apparatus for distributing sand or the like |
US2857938A (en) | 1953-10-27 | 1958-10-28 | Eugene A Wahl | Powder-filling machine |
US3616972A (en) | 1969-09-18 | 1971-11-02 | Daniel Lamar Christy | Machine for dispensing and distributing dry flowable materials |
US3616969A (en) | 1967-05-25 | 1971-11-02 | Ricoh Kk | Developer replenishing means for an electrostatographic apparatus |
US3815527A (en) | 1972-09-05 | 1974-06-11 | J Dobbins | Roller, hopper, scatter shield and brake assembly for precision seeding |
US3884401A (en) | 1973-06-22 | 1975-05-20 | Gen Atomic Co | Valve |
US3913503A (en) | 1972-12-15 | 1975-10-21 | Becker Karl Masch | Apparatus for planting individual seeds in predetermined locations |
US4239715A (en) | 1971-01-13 | 1980-12-16 | The Glacier Metal Company Limited | Method for manufacturing an elongated strip bearing |
US4279949A (en) | 1978-10-05 | 1981-07-21 | J. M. Voith Gmbh | Process and apparatus for coating webs and adjusting the wet application weight of the coating material |
US4369025A (en) | 1978-02-13 | 1983-01-18 | Epsi Brevets Et Participations S.A. | Apparatus for manufacturing elements by means of a hardenable binding agent to which a liquid is added |
US4575330A (en) | 1984-08-08 | 1986-03-11 | Uvp, Inc. | Apparatus for production of three-dimensional objects by stereolithography |
US4579252A (en) | 1983-05-05 | 1986-04-01 | K-Tron International, Inc. | Loss-in-weight gravimetric feeder |
US4630755A (en) | 1984-12-11 | 1986-12-23 | Spiral Systems, Inc. | Apparatus for precisely dispensing free flowing solids |
US4665492A (en) | 1984-07-02 | 1987-05-12 | Masters William E | Computer automated manufacturing process and system |
US4669634A (en) | 1981-08-04 | 1987-06-02 | Roussel Uclaf | Apparatus and process for the metering of predetermined quantities of at least one product |
EP0224621A1 (fr) | 1985-11-19 | 1987-06-10 | Portals Engineering Limited | Vanne de réglage pour matériaux en vrac |
US4752352A (en) | 1986-06-06 | 1988-06-21 | Michael Feygin | Apparatus and method for forming an integral object from laminations |
EP0318247A1 (fr) | 1987-11-23 | 1989-05-31 | G.E.I. Filling, Capping And Labelling Limited | Vannes de réglage pour matériaux en vrac |
US4863538A (en) | 1986-10-17 | 1989-09-05 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US4889433A (en) | 1986-02-26 | 1989-12-26 | Micro Chemical, Inc. | Programmable apparatus and method for delivering microingredient feed additives to animals by weight |
US4944817A (en) | 1986-10-17 | 1990-07-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US5017753A (en) | 1986-10-17 | 1991-05-21 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
EP0431924A2 (fr) | 1989-12-08 | 1991-06-12 | Massachusetts Institute Of Technology | Techniques d'impression tri-dimensionnelle |
US5053090A (en) | 1989-09-05 | 1991-10-01 | Board Of Regents, The University Of Texas System | Selective laser sintering with assisted powder handling |
US5059266A (en) | 1989-05-23 | 1991-10-22 | Brother Kogyo Kabushiki Kaisha | Apparatus and method for forming three-dimensional article |
US5076869A (en) | 1986-10-17 | 1991-12-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US5127037A (en) | 1990-08-15 | 1992-06-30 | Bynum David K | Apparatus for forming a three-dimensional reproduction of an object from laminations |
US5132143A (en) | 1986-10-17 | 1992-07-21 | Board Of Regents, The University Of Texas System | Method for producing parts |
US5134569A (en) | 1989-06-26 | 1992-07-28 | Masters William E | System and method for computer automated manufacturing using fluent material |
US5136515A (en) | 1989-11-07 | 1992-08-04 | Richard Helinski | Method and means for constructing three-dimensional articles by particle deposition |
US5140937A (en) | 1989-05-23 | 1992-08-25 | Brother Kogyo Kabushiki Kaisha | Apparatus for forming three-dimensional article |
US5147587A (en) | 1986-10-17 | 1992-09-15 | Board Of Regents, The University Of Texas System | Method of producing parts and molds using composite ceramic powders |
US5149548A (en) | 1989-07-03 | 1992-09-22 | Brother Kogyo Kabushiki Kaisha | Apparatus for forming three-dimension article |
US5155324A (en) | 1986-10-17 | 1992-10-13 | Deckard Carl R | Method for selective laser sintering with layerwise cross-scanning |
US5156697A (en) | 1989-09-05 | 1992-10-20 | Board Of Regents, The University Of Texas System | Selective laser sintering of parts by compound formation of precursor powders |
US5182170A (en) | 1989-09-05 | 1993-01-26 | Board Of Regents, The University Of Texas System | Method of producing parts by selective beam interaction of powder with gas phase reactant |
US5216616A (en) | 1989-06-26 | 1993-06-01 | Masters William E | System and method for computer automated manufacture with reduced object shape distortion |
US5248456A (en) | 1989-06-12 | 1993-09-28 | 3D Systems, Inc. | Method and apparatus for cleaning stereolithographically produced objects |
US5252264A (en) | 1991-11-08 | 1993-10-12 | Dtm Corporation | Apparatus and method for producing parts with multi-directional powder delivery |
US5284695A (en) | 1989-09-05 | 1994-02-08 | Board Of Regents, The University Of Texas System | Method of producing high-temperature parts by way of low-temperature sintering |
US5296062A (en) | 1986-10-17 | 1994-03-22 | The Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US5342919A (en) | 1992-11-23 | 1994-08-30 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
US5352405A (en) | 1992-12-18 | 1994-10-04 | Dtm Corporation | Thermal control of selective laser sintering via control of the laser scan |
US5354414A (en) | 1988-10-05 | 1994-10-11 | Michael Feygin | Apparatus and method for forming an integral object from laminations |
US5387380A (en) | 1989-12-08 | 1995-02-07 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
US5431967A (en) | 1989-09-05 | 1995-07-11 | Board Of Regents, The University Of Texas System | Selective laser sintering using nanocomposite materials |
WO1995018715A1 (fr) | 1994-01-11 | 1995-07-13 | Eos Gmbh Electro Optical Systems | Procede et dispositif de production d'objets tridimensionnels |
US5433520A (en) | 1993-12-13 | 1995-07-18 | Michigan Ash Sales Company | Method and apparatus for continuously processing particulate cementitious material and fly ash solids and mixing them with a liquid to provide a liquid slurry of consistent proportions |
DE4440397C1 (de) | 1994-11-11 | 1995-09-21 | Eos Electro Optical Syst | Verfahren zum Herstellen von Gußformen |
EP0361847B1 (fr) | 1988-09-26 | 1995-11-29 | 3D Systems, Inc. | Application de couches stéréolithographiques |
WO1995034468A1 (fr) | 1994-06-14 | 1995-12-21 | Soligen, Inc. | Appareil de manipulation de poudre pour equipement de fabrication par addition |
US5482659A (en) | 1994-12-22 | 1996-01-09 | United Technologies Corporation | Method of post processing stereolithographically produced objects |
US5490962A (en) | 1993-10-18 | 1996-02-13 | Massachusetts Institute Of Technology | Preparation of medical devices by solid free-form fabrication methods |
WO1996005038A1 (fr) | 1994-08-08 | 1996-02-22 | Board Of Regents, The University Of Texas System | Procede et systeme de fabrication d'implants osseux artificiels |
US5506607A (en) | 1991-01-25 | 1996-04-09 | Sanders Prototypes Inc. | 3-D model maker |
US5555176A (en) | 1994-10-19 | 1996-09-10 | Bpm Technology, Inc. | Apparatus and method for making three-dimensional articles using bursts of droplets |
US5573055A (en) | 1990-10-19 | 1996-11-12 | Borden (Uk) Limited | Water dispersible moulds |
US5582231A (en) | 1995-04-28 | 1996-12-10 | General Motors Corporation | Sand mold member and method |
US5599581A (en) | 1993-11-02 | 1997-02-04 | Owens Corning Fiberglas Technology, Inc. | Method for pneumatically controlling discharge of particulate material |
US5601868A (en) | 1994-09-16 | 1997-02-11 | Tzn Forschungs- Und Entwicklungszentrum Gmbh | Method of coating sheet material with an oscillating doctor blade |
DE19545167A1 (de) | 1995-12-04 | 1997-06-05 | Bayerische Motoren Werke Ag | Verfahren zum Herstellen von Bauteilen oder Werkzeugen |
US5658412A (en) | 1993-01-11 | 1997-08-19 | Eos Gmbh Electro Optical Systems | Method and apparatus for producing a three-dimensional object |
US5730925A (en) | 1995-04-21 | 1998-03-24 | Eos Gmbh Electro Optical Systems | Method and apparatus for producing a three-dimensional object |
US5740051A (en) | 1991-01-25 | 1998-04-14 | Sanders Prototypes, Inc. | 3-D model making |
US5753274A (en) | 1995-03-30 | 1998-05-19 | Eos Gmbh Electronics Optical Systems | Apparatus for producing a three-dimensional object |
WO1998028124A2 (fr) | 1996-12-20 | 1998-07-02 | Z Corporation | Procede et dispositif servant a fabriquer le prototype d'un objet tridimensionnel |
DE4325573C2 (de) | 1993-07-30 | 1998-09-03 | Stephan Herrmann | Verfahren zur Erzeugung von Formkörpern durch sukzessiven Aufbau von Pulverschichten sowie Vorichtung zu dessen Durchführung |
US5851465A (en) | 1995-12-29 | 1998-12-22 | Massachusetts Institute Of Technology | Binder composition for use in three dimensional printing |
US5902441A (en) | 1996-09-04 | 1999-05-11 | Z Corporation | Method of three dimensional printing |
US5902537A (en) | 1995-02-01 | 1999-05-11 | 3D Systems, Inc. | Rapid recoating of three-dimensional objects formed on a cross-sectional basis |
US5934343A (en) | 1997-03-31 | 1999-08-10 | Therics, Inc | Method for dispensing of powders |
US5943235A (en) | 1995-09-27 | 1999-08-24 | 3D Systems, Inc. | Rapid prototyping system and method with support region data processing |
US6048188A (en) | 1988-04-18 | 2000-04-11 | 3D Systems, Inc. | Stereolithographic curl reduction |
WO2000021736A1 (fr) | 1998-10-09 | 2000-04-20 | Eos Gmbh Electro Optical Systems | Dispositif permettant de fabriquer un objet tridimensionnel, en particulier machine de frittage au laser |
AU720255B2 (en) | 1996-03-06 | 2000-05-25 | BioZ, L.L.C | Method for formation of a three-dimensional body |
DE19853834A1 (de) | 1998-11-21 | 2000-05-31 | Ingo Ederer | Verfahren zum Herstellen von Bauteilen durch Auftragstechnik |
US6094994A (en) | 1996-12-26 | 2000-08-01 | Satake Corporation | Impact type flow meter with trough-like material supply device having a built in supply opening |
WO2000051809A1 (fr) | 1999-03-01 | 2000-09-08 | Optoform Sarl Procedes De Prototypage Rapide | Procede de dispositif de prototype rapide, et piece tridimensionnelle obtenue par prototypage rapide |
US6116517A (en) | 1996-07-01 | 2000-09-12 | Joachim Heinzl | Droplet mist generator |
US6133353A (en) | 1999-11-11 | 2000-10-17 | 3D Systems, Inc. | Phase change solid imaging material |
US6146567A (en) | 1993-02-18 | 2000-11-14 | Massachusetts Institute Of Technology | Three dimensional printing methods |
US6147138A (en) | 1997-06-06 | 2000-11-14 | Generis Gmbh | Method for manufacturing of parts by a deposition technique |
US6155331A (en) | 1994-05-27 | 2000-12-05 | Eos Gmbh Electro Optical Systems | Method for use in casting technology |
US6165406A (en) | 1999-05-27 | 2000-12-26 | Nanotek Instruments, Inc. | 3-D color model making apparatus and process |
WO2000078485A2 (fr) | 1999-06-21 | 2000-12-28 | Eos Gmbh Electro Optical Systems | Dispositif de depot de poudre pour un dispositif de fabrication couche par couche d'un objet tridimensionnel |
US6169605B1 (en) | 1991-01-31 | 2001-01-02 | Texas Instruments Incorporated | Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data |
US6193922B1 (en) | 1997-04-13 | 2001-02-27 | Ingo Ederer | Method for making a three-dimensional body |
US6217816B1 (en) | 1999-12-24 | 2001-04-17 | National Science Council | Method for rapid forming of a ceramic work piece |
WO2001026885A1 (fr) | 1999-10-08 | 2001-04-19 | Generis Gmbh | Procede et dispositif de realisation rapide de prototypes |
WO2001034371A2 (fr) | 1999-11-05 | 2001-05-17 | Z Corporation | Systemes de produit et procedes pour impression tridimensionnelle |
US6259962B1 (en) | 1999-03-01 | 2001-07-10 | Objet Geometries Ltd. | Apparatus and method for three dimensional model printing |
WO2001072502A1 (fr) | 2000-03-24 | 2001-10-04 | Generis Gmbh | Procede de fabrication d'un composant de construction suivant une technique de deposition multicouche |
US6305769B1 (en) | 1995-09-27 | 2001-10-23 | 3D Systems, Inc. | Selective deposition modeling system and method |
US6316060B1 (en) | 1996-08-20 | 2001-11-13 | Pacifica Papers Inc. | Metering coatings |
US6322728B1 (en) | 1998-07-10 | 2001-11-27 | Jeneric/Pentron, Inc. | Mass production of dental restorations by solid free-form fabrication methods |
US20010050031A1 (en) | 2000-04-14 | 2001-12-13 | Z Corporation | Compositions for three-dimensional printing of solid objects |
WO2001096048A1 (fr) | 2000-06-16 | 2001-12-20 | Ivf Industriforskning Och Utveckling Ab | Procede et dispositif de production de produits de forme libre |
DE10053741C1 (de) | 2000-10-30 | 2002-02-21 | Concept Laser Gmbh | Vorrichtung zum Sintern, Abtragen und/oder Beschriften mittels elektromagnetischer gebündelter Strahlung |
US6355196B1 (en) | 1998-03-16 | 2002-03-12 | Vantico Inc. | Process for producing direct tooling mold and method for using the same |
WO2002026419A1 (fr) | 2000-09-25 | 2002-04-04 | Generis Gmbh | Procede pour la production d'un element par la technique du depot |
WO2002026420A1 (fr) | 2000-09-26 | 2002-04-04 | Generis Gmbh | Dispositif de montage en couche de modeles |
US6395811B1 (en) | 1999-11-11 | 2002-05-28 | 3D Systems, Inc. | Phase change solid imaging material |
US6401001B1 (en) | 1999-07-22 | 2002-06-04 | Nanotek Instruments, Inc. | Layer manufacturing using deposition of fused droplets |
US6405095B1 (en) | 1999-05-25 | 2002-06-11 | Nanotek Instruments, Inc. | Rapid prototyping and tooling system |
US6403002B1 (en) | 1997-05-14 | 2002-06-11 | Buss Muller Technology Gmbh | Method and device for producing a shaped body |
US20020079601A1 (en) | 1996-12-20 | 2002-06-27 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
US20020090410A1 (en) | 2001-01-11 | 2002-07-11 | Shigeaki Tochimoto | Powder material removing apparatus and three dimensional modeling system |
DE10105504A1 (de) | 2001-02-07 | 2002-08-14 | Eos Electro Optical Syst | Vorrichtung zur Behandlung von Pulver für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts, Vorrichtung zum Herstellen eines dreidimensionalen Objekts und Verfahren zum Herstellen eines dreidimensionalen Objekts |
US20020111707A1 (en) | 2000-12-20 | 2002-08-15 | Zhimin Li | Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers |
US6436334B1 (en) | 1995-05-16 | 2002-08-20 | Fuji Oil Company, Ltd. | Process for producing inorganic mold |
WO2002064353A1 (fr) | 2001-02-15 | 2002-08-22 | Vantico Gmbh | Impression en trois dimensions |
WO2002064354A1 (fr) | 2001-02-15 | 2002-08-22 | Vantico Gmbh | Impression structuree tridimensionnelle |
US6467525B2 (en) | 2000-07-24 | 2002-10-22 | Hormel Foods, Llc | Gelatin coated sand core and method of making same |
WO2002083323A2 (fr) | 2001-04-10 | 2002-10-24 | Generis Gmbh | Procede et dispositif d'application de fluides |
US6476122B1 (en) | 1998-08-20 | 2002-11-05 | Vantico Inc. | Selective deposition modeling material |
US6500378B1 (en) | 2000-07-13 | 2002-12-31 | Eom Technologies, L.L.C. | Method and apparatus for creating three-dimensional objects by cross-sectional lithography |
WO2003016030A1 (fr) | 2001-05-24 | 2003-02-27 | Vantico Gmbh | Impression structuree tridimensionnelle |
US20030083771A1 (en) | 2001-10-03 | 2003-05-01 | Schmidt Kris Alan | Selective deposition modeling with curable phase change materials |
GB2382798A (en) | 2001-12-04 | 2003-06-11 | Qinetiq Ltd | Inkjet printer which deposits at least two fluids on a substrate such that the fluids react chemically to form a product thereon |
WO2003086726A1 (fr) | 2002-04-11 | 2003-10-23 | Generis Gmbh | Procede et dispositif pour appliquer des fluides |
WO2003097518A2 (fr) | 2002-05-20 | 2003-11-27 | Generis Gmbh | Dispositif permettant une alimentation en fluides |
WO2003103932A1 (fr) | 2002-06-05 | 2003-12-18 | Generis Gmbh | Procede de fabrication de modeles en couches |
US20040003738A1 (en) | 2002-07-03 | 2004-01-08 | Therics, Inc. | Apparatus, systems and methods for use in three-dimensional printing |
US20040012112A1 (en) | 1996-12-20 | 2004-01-22 | Z Corporation | Three-dimensional printer |
US6682030B2 (en) | 2001-03-08 | 2004-01-27 | Lista International Corporation | Workstation with adjustable height frame |
WO2004010907A1 (fr) | 2002-07-29 | 2004-02-05 | Therics, Inc. | Cadre composite complexe tridimensionnel resistant au decollement |
US20040038009A1 (en) | 2002-08-21 | 2004-02-26 | Leyden Richard Noel | Water-based material systems and methods for 3D printing |
US20040056378A1 (en) | 2002-09-25 | 2004-03-25 | Bredt James F. | Three dimensional printing material system and method |
US6722872B1 (en) | 1999-06-23 | 2004-04-20 | Stratasys, Inc. | High temperature modeling apparatus |
US20040084814A1 (en) * | 2002-10-31 | 2004-05-06 | Boyd Melissa D. | Powder removal system for three-dimensional object fabricator |
US6733528B2 (en) | 2001-08-09 | 2004-05-11 | Pentax Corporation | Implant forming method |
US20040094058A1 (en) | 2002-11-14 | 2004-05-20 | Vladek Kasperchik | Rapid prototyping material systems |
WO2004108398A1 (fr) | 2003-06-05 | 2004-12-16 | The University Of Liverpool | Appareil permettant de fabriquer des articles tridimensionnels |
WO2004112988A2 (fr) | 2003-06-17 | 2004-12-29 | Voxeljet Gmbh (Vormals Generis Gmbh) | Procede de realisation de modeles par couches |
US20050017386A1 (en) | 2001-12-13 | 2005-01-27 | Urban Harrysson | Device and method for producing a product by free form forming |
US20050017394A1 (en) | 2003-06-16 | 2005-01-27 | Voxeljet Gmbh | Methods and systems for the manufacture of layered three-dimensional forms |
US20050093194A1 (en) | 2003-11-03 | 2005-05-05 | Christopher Oriakhi | Solid free-form fabrication of three-dimensional objects |
US6896839B2 (en) | 2001-02-07 | 2005-05-24 | Minolta Co., Ltd. | Three-dimensional molding apparatus and three-dimensional molding method |
WO2005080010A1 (fr) | 2004-02-19 | 2005-09-01 | Voxeljet Gmbh | Procede et dispositif pour appliquer des fluides |
WO2005082603A1 (fr) | 2004-02-12 | 2005-09-09 | Illinois Tool Works Inc. | Systeme d'infiltration pour processus de prototypage rapide |
US20050219942A1 (en) | 2004-02-11 | 2005-10-06 | Kris Wallgren | Low profile mixing plant for particulate materials |
WO2005097476A2 (fr) | 2004-04-02 | 2005-10-20 | Z Corporation | Procedes et appareil d’impression en trois dimensions |
DE69634921T2 (de) | 1995-09-27 | 2005-12-01 | 3D Systems, Inc., Valencia | Modellierung durch selektive Materialablagerung zur Formung von dreidimensionalen Gegenständen |
WO2005113219A1 (fr) | 2004-05-24 | 2005-12-01 | Voxeljet Technology Gmbh | Procede et dispositif de fabrication d'un article en trois dimensions |
US7049363B2 (en) | 2000-05-30 | 2006-05-23 | Daimlerchyrsler Ag | Material system for use in three dimensional printing |
EP1442870B1 (fr) | 2003-01-29 | 2006-08-02 | Hewlett-Packard Development Company, L.P. | Procédés et systèmes pour produire un article par fabrication de formes libres solides par variation de la concentration de matière éjectée sous une couche de cette article |
DE20122639U1 (de) | 2001-02-07 | 2006-11-16 | Eos Gmbh Electro Optical Systems | Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US20070057412A1 (en) | 2005-03-23 | 2007-03-15 | 3D Systems, Inc. | Apparatus and method for aligning a removable build chamber within a process chamber |
WO2007039450A1 (fr) | 2005-09-20 | 2007-04-12 | Pts Software Bv | Appareil destiné à la fabrication d’un article tridimensionnel et procédé de fabrication de cet article |
US7204684B2 (en) | 2000-09-26 | 2007-04-17 | Ingo Ederer | Interchangeable container |
DE102005056260A1 (de) | 2005-11-25 | 2007-06-21 | Prometal Rct Gmbh | Verfahren und Vorrichtung zum flächigen Auftragen von fließfähigem Material |
US20070215020A1 (en) | 2006-03-14 | 2007-09-20 | National Gypsum Properties, Llc | Method and apparatus for calcining gypsum |
US20070245950A1 (en) | 2003-06-30 | 2007-10-25 | Teulet Patrick D | Device for the Production of Thin Powder Layers, in Particular at High Temperatures, During a Method Involving the Use of a Laser on a Material |
EP1872928A1 (fr) | 2006-06-30 | 2008-01-02 | Voxeljet Technology GmbH | Procédé et dispositif destinés à la production d'objets tridimensionnels |
WO2008022615A2 (fr) | 2006-08-20 | 2008-02-28 | Voxeljet Technology Gmbh | matériau auto-durcissant et procédé de construction de modèles par stratification de couches |
US20080047628A1 (en) | 2006-05-26 | 2008-02-28 | Z Corporation | Apparatus and methods for handling materials in a 3-D printer |
WO2008049384A1 (fr) * | 2006-10-24 | 2008-05-02 | Cl Schutzrechtsverwaltungs Gmbh | Dispositif de production d'un objet tridimensionnel |
WO2008055615A1 (fr) | 2006-11-10 | 2008-05-15 | Eos Gmbh Electro Optical Systems | Dispositif et procédé pour produire un objet tridimensionnel au moyen d'un système d'application de couches pour matériau de construction pulvérulent |
US7387359B2 (en) | 2004-09-21 | 2008-06-17 | Z Corporation | Apparatus and methods for servicing 3D printers |
US7402330B2 (en) | 2002-06-18 | 2008-07-22 | Daimler Ag | Polyvinyl butyral granular material for 3-D binder printing, production method and uses therefor |
US7431987B2 (en) | 2002-06-18 | 2008-10-07 | Daimler Ag | Core-shell particles having non-polar outer surface and methods for producing a three-dimensional object from the particles |
US20090068376A1 (en) * | 2005-05-13 | 2009-03-12 | Jochen Philippi | Device and Method for Manufacturing a Three-Dimensional Object with a Heated Recoater for a Building Material in Powder Form |
WO2009037550A2 (fr) | 2007-09-17 | 2009-03-26 | Enrico Dini | Procédé optimisé de fabrication automatique d'une structure agglomérée et appareil associé |
US7597835B2 (en) | 2004-02-06 | 2009-10-06 | Nicolas Marsac | Method and machine for producing three-dimensional objects by means of successive layer deposition |
US7641461B2 (en) | 2003-01-21 | 2010-01-05 | University Of Southern California | Robotic systems for automated construction |
US20100007062A1 (en) | 2006-07-27 | 2010-01-14 | Arcam Ab | Method and device for producing three-dimensional objects |
US20100026743A1 (en) | 2006-12-21 | 2010-02-04 | Agfa Graphics Nv | Inkjet printing methods and ink sets |
US7722802B2 (en) | 2003-02-18 | 2010-05-25 | Daimler Ag | Coated powder particles for producing three-dimensional bodies by means of a layer constituting method |
US20100212584A1 (en) | 2007-10-23 | 2010-08-26 | Voxeljet Technology Gmbh | Device for the layer-wise production of patterns |
US20100247742A1 (en) | 2009-03-31 | 2010-09-30 | Microjet Technology Co., Ltd. | Three-dimensional object forming apparatus and method for forming three-dimensional object |
US20100272519A1 (en) * | 2007-10-21 | 2010-10-28 | Voxeljet Technology Gmbh | Method and device for conveying particulate material during the layer-wise production of patterns |
DE102009030113A1 (de) | 2009-06-22 | 2010-12-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Zuführen von Fluiden beim schichtweisen Bauen von Modellen |
US20110059247A1 (en) * | 2008-05-26 | 2011-03-10 | Sony Corporation | Modeling apparatus and modeling method |
WO2011067352A2 (fr) | 2009-12-02 | 2011-06-09 | Prometal Rct Gmbh | Caisse de construction pour une installation de prototypage rapide |
WO2011120505A1 (fr) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Dispositif pour la fabrication de modèles tridimensionnels |
WO2011127900A2 (fr) | 2010-04-14 | 2011-10-20 | Voxeljet Technology Gmbh | Dispositif pour construire des modèles tridimensionnels |
US20120113439A1 (en) | 2007-07-18 | 2012-05-10 | Voxeljet Technology | Method for producing three-dimensional components |
US20120126457A1 (en) * | 2009-05-15 | 2012-05-24 | Panasonic Electric Works Co., Ltd. | Layered-modeling device and method using said device for manufacturing three-dimensional objects |
US20130000549A1 (en) | 2010-03-31 | 2013-01-03 | Voxeljet Technology Gmbh | Device and method for producing three-dimensional models |
US8349233B2 (en) | 2007-10-11 | 2013-01-08 | Voxeljet Gmbh | Material system and method for changing properties of a plastic component |
US20130026680A1 (en) | 2010-04-17 | 2013-01-31 | Voxeljet Technology Gmbh | Method and device for producing three-dimensional models |
US20130302575A1 (en) | 2010-12-29 | 2013-11-14 | Voxeljet Technology Gmbh | Method and material system for building models in layers |
EP1415792B1 (fr) | 1999-11-05 | 2014-04-30 | 3D Systems Incorporated | Procédés et compositions pour l'impression tridimensionnelle |
US8715832B2 (en) | 2008-11-20 | 2014-05-06 | Voxeljet Ag | Method for the layered construction of plastic models |
US20140212677A1 (en) | 2011-06-22 | 2014-07-31 | Ingo Gnüchtel | Method for the layerwise construction of models |
US20140306379A1 (en) | 2011-08-31 | 2014-10-16 | Voxeljet Ag | Device for constructing models in layers |
US8956144B2 (en) | 2010-02-04 | 2015-02-17 | Voxeijet AG | Device for producing three-demensional models |
Family Cites Families (162)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3935339A (en) | 1973-07-16 | 1976-01-27 | Exxon Production Research Company | Method for coating particulate material thereof |
US4247508B1 (en) | 1979-12-03 | 1996-10-01 | Dtm Corp | Molding process |
US4591402A (en) | 1981-06-22 | 1986-05-27 | Ltv Aerospace And Defense Company | Apparatus and method for manufacturing composite structures |
US4711669A (en) | 1985-11-05 | 1987-12-08 | American Cyanamid Company | Method of manufacturing a bonded particulate article by reacting a hydrolyzed amylaceous product and a heterocyclic compound |
DE3221357A1 (de) | 1982-06-05 | 1983-12-08 | Plasticonsult GmbH Beratungsgesellschaft für Kunststoff- und Oberflächentechnik, 6360 Friedberg | Verfahren zur herstellung von formen und kernen fuer giesszwecke |
JPS60180643A (ja) | 1984-02-29 | 1985-09-14 | Nissan Motor Co Ltd | 鋳物砂用粘結剤に用いる崩壊助剤 |
JPS62275734A (ja) | 1986-05-26 | 1987-11-30 | Tokieda Naomitsu | 立体形成方法 |
US5263130A (en) | 1986-06-03 | 1993-11-16 | Cubital Ltd. | Three dimensional modelling apparatus |
US4752498A (en) | 1987-03-02 | 1988-06-21 | Fudim Efrem V | Method and apparatus for production of three-dimensional objects by photosolidification |
US5047182A (en) | 1987-11-25 | 1991-09-10 | Ceramics Process Systems Corporation | Complex ceramic and metallic shaped by low pressure forming and sublimative drying |
IL109511A (en) | 1987-12-23 | 1996-10-16 | Cubital Ltd | Three-dimensional modelling apparatus |
US5637175A (en) | 1988-10-05 | 1997-06-10 | Helisys Corporation | Apparatus for forming an integral object from laminations |
AU643700B2 (en) | 1989-09-05 | 1993-11-25 | University Of Texas System, The | Multiple material systems and assisted powder handling for selective beam sintering |
DE3930750A1 (de) | 1989-09-14 | 1991-03-28 | Krupp Medizintechnik | Gusseinbettmasse, einbettmassenmodell, gussform und verfahren zur verhinderung des aufbluehens von einbettmassenmodellen und gussformen aus einer gusseinbettmasse |
DE3942859A1 (de) | 1989-12-23 | 1991-07-04 | Basf Ag | Verfahren zur herstellung von bauteilen |
GB9007199D0 (en) | 1990-03-30 | 1990-05-30 | Tioxide Group Plc | Preparation of polymeric particles |
US5089186A (en) | 1990-07-11 | 1992-02-18 | Advanced Plastics Partnership | Process for core removal from molded products |
US5126529A (en) | 1990-12-03 | 1992-06-30 | Weiss Lee E | Method and apparatus for fabrication of three-dimensional articles by thermal spray deposition |
DE4102260A1 (de) | 1991-01-23 | 1992-07-30 | Artos Med Produkte | Vorrichtung zur herstellung beliebig geformter koerper |
JP3104307B2 (ja) | 1991-06-28 | 2000-10-30 | ソニー株式会社 | グラビア印刷用版材 |
US5269982A (en) | 1992-02-12 | 1993-12-14 | Brotz Gregory R | Process for manufacturing a shaped product |
DE4305201C1 (de) | 1993-02-19 | 1994-04-07 | Eos Electro Optical Syst | Verfahren zum Herstellen eines dreidimensionalen Objekts |
US5433261A (en) | 1993-04-30 | 1995-07-18 | Lanxide Technology Company, Lp | Methods for fabricating shapes by use of organometallic, ceramic precursor binders |
US5427722A (en) | 1993-06-11 | 1995-06-27 | General Motors Corporation | Pressure slip casting process for making hollow-shaped ceramics |
DE4325576C2 (de) | 1993-07-30 | 1999-01-07 | Continental Ag | Luftfeder für Fahrzeuge mit einem elastomeren, kernlosen Schlauchrollbalg |
US5398193B1 (en) | 1993-08-20 | 1997-09-16 | Alfredo O Deangelis | Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor |
US5518680A (en) | 1993-10-18 | 1996-05-21 | Massachusetts Institute Of Technology | Tissue regeneration matrices by solid free form fabrication techniques |
US5518060A (en) | 1994-01-25 | 1996-05-21 | Brunswick Corporation | Method of producing polymeric patterns for use in evaporable foam casting |
US5503785A (en) | 1994-06-02 | 1996-04-02 | Stratasys, Inc. | Process of support removal for fused deposition modeling |
US6048954A (en) | 1994-07-22 | 2000-04-11 | The University Of Texas System Board Of Regents | Binder compositions for laser sintering processes |
US5616631A (en) | 1994-08-17 | 1997-04-01 | Kao Corporation | Binder composition for mold making, binder/curing agent composition for mold making, sand composition for mold making, and process of making mold |
US5717599A (en) | 1994-10-19 | 1998-02-10 | Bpm Technology, Inc. | Apparatus and method for dispensing build material to make a three-dimensional article |
GB9501987D0 (en) | 1995-02-01 | 1995-03-22 | Butterworth Steven | Dissolved medium rendered resin (DMRR) processing |
DE29506204U1 (de) | 1995-04-10 | 1995-06-01 | Eos Gmbh Electro Optical Systems, 82152 Planegg | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
DE19515165C2 (de) | 1995-04-25 | 1997-03-06 | Eos Electro Optical Syst | Vorrichtung zum Herstellen eines Objektes mittels Stereolithographie |
DE19525307C2 (de) | 1995-07-12 | 2003-04-03 | Eichenauer Gmbh & Co Kg F | Formmasse zur Herstellung von Gießkernen und Verfahren zur Herstellung eines Gießkerns |
DE19528215A1 (de) | 1995-08-01 | 1997-02-06 | Thomas Dipl Ing Himmer | Verfahren zur Herstellung von dreidimensionalen Modellen und Formen |
DE19530295C1 (de) | 1995-08-11 | 1997-01-30 | Eos Electro Optical Syst | Vorrichtung zur schichtweisen Herstellung eines Objektes mittels Lasersintern |
US5837960A (en) | 1995-08-14 | 1998-11-17 | The Regents Of The University Of California | Laser production of articles from powders |
US6270335B2 (en) | 1995-09-27 | 2001-08-07 | 3D Systems, Inc. | Selective deposition modeling method and apparatus for forming three-dimensional objects and supports |
US5749041A (en) | 1995-10-13 | 1998-05-05 | Dtm Corporation | Method of forming three-dimensional articles using thermosetting materials |
AU1673797A (en) | 1996-02-20 | 1997-09-10 | Mikuni Corporation | Method for producing granulated material |
US5747105A (en) | 1996-04-30 | 1998-05-05 | Owens Corning Fiberglas Technology Inc. | Traversing nozzle for applying granules to an asphalt coated sheet |
US6596224B1 (en) | 1996-05-24 | 2003-07-22 | Massachusetts Institute Of Technology | Jetting layers of powder and the formation of fine powder beds thereby |
GB9611582D0 (en) | 1996-06-04 | 1996-08-07 | Thin Film Technology Consultan | 3D printing and forming of structures |
US5824250A (en) | 1996-06-28 | 1998-10-20 | Alliedsignal Inc. | Gel cast molding with fugitive molds |
US7332537B2 (en) | 1996-09-04 | 2008-02-19 | Z Corporation | Three dimensional printing material system and method |
DE29701279U1 (de) | 1997-01-27 | 1997-05-22 | Eos Gmbh Electro Optical Systems, 82152 Planegg | Vorrichtung mit einer Prozeßkammer und einem in der Prozeßkammer hin und her bewegbaren Element |
US5940674A (en) | 1997-04-09 | 1999-08-17 | Massachusetts Institute Of Technology | Three-dimensional product manufacture using masks |
DE19726778A1 (de) | 1997-06-24 | 1999-01-14 | Cerdec Ag | Verfahren zur Herstellung keramischer und glasiger Beschichtungen, elektrostatisch applizierbares Beschichtungspulver hierfür und seine Verwendung |
DE19727677A1 (de) | 1997-06-30 | 1999-01-07 | Huels Chemische Werke Ag | Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten |
CN1073895C (zh) | 1998-01-29 | 2001-10-31 | 株式会社阿敏诺 | 板材无模成形装置 |
DE19805437A1 (de) | 1998-02-11 | 1999-08-12 | Bosch Gmbh Robert | Dosiervorrichtung für rieselfähiges Schüttgut |
US5989476A (en) | 1998-06-12 | 1999-11-23 | 3D Systems, Inc. | Process of making a molded refractory article |
JP3518726B2 (ja) | 1998-07-13 | 2004-04-12 | トヨタ自動車株式会社 | 積層造形方法及び積層造形用レジン被覆砂 |
JP2000211918A (ja) | 1999-01-20 | 2000-08-02 | Yazaki Corp | 軽量アルミナ粒子の製造方法 |
DE19911399C2 (de) | 1999-03-15 | 2001-03-01 | Joachim Heinzl | Verfahren zum Ansteuern eines Piezo-Druckkopfes und nach diesem Verfahren angesteuerter Piezo-Druckkopf |
TW554348B (en) | 1999-05-13 | 2003-09-21 | Shinetsu Chemical Co | Conductive powder and making process |
US6972115B1 (en) | 1999-09-03 | 2005-12-06 | American Inter-Metallics, Inc. | Apparatus and methods for the production of powders |
US6658314B1 (en) | 1999-10-06 | 2003-12-02 | Objet Geometries Ltd. | System and method for three dimensional model printing |
GB9927127D0 (en) | 1999-11-16 | 2000-01-12 | Univ Warwick | A method of manufacturing an item and apparatus for manufacturing an item |
DE19957370C2 (de) | 1999-11-29 | 2002-03-07 | Carl Johannes Fruth | Verfahren und Vorrichtung zum Beschichten eines Substrates |
FR2802128B1 (fr) | 1999-12-10 | 2002-02-08 | Ecole Nale Sup Artes Metiers | Dispositif de depose de couches minces de matiere en poudre ou pulverulente et procede adapte |
DE19963948A1 (de) | 1999-12-31 | 2001-07-26 | Zsolt Herbak | Verfahren zum Modellbau |
US7300619B2 (en) | 2000-03-13 | 2007-11-27 | Objet Geometries Ltd. | Compositions and methods for use in three dimensional model printing |
CA2405539A1 (fr) | 2000-04-14 | 2001-10-25 | Z Corporation | Compositions pour l'impression en 3d d'objets solides |
JP2001334583A (ja) | 2000-05-25 | 2001-12-04 | Minolta Co Ltd | 三次元造形装置 |
US6619882B2 (en) | 2000-07-10 | 2003-09-16 | Rh Group Llc | Method and apparatus for sealing cracks in roads |
DE10049043A1 (de) | 2000-10-04 | 2002-05-02 | Generis Gmbh | Verfahren zum Entpacken von in ungebundenem Partikelmaterial eingebetteten Formkörpern |
US6939489B2 (en) | 2001-03-23 | 2005-09-06 | Ivoclar Vivadent Ag | Desktop process for producing dental products by means of 3-dimensional plotting |
US20020155254A1 (en) | 2001-04-20 | 2002-10-24 | Mcquate William M. | Apparatus and method for placing particles in a pattern onto a substrate |
US6616030B2 (en) | 2001-05-07 | 2003-09-09 | West Bond, Inc. | Gantry mounted ultrasonic wire bonder with orbital bonding tool head |
DE10128664A1 (de) | 2001-06-15 | 2003-01-30 | Univ Clausthal Tech | Verfahren und Vorrichtung zur Herstellung von keramischen Formförpern |
US6656410B2 (en) * | 2001-06-22 | 2003-12-02 | 3D Systems, Inc. | Recoating system for using high viscosity build materials in solid freeform fabrication |
JP2003136605A (ja) | 2001-11-06 | 2003-05-14 | Toshiba Corp | 製品の作成方法及びその製品 |
US6713125B1 (en) | 2002-03-13 | 2004-03-30 | 3D Systems, Inc. | Infiltration of three-dimensional objects formed by solid freeform fabrication |
US20060159896A1 (en) | 2002-06-18 | 2006-07-20 | Rolf Pfeifer | Laser sintering method with increased process precision, and particles used for the same |
DE10235434A1 (de) | 2002-08-02 | 2004-02-12 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens |
JP4069245B2 (ja) | 2002-08-27 | 2008-04-02 | 富田製薬株式会社 | 造形法 |
US20040112523A1 (en) | 2002-10-15 | 2004-06-17 | Crom Elden Wendell | Three dimensional printing from two dimensional printing devices |
DE602004023667D1 (de) | 2003-03-10 | 2009-12-03 | Kuraray Co | Binderfasern aus polyvinylalkohol und diese fasern enthaltendes papier und vliesstoff |
KR101148770B1 (ko) | 2003-05-21 | 2012-05-24 | 3디 시스템즈 인코오퍼레이티드 | 3d 인쇄 시스템으로부터의 외관 모형용 열가소성 분말 물질 시스템 |
JP2007503342A (ja) | 2003-05-23 | 2007-02-22 | ズィー コーポレイション | 三次元プリント装置及び方法 |
US7435072B2 (en) | 2003-06-02 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Methods and systems for producing an object through solid freeform fabrication |
US20050012247A1 (en) | 2003-07-18 | 2005-01-20 | Laura Kramer | Systems and methods for using multi-part curable materials |
US7120512B2 (en) | 2003-08-25 | 2006-10-10 | Hewlett-Packard Development Company, L.P. | Method and a system for solid freeform fabricating using non-reactive powder |
US20050074511A1 (en) | 2003-10-03 | 2005-04-07 | Christopher Oriakhi | Solid free-form fabrication of solid three-dimesional objects |
US7220380B2 (en) | 2003-10-14 | 2007-05-22 | Hewlett-Packard Development Company, L.P. | System and method for fabricating a three-dimensional metal object using solid free-form fabrication |
US7348075B2 (en) | 2003-10-28 | 2008-03-25 | Hewlett-Packard Development Company, L.P. | System and method for fabricating three-dimensional objects using solid free-form fabrication |
US7455805B2 (en) | 2003-10-28 | 2008-11-25 | Hewlett-Packard Development Company, L.P. | Resin-modified inorganic phosphate cement for solid freeform fabrication |
DE102004014806B4 (de) | 2004-03-24 | 2006-09-14 | Daimlerchrysler Ag | Rapid-Technologie-Bauteil |
US7435763B2 (en) | 2004-04-02 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Solid freeform compositions, methods of application thereof, and systems for use thereof |
DE102004020452A1 (de) | 2004-04-27 | 2005-12-01 | Degussa Ag | Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren |
JP4239915B2 (ja) | 2004-07-16 | 2009-03-18 | セイコーエプソン株式会社 | マイクロレンズの製造方法およびマイクロレンズの製造装置 |
ITMI20050459A1 (it) | 2005-03-21 | 2006-09-22 | Montangero & Montangero S R L | Dispositivo di movimentazione al suolo di un corpo |
ITPI20050031A1 (it) | 2005-03-22 | 2006-09-23 | Moreno Chiarugi | Metodo e dispositivo per la realizzazione automatica di strutture di edifici in conglomerato |
US7790096B2 (en) | 2005-03-31 | 2010-09-07 | 3D Systems, Inc. | Thermal management system for a removable build chamber for use with a laser sintering system |
US20080003390A1 (en) | 2005-04-27 | 2008-01-03 | Nahoto Hayashi | Multi-Layer Structure and Process for Production Thereof |
US20060254467A1 (en) | 2005-05-13 | 2006-11-16 | Isaac Farr | Method for making spray-dried cement particles |
US20060257579A1 (en) | 2005-05-13 | 2006-11-16 | Isaac Farr | Use of a salt of a poly-acid to delay setting in cement slurry |
US20070045891A1 (en) | 2005-08-23 | 2007-03-01 | Valspar Sourcing, Inc. | Infiltrated Articles Prepared by a Laser Sintering Method and Method of Manufacturing the Same |
DE102006040305A1 (de) | 2005-09-20 | 2007-03-29 | Daimlerchrysler Ag | Verfahren zur Herstellung eines dreidimensionalen Gegenstandes sowie damit hergestellter Gegenstand |
US7296990B2 (en) | 2005-10-14 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Systems and methods of solid freeform fabrication with translating powder bins |
US20070126157A1 (en) | 2005-12-02 | 2007-06-07 | Z Corporation | Apparatus and methods for removing printed articles from a 3-D printer |
JP4247501B2 (ja) | 2005-12-27 | 2009-04-02 | 富田製薬株式会社 | 型の製造方法 |
WO2007114895A2 (fr) | 2006-04-06 | 2007-10-11 | Z Corporation | production d'éléments tridimensionnels au moyen de radiations électromagnétiques |
DE102006029298B4 (de) | 2006-06-23 | 2008-11-06 | Stiftung Caesar Center Of Advanced European Studies And Research | Materialsystem für das 3D-Drucken, Verfahren zu seiner Herstellung, Granulat hergestellt aus dem Materialsystem und dessen Verwendung |
US20080018018A1 (en) | 2006-07-20 | 2008-01-24 | Nielsen Jeffrey A | Solid freeform fabrication methods and systems |
DE102006040182A1 (de) | 2006-08-26 | 2008-03-06 | Mht Mold & Hotrunner Technology Ag | Verfahren zur Herstellung eines mehrschichtigen Vorformlings sowie Düse hierfür |
DE102006055326A1 (de) | 2006-11-23 | 2008-05-29 | Voxeljet Technology Gmbh | Vorrichtung und Verfahren zur Förderung von überschüssigem Partikelmaterial beim Aufbau von Modellen |
EP2089215B1 (fr) | 2006-12-08 | 2015-02-18 | 3D Systems Incorporated | Système de matériaux d'impression tridimensionnelle |
WO2008086033A1 (fr) | 2007-01-10 | 2008-07-17 | Z Corporation | Système de matériau d'impression tridimensionnel avec une couleur, une performance de l'article et une facilité d'utilisation améliorées |
JP4869155B2 (ja) | 2007-05-30 | 2012-02-08 | 株式会社東芝 | 物品の製造方法 |
US20100279007A1 (en) | 2007-08-14 | 2010-11-04 | The Penn State Research Foundation | 3-D Printing of near net shape products |
DE102007040755A1 (de) | 2007-08-28 | 2009-03-05 | Jens Jacob | Lasersintervorrichtung sowie Verfahren zum Herstellen von dreidimensionalen Objekten durch selektives Lasersintern |
DE102007047326B4 (de) | 2007-10-02 | 2011-08-25 | CL Schutzrechtsverwaltungs GmbH, 96215 | Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
JP5146010B2 (ja) | 2008-02-28 | 2013-02-20 | 東レ株式会社 | セラミックス成形体の製造方法およびこれを用いたセラミックス焼結体の製造方法 |
US7887264B2 (en) | 2008-12-11 | 2011-02-15 | Uop Llc | Apparatus for transferring particles |
US20100323301A1 (en) | 2009-06-23 | 2010-12-23 | Huey-Ru Tang Lee | Method and apparatus for making three-dimensional parts |
EP2289462B1 (fr) | 2009-08-25 | 2012-05-30 | BEGO Medical GmbH | Dispositif et procédé de fabrication générative en continu |
DE102009055966B4 (de) | 2009-11-27 | 2014-05-15 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle |
US8211226B2 (en) | 2010-01-15 | 2012-07-03 | Massachusetts Institute Of Technology | Cement-based materials system for producing ferrous castings using a three-dimensional printer |
DE102010027071A1 (de) | 2010-07-13 | 2012-01-19 | Voxeljet Technology Gmbh | Vorrichtung zum Herstellen dreidimensionaler Modelle mittels Schichtauftragstechnik |
US8282380B2 (en) | 2010-08-18 | 2012-10-09 | Makerbot Industries | Automated 3D build processes |
DE102011007957A1 (de) | 2011-01-05 | 2012-07-05 | Voxeljet Technology Gmbh | Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper |
US9757801B2 (en) | 2011-06-01 | 2017-09-12 | Bam Bundesanstalt Für Material Forschung Und Prüfung | Method for producing a moulded body and device |
DE102011053205B4 (de) | 2011-09-01 | 2017-05-24 | Exone Gmbh | Verfahren zum herstellen eines bauteils in ablagerungstechnik |
DE102011119338A1 (de) | 2011-11-26 | 2013-05-29 | Voxeljet Technology Gmbh | System zum Herstellen dreidimensionaler Modelle |
DE102012004213A1 (de) | 2012-03-06 | 2013-09-12 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle |
DE102012010272A1 (de) | 2012-05-25 | 2013-11-28 | Voxeljet Technology Gmbh | Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen |
DE102012012363A1 (de) | 2012-06-22 | 2013-12-24 | Voxeljet Technology Gmbh | Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter |
US9168697B2 (en) | 2012-08-16 | 2015-10-27 | Stratasys, Inc. | Additive manufacturing system with extended printing volume, and methods of use thereof |
US8888480B2 (en) | 2012-09-05 | 2014-11-18 | Aprecia Pharmaceuticals Company | Three-dimensional printing system and equipment assembly |
DE102012020000A1 (de) | 2012-10-12 | 2014-04-17 | Voxeljet Ag | 3D-Mehrstufenverfahren |
DE102013004940A1 (de) | 2012-10-15 | 2014-04-17 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf |
DE102012022859A1 (de) | 2012-11-25 | 2014-05-28 | Voxeljet Ag | Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen |
DE102012024266A1 (de) | 2012-12-12 | 2014-06-12 | Voxeljet Ag | Reinigungsvorrichtung zum Entfernen von an Bauteilen oder Modellen anhaftendem Pulver |
DE102013003303A1 (de) | 2013-02-28 | 2014-08-28 | FluidSolids AG | Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung |
US9403725B2 (en) | 2013-03-12 | 2016-08-02 | University Of Southern California | Inserting inhibitor to create part boundary isolation during 3D printing |
DE102013005855A1 (de) | 2013-04-08 | 2014-10-09 | Voxeljet Ag | Materialsystem und Verfahren zum Herstellen dreidimensionaler Modelle mit stabilisiertem Binder |
DE102013018182A1 (de) | 2013-10-30 | 2015-04-30 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem |
DE102013019716A1 (de) | 2013-11-27 | 2015-05-28 | Voxeljet Ag | 3D-Druckverfahren mit Schlicker |
DE102013018031A1 (de) | 2013-12-02 | 2015-06-03 | Voxeljet Ag | Wechselbehälter mit verfahrbarer Seitenwand |
DE102013020491A1 (de) | 2013-12-11 | 2015-06-11 | Voxeljet Ag | 3D-Infiltrationsverfahren |
DE102013021091A1 (de) | 2013-12-18 | 2015-06-18 | Voxeljet Ag | 3D-Druckverfahren mit Schnelltrockenschritt |
EP2886307A1 (fr) | 2013-12-20 | 2015-06-24 | Voxeljet AG | Dispositif, papier spécial et procédé de fabrication de pièces moulées |
DE102013021891A1 (de) | 2013-12-23 | 2015-06-25 | Voxeljet Ag | Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren |
DE102014004692A1 (de) | 2014-03-31 | 2015-10-15 | Voxeljet Ag | Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung |
DE102014007584A1 (de) | 2014-05-26 | 2015-11-26 | Voxeljet Ag | 3D-Umkehrdruckverfahren und Vorrichtung |
EP3174651B1 (fr) | 2014-08-02 | 2020-06-17 | voxeljet AG | Procédé et moule de fonte s'utilisant en particulier dans un procédé de reprise |
DE102014011544A1 (de) | 2014-08-08 | 2016-02-11 | Voxeljet Ag | Druckkopf und seine Verwendung |
DE102014014895A1 (de) | 2014-10-13 | 2016-04-14 | Voxeljet Ag | Verfahren und Vorrichtung zur Herstellung von Bauteilen in einem Schichtbauverfahren |
DE102014018579A1 (de) | 2014-12-17 | 2016-06-23 | Voxeljet Ag | Verfahren zum Herstellen dreidimensionaler Formteile und Einstellen des Feuchtegehaltes im Baumaterial |
DE102015006533A1 (de) | 2014-12-22 | 2016-06-23 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik |
DE102015003372A1 (de) | 2015-03-17 | 2016-09-22 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater |
DE102015006363A1 (de) | 2015-05-20 | 2016-12-15 | Voxeljet Ag | Phenolharzverfahren |
DE102015008860A1 (de) | 2015-07-14 | 2017-01-19 | Voxeljet Ag | Vorrichtung zum Justieren eines Druckkopfes |
DE102015011790A1 (de) | 2015-09-16 | 2017-03-16 | Voxeljet Ag | Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile |
DE102015014964A1 (de) | 2015-11-20 | 2017-05-24 | Voxeljet Ag | Verfahren und Vorrichtung für 3D-Druck mit engem Wellenlängenspektrum |
DE102015015353A1 (de) | 2015-12-01 | 2017-06-01 | Voxeljet Ag | Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor |
DE102015016464B4 (de) | 2015-12-21 | 2024-04-25 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen |
DE102016002777A1 (de) | 2016-03-09 | 2017-09-14 | Voxeljet Ag | Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen |
-
2011
- 2011-01-05 DE DE102011007957A patent/DE102011007957A1/de active Pending
- 2011-10-14 EP EP11818977.8A patent/EP2661354B1/fr active Active
- 2011-10-14 US US13/883,397 patent/US9242413B2/en active Active
- 2011-10-14 WO PCT/DE2011/001850 patent/WO2012092912A1/fr active Application Filing
-
2015
- 2015-12-21 US US14/976,586 patent/US9649812B2/en active Active
-
2017
- 2017-04-14 US US15/487,827 patent/US10513105B2/en active Active
-
2019
- 2019-11-19 US US16/688,394 patent/US10946636B2/en active Active
-
2021
- 2021-03-05 US US17/193,549 patent/US11407216B2/en active Active
Patent Citations (264)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2640629A (en) | 1947-01-25 | 1953-06-02 | Foster Wheeler Corp | Fuel feeding apparatus with vibratory hopper |
US2692142A (en) | 1950-04-06 | 1954-10-19 | Henry G Hunter | Apparatus for distributing sand or the like |
US2857938A (en) | 1953-10-27 | 1958-10-28 | Eugene A Wahl | Powder-filling machine |
US3616969A (en) | 1967-05-25 | 1971-11-02 | Ricoh Kk | Developer replenishing means for an electrostatographic apparatus |
US3616972A (en) | 1969-09-18 | 1971-11-02 | Daniel Lamar Christy | Machine for dispensing and distributing dry flowable materials |
US4239715A (en) | 1971-01-13 | 1980-12-16 | The Glacier Metal Company Limited | Method for manufacturing an elongated strip bearing |
US3815527A (en) | 1972-09-05 | 1974-06-11 | J Dobbins | Roller, hopper, scatter shield and brake assembly for precision seeding |
US3913503A (en) | 1972-12-15 | 1975-10-21 | Becker Karl Masch | Apparatus for planting individual seeds in predetermined locations |
US3884401A (en) | 1973-06-22 | 1975-05-20 | Gen Atomic Co | Valve |
US4369025A (en) | 1978-02-13 | 1983-01-18 | Epsi Brevets Et Participations S.A. | Apparatus for manufacturing elements by means of a hardenable binding agent to which a liquid is added |
US4279949A (en) | 1978-10-05 | 1981-07-21 | J. M. Voith Gmbh | Process and apparatus for coating webs and adjusting the wet application weight of the coating material |
US4669634A (en) | 1981-08-04 | 1987-06-02 | Roussel Uclaf | Apparatus and process for the metering of predetermined quantities of at least one product |
US4579252A (en) | 1983-05-05 | 1986-04-01 | K-Tron International, Inc. | Loss-in-weight gravimetric feeder |
US4665492A (en) | 1984-07-02 | 1987-05-12 | Masters William E | Computer automated manufacturing process and system |
US4575330B1 (fr) | 1984-08-08 | 1989-12-19 | ||
US4575330A (en) | 1984-08-08 | 1986-03-11 | Uvp, Inc. | Apparatus for production of three-dimensional objects by stereolithography |
US4630755A (en) | 1984-12-11 | 1986-12-23 | Spiral Systems, Inc. | Apparatus for precisely dispensing free flowing solids |
EP0224621A1 (fr) | 1985-11-19 | 1987-06-10 | Portals Engineering Limited | Vanne de réglage pour matériaux en vrac |
US4889433A (en) | 1986-02-26 | 1989-12-26 | Micro Chemical, Inc. | Programmable apparatus and method for delivering microingredient feed additives to animals by weight |
US4752352A (en) | 1986-06-06 | 1988-06-21 | Michael Feygin | Apparatus and method for forming an integral object from laminations |
US4938816A (en) | 1986-10-17 | 1990-07-03 | Board Of Regents, The University Of Texas System | Selective laser sintering with assisted powder handling |
US5155324A (en) | 1986-10-17 | 1992-10-13 | Deckard Carl R | Method for selective laser sintering with layerwise cross-scanning |
US5296062A (en) | 1986-10-17 | 1994-03-22 | The Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US4944817A (en) | 1986-10-17 | 1990-07-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US5017753A (en) | 1986-10-17 | 1991-05-21 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US5316580A (en) | 1986-10-17 | 1994-05-31 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US5639070A (en) | 1986-10-17 | 1997-06-17 | Board Of Regents, The University Of Texas System | Method for producing parts by selective sintering |
US5382308A (en) | 1986-10-17 | 1995-01-17 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US5076869A (en) | 1986-10-17 | 1991-12-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US5597589A (en) | 1986-10-17 | 1997-01-28 | Board Of Regents, The University Of Texas System | Apparatus for producing parts by selective sintering |
US5132143A (en) | 1986-10-17 | 1992-07-21 | Board Of Regents, The University Of Texas System | Method for producing parts |
US4863538A (en) | 1986-10-17 | 1989-09-05 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US5616294A (en) | 1986-10-17 | 1997-04-01 | Board Of Regents, The University Of Texas System | Method for producing parts by infiltration of porous intermediate parts |
US5147587A (en) | 1986-10-17 | 1992-09-15 | Board Of Regents, The University Of Texas System | Method of producing parts and molds using composite ceramic powders |
EP0318247A1 (fr) | 1987-11-23 | 1989-05-31 | G.E.I. Filling, Capping And Labelling Limited | Vannes de réglage pour matériaux en vrac |
US6048188A (en) | 1988-04-18 | 2000-04-11 | 3D Systems, Inc. | Stereolithographic curl reduction |
EP0361847B1 (fr) | 1988-09-26 | 1995-11-29 | 3D Systems, Inc. | Application de couches stéréolithographiques |
US5354414A (en) | 1988-10-05 | 1994-10-11 | Michael Feygin | Apparatus and method for forming an integral object from laminations |
US5140937A (en) | 1989-05-23 | 1992-08-25 | Brother Kogyo Kabushiki Kaisha | Apparatus for forming three-dimensional article |
US5059266A (en) | 1989-05-23 | 1991-10-22 | Brother Kogyo Kabushiki Kaisha | Apparatus and method for forming three-dimensional article |
US5248456A (en) | 1989-06-12 | 1993-09-28 | 3D Systems, Inc. | Method and apparatus for cleaning stereolithographically produced objects |
US5134569A (en) | 1989-06-26 | 1992-07-28 | Masters William E | System and method for computer automated manufacturing using fluent material |
US5216616A (en) | 1989-06-26 | 1993-06-01 | Masters William E | System and method for computer automated manufacture with reduced object shape distortion |
US5149548A (en) | 1989-07-03 | 1992-09-22 | Brother Kogyo Kabushiki Kaisha | Apparatus for forming three-dimension article |
US5284695A (en) | 1989-09-05 | 1994-02-08 | Board Of Regents, The University Of Texas System | Method of producing high-temperature parts by way of low-temperature sintering |
US5431967A (en) | 1989-09-05 | 1995-07-11 | Board Of Regents, The University Of Texas System | Selective laser sintering using nanocomposite materials |
US5156697A (en) | 1989-09-05 | 1992-10-20 | Board Of Regents, The University Of Texas System | Selective laser sintering of parts by compound formation of precursor powders |
US5053090A (en) | 1989-09-05 | 1991-10-01 | Board Of Regents, The University Of Texas System | Selective laser sintering with assisted powder handling |
US5182170A (en) | 1989-09-05 | 1993-01-26 | Board Of Regents, The University Of Texas System | Method of producing parts by selective beam interaction of powder with gas phase reactant |
US5136515A (en) | 1989-11-07 | 1992-08-04 | Richard Helinski | Method and means for constructing three-dimensional articles by particle deposition |
US5807437A (en) | 1989-12-08 | 1998-09-15 | Massachusetts Institute Of Technology | Three dimensional printing system |
US5204055A (en) | 1989-12-08 | 1993-04-20 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
EP0431924A2 (fr) | 1989-12-08 | 1991-06-12 | Massachusetts Institute Of Technology | Techniques d'impression tri-dimensionnelle |
US5340656A (en) | 1989-12-08 | 1994-08-23 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
US5387380A (en) | 1989-12-08 | 1995-02-07 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
US6036777A (en) | 1989-12-08 | 2000-03-14 | Massachusetts Institute Of Technology | Powder dispensing apparatus using vibration |
US5127037A (en) | 1990-08-15 | 1992-06-30 | Bynum David K | Apparatus for forming a three-dimensional reproduction of an object from laminations |
US5573055A (en) | 1990-10-19 | 1996-11-12 | Borden (Uk) Limited | Water dispersible moulds |
US5506607A (en) | 1991-01-25 | 1996-04-09 | Sanders Prototypes Inc. | 3-D model maker |
US5740051A (en) | 1991-01-25 | 1998-04-14 | Sanders Prototypes, Inc. | 3-D model making |
US6169605B1 (en) | 1991-01-31 | 2001-01-02 | Texas Instruments Incorporated | Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data |
US5252264A (en) | 1991-11-08 | 1993-10-12 | Dtm Corporation | Apparatus and method for producing parts with multi-directional powder delivery |
EP0644809B1 (fr) | 1992-06-05 | 2001-07-25 | Massachusetts Institute Of Technology | Technique d'impression tridimensionnelle |
US5342919A (en) | 1992-11-23 | 1994-08-30 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
US5352405A (en) | 1992-12-18 | 1994-10-04 | Dtm Corporation | Thermal control of selective laser sintering via control of the laser scan |
DE4300478C2 (de) | 1993-01-11 | 1998-05-20 | Eos Electro Optical Syst | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US5658412A (en) | 1993-01-11 | 1997-08-19 | Eos Gmbh Electro Optical Systems | Method and apparatus for producing a three-dimensional object |
US6146567A (en) | 1993-02-18 | 2000-11-14 | Massachusetts Institute Of Technology | Three dimensional printing methods |
DE4325573C2 (de) | 1993-07-30 | 1998-09-03 | Stephan Herrmann | Verfahren zur Erzeugung von Formkörpern durch sukzessiven Aufbau von Pulverschichten sowie Vorichtung zu dessen Durchführung |
US5490962A (en) | 1993-10-18 | 1996-02-13 | Massachusetts Institute Of Technology | Preparation of medical devices by solid free-form fabrication methods |
US5599581A (en) | 1993-11-02 | 1997-02-04 | Owens Corning Fiberglas Technology, Inc. | Method for pneumatically controlling discharge of particulate material |
US5433520A (en) | 1993-12-13 | 1995-07-18 | Michigan Ash Sales Company | Method and apparatus for continuously processing particulate cementitious material and fly ash solids and mixing them with a liquid to provide a liquid slurry of consistent proportions |
EP0688262B2 (fr) | 1994-01-11 | 2004-12-08 | EOS GmbH Electro Optical Systems | Procede et dispositif de production d'objets tridimensionnels |
US5647931A (en) | 1994-01-11 | 1997-07-15 | Eos Gmbh Electro Optical Systems | Method and apparatus for producing a three-dimensional object |
DE4400523C2 (de) | 1994-01-11 | 1996-07-11 | Eos Electro Optical Syst | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
WO1995018715A1 (fr) | 1994-01-11 | 1995-07-13 | Eos Gmbh Electro Optical Systems | Procede et dispositif de production d'objets tridimensionnels |
US6155331A (en) | 1994-05-27 | 2000-12-05 | Eos Gmbh Electro Optical Systems | Method for use in casting technology |
WO1995034468A1 (fr) | 1994-06-14 | 1995-12-21 | Soligen, Inc. | Appareil de manipulation de poudre pour equipement de fabrication par addition |
US5639402A (en) | 1994-08-08 | 1997-06-17 | Barlow; Joel W. | Method for fabricating artificial bone implant green parts |
WO1996005038A1 (fr) | 1994-08-08 | 1996-02-22 | Board Of Regents, The University Of Texas System | Procede et systeme de fabrication d'implants osseux artificiels |
US5601868A (en) | 1994-09-16 | 1997-02-11 | Tzn Forschungs- Und Entwicklungszentrum Gmbh | Method of coating sheet material with an oscillating doctor blade |
US5555176A (en) | 1994-10-19 | 1996-09-10 | Bpm Technology, Inc. | Apparatus and method for making three-dimensional articles using bursts of droplets |
DE4440397C1 (de) | 1994-11-11 | 1995-09-21 | Eos Electro Optical Syst | Verfahren zum Herstellen von Gußformen |
US5482659A (en) | 1994-12-22 | 1996-01-09 | United Technologies Corporation | Method of post processing stereolithographically produced objects |
US5902537A (en) | 1995-02-01 | 1999-05-11 | 3D Systems, Inc. | Rapid recoating of three-dimensional objects formed on a cross-sectional basis |
US5753274A (en) | 1995-03-30 | 1998-05-19 | Eos Gmbh Electronics Optical Systems | Apparatus for producing a three-dimensional object |
US6042774A (en) | 1995-03-30 | 2000-03-28 | Eos Gmbh Electro Optical Systems | Method for producing a three-dimensional object |
US5730925A (en) | 1995-04-21 | 1998-03-24 | Eos Gmbh Electro Optical Systems | Method and apparatus for producing a three-dimensional object |
EP0739666B1 (fr) | 1995-04-28 | 2002-08-28 | General Motors Corporation | Pièce pour moule à sable et sa méthode de fabrication |
US5582231A (en) | 1995-04-28 | 1996-12-10 | General Motors Corporation | Sand mold member and method |
US6436334B1 (en) | 1995-05-16 | 2002-08-20 | Fuji Oil Company, Ltd. | Process for producing inorganic mold |
US6305769B1 (en) | 1995-09-27 | 2001-10-23 | 3D Systems, Inc. | Selective deposition modeling system and method |
DE69634921T2 (de) | 1995-09-27 | 2005-12-01 | 3D Systems, Inc., Valencia | Modellierung durch selektive Materialablagerung zur Formung von dreidimensionalen Gegenständen |
US5943235A (en) | 1995-09-27 | 1999-08-24 | 3D Systems, Inc. | Rapid prototyping system and method with support region data processing |
DE19545167A1 (de) | 1995-12-04 | 1997-06-05 | Bayerische Motoren Werke Ag | Verfahren zum Herstellen von Bauteilen oder Werkzeugen |
US5851465A (en) | 1995-12-29 | 1998-12-22 | Massachusetts Institute Of Technology | Binder composition for use in three dimensional printing |
AU720255B2 (en) | 1996-03-06 | 2000-05-25 | BioZ, L.L.C | Method for formation of a three-dimensional body |
US6116517A (en) | 1996-07-01 | 2000-09-12 | Joachim Heinzl | Droplet mist generator |
US6316060B1 (en) | 1996-08-20 | 2001-11-13 | Pacifica Papers Inc. | Metering coatings |
US6416850B1 (en) | 1996-09-04 | 2002-07-09 | Z Corporation | Three dimensional printing materials system |
US5902441A (en) | 1996-09-04 | 1999-05-11 | Z Corporation | Method of three dimensional printing |
US20020026982A1 (en) | 1996-09-04 | 2002-03-07 | Bredt James F. | Three dimensional printing material system and method |
US6610429B2 (en) | 1996-09-04 | 2003-08-26 | Z Corporation | Three dimensional printing material system and method |
US20020079601A1 (en) | 1996-12-20 | 2002-06-27 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
WO1998028124A2 (fr) | 1996-12-20 | 1998-07-02 | Z Corporation | Procede et dispositif servant a fabriquer le prototype d'un objet tridimensionnel |
US6375874B1 (en) | 1996-12-20 | 2002-04-23 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
US20090011066A1 (en) | 1996-12-20 | 2009-01-08 | Z Corporation | Three-Dimensional Printer |
US6007318A (en) | 1996-12-20 | 1999-12-28 | Z Corporation | Method and apparatus for prototyping a three-dimensional object |
US20040012112A1 (en) | 1996-12-20 | 2004-01-22 | Z Corporation | Three-dimensional printer |
US6094994A (en) | 1996-12-26 | 2000-08-01 | Satake Corporation | Impact type flow meter with trough-like material supply device having a built in supply opening |
US5934343A (en) | 1997-03-31 | 1999-08-10 | Therics, Inc | Method for dispensing of powders |
US6193922B1 (en) | 1997-04-13 | 2001-02-27 | Ingo Ederer | Method for making a three-dimensional body |
US6403002B1 (en) | 1997-05-14 | 2002-06-11 | Buss Muller Technology Gmbh | Method and device for producing a shaped body |
US6147138A (en) | 1997-06-06 | 2000-11-14 | Generis Gmbh | Method for manufacturing of parts by a deposition technique |
US6355196B1 (en) | 1998-03-16 | 2002-03-12 | Vantico Inc. | Process for producing direct tooling mold and method for using the same |
US6322728B1 (en) | 1998-07-10 | 2001-11-27 | Jeneric/Pentron, Inc. | Mass production of dental restorations by solid free-form fabrication methods |
US6476122B1 (en) | 1998-08-20 | 2002-11-05 | Vantico Inc. | Selective deposition modeling material |
WO2000021736A1 (fr) | 1998-10-09 | 2000-04-20 | Eos Gmbh Electro Optical Systems | Dispositif permettant de fabriquer un objet tridimensionnel, en particulier machine de frittage au laser |
US6554600B1 (en) | 1998-10-09 | 2003-04-29 | Eos Gmbh Electro Optical Systems | Device for producing a three-dimensional object, especially a laser sintering machine |
DE19853834A1 (de) | 1998-11-21 | 2000-05-31 | Ingo Ederer | Verfahren zum Herstellen von Bauteilen durch Auftragstechnik |
US6259962B1 (en) | 1999-03-01 | 2001-07-10 | Objet Geometries Ltd. | Apparatus and method for three dimensional model printing |
FR2790418B1 (fr) | 1999-03-01 | 2001-05-11 | Optoform Sarl Procedes De Prot | Procede de prototypage rapide permettant l'utilisation de materiaux pateux, et dispositif pour sa mise en oeuvre |
WO2000051809A1 (fr) | 1999-03-01 | 2000-09-08 | Optoform Sarl Procedes De Prototypage Rapide | Procede de dispositif de prototype rapide, et piece tridimensionnelle obtenue par prototypage rapide |
US6764636B1 (en) | 1999-03-01 | 2004-07-20 | 3D Systems, Inc. | Fast three-dimensional modeling method and device |
US6405095B1 (en) | 1999-05-25 | 2002-06-11 | Nanotek Instruments, Inc. | Rapid prototyping and tooling system |
US6165406A (en) | 1999-05-27 | 2000-12-26 | Nanotek Instruments, Inc. | 3-D color model making apparatus and process |
WO2000078485A2 (fr) | 1999-06-21 | 2000-12-28 | Eos Gmbh Electro Optical Systems | Dispositif de depot de poudre pour un dispositif de fabrication couche par couche d'un objet tridimensionnel |
US6672343B1 (en) | 1999-06-21 | 2004-01-06 | Eos Gmbh Optical Systems | Device for supplying powder for a device for producing a three-dimensional object layer by layer |
US20040104515A1 (en) | 1999-06-23 | 2004-06-03 | Stratasys, Inc. | High-Temperature modeling method |
US6722872B1 (en) | 1999-06-23 | 2004-04-20 | Stratasys, Inc. | High temperature modeling apparatus |
US6401001B1 (en) | 1999-07-22 | 2002-06-04 | Nanotek Instruments, Inc. | Layer manufacturing using deposition of fused droplets |
WO2001026885A1 (fr) | 1999-10-08 | 2001-04-19 | Generis Gmbh | Procede et dispositif de realisation rapide de prototypes |
US6838035B1 (en) | 1999-10-08 | 2005-01-04 | Voxeljet Technology Gmbh | Rapid-prototyping method and apparatus |
WO2001034371A2 (fr) | 1999-11-05 | 2001-05-17 | Z Corporation | Systemes de produit et procedes pour impression tridimensionnelle |
EP1415792B1 (fr) | 1999-11-05 | 2014-04-30 | 3D Systems Incorporated | Procédés et compositions pour l'impression tridimensionnelle |
US20060208388A1 (en) | 1999-11-05 | 2006-09-21 | Z Corporation | Material systems and methods of three-dimensional printing |
US6133353A (en) | 1999-11-11 | 2000-10-17 | 3D Systems, Inc. | Phase change solid imaging material |
US6395811B1 (en) | 1999-11-11 | 2002-05-28 | 3D Systems, Inc. | Phase change solid imaging material |
US6217816B1 (en) | 1999-12-24 | 2001-04-17 | National Science Council | Method for rapid forming of a ceramic work piece |
US6423255B1 (en) | 2000-03-24 | 2002-07-23 | Rainer Hoechsmann | Method for manufacturing a structural part by deposition technique |
WO2001072502A1 (fr) | 2000-03-24 | 2001-10-04 | Generis Gmbh | Procede de fabrication d'un composant de construction suivant une technique de deposition multicouche |
US20010050031A1 (en) | 2000-04-14 | 2001-12-13 | Z Corporation | Compositions for three-dimensional printing of solid objects |
US7049363B2 (en) | 2000-05-30 | 2006-05-23 | Daimlerchyrsler Ag | Material system for use in three dimensional printing |
WO2001096048A1 (fr) | 2000-06-16 | 2001-12-20 | Ivf Industriforskning Och Utveckling Ab | Procede et dispositif de production de produits de forme libre |
US6500378B1 (en) | 2000-07-13 | 2002-12-31 | Eom Technologies, L.L.C. | Method and apparatus for creating three-dimensional objects by cross-sectional lithography |
US6467525B2 (en) | 2000-07-24 | 2002-10-22 | Hormel Foods, Llc | Gelatin coated sand core and method of making same |
WO2002026419A1 (fr) | 2000-09-25 | 2002-04-04 | Generis Gmbh | Procede pour la production d'un element par la technique du depot |
US8741194B1 (en) | 2000-09-25 | 2014-06-03 | Voxeljet Ag | Method for producing a part using a depostion technique |
US20140322501A1 (en) | 2000-09-25 | 2014-10-30 | Voxeljet Ag | Method for producing a part using a deposition technique |
US7137431B2 (en) | 2000-09-26 | 2006-11-21 | Ingo Ederer | Device for pattern building in layers |
US7004222B2 (en) | 2000-09-26 | 2006-02-28 | Ingo Ederer | Device for manufacturing models layer by layer |
US7204684B2 (en) | 2000-09-26 | 2007-04-17 | Ingo Ederer | Interchangeable container |
US20040035542A1 (en) | 2000-09-26 | 2004-02-26 | Ingo Ederer | Device for manufacturing models layer by layer |
WO2002026420A1 (fr) | 2000-09-26 | 2002-04-04 | Generis Gmbh | Dispositif de montage en couche de modeles |
DE10047614A1 (de) | 2000-09-26 | 2002-04-18 | Generis Gmbh | Vorrichtung zum schichtweisen Aufbau von Modellen |
DE10053741C1 (de) | 2000-10-30 | 2002-02-21 | Concept Laser Gmbh | Vorrichtung zum Sintern, Abtragen und/oder Beschriften mittels elektromagnetischer gebündelter Strahlung |
US20040045941A1 (en) | 2000-10-30 | 2004-03-11 | Frank Herzog | Device for sintering, removing material and/or labeling by means of electromagnetically bundled radiation |
US20020111707A1 (en) | 2000-12-20 | 2002-08-15 | Zhimin Li | Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers |
US20020090410A1 (en) | 2001-01-11 | 2002-07-11 | Shigeaki Tochimoto | Powder material removing apparatus and three dimensional modeling system |
DE20122639U1 (de) | 2001-02-07 | 2006-11-16 | Eos Gmbh Electro Optical Systems | Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
US6896839B2 (en) | 2001-02-07 | 2005-05-24 | Minolta Co., Ltd. | Three-dimensional molding apparatus and three-dimensional molding method |
DE10105504A1 (de) | 2001-02-07 | 2002-08-14 | Eos Electro Optical Syst | Vorrichtung zur Behandlung von Pulver für eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts, Vorrichtung zum Herstellen eines dreidimensionalen Objekts und Verfahren zum Herstellen eines dreidimensionalen Objekts |
WO2002064354A1 (fr) | 2001-02-15 | 2002-08-22 | Vantico Gmbh | Impression structuree tridimensionnelle |
WO2002064353A1 (fr) | 2001-02-15 | 2002-08-22 | Vantico Gmbh | Impression en trois dimensions |
US6682030B2 (en) | 2001-03-08 | 2004-01-27 | Lista International Corporation | Workstation with adjustable height frame |
US7879393B2 (en) | 2001-04-10 | 2011-02-01 | Ingo Ederer | Method and device for applying fluids |
DE10117875C1 (de) | 2001-04-10 | 2003-01-30 | Generis Gmbh | Verfahren, Vorrichtung zum Auftragen von Fluiden sowie Verwendung einer solchen Vorrichtung |
WO2002083323A2 (fr) | 2001-04-10 | 2002-10-24 | Generis Gmbh | Procede et dispositif d'application de fluides |
US20040170765A1 (en) | 2001-04-10 | 2004-09-02 | Ingo Ederer | Method and device for applying fluids |
WO2003016067A2 (fr) | 2001-05-08 | 2003-02-27 | Z Corporation | Procede et appareil de prototypage d'un objet tridimensionnel |
US20040145088A1 (en) | 2001-05-24 | 2004-07-29 | Patel Ranjana C | Three-dimensional structured printing |
WO2003016030A1 (fr) | 2001-05-24 | 2003-02-27 | Vantico Gmbh | Impression structuree tridimensionnelle |
US6733528B2 (en) | 2001-08-09 | 2004-05-11 | Pentax Corporation | Implant forming method |
US20030083771A1 (en) | 2001-10-03 | 2003-05-01 | Schmidt Kris Alan | Selective deposition modeling with curable phase change materials |
US20050174407A1 (en) | 2001-12-04 | 2005-08-11 | Johnson Daniel R. | Depositing solid materials |
GB2382798A (en) | 2001-12-04 | 2003-06-11 | Qinetiq Ltd | Inkjet printer which deposits at least two fluids on a substrate such that the fluids react chemically to form a product thereon |
US20050017386A1 (en) | 2001-12-13 | 2005-01-27 | Urban Harrysson | Device and method for producing a product by free form forming |
DE10216013A1 (de) | 2002-04-11 | 2003-10-30 | Generis Gmbh | Verfahren und Vorrichtung zum Auftragen von Fluiden |
US20060105102A1 (en) | 2002-04-11 | 2006-05-18 | Rainer Hochsmann | Method and device for applying fluids |
WO2003086726A1 (fr) | 2002-04-11 | 2003-10-23 | Generis Gmbh | Procede et dispositif pour appliquer des fluides |
US7748971B2 (en) | 2002-04-11 | 2010-07-06 | Voxeljet Technology Gmbh | Method and device for applying fluids |
WO2003097518A2 (fr) | 2002-05-20 | 2003-11-27 | Generis Gmbh | Dispositif permettant une alimentation en fluides |
US20060175346A1 (en) | 2002-05-20 | 2006-08-10 | Ingo Ederer | Device for feeding fluids |
US20050167872A1 (en) | 2002-06-05 | 2005-08-04 | Tatsuo Tsubaki | Method for constructing patterns in a layered manner |
WO2003103932A1 (fr) | 2002-06-05 | 2003-12-18 | Generis Gmbh | Procede de fabrication de modeles en couches |
US7402330B2 (en) | 2002-06-18 | 2008-07-22 | Daimler Ag | Polyvinyl butyral granular material for 3-D binder printing, production method and uses therefor |
US7431987B2 (en) | 2002-06-18 | 2008-10-07 | Daimler Ag | Core-shell particles having non-polar outer surface and methods for producing a three-dimensional object from the particles |
US20040003738A1 (en) | 2002-07-03 | 2004-01-08 | Therics, Inc. | Apparatus, systems and methods for use in three-dimensional printing |
WO2004010907A1 (fr) | 2002-07-29 | 2004-02-05 | Therics, Inc. | Cadre composite complexe tridimensionnel resistant au decollement |
US20040038009A1 (en) | 2002-08-21 | 2004-02-26 | Leyden Richard Noel | Water-based material systems and methods for 3D printing |
US20040056378A1 (en) | 2002-09-25 | 2004-03-25 | Bredt James F. | Three dimensional printing material system and method |
US20040084814A1 (en) * | 2002-10-31 | 2004-05-06 | Boyd Melissa D. | Powder removal system for three-dimensional object fabricator |
US20040094058A1 (en) | 2002-11-14 | 2004-05-20 | Vladek Kasperchik | Rapid prototyping material systems |
US7641461B2 (en) | 2003-01-21 | 2010-01-05 | University Of Southern California | Robotic systems for automated construction |
EP1442870B1 (fr) | 2003-01-29 | 2006-08-02 | Hewlett-Packard Development Company, L.P. | Procédés et systèmes pour produire un article par fabrication de formes libres solides par variation de la concentration de matière éjectée sous une couche de cette article |
US7497977B2 (en) | 2003-01-29 | 2009-03-03 | Hewlett-Packard Development Company, L.P. | Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer |
US7722802B2 (en) | 2003-02-18 | 2010-05-25 | Daimler Ag | Coated powder particles for producing three-dimensional bodies by means of a layer constituting method |
WO2004108398A1 (fr) | 2003-06-05 | 2004-12-16 | The University Of Liverpool | Appareil permettant de fabriquer des articles tridimensionnels |
US8506870B2 (en) | 2003-06-16 | 2013-08-13 | Voxeljet Technology Gmbh | Methods of manufacturing layered three-dimensional forms |
US7807077B2 (en) | 2003-06-16 | 2010-10-05 | Voxeljet Technology Gmbh | Methods and systems for the manufacture of layered three-dimensional forms |
US20050017394A1 (en) | 2003-06-16 | 2005-01-27 | Voxeljet Gmbh | Methods and systems for the manufacture of layered three-dimensional forms |
WO2004112988A2 (fr) | 2003-06-17 | 2004-12-29 | Voxeljet Gmbh (Vormals Generis Gmbh) | Procede de realisation de modeles par couches |
US8020604B2 (en) | 2003-06-17 | 2011-09-20 | Hoechsmann Rainer | Method for the layered construction of models |
US20070245950A1 (en) | 2003-06-30 | 2007-10-25 | Teulet Patrick D | Device for the Production of Thin Powder Layers, in Particular at High Temperatures, During a Method Involving the Use of a Laser on a Material |
US20050093194A1 (en) | 2003-11-03 | 2005-05-05 | Christopher Oriakhi | Solid free-form fabrication of three-dimensional objects |
US7597835B2 (en) | 2004-02-06 | 2009-10-06 | Nicolas Marsac | Method and machine for producing three-dimensional objects by means of successive layer deposition |
US20050219942A1 (en) | 2004-02-11 | 2005-10-06 | Kris Wallgren | Low profile mixing plant for particulate materials |
WO2005082603A1 (fr) | 2004-02-12 | 2005-09-09 | Illinois Tool Works Inc. | Systeme d'infiltration pour processus de prototypage rapide |
WO2005080010A1 (fr) | 2004-02-19 | 2005-09-01 | Voxeljet Gmbh | Procede et dispositif pour appliquer des fluides |
US20120094026A1 (en) | 2004-02-19 | 2012-04-19 | Voxeljet Gmbh | Method and device for applying fluids |
US8096262B2 (en) | 2004-02-19 | 2012-01-17 | Ingo Ederer | Method and device for applying fluids |
WO2005097476A2 (fr) | 2004-04-02 | 2005-10-20 | Z Corporation | Procedes et appareil d’impression en trois dimensions |
US20050280185A1 (en) * | 2004-04-02 | 2005-12-22 | Z Corporation | Methods and apparatus for 3D printing |
US7767130B2 (en) | 2004-05-24 | 2010-08-03 | Voxeljet Technology Gmbh | Method and device for production of a three-dimensional article |
WO2005113219A1 (fr) | 2004-05-24 | 2005-12-01 | Voxeljet Technology Gmbh | Procede et dispositif de fabrication d'un article en trois dimensions |
US7387359B2 (en) | 2004-09-21 | 2008-06-17 | Z Corporation | Apparatus and methods for servicing 3D printers |
US20070057412A1 (en) | 2005-03-23 | 2007-03-15 | 3D Systems, Inc. | Apparatus and method for aligning a removable build chamber within a process chamber |
US20090068376A1 (en) * | 2005-05-13 | 2009-03-12 | Jochen Philippi | Device and Method for Manufacturing a Three-Dimensional Object with a Heated Recoater for a Building Material in Powder Form |
WO2007039450A1 (fr) | 2005-09-20 | 2007-04-12 | Pts Software Bv | Appareil destiné à la fabrication d’un article tridimensionnel et procédé de fabrication de cet article |
DE102005056260A1 (de) | 2005-11-25 | 2007-06-21 | Prometal Rct Gmbh | Verfahren und Vorrichtung zum flächigen Auftragen von fließfähigem Material |
US20070215020A1 (en) | 2006-03-14 | 2007-09-20 | National Gypsum Properties, Llc | Method and apparatus for calcining gypsum |
US20080047628A1 (en) | 2006-05-26 | 2008-02-28 | Z Corporation | Apparatus and methods for handling materials in a 3-D printer |
US20100243123A1 (en) | 2006-06-30 | 2010-09-30 | Voxeljet Technology Gmbh | Method for the construction of a laminated compound |
US20080001331A1 (en) * | 2006-06-30 | 2008-01-03 | Voxeljet Gmbh | Method for the construction of a laminated compound |
EP1872928A1 (fr) | 2006-06-30 | 2008-01-02 | Voxeljet Technology GmbH | Procédé et dispositif destinés à la production d'objets tridimensionnels |
US7736578B2 (en) | 2006-06-30 | 2010-06-15 | Ingo Ederer | Method for the construction of a laminated compound |
US7927539B2 (en) | 2006-06-30 | 2011-04-19 | Ingo Ederer | Method for the construction of a laminated compound |
DE102006030350A1 (de) | 2006-06-30 | 2008-01-03 | Voxeljet Technology Gmbh | Verfahren zum Aufbauen eines Schichtenkörpers |
US20100007062A1 (en) | 2006-07-27 | 2010-01-14 | Arcam Ab | Method and device for producing three-dimensional objects |
US20130313757A1 (en) | 2006-08-10 | 2013-11-28 | Voxeljet Technology Gmbh | Self-hardening material and process for layerwise formation of models |
WO2008022615A2 (fr) | 2006-08-20 | 2008-02-28 | Voxeljet Technology Gmbh | matériau auto-durcissant et procédé de construction de modèles par stratification de couches |
US20100291314A1 (en) | 2006-08-20 | 2010-11-18 | Voxeljet Technology | Self-hardening material and process for layerwise formation of models |
WO2008049384A1 (fr) * | 2006-10-24 | 2008-05-02 | Cl Schutzrechtsverwaltungs Gmbh | Dispositif de production d'un objet tridimensionnel |
WO2008055615A1 (fr) | 2006-11-10 | 2008-05-15 | Eos Gmbh Electro Optical Systems | Dispositif et procédé pour produire un objet tridimensionnel au moyen d'un système d'application de couches pour matériau de construction pulvérulent |
US20100026743A1 (en) | 2006-12-21 | 2010-02-04 | Agfa Graphics Nv | Inkjet printing methods and ink sets |
US20120113439A1 (en) | 2007-07-18 | 2012-05-10 | Voxeljet Technology | Method for producing three-dimensional components |
US20100207288A1 (en) | 2007-09-17 | 2010-08-19 | Enrico Dini | Method for automatically producing a conglomerate structure and apparatus therefor |
WO2009037550A2 (fr) | 2007-09-17 | 2009-03-26 | Enrico Dini | Procédé optimisé de fabrication automatique d'une structure agglomérée et appareil associé |
US8349233B2 (en) | 2007-10-11 | 2013-01-08 | Voxeljet Gmbh | Material system and method for changing properties of a plastic component |
US8727672B2 (en) | 2007-10-21 | 2014-05-20 | Voxeljet Ag | Method and device for conveying particulate material during the layer-wise production of patterns |
US20100272519A1 (en) * | 2007-10-21 | 2010-10-28 | Voxeljet Technology Gmbh | Method and device for conveying particulate material during the layer-wise production of patterns |
US20140202381A1 (en) | 2007-10-21 | 2014-07-24 | Voxeljet Ag | Method and device for conveying particulate material during the layer-wise production of patterns |
US20100212584A1 (en) | 2007-10-23 | 2010-08-26 | Voxeljet Technology Gmbh | Device for the layer-wise production of patterns |
US8992205B2 (en) | 2007-10-23 | 2015-03-31 | Voxeijet AG | Device for the layer-wise production of patterns |
US20150165574A1 (en) | 2007-10-23 | 2015-06-18 | Voxeljet Ag | Methods for assembling a device for the layer-wise production of patterns |
US20110059247A1 (en) * | 2008-05-26 | 2011-03-10 | Sony Corporation | Modeling apparatus and modeling method |
US8715832B2 (en) | 2008-11-20 | 2014-05-06 | Voxeljet Ag | Method for the layered construction of plastic models |
US20100247742A1 (en) | 2009-03-31 | 2010-09-30 | Microjet Technology Co., Ltd. | Three-dimensional object forming apparatus and method for forming three-dimensional object |
US20120126457A1 (en) * | 2009-05-15 | 2012-05-24 | Panasonic Electric Works Co., Ltd. | Layered-modeling device and method using said device for manufacturing three-dimensional objects |
US20120097258A1 (en) | 2009-06-22 | 2012-04-26 | Voxeljet Technology Gmbh | Method and device for switching a particulate material flow in the construction of models in layers |
DE102009030113A1 (de) | 2009-06-22 | 2010-12-23 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Zuführen von Fluiden beim schichtweisen Bauen von Modellen |
WO2010149133A1 (fr) | 2009-06-22 | 2010-12-29 | Voxeljet Technology Gmbh | Procédé et dispositif de commutation d'un courant de matière particulaire lors de la construction couche par couche de maquettes |
WO2011067352A2 (fr) | 2009-12-02 | 2011-06-09 | Prometal Rct Gmbh | Caisse de construction pour une installation de prototypage rapide |
US8956144B2 (en) | 2010-02-04 | 2015-02-17 | Voxeijet AG | Device for producing three-demensional models |
WO2011120505A1 (fr) | 2010-03-31 | 2011-10-06 | Voxeljet Technology Gmbh | Dispositif pour la fabrication de modèles tridimensionnels |
US20130000549A1 (en) | 2010-03-31 | 2013-01-03 | Voxeljet Technology Gmbh | Device and method for producing three-dimensional models |
US20130004610A1 (en) | 2010-03-31 | 2013-01-03 | VOXEIJET TECHNOLOGY GmbH | Device for producing three-dimensional models |
US8911226B2 (en) | 2010-04-14 | 2014-12-16 | Voxeljet Ag | Device for producing three-dimensional models |
WO2011127900A2 (fr) | 2010-04-14 | 2011-10-20 | Voxeljet Technology Gmbh | Dispositif pour construire des modèles tridimensionnels |
US20130029001A1 (en) | 2010-04-14 | 2013-01-31 | Voxeljet Technology Gmbh | Device for producing three-dimensional models |
US20130026680A1 (en) | 2010-04-17 | 2013-01-31 | Voxeljet Technology Gmbh | Method and device for producing three-dimensional models |
US20130302575A1 (en) | 2010-12-29 | 2013-11-14 | Voxeljet Technology Gmbh | Method and material system for building models in layers |
US20140212677A1 (en) | 2011-06-22 | 2014-07-31 | Ingo Gnüchtel | Method for the layerwise construction of models |
US20140306379A1 (en) | 2011-08-31 | 2014-10-16 | Voxeljet Ag | Device for constructing models in layers |
Non-Patent Citations (20)
Title |
---|
Cima et al., "Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials," SFF Symposium, Austin, TX, 1994. |
Co-pending U.S. Appl. No. 12/377,137, filed Aug. 7, 2007, published as US2010/0291314. |
Co-pending U.S. Appl. No. 13/327,856, filed Dec. 16, 2011, published as US2012/0094026. |
Co-pending U.S. Appl. No. 13/583,989, filed Mar. 28, 2011, published as US2013/0004610. |
Co-pending U.S. Appl. No. 13/640,126, filed Apr. 11, 2011, published as US2013/0029001. |
Co-pending U.S. Appl. No. 13/957,915, filed Aug. 2, 2013, published as US2013/0313757. |
Co-pending U.S. Appl. No. 14/250,838, filed Apr. 11, 2014, published as US 2014/0202381. |
Co-pending U.S. Appl. No. 14/292,961, filed Jun. 2, 2014, published as US2014/0322501. |
Co-pending U.S. Appl. No. 14/547,676, filed Nov. 19, 2014 (continuation of U.S. Pat. No. 8,956,144). |
Co-pending U.S. Appl. No. 14/633,756, filed Feb. 27, 2015, published as US2015/0165574. |
Feature Article-Rapid Tooling-Cast Resin and Sprayed Metal Tooling by Joel Segal, Apr. 2000. |
Gebhart, Rapid Prototyping, pp. 118-119, 1996. |
International Search Report, Application No. PCT/DE2011/001850 dated May 21, 2012. |
Jacobs et al., 2005 SME Technical Paper, title "Are QuickCast Patterns Suitable for Limited Production?". |
Marcus et al., Solid Freeform Fabrication Proceedings, Nov. 1993. |
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, p. 130-33. |
Sachs et al., "Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model", Massachusetts Institute of Technology, pp. 131-136. |
Sachs et al., "Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model", Massachusetts Institute of Technology, pp. 143-151, Jan. 1990. |
US 4,937,420, 06/1990, Deckard (withdrawn) |
Williams, "Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing", Department of Mechanical Engineering, pp. 2-15, Jun. 1987. |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10226919B2 (en) | 2007-07-18 | 2019-03-12 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US10960655B2 (en) | 2007-07-18 | 2021-03-30 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US20170028630A1 (en) * | 2007-10-21 | 2017-02-02 | Voxeljet Ag | Method and device for layer-wise production of patterns |
US10099426B2 (en) * | 2007-10-21 | 2018-10-16 | Voxeljet Ag | Method and device for layer-wise production of patterns |
US9925721B2 (en) | 2010-02-04 | 2018-03-27 | Voxeljet Ag | Device for producing three-dimensional models |
US9656423B2 (en) | 2010-03-31 | 2017-05-23 | Voxeljet Ag | Device and method for producing three-dimensional models |
US9815243B2 (en) | 2010-03-31 | 2017-11-14 | Voxeljet Ag | Device for producing three-dimensional models |
US9962885B2 (en) | 2010-04-14 | 2018-05-08 | Voxeljet Ag | Device for producing three-dimensional models |
US10179365B2 (en) | 2010-04-17 | 2019-01-15 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10639715B2 (en) | 2010-04-17 | 2020-05-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US9914169B2 (en) | 2010-04-17 | 2018-03-13 | Voxeljet Ag | Method and device for producing three-dimensional models |
US9770867B2 (en) | 2010-12-29 | 2017-09-26 | Voxeljet Ag | Method and material system for building models in layers |
US9649812B2 (en) | 2011-01-05 | 2017-05-16 | Voxeljet Ag | Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area |
US10913204B2 (en) | 2011-08-31 | 2021-02-09 | Voxeljet Ag | Device for constructing models in layers and methods thereof |
US9878494B2 (en) | 2011-08-31 | 2018-01-30 | Voxeljet Ag | Device for constructing models in layers |
US10220567B2 (en) | 2012-03-06 | 2019-03-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10589460B2 (en) | 2012-03-06 | 2020-03-17 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10059062B2 (en) | 2012-05-25 | 2018-08-28 | Voxeljet Ag | Device for producing three-dimensional models with special building platforms and drive systems |
US11225029B2 (en) | 2012-05-25 | 2022-01-18 | Voxeljet Ag | Device for producing three-dimensional models and methods thereof |
US10059058B2 (en) | 2012-06-22 | 2018-08-28 | Voxeljet Ag | Device for building a multilayer structure with storage container or filling container movable along the dispensing container |
US10052682B2 (en) | 2012-10-12 | 2018-08-21 | Voxeljet Ag | 3D multi-stage method |
US11097469B2 (en) | 2012-10-15 | 2021-08-24 | Voxeljet Ag | Method and device for producing three-dimensional models with a temperature-controllable print head |
US10213831B2 (en) | 2012-11-25 | 2019-02-26 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US11130290B2 (en) | 2012-11-25 | 2021-09-28 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US10343301B2 (en) | 2013-02-28 | 2019-07-09 | Voxeljet Ag | Process for producing a moulding using a water-soluble casting mould and material system for the production thereof |
US11072090B2 (en) | 2013-02-28 | 2021-07-27 | Voxeljet Ag | Material system for producing a molded part using a water-soluble casting mold |
US10786945B2 (en) | 2013-10-30 | 2020-09-29 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
US11541596B2 (en) | 2013-10-30 | 2023-01-03 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
US11850796B2 (en) | 2013-12-02 | 2023-12-26 | Voxeljet Ag | Interchangeable container with moveable side walls |
US10220568B2 (en) | 2013-12-02 | 2019-03-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US11292188B2 (en) | 2013-12-02 | 2022-04-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US9943981B2 (en) | 2013-12-11 | 2018-04-17 | Voxeljet Ag | 3D infiltration method |
US10442170B2 (en) | 2013-12-20 | 2019-10-15 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US10889055B2 (en) | 2013-12-20 | 2021-01-12 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US11097471B2 (en) | 2014-03-31 | 2021-08-24 | Voxeljet Ag | Method and device for 3D printing using temperature-controlled processing |
US12070905B2 (en) | 2014-05-26 | 2024-08-27 | Voxeljet Ag | 3D reverse printing method and device |
US10913207B2 (en) | 2014-05-26 | 2021-02-09 | Voxeljet Ag | 3D reverse printing method and device |
US10946556B2 (en) | 2014-08-02 | 2021-03-16 | Voxeljet Ag | Method and casting mold, in particular for use in cold casting methods |
US10682809B2 (en) | 2014-12-22 | 2020-06-16 | Voxeljet Ag | Method and device for producing 3D moulded parts by means of a layer construction technique |
US10843404B2 (en) | 2015-05-20 | 2020-11-24 | Voxeljet Ag | Phenolic resin method |
US11235518B2 (en) | 2015-12-01 | 2022-02-01 | Voxeljet Ag | Method and device for producing three-dimensional components with the aid of an overfeed sensor |
US12036732B2 (en) | 2015-12-01 | 2024-07-16 | Voxeljet Ag | Method and device for producing three- dimensional components with the aid of an overfeed sensor |
US10449756B2 (en) | 2016-01-29 | 2019-10-22 | Xyzprinting, Inc. | Three dimensional printing apparatus |
EP3210760A1 (fr) * | 2016-01-29 | 2017-08-30 | XYZprinting, Inc. | Appareil d'impression en trois dimensions |
US10414093B2 (en) * | 2016-08-10 | 2019-09-17 | Toyota Jidosha Kabushiki Kaisha | Three-dimensional molding device and three-dimensional molding method |
US10632732B2 (en) | 2016-11-08 | 2020-04-28 | 3Dbotics, Inc. | Method and apparatus for making three-dimensional objects using a dynamically adjustable retaining barrier |
US20180200793A1 (en) * | 2017-01-13 | 2018-07-19 | General Electric Company | Large scale additive machine |
US11103928B2 (en) | 2017-01-13 | 2021-08-31 | General Electric Company | Additive manufacturing using a mobile build volume |
US10478893B1 (en) * | 2017-01-13 | 2019-11-19 | General Electric Company | Additive manufacturing using a selective recoater |
US20180200792A1 (en) * | 2017-01-13 | 2018-07-19 | General Electric Company | Additive manufacturing using a mobile build volume |
US20180200962A1 (en) * | 2017-01-13 | 2018-07-19 | General Electric Company | Additive manufacturing using a dynamically grown build envelope |
US10981232B2 (en) | 2017-01-13 | 2021-04-20 | General Electric Company | Additive manufacturing using a selective recoater |
US11370031B2 (en) | 2017-01-13 | 2022-06-28 | General Electric Company | Large scale additive machine |
US10022794B1 (en) * | 2017-01-13 | 2018-07-17 | General Electric Company | Additive manufacturing using a mobile build volume |
US10022795B1 (en) * | 2017-01-13 | 2018-07-17 | General Electric Company | Large scale additive machine |
US9956612B1 (en) * | 2017-01-13 | 2018-05-01 | General Electric Company | Additive manufacturing using a mobile scan area |
US10821516B2 (en) | 2017-01-13 | 2020-11-03 | General Electric Company | Large scale additive machine |
US12076789B2 (en) | 2017-01-13 | 2024-09-03 | General Electric Company | Additive manufacturing using a dynamically grown build envelope |
US11504879B2 (en) | 2020-04-17 | 2022-11-22 | Beehive Industries, LLC | Powder spreading apparatus and system |
Also Published As
Publication number | Publication date |
---|---|
US10513105B2 (en) | 2019-12-24 |
US20210206155A1 (en) | 2021-07-08 |
US20170217098A1 (en) | 2017-08-03 |
US20130234355A1 (en) | 2013-09-12 |
US20200189259A1 (en) | 2020-06-18 |
US10946636B2 (en) | 2021-03-16 |
DE102011007957A1 (de) | 2012-07-05 |
US20160107386A1 (en) | 2016-04-21 |
WO2012092912A1 (fr) | 2012-07-12 |
US11407216B2 (en) | 2022-08-09 |
US9649812B2 (en) | 2017-05-16 |
EP2661354B1 (fr) | 2016-08-31 |
EP2661354A1 (fr) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11407216B2 (en) | Device and method for constructing a layer body | |
CN107835739B (zh) | 用于在生成式的制造方法中配给构造材料的方法和装置 | |
US10507592B2 (en) | 3D printer | |
US10093065B2 (en) | Device and method for 3D printing methods, with accelerated execution | |
US11077611B2 (en) | Method and device for producing 3D shaped articles with a double recoater | |
US10059058B2 (en) | Device for building a multilayer structure with storage container or filling container movable along the dispensing container | |
EP3030403B1 (fr) | Système de revêtement pour imprimante 3d | |
US8845319B2 (en) | Means for modifying a building space and device for manufacturing a three-dimensional object having means for modifying a building space | |
US12083738B2 (en) | Method, device, and recoating module for producing a three-dimensional object | |
JP6967141B2 (ja) | 3dプリンタ用のコータアセンブリ | |
KR102647672B1 (ko) | 주입기에 의해서 실시되는 분말 분배 단계를 포함하는 적층 제조 프로세스 | |
US11446869B2 (en) | Recoating device and method for applying a layer of build material capable of solidification on a working surface | |
US11964434B2 (en) | Closure device, 3D printing device and method for producing 3D-molded parts | |
US20220266346A1 (en) | Powder discharge module for an additive manufacturing apparatus, additive manufacturing apparatus and method of applying a powder layer | |
KR20240107930A (ko) | 리코팅 장치 및 이를 포함하는 3d 프린터 | |
US11485077B2 (en) | Forming a layer of build material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VOXELJET TECHNOLOGY GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARTMANN, ANDREAS DOMINIK;SCHMID, DOMINIK;REEL/FRAME:030346/0104 Effective date: 20130409 |
|
AS | Assignment |
Owner name: VOXELJET AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VOXELJET TECHNOLOGY GMBH;REEL/FRAME:032552/0095 Effective date: 20131127 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |