US9121379B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
US9121379B2
US9121379B2 US13/660,168 US201213660168A US9121379B2 US 9121379 B2 US9121379 B2 US 9121379B2 US 201213660168 A US201213660168 A US 201213660168A US 9121379 B2 US9121379 B2 US 9121379B2
Authority
US
United States
Prior art keywords
fuel
valve
fuel injection
valve seat
seat member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/660,168
Other languages
English (en)
Other versions
US20130206870A1 (en
Inventor
Takahiro Saito
Nobuaki Kobayashi
Hiroshi Ohno
Atsushi Nakai
Yoshio Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Assigned to HITACHI AUTOMOTIVE SYSTEMS, LTD. reassignment HITACHI AUTOMOTIVE SYSTEMS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKAI, ATSUSHI, OHNO, HIROSHI, KOBAYASHI, NOBUAKI, SAITO, TAKAHIRO
Assigned to HITACHI AUTOMOTIVE SYSTEMS, LTD. reassignment HITACHI AUTOMOTIVE SYSTEMS, LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE ORIGINAL ELECTRONIC COVER SHEET, THE 5TH INVENTOR'S NAME IS OMITTED, PREVIOUSLY RECORDED ON REEL 029190 FRAME 0435. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: OKAMOTO, YOSHIO, NAKAI, ATSUSHI, OHNO, HIROSHI, KOBAYASHI, NOBUAKI, SAITO, TAKAHIRO
Publication of US20130206870A1 publication Critical patent/US20130206870A1/en
Application granted granted Critical
Publication of US9121379B2 publication Critical patent/US9121379B2/en
Assigned to HITACHI ASTEMO, LTD. reassignment HITACHI ASTEMO, LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HITACHI AUTOMOTIVE SYSTEMS, LTD.
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • F02M61/163Means being injection-valves with helically or spirally shaped grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1813Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/184Discharge orifices having non circular sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • F02M61/186Multi-layered orifice plates

Definitions

  • the present invention relates to a fuel injection valve used for a fuel injection of an engine.
  • a Japanese Patent Application First Publication (tokkai) No. 2003-336561 published on Nov. 28, 2003 (which generally corresponds to a U.S. Pat. No. 6,854,670 issued on Feb. 15, 2005) exemplifies a previously proposed fuel injection valve.
  • a passage plate and an injector plate are welded on a valve seat member. Then, side holes, transverse conduits, and swirl chambers are formed on the passage plate and fuel injection holes are formed within the injector plate.
  • the fuel injection valves are attached onto intake port(s) of the engine at various angles. It is necessary to suppress an adhesion of injected fuel onto the intake port of the engine by setting a fuel spray angle in accordance with its attachment angle of the fuel injection valve with respect to the intake port, when the fuel injection valve is attached onto the intake port at a suitable angle.
  • the fuel spray angle is only set according to experiments using various shapes of the injector plate and the passage plate. Therefore, a great number of labor hours (man-hours) are needed at a time of design stage.
  • an object of the present invention to provide an improved fuel injection valve which is capable of finding out a characteristic of a configuration of the fuel injection valve through which a desired fuel spray angle can be obtained and is capable of designing the fuel injection valve using the found out characteristic, and which is capable of suppressing a worsening of an atomization characteristic of fuel spray due to an interference between mutual sprays.
  • a fuel injection valve comprising: a valve body slideably installed within the injection valve; a valve seat member having a valve seat on which the valve body is seated at a time of a valve closure and having an opening section at a downstream side of the valve seat member; a plurality of swirl generating chambers, each swirl generating chamber being configured to swirl fuel at an inner part of a corresponding one of the swirl generating chambers to provide a swirling force for fuel; a plurality of injection holes, each injection hole being formed on a bottom section of the corresponding one of the swirl generating chambers and penetrated to an external: and a communication passage configured to communicate between the corresponding one of the swirl generating chambers and the opening section of the valve seat member, wherein a pipe line through which fuel is uniformly caused to flow is supposed from a flow quantity of fuel flowing into each of the communication passages and, if a diameter of the pipe line is assumed to be da and a diameter of each of the injection holes is assumed to be d
  • FIG. 1 is a cross sectional view of a fuel injection valve in a first preferred embodiment according to the present invention.
  • FIG. 2 is an expanded cross sectional view of a portion of the fuel injection valve in a vicinity to a nozzle plate of the fuel injection valve shown in FIG. 1 .
  • FIG. 3 is a perspective view of the nozzle plate of the fuel injection valve shown in FIG. 1 .
  • FIG. 4 is a perspective view of a swirl chamber and a connected fuel injection hole of the fuel injection valve shown in FIG. 1 .
  • FIG. 5 is a rough plan view of the swirl chamber and the connected fuel injection hole of the fuel injection valve shown in FIG. 1 .
  • FIGS. 6A , 6 B, and 6 C are explanatory views of examples of an attachment angle of the fuel injection valve to an intake port of an engine in a case of the first embodiment shown in FIG. 1 .
  • FIG. 7 is a graph representing a relationship among da/d 0 , L/d 0 and a fuel spray angle ⁇ 1 in the case of the first embodiment shown in FIG. 1 .
  • FIG. 8 is a perspective view of the nozzle plate in a second preferred embodiment of the fuel injection valve.
  • FIG. 9 is a perspective view of the nozzle plate in a third preferred embodiment of the fuel injection valve.
  • FIG. 10 is a perspective view of the nozzle plate in a fourth preferred embodiment of the fuel injection valve.
  • FIG. 11 is an expanded cross sectional view of a part of the fuel injection valve in a vicinity to the nozzle plate of the fuel injection valve in a fifth preferred embodiment of the fuel injection valve.
  • FIG. 12 is a perspective view of the nozzle plate in a sixth preferred embodiment of the fuel injection valve.
  • FIG. 13 is an expanded cross sectional view of the part of the fuel injection valve in a vicinity to the nozzle plate in a seventh preferred embodiment of the fuel injection valve.
  • FIG. 14 is a perspective view of an intermediate plate in the seventh preferred embodiment of the fuel injection valve shown in FIG. 13 .
  • FIG. 15 is a perspective view of the nozzle plate in the seventh preferred embodiment of the fuel injection valve shown in FIG. 13 .
  • FIG. 16 is a rough perspective view of the swirl chamber and the fuel injection hole of the fuel injection valve in an eighth preferred embodiment of the fuel injection valve.
  • FIG. 17 is a rough perspective view of the swirl chamber and the fuel injection hole of the fuel injection valve in a ninth preferred embodiment of the fuel injection valve.
  • FIG. 18 is a rough perspective view of the swirl chamber and the fuel injection hole of the fuel injection valve in a tenth preferred embodiment of the fuel injection valve.
  • FIG. 19 is a plan view of the nozzle plate of the fuel injection valve in an eleventh preferred embodiment of the fuel injection valve.
  • FIG. 20 is a plan view of the nozzle plate of the fuel injection valve in a twelfth preferred embodiment of the fuel injection valve.
  • a fuel injection valve in a first preferred embodiment according to the present invention will be explained below.
  • Magnetic material cylindrical body 2 is made of a metallic pipe and so forth formed of a magnetic metal material such as an electromagnetic stainless steel. Means of press working such as a deep drawing and of cutting work are used to form magnetic material cylindrical body 2 integrally in a stepped cylindrical shape as shown in FIG. 1 .
  • Magnetic material cylindrical body 2 includes a large-diameter section 11 formed at one end section of body 2 and a small-diameter section 12 formed at the other end section of cylindrical body 2 and having a smaller diameter than large-diameter section 11 .
  • a partially thinned thin thickness section 13 is formed integrally on small-diameter section 12 .
  • Small-diameter section 12 is divided into: a core cylindrical body housing section 14 housing a core cylindrical body 3 located at one end side of thin thickness section 13 , with thin thickness section 13 as a center; and a valve member housing section 16 housing a valve member 15 (valve body 4 , valve shaft 5 , and valve seat member 7 ) located at the other end side of thin thickness section 13 with respect to thin thickness section 13 as the center.
  • Valve body 4 is welded integrally on a tip section of small-diameter section 23 .
  • black half-circles and black triangles denote welded locations.
  • a spring inserting hole 24 is pierced through an end section of large diameter section 22 .
  • a spring seat section 25 is formed on a bottom section of spring inserting hole 24 and has a diameter smaller than spring inserting hole 24 and a spring receiving section 26 in a stepwise form is formed on the bottom section of spring inserting hole 25 .
  • a fuel passage hole 27 is formed at an end section of small diameter section 23 . This fuel passage hole 27 is communicated with spring inserting hole 24 .
  • Electromagnetic coil 9 is inserted and fitted into the outer periphery of core cylindrical body 3 of magnetic material cylindrical body 2 . That is to say, electromagnetic coil 9 is disposed on the outer periphery of core cylindrical body 3 .
  • Electromagnetic coil 9 includes: a bobbin 32 formed of a resin material; and a coil 33 wound around this bobbin 32 . Coil 33 is connected to an electromagnetic coil control unit 55 via a connector pin 34 .
  • Electromagnetic coil control unit 55 turns on the power supply to coil 33 of electromagnetic coil 9 to open fuel injection valve 1 in accordance with a timing at which fuel is injected toward a combustion chamber side calculated on a basis of an information from a crank angle sensor detecting a crank angle.
  • Linkage core 38 is formed in a substantially letter C shape made of a magnetic metallic material.
  • Yoke 10 is connected to magnetic material cylindrical body 2 on large diameter section 35 via small diameter section 37 and linkage core 38 . That is to say, both end sections of electromagnetic coil 9 are magnetically connected to magnetic material cylindrical body 2 .
  • a tip section of the other end side of yoke 10 holds an O ring 40 to connect fuel injection valve 1 to an intake port of the engine.
  • a protector 52 to protect the tip of the magnetic material cylindrical body is attached on the tip of the other end side of yoke 10 .
  • valve body 4 and valve shaft 5 are opened against a biasing force of coil spring 29 according to a magnetic force of the magnetic field.
  • FIG. 2 is an expanded cross sectional view of a part of fuel injection valve 1 in a vicinity to nozzle plate 8 of fuel injection valve 1 .
  • FIG. 3 shows a perspective view of nozzle plate 8 in the first embodiment. The structure of nozzle plate 8 will be described using FIGS. 2 and 3 .
  • Swirl chambers 41 and center chamber 42 are formed on one end (side) surface of nozzle plate 8 (as shown in FIG. 3 ).
  • Center chamber 42 is formed in a bottomed circular recess shape in a vicinity to the center of nozzle plate 8 .
  • Three swirl chambers 41 are formed and each of swirl chambers 41 is constituted by a communication passage 45 and a swirl generating chamber 46 .
  • Each communication passage 45 is connected together in a vicinity to a center of nozzle plate 8 and center chamber 42 is formed at a connection portion of each communication passage 45 .
  • Swirl generating chamber 46 is formed on a tip section of communication passage 45 .
  • Communication passage 45 is connected to corresponding swirl generating chamber 46 along a tangential line direction of swirl generating chamber 46 .
  • Communication passage 45 is formed in the bottomed recess shape having the inner side surface and the bottom section and its cross sectional area is formed in a swirl (or a spiral) configuration.
  • Each fuel injection hole 44 which is a penetrating hole is formed on a bottom section of swirl generating chamber 46 .
  • a liquid film (or liquid membrane) state of fuel spray is a state in which fuel is in a film (membrane) state on a spray surface in a substantially hollow conical shape formed immediately after fuel is injected from corresponding fuel injection hole 44 .
  • a fuel liquid thread state of fuel spray indicates a state in which fuel spray which has been the film state is gradually started to be disrupted.
  • a fuel droplet state of fuel spray indicates a state in which a further disruption is advanced than the liquid thread state and fuel is further disrupted in a granulated.
  • FIG. 6A shows a graph representing a relationship among da/d 0 , L/d 0 , and fuel spray angle ⁇ 1 .
  • da/d 0 and fuel spray angle ⁇ 1 have a negative correlation and can be approximated to a linear characteristic.
  • da/d 0 is the same (value)
  • fuel spray angle ⁇ 1 is made smaller (narrower) (becomes smaller) as L/d 0 becomes larger.
  • da/d 0 and L/d 0 are set such that the spray angle of fuel provides a desired fuel spray angle in accordance with the attachment angle of fuel injection valve 1 to the intake port. Even if the spray angle is the same fuel spray angle ⁇ 1 , a plurality of combinations of da/d 0 and L/d 0 can be selected. However, an appropriate selection in accordance with other design methods can be made for this selection combination.
  • a worsening suppression of an atomization characteristic of fuel spray may be adjusted through a set of a length of an interval between injection holes together with a design of the spray angle according to da/d 0 and L/d 0 .
  • This may appropriately be selected in accordance with the other design method and a dimension limitation.
  • the dimension limitation includes: a range limitation in which communication passage 45 , swirl generating chamber 46 , and fuel injection hole 44 can be arrayed and a limitation value of a plate thickness due to a material strength and so forth.
  • coil spring 29 biases valve shaft 5 toward the other end side of valve seat member 7 to seat valve body 4 on valve seat 6 . Therefore, a spatial interval between valve body 4 and valve seat 6 is closed so that no fuel is supplied to nozzle plate 8 side.
  • valve shaft 5 When the power is supplied to coil section 33 of electromagnetic coil 9 , valve shaft 5 is pulled up toward the one end side of valve seat member 7 according to the electromagnetic force against the biasing force of coil spring 29 . Therefore, the spatial interval between valve body 4 and valve seat 6 is released (open) so that fuel is supplied to nozzle plate 8 side.
  • Fuel supplied to nozzle plate 8 enters center chamber 42 and collides with the bottom section of center chamber 42 .
  • fuel stream is converted from an axial flow to a radial flow and is caused to flow into each communication passage 45 .
  • communication passage 45 is connected along the tangential line direction of corresponding one of swirl generating chambers 46 , fuel passed through communication passage 45 is swirled along an inner side surface of swirl generating chamber 46 .
  • a swirl force is given to fuel in swirl generating chamber 46 so that fuel having the swirling force is injected while fuel is swirling along a side wall section of fuel injection hole 44 . Therefore, fuel injected from each of fuel injection holes 44 is scattered along the tangential line direction of fuel injection hole 44 .
  • Fuel spray immediately after injection from each fuel injection hole 44 is spread in the conical shape in the thin liquid film state by means of an edge portion of the opening section of fuel injection hole 44 . Thereafter, fuel in the state of the liquid film is separated to provide an atomized liquid droplet. Therefore, an atomization of fuel can be promoted.
  • the improvement in a combustion efficiency is made so that a generation of nitrogen oxide (NOx) at a time of cold start (engine start state at the time of (under) a low temperature) can be reduced.
  • NOx nitrogen oxide
  • fuel spray angle ⁇ 1 shown in FIG. 7 has apparently the negative correlation to da/d 0 and this can be approximated to the linear characteristic.
  • da/d 0 can be set to the desired fuel injection angle ⁇ 1 using this characteristic, the development labor hour (man-hour) of fuel injection valve 1 can be suppressed.
  • the characteristic of fuel spray angle ⁇ 1 to da/d 0 can be set for each L/d 0 (L/d 0 is 0.3, L/d 0 is 1.3, and L/d 0 is 2.0). Therefore, a design degree of freedom can be increased.
  • each fuel injection hole 44 can be set viewing a balance with the spray angle so as to suppress the contact of the liquid film parts of the respective sprays.
  • valve seat member 7 having valve seat 6 on which valve body 4 is seated and downstream opening section 48 located at the downstream side of valve seat member 7 , swirl generating chambers 46 in the inner side of which fuel is swirled to provide the swirling force for fuel, fuel injection holes 44 formed on the bottom section of swirl generating chambers 46 and penetrated to an external, and communication passages 45 each of which communicates between a corresponding one of swirl generating chambers 46 and downstream opening section 48 of valve seat member 7 , da/d 0 is set so that the spray angle of fuel injected from each fuel injection hole 44 (fuel spray angle ⁇ 1 ) provides the desired spray angle when the diameter of the pipe line is assumed to be da, the diameter of fuel injection hole 44 (injection hole) is assumed to be d 0 , when the pipe line into which fuel is uniformly caused to flow is supposed from a flow quantity of fuel within communication passage 45 , communication passages 45 and fuel injection holes 44 are accordingly designed.
  • da/d 0 can be set to the desired fuel spray angle ⁇ 1 , the development man-hour for fuel injection valve 1 can be suppressed.
  • da/d 0 with respect to desired fuel spray angle ⁇ 1 at the time of the design stage is easily set so that the development of fuel injection valve 1 can be facilitated.
  • the degree of freedom of design of communication passages 45 and fuel injection holes 44 can be increased.
  • the interval (distance) among (or between) fuel spray holes 44 is set to an interval at which the contact of the mutual sprays in the liquid film parts can be suppressed on a basis of fuel spray angle ⁇ 1 that can easily be designed with items of (1) through (3) taken into account. Therefore, the degree of freedom of design which suppresses the worsening of the characteristic of atomization of spray can be increased.
  • swirl chambers 41 are formed.
  • the number of swirl chambers 41 may appropriately be varied according to the design of a fuel injection quantity.
  • four or sixth swirl chambers 41 may be formed as shown in FIGS. 19 and 20 .
  • FIG. 8 shows a perspective view of nozzle plate 8 .
  • two swirl chambers 41 may be formed as shown in FIG. 8 .
  • Center chamber 42 is formed in the circular recess shape in the first embodiment of fuel injection valve 1 .
  • the shape of center chamber 42 may be modified.
  • FIG. 9 is a perspective view of nozzle plate 8 when three swirl chambers 41 are formed. As in a case of FIG. 9 , center chamber is merely in the recess shape and is continued to corresponding communication passages 45 .
  • FIG. 10 is a perspective view of nozzle plate 8 when two swirl chambers 41 are formed.
  • communication passages 45 are directly connected to each other and their connection portion may be center chamber 42 .
  • center chamber 42 In the case of fuel injection valve 1 in the first embodiment, all of center chamber 42 , swirl chambers 41 , and fuel injection holes 44 are formed within nozzle plate 8 . Alternatively, these elements may not be needed to be formed within nozzle plate 8 .
  • FIG. 11 shows an expanded cross sectional view of the part of fuel injection valve 1 in the proximity to nozzle plate 8 of fuel injection valve 10 .
  • FIG. 12 shows a perspective view of nozzle plate 8 .
  • center chamber 42 and swirl chamber 41 may be formed in the other end side of valve seat member 7 and only fuel injection holes 44 may be penetrated through nozzle plate 8 .
  • center chamber 42 In the case of fuel injection valve 1 in the first embodiment, center chamber 42 , swirl chambers 41 , and fuel injection holes 44 are formed within nozzle plate 8 .
  • the present invention is not limited to this. All of these elements may not be formed within nozzle plate 8 .
  • FIG. 13 shows an expanded cross sectional view of the part of fuel injection valve 1 in the proximity to nozzle plate 8 in another preferred embodiment of fuel injection valve 1 .
  • FIG. 14 is a perspective view of an intermediate plate 50 in the case of FIG. 13 .
  • FIG. 15 is a perspective view of nozzle plate 8 in the case of FIGS. 13 and 14 .
  • center chamber 42 and swirl chamber 41 may be formed within intermediate plate 50 and only fuel injection hole 44 may be penetrated through nozzle plate 8 .
  • each swirl generating chamber of spiral shape as shown in FIG. 5 is shown.
  • Each swirl generating chamber 46 may be formed in a substantially circular shape to provide the swirling force for fuel.
  • FIGS. 16 and 17 are plan views of still another embodiment of swirl chambers 41 and fuel injection holes 44 .
  • swirl generating chamber 45 may be formed in a substantially perfect round shape.
  • the position of each fuel injection hole 44 may be shifted from a center of corresponding swirl generating chamber 46 .
  • Each communication passage 45 is formed as shown in FIG. 5 , in fuel injection valve 1 in the first embodiment.
  • Communication passage 45 may be modified if the fuel spray angle in accordance with the attachment angle of fuel injection valve 1 to intake port is obtained.
  • FIG. 18 shows a plan view of representative swirl chamber 41 and corresponding fuel injection hole 44 .
  • width W of communication passage 44 may be widened (increased) as compared with the case in the first preferred embodiment, as shown in FIG. 18 .
  • swirl chambers 41 and communication passages 45 are applicable to nozzle plate 8 , valve seat member 7 , or intermediate plate 50 in each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
US13/660,168 2012-02-14 2012-10-25 Fuel injection valve Expired - Fee Related US9121379B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012029347A JP5852463B2 (ja) 2012-02-14 2012-02-14 燃料噴射弁
JP2012-029347 2012-02-14

Publications (2)

Publication Number Publication Date
US20130206870A1 US20130206870A1 (en) 2013-08-15
US9121379B2 true US9121379B2 (en) 2015-09-01

Family

ID=47359257

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/660,168 Expired - Fee Related US9121379B2 (en) 2012-02-14 2012-10-25 Fuel injection valve

Country Status (7)

Country Link
US (1) US9121379B2 (ko)
JP (1) JP5852463B2 (ko)
KR (1) KR20130093462A (ko)
CN (2) CN103244323B (ko)
DE (1) DE102012219271A1 (ko)
FR (1) FR2986835A1 (ko)
GB (1) GB2499482B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608920B2 (en) * 2017-01-06 2020-03-31 Martello Technologies Corporation Performance testing audio/video communications in network

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211665A1 (de) * 2011-08-18 2013-02-21 Robert Bosch Gmbh Ventil für ein strömendes Fluid
JP5852463B2 (ja) * 2012-02-14 2016-02-03 日立オートモティブシステムズ株式会社 燃料噴射弁
JP6121870B2 (ja) * 2013-10-23 2017-04-26 日立オートモティブシステムズ株式会社 燃料噴射装置の微粒化技術
JP6364962B2 (ja) * 2014-05-28 2018-08-01 株式会社デンソー 燃料噴射弁
JP6460858B2 (ja) * 2015-03-17 2019-01-30 株式会社エンプラス 燃料噴射装置用ノズルプレート
JP6549508B2 (ja) * 2016-03-14 2019-07-24 日立オートモティブシステムズ株式会社 燃料噴射弁
CN110359987A (zh) * 2019-08-26 2019-10-22 昆山瑞泽汽车部件有限公司 一种阀座带旋流槽的喷嘴

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680793A (en) * 1970-11-09 1972-08-01 Delavan Manufacturing Co Eccentric spiral swirl chamber nozzle
US6142390A (en) * 1996-07-03 2000-11-07 Exell Trading Pty Limited Nozzle assembly for a spray head
US6405945B1 (en) * 2000-09-06 2002-06-18 Visteon Global Tech., Inc. Nozzle for a fuel injector
JP2002364496A (ja) 2001-06-06 2002-12-18 Unisia Jecs Corp フューエルインジェクタ
US20030141385A1 (en) * 2002-01-31 2003-07-31 Min Xu Fuel injector swirl nozzle assembly
JP2003336561A (ja) 2002-05-17 2003-11-28 Keihin Corp 燃料噴射弁
US6811104B2 (en) 2001-12-27 2004-11-02 Unisia Jecs Corporation Fuel injection valve
US6854670B2 (en) * 2002-05-17 2005-02-15 Keihin Corporation Fuel injection valve
US6874710B2 (en) 2002-05-13 2005-04-05 Hitachi Unisia Automotive, Ltd. Fuel injection valve
US7100848B2 (en) 2002-05-30 2006-09-05 Hitachi, Ltd. Fuel injection valve
US20060202062A1 (en) 2005-03-11 2006-09-14 Siemens Vdo Automotive Corporation Orifice disc for fuel injector
US20070175440A1 (en) 2006-01-27 2007-08-02 Gm Global Technology Operations, Inc. Method and apparatus for a spark-ignited direct injection engine
CN102734020A (zh) 2011-03-31 2012-10-17 日立汽车系统株式会社 燃料喷射阀

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183027B2 (ja) * 1993-09-14 2001-07-03 株式会社日立製作所 電子制御エアアシスト噴射弁
DE19815775A1 (de) * 1998-04-08 1999-10-14 Bosch Gmbh Robert Drallscheibe und Brennstoffeinspritzventil mit Drallscheibe
JP2000145583A (ja) * 1998-11-04 2000-05-26 Zexel Corp 渦巻き燃料噴射弁
JP2003074440A (ja) * 2001-09-03 2003-03-12 Denso Corp 燃料噴射弁
JP4988791B2 (ja) * 2009-06-18 2012-08-01 日立オートモティブシステムズ株式会社 燃料噴射弁
JP5707761B2 (ja) 2010-07-20 2015-04-30 日産自動車株式会社 欠相診断装置及び欠相診断方法
JP5852463B2 (ja) * 2012-02-14 2016-02-03 日立オートモティブシステムズ株式会社 燃料噴射弁

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680793A (en) * 1970-11-09 1972-08-01 Delavan Manufacturing Co Eccentric spiral swirl chamber nozzle
US6142390A (en) * 1996-07-03 2000-11-07 Exell Trading Pty Limited Nozzle assembly for a spray head
US6405945B1 (en) * 2000-09-06 2002-06-18 Visteon Global Tech., Inc. Nozzle for a fuel injector
JP2002364496A (ja) 2001-06-06 2002-12-18 Unisia Jecs Corp フューエルインジェクタ
US6811104B2 (en) 2001-12-27 2004-11-02 Unisia Jecs Corporation Fuel injection valve
US20030141385A1 (en) * 2002-01-31 2003-07-31 Min Xu Fuel injector swirl nozzle assembly
US6874710B2 (en) 2002-05-13 2005-04-05 Hitachi Unisia Automotive, Ltd. Fuel injection valve
JP2003336561A (ja) 2002-05-17 2003-11-28 Keihin Corp 燃料噴射弁
US6854670B2 (en) * 2002-05-17 2005-02-15 Keihin Corporation Fuel injection valve
US7100848B2 (en) 2002-05-30 2006-09-05 Hitachi, Ltd. Fuel injection valve
US20060202062A1 (en) 2005-03-11 2006-09-14 Siemens Vdo Automotive Corporation Orifice disc for fuel injector
US20070175440A1 (en) 2006-01-27 2007-08-02 Gm Global Technology Operations, Inc. Method and apparatus for a spark-ignited direct injection engine
CN102734020A (zh) 2011-03-31 2012-10-17 日立汽车系统株式会社 燃料喷射阀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Search Report for Application No. GB1218938.7, issued on Mar. 7, 2013.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608920B2 (en) * 2017-01-06 2020-03-31 Martello Technologies Corporation Performance testing audio/video communications in network

Also Published As

Publication number Publication date
CN103244323B (zh) 2017-03-29
GB2499482A (en) 2013-08-21
DE102012219271A1 (de) 2013-08-14
KR20130093462A (ko) 2013-08-22
JP5852463B2 (ja) 2016-02-03
CN203223323U (zh) 2013-10-02
GB201218938D0 (en) 2012-12-05
GB2499482B (en) 2017-05-03
US20130206870A1 (en) 2013-08-15
FR2986835A1 (fr) 2013-08-16
JP2013167161A (ja) 2013-08-29
CN103244323A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
US9121379B2 (en) Fuel injection valve
US7299997B2 (en) Fuel injector with sauter-mean-diameter atomization spray of less than 70 microns
US20110233307A1 (en) Fuel injection valve
US9157403B2 (en) Fuel injection valve
US20040217213A1 (en) Spray pattern control with non-angled orifices formed on a dimpled fuel injection metering disc having a sac volume reducer
US7341204B2 (en) Fuel injection valve
US20090206181A1 (en) Fuel Injector
JP5253480B2 (ja) 燃料噴射弁
CN102444511B (zh) 燃料喷射阀
JP5877768B2 (ja) 燃料噴射弁
JP5336451B2 (ja) 燃料噴射弁
JP2013194624A (ja) 燃料噴射弁
US20200400112A1 (en) Fuel Injection Valve
JP2013194725A (ja) 燃料噴射弁
JP2013185522A (ja) 燃料噴射弁
JP2012211532A (ja) 燃料噴射弁
US20050040259A1 (en) Fuel injector with a deep pocket seat and method of maintaining spatial orientation
US20060157595A1 (en) Fuel injector for high fuel flow rate applications
JP5341046B2 (ja) 燃料噴射弁
US20060060680A1 (en) Fuel injector with a deep-drawn thin shell connector member and method of connecting components
JP5980706B2 (ja) 燃料噴射弁
JP2014181611A (ja) 燃料噴射弁
US20090057444A1 (en) Fuel injector
US20070215114A1 (en) Fuel Injection Valve
US20090032623A1 (en) Fuel Injector

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI AUTOMOTIVE SYSTEMS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAITO, TAKAHIRO;KOBAYASHI, NOBUAKI;OHNO, HIROSHI;AND OTHERS;SIGNING DATES FROM 20120919 TO 20120927;REEL/FRAME:029190/0435

AS Assignment

Owner name: HITACHI AUTOMOTIVE SYSTEMS, LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ORIGINAL ELECTRONIC COVER SHEET, THE 5TH INVENTOR'S NAME IS OMITTED, PREVIOUSLY RECORDED ON REEL 029190 FRAME 0435. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:SAITO, TAKAHIRO;KOBAYASHI, NOBUAKI;OHNO, HIROSHI;AND OTHERS;SIGNING DATES FROM 20120919 TO 20120928;REEL/FRAME:029361/0573

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: HITACHI ASTEMO, LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:HITACHI AUTOMOTIVE SYSTEMS, LTD.;REEL/FRAME:056299/0447

Effective date: 20210101

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230901