US9078384B2 - Wiring substrate and method of manufacturing the same - Google Patents
Wiring substrate and method of manufacturing the same Download PDFInfo
- Publication number
- US9078384B2 US9078384B2 US13/417,665 US201213417665A US9078384B2 US 9078384 B2 US9078384 B2 US 9078384B2 US 201213417665 A US201213417665 A US 201213417665A US 9078384 B2 US9078384 B2 US 9078384B2
- Authority
- US
- United States
- Prior art keywords
- insulating layer
- interposer
- wiring substrate
- layer
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000000758 substrates Substances 0.000 title claims abstract description 176
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 239000010410 layers Substances 0.000 claims abstract description 261
- 239000004065 semiconductors Substances 0.000 claims abstract description 68
- 239000000463 materials Substances 0.000 claims description 105
- 230000000149 penetrating Effects 0.000 claims 1
- 239000010949 copper Substances 0.000 description 54
- 238000000034 methods Methods 0.000 description 43
- 238000007747 plating Methods 0.000 description 43
- 239000010408 films Substances 0.000 description 41
- 239000011347 resins Substances 0.000 description 37
- 229920005989 resins Polymers 0.000 description 37
- 229910000679 solders Inorganic materials 0.000 description 30
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound   [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 22
- 239000010703 silicon Substances 0.000 description 22
- 229910052710 silicon Inorganic materials 0.000 description 22
- 239000010931 gold Substances 0.000 description 18
- 239000010950 nickel Substances 0.000 description 17
- 229910052751 metals Inorganic materials 0.000 description 16
- 239000002184 metals Substances 0.000 description 16
- 238000005530 etching Methods 0.000 description 13
- 238000000059 patterning Methods 0.000 description 13
- 229910045601 alloys Inorganic materials 0.000 description 11
- 239000000956 alloys Substances 0.000 description 11
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class   [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000004593 Epoxy Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound   [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 239000007769 metal materials Substances 0.000 description 10
- 230000000875 corresponding Effects 0.000 description 9
- 125000003700 epoxy group Chemical group 0.000 description 9
- 239000007788 liquids Substances 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 7
- 230000001070 adhesive Effects 0.000 description 6
- 239000000853 adhesives Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005755 formation reactions Methods 0.000 description 6
- 238000002161 passivation Methods 0.000 description 6
- 239000004744 fabrics Substances 0.000 description 5
- 239000011514 iron Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound   O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 229920001721 Polyimides Polymers 0.000 description 4
- 239000004917 carbon fibers Substances 0.000 description 4
- 239000004020 conductors Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reactions Methods 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 229920001187 thermosetting polymers Polymers 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- 239000000654 additives Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Chemical compound   O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxides Inorganic materials 0.000 description 3
- 229910010293 ceramic materials Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229920002120 photoresistant polymers Polymers 0.000 description 3
- 230000003014 reinforcing Effects 0.000 description 3
- 238000007788 roughening Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000000153 supplemental Effects 0.000 description 3
- ORTQZVOHEJQUHG-UHFFFAOYSA-L Copper(II) chloride Chemical compound   Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K Iron(III) chloride Chemical compound   Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000011521 glasses Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910010272 inorganic materials Inorganic materials 0.000 description 2
- 239000011147 inorganic materials Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910000833 kovars Inorganic materials 0.000 description 2
- 239000000203 mixtures Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006011 modification reactions Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound   [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920003986 novolacs Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229910052814 silicon oxides Inorganic materials 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resins Substances 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N Ammonium persulfate Chemical compound   [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- 241000054817 Lycaena dione Species 0.000 description 1
- 239000004698 Polyethylene (PE) Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N Silicon nitride Chemical compound   N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Chemical compound   CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- 239000008066 acetone Substances 0.000 description 1
- 230000000996 additive Effects 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000011248 coating agents Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt Chemical compound   [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052803 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 239000000470 constituents Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000006073 displacement reactions Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound   CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N ethanolamine Chemical compound   NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foils Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound   [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 281999990011 institutions and organizations companies 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayers Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound   [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000010933 palladium Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N phosphorus Chemical compound   [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000728 polyesters Polymers 0.000 description 1
- 229920000573 polyethylenes Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N silver Chemical compound   [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound   [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 1
- 239000000953 sodium hydroxide Substances 0.000 description 1
- 229910001856 sodium hydroxide Inorganic materials 0.000 description 1
- 239000003351 stiffeners Substances 0.000 description 1
- 238000006467 substitution reactions Methods 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound   [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4682—Manufacture of core-less build-up multilayer circuits on a temporary carrier or on a metal foil
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/4857—Multilayer substrates
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49822—Multilayer substrates
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81193—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8138—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/81399—Material
- H01L2224/814—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81801—Soldering or alloying
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01068—Erbium [Er]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/078—Adhesive characteristics other than chemical
- H01L2924/07802—Adhesive characteristics other than chemical not being an ohmic electrical conductor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12042—LASER
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/1515—Shape
- H01L2924/15153—Shape the die mounting substrate comprising a recess for hosting the device
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10227—Other objects, e.g. metallic pieces
- H05K2201/10378—Interposers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/20—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
- H05K3/205—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
- Y10T29/49139—Assembling to base an electrical component, e.g., capacitor, etc. by inserting component lead or terminal into base aperture
Abstract
Description
This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2011-58265, filed on Mar. 16, 2011, the entire contents of which are incorporated herein by reference.
It is related to a wiring substrate and a method of manufacturing the same, and particularly is related to a wiring substrate that an interposer for mounting a semiconductor element is built-in and to a method of manufacturing the same.
Such a wiring substrate, since a semiconductor element is mounted thereon, will also be referred to as a “semiconductor package” or simply a “package” in the following description for the sake of convenience.
As a technique to manufacture a wiring substrate of a multilayer structure, a build-up method has heretofore been widely used. In recent years, in order to achieve a thinner wiring substrate, a wiring substrate having a structure without a core substrate (also called “coreless substrate”) has been employed.
However, the thin substrate such as coreless substrate or the like as above is low in rigidity as a whole due to the absence of a core part and therefore has a problem that warpage is likely to occur. Warpage appears significantly especially when a semiconductor element (typically, a silicon chip) is mounted by performing reflow soldering for connecting the terminals between the chip and substrate, and when the underfill resin is filled under the semiconductor element, and also when the secondary mounting is performed, that is, the substrate equipped with the chip is mounted onto a motherboard or the like by performing reflow soldering. This is because a considerable amount of heat is applied to the substrate when these processes are performed.
On the other hand, due to increase in integration density of semiconductor element and improvement in functionality thereof, the wiring substrate for mounting the semiconductor element has been required to have finer and denser wirings accordingly. An organic resin is mainly used as the base material of such a wiring substrate. However, a substrate using an organic resin does not have a flat surface and thus has a limitation to make the wiring respond to the finer fabrication.
To solve this, a structure in which a semiconductor element is mounted on a wiring substrate through a silicon interposer which is capable of the finer fabrication, has been proposed.
As the technique related to such a conventional technique, as described in Patent Document 1 (Japanese Laid-open Patent Publication No. 2009-130104), for example, there is a substrate structure in which an interposer is connected to a coreless substrate through vias. As another technique, as described in Patent Document 2 (Japanese Laid-open Patent Publication No. 2010-239126), also there is a structure in which an interposer is incorporated in a coreless substrate.
As mentioned above, the thin substrate such as conventional coreless substrate, or the like is low in rigidity as a whole and therefore has the problem that warpage is likely to occur when a semiconductor element is mounted thereon, or the like. To solve this, various measures have heretofore been taken.
However, the elastic modulus and coefficient of thermal expansion (CTE) as a whole of the wiring substrate having an organic resin as its base material, are far different from the elastic modulus and CTE of a semiconductor element (whose base material is silicon) mounted thereon. Thus, it is a present condition that a sufficient measure can not be taken against the warpage.
According to one aspect of the invention, there is provided a wiring substrate, which includes, a structure in which a plurality of wiring layers are stacked through insulating layers intervening therebetween, and which has a first surface side and a second surface side, the first surface side where a semiconductor element is to be mounted, the second surface side being located at an opposite side to the first surface side, an interposer buried in an outermost one of the insulating layers located at the first surface side, and electrically connected to the semiconductor element to be mounted, and a sheet-shaped member buried in an outermost one of the insulating layers located at the second surface side, wherein, the interposer and the sheet-shaped member are disposed at symmetrical positions each other.
According to another aspect of the invention, there is provided a method of manufacturing a wiring substrate, which includes, mounting an interposer on a support base material, forming an insulating layer covering the interposer, on the support base material, forming a via hole in the insulating layer and forming a wiring layer on the insulating layer, the wiring layer which is electrically connected to the interposer through the via hole, stacking a insulating layer and a wiring layer alternately, stacking a sheet-shaped member having an opening portion, on the stacked insulating layer, forming an insulating layer covering the sheet-shaped member having the opening portion, thereby burying the sheet-shaped member by the insulating layer, forming a via hole in the burying insulating layer according to a position of the opening portion of the sheet-shaped member, and forming an outermost wiring layer electrically connected to the underlying wiring layer through the via hole, on the burying insulating layer, and removing the support base material.
The object and advantages of the invention will be realized and attained by means of the elements and combination particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention, as claimed.
Hereinbelow, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
(First Embodiment . . . See
The wiring substrate (package) 10 of this embodiment has a structure in which a plurality of wiring layers 13, 15, 17, and 21 are stacked through insulating layers (specifically, resin layers) 12, 14, 16, 18, and 20, and are interlayer-connected to each other through conductors (vias 13 a, 15 a, 17 a, and 21 a) filled in via holes respectively formed in the insulating layers. In other words, the wiring substrate 10 is not a typical build-up multiplayer wiring board (in which build-up layers are stacked sequentially on both surfaces of a core substrate), but is in the form of a “coreless substrate” including no core base material.
As the material of each of the insulating layers 12, 14, 16, 18, and 20, an organic resin widely used as a build-up resin, such as an epoxy-based resin, a polyimide-based resin, or a phenol resin, is used. Moreover, as the material of each of the wiring layers 13, 15, 17, and 21, copper (Cu) is typically used.
A concave portion CP is provided in a center part of the outermost insulating layer 12 (specifically, a resin layer) of the wiring substrate (package) 10 at a first surface side thereof (an upper side in the example of
In this embodiment, an inorganic material (specifically, silicon) is used as the base material of the interposer 30 in order to achieve fine wirings. And a semiconductor element (chip) which likewise has silicon as its base material, is mounted on the wiring substrate 10 which has an organic resin as its base material through the interposer 30. In this way, pads formed in the chip at a fine pitch can be easily pitch-converted by means of the interpose 30 on which the rewirings are formed. Besides silicon, an inorganic material such as a ceramic material or silica glass may be used as the base material of the interposer 30. A specific structure of the interposer 30 and a manufacturing method thereof will be described later.
Electrode pads 32 and 35 are provided in both surfaces of the interposer 30. The pads 32 at a first surface side of the interposer 30 (an upper side in the example of
Moreover, in the outermost insulating layer 12, a plurality of pads P1 (first external connection pads) are arranged in a region around the concave portion CP (first concave portion: the concave portion in which the interposer 30 is mounted). Each pad P1 is arranged peripherally in a plan view of the wiring substrate 10, and is provided to be exposed in the identical surface with the surface of the wiring substrate 10 as depicted in
Electrode pads of a semiconductor element can be connected to the pads 32 provided to the first surface side of the interposer 30 through solder bumps or the like. On the other hand, electrode terminals of passive elements such as chip capacitors can be connected to the pads P1 arranged around the interposer 30 through solders or the like. Thus, in order to make the connection easier, solders 23 and 24 of adequate amounts are deposited on the pads 32 and P1 in advance. Such precoating (solder deposition) is effective in view of maintaining wettability for a long time, and in view of preventing copper (Cu) oxidation of the pads 32 on the interposer 30 especially.
However, the precoating does not necessarily have to be performed. The pads 32 and P1 may be left exposed so that the electrode terminals of the semiconductor element and passive elements or the like can be connected thereto later when necessary. In this case, it is desirable to perform a suitable surface treatment (such as Ni/Au plating) on the surface of each pad 32 of the interposer 30.
Meanwhile, a solder resist layer 22 as a protection film is provided at the second surface side of the wiring substrate 10 (a lower side in the example of
External connection terminals such as solder balls used in mounting the wiring substrate 10 onto a motherboard or the like can be joined to the pads P2 exposed from the solder resist layer 22. Thus, in order to achieve a good contact in the joining, it is desirable to perform a suitable surface treatment (such as Ni/Au plating) on the pads P2.
Further, a sheet-shaped member 40 is buried in the outermost insulating layer 20 of the second surface side of the wiring substrate 10. The sheet-shaped member 40 is provided such that the distribution of the elastic modulus and the coefficient of thermal expansion (CTE) becomes substantially symmetrical system, in the vertical direction (the direction perpendicular to the substrate surface) after a semiconductor element is mounted on the interposer 30 buried in the wiring substrate. In other words, the sheet-shaped member 40 functions to adjust the distribution of each of the elastic modulus and the CTE and to alleviate warpage of the whole device (reduce the amount of warpage), in the vertical direction in a state where a chip is mounted (e.g. a semiconductor device 50 in
For this reason, As the sheet-shaped member 40, it is desirable to use a material having a relatively high elastic modulus which is at the same level as the elastic modulus (approximately 193 GPa) of a semiconductor element (specifically, silicon chip) to be mounted on the wiring substrate 10, and a relatively low CTE which is at the same level as the CTE (approximately 3 ppm/K) of the semiconductor element. By this matter, the difference in CTE between the semiconductor element and the wiring substrate 10 is made small, thereby suppressing warpage of the semiconductor device.
Note that, the level of the warpage suppression varies to some extent depending upon the size of the wiring substrate 10 and the number of stacked layers therein, the constituent material and the size of the interposer 30, the arranged position and the size of the sheet-shaped member 40, and the like. In this embodiment, it is the assumption that the size (amount) of warpage allowable under any condition at a temperature ranging from room temperature (25° C.) to a reflow temperature range (around 230 to 260° C.) is suppressed to the value which is equal to or below 100 μm, for example. Accordingly, a material having an elastic modulus within a range larger than 130 GPa but not larger than 500 GPa and having a CTE within a range not larger than 10 ppm (10×10−6)/K is selected.
Thus, as the material of the sheet-shaped member 40, any material can be used regardless of whether it is a metallic material or a non-metallic material, as long as the elastic modulus and the CTE are within their respective ranges described above.
For example, as the metallic material, it is possible to use a 42 alloy (42 WT % nickel (Ni)-iron (Fe) alloy), a 36 alloy, Kovar (an alloy containing Fe: 53%, Ni: 28%, and cobalt (Co): 18%), or the like. As the non-metallic material, it is possible to use a carbon fiber cloth, a ceramic material, silica glass, or the like. Alternatively, it may use the same material as the material of the interposer 30, for example, there is silicon as the material.
Note that, in a case of using such a metallic material for the sheet-shaped member 40, when exposing a sidewall portion 40S of the sheet-shaped member 40 at the side surface of the wiring substrate 10 as depicted in
Specific materials, sizes, thicknesses, and the like of the members constituting the package (wiring substrate 10) will be described when necessary together with the steps in processes to be described later in detail.
In the semiconductor device 50 depicted in
In the semiconductor device 51 mounted on the first surface side of the wiring substrate 10, its electrode pads (terminals) are electrically connected to the corresponding pads 32 (see
In the chip capacitors 55, its paired electrode terminals are connected to the pads P1 through conductive materials such as solders 56 or the like. Although the pads P1 are utilized as where the chip capacitors are mounted in this embodiment, the pads P1 may be utilized as where passive elements other than chip capacitors (such as resistive elements or chip inductors, or the like) are mounted. Moreover, if necessary, the pads P1 can be utilized as connection pads P1 in POP (a package-on-package) structure in which the wiring substrate 10 and another wiring substrate are stacked in the vertical direction (see
Meanwhile, the solder balls 58 to be used in mounting the wiring substrate 10 onto a mounting substrate such as a motherboard are joined to the pads P2 exposed from the solder resist layer 22 in the second surface side of the wiring substrate 10. Although the example of
Next, a method of manufacturing the wiring substrate 10 of this embodiment will be described with reference to
First of all, in the first step (see
In the next step (see
In the next step (see
For example, in a case of laminating a dry film as the resist layer PR1, the dry film is cured by ultraviolet (UV) irradiation exposure using a mask patterned in a desired shape. Further, the corresponding part is etched and removed by using a predetermined developer (the formation of the opening portion OP1), whereby the resist layer PR1 is formed. In a case of using a liquid photoresist too, the resist layer PR1 can be formed by performing the same step.
In the next step (see
In the next step (see
In the next step (see
In the next step (see
In the next step (see
Although the pads P1 having the three-layer structure (Au/Ni/Cu) are formed in the example of
In the next step (see
In the next step (see
The structure of the interposer 30 and a method of mounting the interposer 30 will be further described with reference to
First, an insulating layer made of a silicon oxide or the like is formed on the surface of a silicon substrate (wafer) 31 by thermal oxidation or the like, and thereafter a wiring pattern 32 which is integral with pad electrodes is formed on a first surface (a lower side in the example of
Next, the silicon substrate 31 is thinned by grinding the silicon substrate 31 from a second surface thereof (an upper side in the example of
Further, vias 34 are formed by filling the inside of each through-hole with a conductive material. Thereafter, a wiring pattern 35 which is integral with pad electrodes is formed on the other surface of the silicon substrate (wafer) 31. The vias 34 and the wiring pattern (pads) 35 are formed by copper (Cu) sputtering, copper (Cu) plating, or the like, and as the patterning technique, the photolithography is used. Further, the surface of the wiring pattern (pads) 35 is roughened to an uneven state by etching or the like. Making the surface of each pad 35 uneven as described above can increase the adhesion with the resin layer to be formed on the pad 35.
Thereafter, the silicon substrate (wafer) 31 is diced, whereby separated individual interposers 30 can be obtained. Here, the side surface of each interposer 30 is uneven due to the cutting with the blade of the dicer. Accordingly, in addition to the unevenness of the surface of the pad 35, the unevenness of the side surface of the interposer 30 can further increase the adhesion with the resin layer to be in contact with the periphery of the interposer 30.
As depicted in
Referring back to
In the next step (see
In the next step (see
Specifically, first, a copper (Cu) seed layer (unillustrated) is formed on the insulating layer 12 including the inside of each of the via holes VH1 and VH2 by non-electrolytic plating, sputtering, or the like. Thereafter, a resist film (unillustrated) having opening portions according to the pattern of the wiring layer 13 to be formed is formed. Next, the wiring layer 13 (including the vias 13 a) having a thickness ranging from approximately 5 μm to 10 μm is formed on parts of the seed layer (Cu) exposed from the opening portions in the resist film by electrolytic Cu plating utilizing the seed layer as a power supply layer. Thereafter, like the process performed in the step of
Note that, when the Cu seed layer is removed, an upper part of the wiring layer (Cu) 13 is removed together. However, since the wiring layer 13 is much thicker than the seed layer, a problem such as the disconnection of the wiring layer 13 will not occur.
In the next step (see
In the next step (see
In the next step (see
The sheet-shaped member 40 is stacked basically by bonding it to the insulating layer 18 (such as an epoxy-based resin film or the like) by thermocompression bonding (heating and pressurizing). For example, when the insulating layer 18 is heated and pressurized to be cured, the sheet-shaped member 40 is subjected to thermocompression bonding at the same time to be bonded to and stacked on the insulating layer 18. In this respect, in order to increase the adhesion to the underlying insulating layer 18, the surface of the sheet-shaped member 40 may be made rough (uneven) prior to the heating and pressurizing. Exemplary steps of this roughening will be described with reference to
In the method depicted in
In the next step (see
The opening portions OP3 can be formed by using a subtractive method. First, a resist layer (etching resist ER) patterned in the shapes of the opening portions OP3 to be formed is formed on the sheet-shaped member 40. Next, while using the etching resist ER as a mask, the exposed parts of the sheet-shaped member 40 are removed by wet etching (the formation of opening portion OP3). Then, the etching resist ER is removed.
In the next step (see
In the next step (see
In the next step (see
Here, the sheet-shaped member 40 is buried in a layer (the insulating layer 20 in the illustrated example) having a small wiring formation density in the wiring substrate 10. For this reason, even when the sheet-shaped member 40 is buried in the insulating layer 20 over substantially the entire surface thereof (including the region between the adjacent wirings (vias 21 a)), the wirings can be formed while maintaining the insulation between the sheet-shaped member 40 and the vias 21 a. Specifically, as depicted in
In the next step (see
In the final step (see
Further, the insulating adhesive layer 37 (
In the manufacturing method described above, the convex support base material BS1 is formed by plating (electrolytic Cu plating) in the steps of
First of all, in the first step (see
In the next step (see
In the next step (see
In the next step (see
Meanwhile, as the material of the sheet-shaped member 40 stacked on the insulating layer 18 in the step of
Moreover, in a case of using a non-metallic material (e.g. a carbon fiber cloth) for the sheet-shaped member 40, like the case of the prepreg, one (sheet-shaped member) obtained by impregnating a carbon fiber cloth with a B-stage resin material in advance is stacked on the insulating layer 18. In this case, instead of the method used in the step of
As described above, in the wiring substrate 10 and the manufacturing method thereof according to this embodiment, the interposer 30 (e.g. a silicon interposer), whose base material is a material having a coefficient of thermal expansion close to that of the base material (silicon) of a semiconductor element to be mounted thereon, is buried in a center part of the outermost insulating layer 12 at the first surface side of the wiring substrate 10. On the other hand, the sheet-shaped member 40, which is made of a material having a relatively large elastic modulus and a relatively small CTE that are within the predetermined ranges described above, is buried in the outermost insulating layer 20 at the second surface side of the wiring substrate 10. Specifically, there is obtained a wiring substrate 10 in which the interposer 30 and the sheet-shaped member 40 are disposed at positions that are symmetrical with each other in the vertical direction (the direction perpendicular to the substrate surface).
As described, while the wiring substrate 10 of this embodiment is in the form of a coreless substrate which can be adapted to reduction in thickness, the wiring substrate 10 has a structure reinforcing the whole wiring substrate 10 (semiconductor device 50) due to the presence of the sheet-shaped member 40 buried in a specific position inside the wring substrate 10. In other words, the rigidity of the substrate (the whole of the device) is increased.
Accordingly, even when it is under a room-temperature (around 25° C.) condition, further some other temperature condition where heat (around 230 to 260° C.) is applied due to reflow in connecting terminals, when the semiconductor element 51 is mounted on the wiring substrate 10 (
Moreover, in the outermost insulating layer 12 at the first surface side of the wiring substrate 10, the pads P1 (first external connection pads) are provided at a part around the interposer 30. Thus, the pads P1 can be effectively utilized for mounting passive elements (chip capacitors 55 or the like) or, when necessary, for providing POP connection to another wiring substrate or the like (e.g. the wiring substrate 62 illustrated in
Incidentally, in the substrate structure (
Moreover, in the wiring substrate 10 of this embodiment, the interposer 30 is buried in the outermost insulating layer 12 at the first surface side of the wiring substrate 10, and the semiconductor element 51 is mounted on the wiring substrate 10 in a state that the interposer 30 intervenes therebetween. Thus, it is possible to achieve finer wirings than conventional packages formed of a simple wiring substrate using only an organic resin as its base material. It is also possible to reduce the cost more than packages formed of a simple silicon interposer. Furthermore, since the interposer 30 is buried in the outermost insulating layer 12, the wiring substrate can be made thinner than conventional wiring substrate in which an interposer is stacked on the wiring substrate, thus it is possible to achieve a smaller semiconductor device.
Moreover, the semiconductor element 51 mounted on the wiring substrate 10 (interposer 30) of this embodiment can be prevented from being damaged. Specifically, in conventional wiring substrate structures, the amount of warpage (displacement) is larger in an outside area from the semiconductor element mounting area than the semiconductor element mounting area on the wiring substrate. By this matter, a stress due to an influence of such a difference of the warpage causes a crack or the like in the semiconductor element. Particularly, in a case of a semiconductor element using a low-k material (low dielectric constant material) as its interlayer insulating layer for the purpose of increasing the processing speed (the speed of signal propagation between wiring layers), the above-described trouble occurs more significantly because the elastic modulus of low-k materials is low in general (it is fragile in strength). In contrast, in this embodiment, the rigidity of the substrate (the whole of the device) is increased by the presence of the sheet-shaped member 40, thus it is possible to avoid troubles such as damaging the semiconductor element 51.
(Second Embodiment . . . See
The wiring substrate 10 a according to the second embodiment differs from the wiring substrate (
The wiring substrate 10 a according to the second embodiment is intended to achieve particularly POP (Package-On-Package) structure.
In one specific form of the POP structure, a semiconductor element is mounted on the lower package, and to pads formed in a area around the semiconductor element, pads formed in a corresponding area of the mounting surface side of the upper package are joined through solder bumps. In such a POP structure, the sizes of the solder bumps (approximately 200 to 300 μm) connecting between the upper and lower packages are usually higher than the height (around 100 μm) of the semiconductor element mounted on the lower package.
Thus, if the surface of the pad arranged in the surrounding region of the lower package is positioned to identical surface with the surface of this package, when the pads of the upper and lower packages are connected to each other, a considerable gap is formed between the position of the surface of the semiconductor element and that of the mounting surface of the upper package. Such a structure causes no problem in the operation of the semiconductor device, yet there is a room for improvement in view of the current trend of reduction in size and thickness and improvement in functionality.
In this respect, in the wiring substrate 10 a of the second embodiment, the surface of each pad P1 (first external connection pad) used as a terminal for POP connection retrogresses toward the inside of the wiring substrate 10 a from the surface of the substrate at the first surface side (the surface of the outermost insulating layer 12 a). In this way, the gap between the mounted semiconductor element and the other wiring substrate is minimized as much as possible, thereby the reduction in size and thickness can be achieved.
In the semiconductor device 60 depicted in
Like the mounting form depicted in
In the other wiring substrate 62, the electrode pads (unillustrated) formed at its mounting surface side are connected to the corresponding pads P1 on the wiring substrate 10 a through solder bumps 64 or the like. When this connection is performed, the surface of each pad P1 retrogresses toward the inside of the wiring substrate 10 a from the surface of the substrate, thereby, when the terminals (pads) of the upper and lower wiring substrates 62 and 10 a are connected to each other, the gap between the position of the surface (height) of the semiconductor element 51 mounted on the interposer 30 of the lower wiring substrate 10 a and that of the mounting surface of the upper wiring substrate 62, can be narrowed relatively. This can cope with the demand for reduction in size and thickness and improvement in functionality of the semiconductor device 60.
Meanwhile, like the structure depicted in
The wiring substrate 10 a according to the second embodiment can be manufactured by basically the same processes as those performed through the steps (
First of all, in the first step (see
In the next step (see
In the next step (see
In the next step (see
In the next step (see
In the next step (see
In the next step (see
In the next step (see
In the next step (see
In the next step (see
In the final step (see
As described above, the wiring substrate 10 a according to the second embodiment has basically the same configuration as the wiring substrate 10 (
Although preferred embodiments of the present invention are described above in detail, the present invention is not limited to the particular embodiments described above, and various modifications and alterations can be made thereto within the scope of the gist of the invention described in the claims.
For example, in the structure of the wiring substrate 10 depicted in
Moreover, in each of the embodiments described above, in the first surface side of the wiring substrate 10 (10 a), the exposed surfaces of the pads P1 (first external connection pads) arranged in the outermost insulating layer 12 (12 a) constitutes the identical surface with the surface of the insulating layer 12. Alternatively, the exposed surface of the pads P1 is located at a position retrogressing toward the inside of the substrate from the surface of the insulating layer 12 a. However, the arrangement of the pads P1 is not limited to this, as a matter of course. For example, each pad P1 may be formed such that the exposed surface of the pad P1 constitutes a shape projecting in a convex shape from the surface of the outermost insulating layer 12 (12 a). Moreover, the formation position and the existence and non-existence of the solder resist layer 22 can be changed appropriately if necessary.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a depicting of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011058265A JP5649490B2 (en) | 2011-03-16 | 2011-03-16 | Wiring board and manufacturing method thereof |
JP2011-058265 | 2011-03-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120234589A1 US20120234589A1 (en) | 2012-09-20 |
US9078384B2 true US9078384B2 (en) | 2015-07-07 |
Family
ID=46827561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/417,665 Active 2034-02-02 US9078384B2 (en) | 2011-03-16 | 2012-03-12 | Wiring substrate and method of manufacturing the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US9078384B2 (en) |
JP (1) | JP5649490B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170317017A1 (en) * | 2016-04-28 | 2017-11-02 | Ibiden Co., Ltd. | Printed wiring board and method for manufacturing the same |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5779970B2 (en) * | 2011-05-13 | 2015-09-16 | イビデン株式会社 | Printed wiring board and printed wiring board manufacturing method |
US8952540B2 (en) * | 2011-06-30 | 2015-02-10 | Intel Corporation | In situ-built pin-grid arrays for coreless substrates, and methods of making same |
JP5594324B2 (en) * | 2012-06-22 | 2014-09-24 | 株式会社村田製作所 | Manufacturing method of electronic component module |
TWI543307B (en) * | 2012-09-27 | 2016-07-21 | 欣興電子股份有限公司 | Package carrier and chip package structure |
CN103779284A (en) * | 2012-10-22 | 2014-05-07 | 欣兴电子股份有限公司 | Packaging support plate and chip packaging structure |
US10115661B2 (en) * | 2013-02-08 | 2018-10-30 | Qualcomm Incorporated | Substrate-less discrete coupled inductor structure |
TWI487436B (en) * | 2013-05-10 | 2015-06-01 | Unimicron Technology Corp | Carrier substrate and manufacturing method thereof |
CN104241231B (en) * | 2013-06-11 | 2017-12-08 | 南安市鑫灿品牌运营有限公司 | The preparation method of chip package base plate |
US9059054B1 (en) * | 2014-01-09 | 2015-06-16 | Nvidia Corporation | Integrated circuit package having improved coplanarity |
JP6133227B2 (en) * | 2014-03-27 | 2017-05-24 | 新光電気工業株式会社 | Wiring board and manufacturing method thereof |
JP6332680B2 (en) * | 2014-06-13 | 2018-05-30 | 新光電気工業株式会社 | Wiring board and manufacturing method thereof |
JP2016063130A (en) * | 2014-09-19 | 2016-04-25 | イビデン株式会社 | Printed wiring board and semiconductor package |
CN107004661B (en) | 2014-09-19 | 2019-06-14 | 英特尔公司 | Semiconductor packages with embedded bridge joint interconnection piece |
TWI566305B (en) * | 2014-10-29 | 2017-01-11 | 巨擘科技股份有限公司 | Method for manufacturing three-dimensional integrated circuit |
US10306777B2 (en) * | 2014-12-15 | 2019-05-28 | Bridge Semiconductor Corporation | Wiring board with dual stiffeners and dual routing circuitries integrated together and method of making the same |
US20160174365A1 (en) * | 2014-12-15 | 2016-06-16 | Bridge Semiconductor Corporation | Wiring board with dual wiring structures integrated together and method of making the same |
US20160204056A1 (en) * | 2015-01-14 | 2016-07-14 | Bridge Semiconductor Corporation | Wiring board with interposer and dual wiring structures integrated together and method of making the same |
CN105789058A (en) * | 2015-01-14 | 2016-07-20 | 钰桥半导体股份有限公司 | Wiring board with embedded interposer integrated with stiffener and method of making the same |
JP2018041750A (en) * | 2015-01-21 | 2018-03-15 | ソニー株式会社 | Interposer, module, and method of manufacturing interposer |
US9847244B2 (en) * | 2015-07-15 | 2017-12-19 | Chip Solutions, LLC | Semiconductor device and method |
JP2017084997A (en) * | 2015-10-29 | 2017-05-18 | イビデン株式会社 | Printed wiring board and method of manufacturing the same |
JP2017152536A (en) * | 2016-02-24 | 2017-08-31 | イビデン株式会社 | Printed wiring board and manufacturing method thereof |
JP6661232B2 (en) * | 2016-03-01 | 2020-03-11 | 新光電気工業株式会社 | Wiring substrate, semiconductor device, method of manufacturing wiring substrate, and method of manufacturing semiconductor device |
JP2018032657A (en) * | 2016-08-22 | 2018-03-01 | イビデン株式会社 | Printed wiring board and method for manufacturing printed wiring board |
JP2018032661A (en) * | 2016-08-22 | 2018-03-01 | イビデン株式会社 | Printed wiring board and method for manufacturing the same |
KR102008342B1 (en) * | 2017-07-18 | 2019-08-07 | 삼성전자주식회사 | Fan-out semiconductor package and package substrate |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6687985B2 (en) * | 1998-02-16 | 2004-02-10 | Matsushita Electric Industrial Co., Ltd. | Method of Manufacturing a multi-layer circuit board |
US20050230841A1 (en) * | 2004-04-15 | 2005-10-20 | Walk Michael J | Integrated circuit package with low modulus layer and capacitor/interposer |
JP2007149731A (en) | 2005-11-24 | 2007-06-14 | Shinko Electric Ind Co Ltd | Wiring board, semiconductor device, and process for producing wiring board |
US20090135574A1 (en) | 2007-11-22 | 2009-05-28 | Shinko Electric Industries Co., Ltd. | Wiring board, semiconductor device having wiring board, and method of manufacturing wiring board |
US20090145636A1 (en) * | 2007-12-05 | 2009-06-11 | Shinko Electric Industries Co., Ltd. | Electronic component mounting package |
US20100025081A1 (en) * | 2008-07-30 | 2010-02-04 | Tadashi Arai | Wiring substrate and electronic component device |
US20100147560A1 (en) | 2008-12-12 | 2010-06-17 | Shinko Electric Industries Co., Ltd. | Wiring board and method of manufacturing the same |
JP2010239126A (en) | 2009-03-09 | 2010-10-21 | Shinko Electric Ind Co Ltd | Semiconductor device and method of manufacturing the same |
-
2011
- 2011-03-16 JP JP2011058265A patent/JP5649490B2/en active Active
-
2012
- 2012-03-12 US US13/417,665 patent/US9078384B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6687985B2 (en) * | 1998-02-16 | 2004-02-10 | Matsushita Electric Industrial Co., Ltd. | Method of Manufacturing a multi-layer circuit board |
US20050230841A1 (en) * | 2004-04-15 | 2005-10-20 | Walk Michael J | Integrated circuit package with low modulus layer and capacitor/interposer |
JP2007149731A (en) | 2005-11-24 | 2007-06-14 | Shinko Electric Ind Co Ltd | Wiring board, semiconductor device, and process for producing wiring board |
US20090135574A1 (en) | 2007-11-22 | 2009-05-28 | Shinko Electric Industries Co., Ltd. | Wiring board, semiconductor device having wiring board, and method of manufacturing wiring board |
JP2009130104A (en) | 2007-11-22 | 2009-06-11 | Shinko Electric Ind Co Ltd | Wiring board, semiconductor device, and method of manufacturing wiring board |
US20110010932A1 (en) | 2007-11-22 | 2011-01-20 | Shinko Electric Industries Co., Ltd. | Wiring board, semiconductor device having wiring board, and method of manufacturing wiring board |
US20090145636A1 (en) * | 2007-12-05 | 2009-06-11 | Shinko Electric Industries Co., Ltd. | Electronic component mounting package |
US20100025081A1 (en) * | 2008-07-30 | 2010-02-04 | Tadashi Arai | Wiring substrate and electronic component device |
US20100147560A1 (en) | 2008-12-12 | 2010-06-17 | Shinko Electric Industries Co., Ltd. | Wiring board and method of manufacturing the same |
JP2010141204A (en) | 2008-12-12 | 2010-06-24 | Shinko Electric Ind Co Ltd | Wiring board and method of manufacturing the same |
JP2010239126A (en) | 2009-03-09 | 2010-10-21 | Shinko Electric Ind Co Ltd | Semiconductor device and method of manufacturing the same |
Non-Patent Citations (1)
Title |
---|
Japanese Office Action dated Sep. 16, 2014, in the corresponding Japanese patent application No. 2011-058265, with English translation. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170317017A1 (en) * | 2016-04-28 | 2017-11-02 | Ibiden Co., Ltd. | Printed wiring board and method for manufacturing the same |
US10249561B2 (en) * | 2016-04-28 | 2019-04-02 | Ibiden Co., Ltd. | Printed wiring board having embedded pads and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2012195447A (en) | 2012-10-11 |
JP5649490B2 (en) | 2015-01-07 |
US20120234589A1 (en) | 2012-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9232657B2 (en) | Wiring substrate and manufacturing method of wiring substrate | |
US9806050B2 (en) | Method of fabricating package structure | |
US8946906B2 (en) | Multilayer wiring substrate and method of manufacturing the same | |
US8994193B2 (en) | Semiconductor package including a metal plate, semiconductor chip, and wiring structure, semiconductor apparatus and method for manufacturing semiconductor package | |
US7937828B2 (en) | Method of manufacturing wiring board | |
US7285728B2 (en) | Electronic parts packaging structure and method of manufacturing the same | |
US7420128B2 (en) | Electronic component embedded substrate and method for manufacturing the same | |
US7777328B2 (en) | Substrate and multilayer circuit board | |
JP5395360B2 (en) | Manufacturing method of electronic component built-in substrate | |
US8749046B2 (en) | Wiring substrate and method of manufacturing the same | |
US8943683B2 (en) | Fabricating method of embedded package structure | |
TWI436717B (en) | Wiring board capable of having built-in functional element and method for manufacturing the same | |
TWI423754B (en) | Multilayer wiring substrate and method for manufacturing the same | |
JP6324876B2 (en) | Wiring board, semiconductor device, and wiring board manufacturing method | |
JP6076653B2 (en) | Electronic component built-in substrate and manufacturing method of electronic component built-in substrate | |
JP6375121B2 (en) | Wiring board, semiconductor device, and wiring board manufacturing method | |
US7543374B2 (en) | Method of manufacturing wiring substrate | |
US9867296B2 (en) | Printed circuit board and package substrate | |
US8707554B2 (en) | Method of manufacturing multilayer wiring substrate | |
JP4251421B2 (en) | Manufacturing method of semiconductor device | |
KR101824342B1 (en) | Semiconductor device package assembly and method for forming the same | |
US20130118680A1 (en) | Method for fabricating a packaging substrate | |
JP6152254B2 (en) | Semiconductor package, semiconductor device, and semiconductor package manufacturing method | |
KR100595889B1 (en) | Semiconductor device having conducting portion of upper and lower conductive layers, and method of fabricating the same | |
US8749073B2 (en) | Wiring board, method of manufacturing the same, and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHINKO ELECTRIC INDUSTRIES CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FURUICHI, JUN;TATEIWA, AKIHIKO;KOIZUMI, NAOYUKI;REEL/FRAME:027932/0998 Effective date: 20120227 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |