US8922362B2 - Temporal horn pattern synchronization - Google Patents
Temporal horn pattern synchronization Download PDFInfo
- Publication number
- US8922362B2 US8922362B2 US13/478,486 US201213478486A US8922362B2 US 8922362 B2 US8922362 B2 US 8922362B2 US 201213478486 A US201213478486 A US 201213478486A US 8922362 B2 US8922362 B2 US 8922362B2
- Authority
- US
- United States
- Prior art keywords
- input
- alarm
- logic level
- output
- bus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B3/00—Audible signalling systems; Audible personal calling systems
- G08B3/10—Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B7/00—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
- G08B7/06—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
Definitions
- the present disclosure relates to hazard detection and alarm signaling devices, and, more particularly, to temporal horn pattern synchronization of the alarm signaling portion of the devices.
- Hazard detection and alarm signaling devices for detecting fire, smoke, carbon monoxide, radon, natural gas, chlorine, water, moisture, etc., are well known in the art. Such devices may be coupled together to form an interconnected system of, for example, independent spatially diverse smoke detectors using an input-output (IO) bus.
- IO input-output
- conventional devices using IO buses are not dynamic and can therefore not accommodate synchronization or accommodate alarm signaling contentions.
- a temporal horn pattern has become a standard evacuation pattern in the smoke detection market.
- the pattern is 0.5 seconds on and 0.5 seconds off for three pulses (cycles) then 1.5 seconds off before starting a new sequence of three pulses, e.g., per the National Fire Protection Association (NFPA) 72: National Fire Alarm and Signaling Code.
- NFPA National Fire Protection Association
- Commercial and industrial hazard detection and alarm annunciation systems use complex and expensive central panel monitoring and alarm annunciation control for synchronization of the temporal horn patterns.
- In a residential spatially diverse multiple detector system there is currently no integrated circuit based device that will synchronize the temporal horn pattern. Without synchronization, the clarity of the temporal horn pattern may be lost, see FIG. 2 .
- a method for temporal horn pattern synchronization may comprise the steps of: monitoring an input-output bus coupling together a spatially diverse plurality of hazard detection and alarm devices; detecting when the input-output bus at a first logic level goes to a second logic level; determining if the second logic level remains on the input-output bus for a first time period, wherein if so, then determining which ones of the plurality of hazard detection and alarm devices are in a local alarm condition and which other ones are not in the local alarm condition, wherein the ones that are in the local alarm condition are designated as follower devices and the other ones that are not in the local alarm condition are designated as slave devices, and if not, then determining when one of the plurality of hazard detection and alarm devices is in the local alarm condition; making a first one of the plurality of hazard detection and alarm devices in the local alarm condition a master device; asserting the second logic level on the input-output bus with the master device; asserting the first logic level on the input
- the steps may further comprise: waiting a second time period after determining that the second logic level has remained on the input-output bus for the first time period; and activating a synchronized group of alert tone pulses from the follower and slave devices.
- the steps may further comprise: waiting a third time period after asserting the second logic level on the input-output bus with the master device; and activating a synchronized group of alert tone pulses from the master device, wherein the third time period is equal to the sum of the first and second time periods.
- the steps may further comprise: determining whether the input-output bus remains at the first logic level for a certain time during a contention time window, wherein if so, then making a one of the follower devices a new master device and having the new master device assert the second logic level on the input-output bus; and if not, then retaining prior status for each of the master, follower and slave devices.
- the first logic level is a low logic level and the second logic level is a high logic level. According to a further embodiment of the method, the first logic level is a high logic level and the second logic level is a low logic level. According to a further embodiment of the method, the first and second logic levels are different voltage values on the input-output bus. According to a further embodiment of the method, the first and second logic levels are different current values into the input-output bus. According to a further embodiment of the method, each group of the alert tone pulses are three tone pulses within about four seconds. According to a further embodiment of the method, the plurality of hazard detection and alarm devices are capable of detecting hazards selected from the group consisting of fire, smoke, carbon monoxide, radon, natural gas, chlorine, water and moisture.
- a hazard detection and alarm system may comprise: a plurality of hazard detection and alarm devices coupled together with an input-output bus, where the plurality of hazard detection and alarm devices are spatially diverse; one of the plurality of hazard detection and alarm devices becomes a master when in a local alarm, other ones of the plurality of hazard detection and alarm devices become followers when in a local alarm occurring after the occurrence of the master local alarm, and still other ones of the plurality of hazard detection and alarm devices become slaves when not in a local alarm; and the master asserts a second logic level on the input-output bus that was previously at a first logic level, then periodically asserts the first logic level on the input-output bus for a first time period, then thereafter asserts no logic level on the input-output bus for a second time period and thereafter reasserts the second logic level on the input-output bus, wherein all followers and slaves synchronize their alert tone pulse groups to alert tone groups of the master from when the
- the master may further comprise asserting no logic level between the assertion of the first logic level and second logic level, wherein if the master detects that the input-output bus is at the second logic level when not asserting the first or the second logic levels on the input-output bus, the master becomes a follower.
- the plurality of hazard detection and alarm devices have at least one sensor capable of detecting at least one hazard selected from any one or more of the group consisting of fire, smoke, carbon monoxide, radon, natural gas, chlorine, water and moisture.
- each of the plurality of hazard detection and alarm devices may comprise: a hazard detector; an alarm alert generator; an audible sound reproducer coupled to an output of the alarm alert generator; a digital processor having a first input coupled to the hazard detector for receiving a hazard detection signal and a first output coupled to the alarm alert generator for control thereof; a bus driver having an input coupled to a second output of the digital processor and an output coupled to the input-output bus; a bus receiver having an input coupled to the input-output bus and an output coupled to a second input of the digital processor; and a time delay filter having an input coupled to the output of the bus receiver and an output coupled to a third input of the digital processor.
- the digital processor determines a master, follower or slave state of the hazard detection and alarm device.
- the digital processor is a microcontroller.
- a hazard detection and alarm device may comprise: a hazard detector; an alarm alert generator; an audible sound reproducer coupled to an output of the alarm alert generator; a digital processor having a first input coupled to the hazard detector for receiving a hazard detection signal and a first output coupled to the alarm alert generator for control thereof; a bus driver having an input coupled to a second output of the digital processor and an output adapted for coupling to an input-output bus; a bus receiver having an input adapted for coupling to the input-output bus and an output coupled to a second input of the digital processor; and a time delay filter having an input coupled to the output of the bus receiver and an output coupled to a third input of the digital processor; wherein the digital processor determines a master, follower or slave state of the hazard detection and alarm device.
- the alarm alert generator may comprise: an audio tone generator; an audio tone pulse synchronization circuit having an input coupled to the audio tone generator; and an audio power amplifier having an input coupled to an output from the audio tone pulse synchronization circuit and an output coupled to the audible sound reproducer.
- the bus driver has a low impedance first output state, a low impedance second output state, and a high impedance output state, wherein selection of the output states are controlled by the digital processor.
- FIG. 1 illustrates a schematic block diagram of a hazard detection and alarm signaling system having a plurality of hazard detection and alarm signaling devices coupled together with an input-output (IO) bus, according to a specific example embodiment of this disclosure;
- IO input-output
- FIG. 2 illustrates schematic timing diagrams of temporal audible alarm signals that are not synchronized together
- FIG. 3 illustrates schematic timing diagrams of temporal audible alarm signals that are synchronized together, according to a specific example embodiment of this disclosure
- FIG. 4 illustrates a schematic block diagram of a hazard detection and alarm signaling device shown in FIG. 1 , according to a specific example embodiment of this disclosure
- FIG. 5 illustrates schematic timing diagrams of temporal audible alarm and control signals of the hazard detection and alarm signaling devices shown in FIGS. 1 and 4 , according to a specific example embodiment of this disclosure
- FIG. 6 illustrates a schematic process flow diagram determining Master/Follower/Slave status for each of the hazard detection and alarm signaling devices shown in FIG. 1 , according to a specific example embodiment of this disclosure
- FIG. 7 illustrates a schematic process flow diagram showing conversion of a device from follower to Master status, according to a specific example embodiment of this disclosure.
- FIG. 8 illustrates a schematic process flow diagram for synchronizing alert tones from the Follower and Slave devices to the alert tones from the Master device, according to a specific example embodiment of this disclosure.
- a plurality of hazard alarm devices are in spatially diverse locations and coupled together with an input-output bus.
- An interconnect protocol enables non-originating alarm devices to synchronize their audible alert tone pulses with audible alert tone pulses from an originating alarm device in a local hazard alarm condition. Hence, all audible alert tone pulses start sounding substantially together with allowances for signal contention and arbitration between the spatially diverse alarm devices.
- FIG. 1 depicted is a schematic block diagram of a hazard detection and alarm signaling system having a plurality of hazard detection and alarm signaling devices coupled together with an input-output (IO) bus, according to a specific example embodiment of this disclosure.
- a plurality of hazard detection and alarm signaling devices 102 are located in spatially diverse locations (e.g., rooms) 104 , and coupled together with an IO bus 118 .
- Each of the plurality of hazard detection and alarm signaling devices 102 may comprise a hazard detector 106 , an alarm alert generator 108 , an audible sound reproducer 110 , master/slave/follower processor 112 , an IO bus driver 114 and an IO bus receiver 116 .
- the hazard detector 106 may detect, for example but is not limited to, smoke, carbon monoxide, radon, gas, chlorine, moisture, etc.
- the audible sound reproducer 110 may be, for example but is not limited to, a speaker, a piezo-electric transducer, a buzzer, a bell, etc.
- the master/slave/follower processor 112 may comprise, but is not limited to, a microcontroller and program memory, a microcomputer and program memory, an application specific integrated circuit (ASIC), a programmable logic array (PLA), etc.
- the interconnection of the plurality of hazard detection and alarm signaling devices 102 with the IO bus 118 may be accomplished by conventional means well know to those skilled in the art of electronics and use industry standard drivers, receivers and bus loading techniques. However since the interconnect protocol described herein is new, novel and non-obvious, other newer and more sophisticated means of interconnection may also be applied with equal or better effectiveness. It is contemplated and within the scope of this disclosure that the IO bus 118 may also be implemented as a wireless data network, e.g., Bluetooth, Zigbee, WiFi, WLAN, AC line carrier current, etc.
- a wireless data network e.g., Bluetooth, Zigbee, WiFi, WLAN, AC line carrier current, etc.
- a master device 102 goes into an alarm condition and drives the IO bus 118 high with a master IO signal 218 .
- the master device 102 emits audible alert tone pulses 220 at defined time intervals, for example but not limited to, groups of three alert tone pulses at four (4) second cycles per the National Fire Protection Association (NFPA) 72 : National Fire Alarm and Signaling Code.
- NFPA National Fire Protection Association
- At least one of the other devices 102 not necessarily in alarm, repeats the three alert tone pulses 222 .
- Resulting apparent tone pulses 224 are shown having examples of various off synchronization phasing resulting in a jumble of confusing tones that do not clearly annunciate an alarm condition.
- a master device 102 goes into an alarm condition and drives the IO bus 118 high with a master IO signal 318 starting at time T 0 , and periodically goes low to provide a synchronization signal to all other devices 102 connected to the IO bus 118 , as more fully described hereinafter.
- the master device 102 may emit audible alert tone pulses 320 at defined time intervals, for example but not limited to, groups of three alert tone pulses at four (4) second cycles per the National Fire Protection Association (NFPA) 72 : National Fire Alarm and Signaling Code.
- NFPA National Fire Protection Association
- the start of a group of three tone pulses 320 may occur after a time, T 1 , from a positive going edge of the master IO signal 318 , and thereafter be synchronized thereto.
- At least one of the other devices 102 may repeat with the three alert tone pulses 322 in synchronization with the positive going edges of the master IO signal 318 .
- the resulting apparent tone pulses 324 are audibly reinforced from the synchronized tone pulses 320 and 322 , thereby clearly annunciating an alarm condition.
- the remote devices 102 may synchronize to the rising edge of the master IO signal 318 with a delay of time T 1 before starting the remote horn alert tone pulses 322 .
- the originating device 102 anticipates a delay for the master IO signal 318 such that timing for the originating (master) and remote alarm alert tone pulses 320 and 322 are substantially the same.
- FIG. 4 depicted is a schematic block diagram of a hazard detection and alarm signaling device shown in FIG. 1 , according to a specific example embodiment of this disclosure.
- the hazard detection and alarm signaling device 102 is as described in FIG. 1 hereinabove, wherein the IO bus driver 114 may have a constant current output determined by the constant current source 420 , and is tri-stated such that its output may be placed in a high impedance state.
- a bus load resistor 422 acts as a soft pull-down when the IO bus driver 114 is in the high impedance output state.
- An output from the IO bus receiver 116 is coupled to a first input of the master/slave/follower processor 112 and a time delayed output from a time delay filter 424 is coupled to a second input of the master/slave/follower processor 112 .
- the time delay filter 424 may be configured for, but is not limited to, a delay of 320 milliseconds plus or minus three (3) percent wherein pulses of 300 milliseconds or less are ignored, e.g., no output from the time delay filter 424 . These two signals (outputs to B and C) may be used in combination to insure that false triggering of the plurality of hazard detection and alarm signaling devices 102 do not occur.
- the hazard detector 106 is coupled to an input of the master/slave/follower processor 112 and provides an output signal when a hazard is detected.
- the alarm alert generator 108 shown in FIG. 1 may comprise a clock 426 , audio tone generator 428 , an audio tone pulse synchronization circuit 430 and an audio power amplifier 432 for driving the audible sound reproducer 110 .
- Other combinations of circuit functions can be used for the alarm alert generator 108 as would be known to one having ordinary skill in electronic design and the benefit of this disclosure.
- the audio tone pulse synchronization circuit 430 may be controlled by the master/slave/follower processor 112 , or may be part of it, to provide audible alert tone pulses 320 if a master device 102 detects an alarm condition, or to provide synchronized tone pulses 322 , if a slave or follower device 102 , based upon the rising positive edges of the master IO signal 318 (see FIG. 3 ).
- the time delay filter 424 may be separate from or part of the master/slave/follower processor 112 , and may be accomplished in hardware and/or software as would be known to one having ordinary skill in digital microcontroller design and having the benefit of this disclosure.
- FIG. 5 depicted are schematic timing diagrams of temporal audible alarm and control signals of the hazard detection and alarm signaling devices shown in FIGS. 1 and 4 , according to a specific example embodiment of this disclosure.
- a hazard detection and alarm signaling device 102 When a hazard detection and alarm signaling device 102 is first to go into a local alarm, e.g., local hazard detected by the hazard detector 106 of that device 102 , it becomes the “master” device 102 . Wherein audible alert tone pulses 320 begin issuing therefrom.
- the master device 102 After the first set of three pulses 320 , the master device 102 asserts a signal 518 at a logic high, e.g., a voltage or current, positive or negative with reference to a zero voltage or current when no other master IO signal 518 has previously been asserted for a certain length of time, e.g., seven (7) seconds.
- a first assertion of the master IO signal 518 occurs at time T 0 which is after the first set of audible alert tone pulses 320 , and continues asserted until after the end of the next set of three audible alert tone pulses 320 .
- the start of the next set of three audible alert tone pulses 320 occurs after time T 1 has elapsed.
- the master IO signal 518 is asserted at a logic low on the IO bus 118 .
- the logic low thereon discharges any residual voltage or current on the IO bus 118 from the logic high previously thereon.
- a master IO high-drive is shown as signal 530 corresponds to logic highs asserted on the IO bus 118 by the master IO signal 518
- a master IO low dump is shown as signal 532 and corresponds to logic lows asserted on the IO bus 118 by the master IO signal 518 for residual voltage discharge therefrom.
- a master IO high impedance signal 534 is at a logic high which indicates that the IO bus 118 is in a “high impedance” state so that a Follower device 102 in alarm may become a Master if the present Master device 102 is no longer in an alarm condition.
- the master IO high impedance signal 540 represents when contention windows for the IO bus driver 114 of the present Master device 102 briefly goes into an off or high impedance output state for time T 4 .
- another Follower device 102 in alarm can attempt to “grab” the IO bus 118 and become a Master device 102 , but only when there is no logic high asserted on the IO bus 118 for a certain time period, e.g., about seven (7) seconds.
- the Follower device 102 also has at least one contention window represented by the follower IO high drive signal 540 .
- the follower IO high drive signal 540 also represents when a Follower device 102 is in alarm and tries to become a Master during a portion of the time T 6 .
- the time delay filter 424 is used to prevent unintended alarm actuation of Slave and/or Follower devices 102 from a logic high asserted on the IO bus 118 for less than a desired time period, e.g., 320 milliseconds+/ ⁇ three (3) percent, and that the time delay filter 424 will not operate, e.g., assert a received logic high signal at input B of the processor 112 for an input from the IO bus 108 of less than a certain verification time period, e.g., about 300 milliseconds or less.
- a desired time period e.g., 320 milliseconds+/ ⁇ three (3) percent
- the Slave/Follower audible alert tone pulses 322 begin issuing therefrom after another time period T 3 has elapsed.
- T 1 is defined as being equal to the sum of T 2 and T 3 , even though the time delay filter introduces a delay time, e.g., time period T 2 , the audible alert tone pulses 320 and 322 will be synchronized and acoustically coherent.
- a Master is in local alarm and drive the IO bus 118 to a logic high
- a follower is in local alarm but does not drive the IO bus 118 to a logic high, rather it synchronizes to the positive edges of the signal 518 on the IO bus 118
- a Slave in remote alarm synchronizes to the positive edges of the signal 518 on the IO bus 118 .
- All audible alert tone pulses 320 and 322 are thereby synchronized and acoustically coherent.
- a device is in remote alarm before going into local alarm, this device will now become a Follower instead of a Slave.
- the Master device 102 goes from the Master state to a Follower state.
- the follower state if the device is in the follower state and the IO bus 118 is low for longer than a certain time period, e.g., seven (7) seconds then the Follower becomes the Master of the IO bus 118 .
- step 650 the IO bus 118 is monitored by each of the devices 102 .
- step 652 determines whether a device 102 is in a local alarm. If not in a local alarm, then in step 664 the device 102 becomes/remains a Slave device. If the device is in a local alarm, then step 654 determines if a positive going logic level, e.g., logic low to logic high, is detected on the IO bus 118 (output of bus receiver 116 ).
- a positive going logic level e.g., logic low to logic high
- step 656 determines whether the logic high remains asserted on the IO bus 118 for a time T 2 (output of time delay filter 424 ). If the logic high does not remain asserted on the IO bus 118 for the time T 2 , then in step 660 the device 102 becomes an IO bus Master, and in step 662 the new IO bus Master asserts a logic high onto the IO bus 118 . However, if a logic high on the IO bus 118 does remain for time T 2 , then in step 658 the device 102 becomes a Follower device.
- step 764 determines whether during a contention time window there is not a logic high present on the IO bus 108 for a contention window time.
- FIG. 8 depicted is a schematic process flow diagram for synchronizing alert tones from the follower and Slave devices to the alert tones from the Master device, according to a specific example embodiment of this disclosure.
- the status of each of the devices 102 is determined, i.e., which one of the devices 102 is the Master, and the other devices 102 are Followers and Slaves depending on whether they are also in local alarm or not, respectively.
- the Master yields to the other device 102 driving the IO bus 118 and assumes Follower status.
- Steps 650 , 651 and 652 from FIG. 6 are shown again for clarity.
- the logic in each device will wait a time T 3 before starting a three alert tone sequence in step 876 .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Alarm Systems (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/478,486 US8922362B2 (en) | 2011-11-11 | 2012-05-23 | Temporal horn pattern synchronization |
| EP12795937.7A EP2777029B1 (de) | 2011-11-11 | 2012-11-08 | Temporäre warnsignalmustersynchronisation |
| KR1020147015177A KR101961878B1 (ko) | 2011-11-11 | 2012-11-08 | 일시적 혼 패턴 동기화 |
| CN201280066369.1A CN104054113B (zh) | 2011-11-11 | 2012-11-08 | 时间性警笛模式同步化 |
| PCT/US2012/064105 WO2013070883A1 (en) | 2011-11-11 | 2012-11-08 | Temporal horn pattern synchronization |
| TW101141915A TWI584234B (zh) | 2011-11-11 | 2012-11-09 | 用於時間性警笛型樣之同步化之方法及危險偵測及警示系統 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161558526P | 2011-11-11 | 2011-11-11 | |
| US13/478,486 US8922362B2 (en) | 2011-11-11 | 2012-05-23 | Temporal horn pattern synchronization |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20130120136A1 US20130120136A1 (en) | 2013-05-16 |
| US8922362B2 true US8922362B2 (en) | 2014-12-30 |
Family
ID=48280036
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/478,486 Active 2033-06-29 US8922362B2 (en) | 2011-11-11 | 2012-05-23 | Temporal horn pattern synchronization |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US8922362B2 (de) |
| EP (1) | EP2777029B1 (de) |
| KR (1) | KR101961878B1 (de) |
| CN (1) | CN104054113B (de) |
| TW (1) | TWI584234B (de) |
| WO (1) | WO2013070883A1 (de) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12301973B2 (en) * | 2012-09-17 | 2025-05-13 | Gregory Thomas Joao | Apparatus and method for providing a wireless, portable, and/or handheld, device with safety features |
| US9875644B2 (en) | 2014-09-09 | 2018-01-23 | Tyco Fire & Security Gmbh | Master slave wireless fire alarm and mass notification system |
| US12379217B2 (en) | 2014-11-30 | 2025-08-05 | Raymond Anthony Joao | Personal monitoring apparatus and method |
| US20160171858A1 (en) * | 2014-12-10 | 2016-06-16 | Jonas Patrik TRUMPHY | Alarm systems for detecting and communicating anomalous events |
| EP3035311B1 (de) | 2014-12-19 | 2019-10-09 | Novar GmbH | Bus-Mastervorrichtung für ein Gefahrenalarmsystem und Gefahrenalarmsystem damit |
| US10078943B2 (en) | 2016-11-08 | 2018-09-18 | Tyco Fire & Security Gmbh | Synchronization of notification patterns in alerting systems |
| WO2018088987A1 (en) * | 2016-11-08 | 2018-05-17 | Tyco Fire & Security Gmbh | Synchronization of notification patterns in alerting systems |
| CN109215273B (zh) * | 2018-09-06 | 2021-05-11 | 赛特威尔电子股份有限公司 | 一种火灾报警控制系统及方法 |
| US11765547B2 (en) | 2019-07-30 | 2023-09-19 | Raymond Anthony Joao | Personal monitoring apparatus and methods |
| US11775780B2 (en) | 2021-03-01 | 2023-10-03 | Raymond Anthony Joao | Personal monitoring apparatus and methods |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020101344A1 (en) | 2001-01-30 | 2002-08-01 | Tanguay William Peter | Apparatus and method for providing alarm syncrhonization among multiple alarm devices |
| EP1426908A2 (de) | 2002-11-15 | 2004-06-09 | Maple Chase Company | Temporäre Alarmortung mit intermittierender Warnung |
| US20050200472A1 (en) | 1995-03-20 | 2005-09-15 | Curran John W. | Apparatus and method for synchronizing visual/audible alarm units in an alarm system |
| US20090128353A1 (en) | 2007-11-20 | 2009-05-21 | Universal Security Instruments, Inc. | Alarm Origination Latching System and Method |
| US20090201143A1 (en) * | 2005-09-20 | 2009-08-13 | Selflink, Llc | Self-configuring emergency event alarm system with autonomous output devices |
| WO2009101404A2 (en) | 2008-02-11 | 2009-08-20 | Apollo Fire Detectors Limited | Signal and devices for wired networks |
| EP2228777A1 (de) | 2007-12-06 | 2010-09-15 | Hochiki Corporation | Alarmeinrichtung und alarmsystem |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5598139A (en) * | 1993-09-30 | 1997-01-28 | Pittway Corporation | Fire detecting system with synchronized strobe lights |
| US6897772B1 (en) * | 2000-11-14 | 2005-05-24 | Honeywell International, Inc. | Multi-function control system |
| CA2655571A1 (en) * | 2006-06-27 | 2008-01-03 | Sensormatic Electronics Corporation | Wireless synchronized operation of pulsed eas systems |
| CN101488265B (zh) * | 2008-01-14 | 2010-07-28 | 华为技术有限公司 | 语音告警系统及语音告警实现方法 |
| TWI393085B (zh) * | 2009-05-22 | 2013-04-11 | Univ Kun Shan | Wireless sensor network system with synchronization warning function |
-
2012
- 2012-05-23 US US13/478,486 patent/US8922362B2/en active Active
- 2012-11-08 EP EP12795937.7A patent/EP2777029B1/de active Active
- 2012-11-08 WO PCT/US2012/064105 patent/WO2013070883A1/en not_active Ceased
- 2012-11-08 KR KR1020147015177A patent/KR101961878B1/ko active Active
- 2012-11-08 CN CN201280066369.1A patent/CN104054113B/zh active Active
- 2012-11-09 TW TW101141915A patent/TWI584234B/zh active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050200472A1 (en) | 1995-03-20 | 2005-09-15 | Curran John W. | Apparatus and method for synchronizing visual/audible alarm units in an alarm system |
| US20020101344A1 (en) | 2001-01-30 | 2002-08-01 | Tanguay William Peter | Apparatus and method for providing alarm syncrhonization among multiple alarm devices |
| EP1426908A2 (de) | 2002-11-15 | 2004-06-09 | Maple Chase Company | Temporäre Alarmortung mit intermittierender Warnung |
| US20090201143A1 (en) * | 2005-09-20 | 2009-08-13 | Selflink, Llc | Self-configuring emergency event alarm system with autonomous output devices |
| US20090128353A1 (en) | 2007-11-20 | 2009-05-21 | Universal Security Instruments, Inc. | Alarm Origination Latching System and Method |
| EP2228777A1 (de) | 2007-12-06 | 2010-09-15 | Hochiki Corporation | Alarmeinrichtung und alarmsystem |
| WO2009101404A2 (en) | 2008-02-11 | 2009-08-20 | Apollo Fire Detectors Limited | Signal and devices for wired networks |
| US20110019748A1 (en) | 2008-02-11 | 2011-01-27 | Apollo Fire Detectors Limited | Signal and devices for wired networks |
Non-Patent Citations (2)
| Title |
|---|
| International Search Report and Written Opinion, Application No. PCT/US2012/064105, 9 pages, Mar. 25, 2013. |
| International Search Report and Written Opinion, Application No. PCT/US2012/064339, 13 pages, May 3, 2013. |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104054113A (zh) | 2014-09-17 |
| TWI584234B (zh) | 2017-05-21 |
| US20130120136A1 (en) | 2013-05-16 |
| WO2013070883A1 (en) | 2013-05-16 |
| KR20140091037A (ko) | 2014-07-18 |
| TW201333894A (zh) | 2013-08-16 |
| EP2777029B1 (de) | 2025-01-22 |
| EP2777029A1 (de) | 2014-09-17 |
| CN104054113B (zh) | 2017-03-01 |
| KR101961878B1 (ko) | 2019-03-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8922362B2 (en) | Temporal horn pattern synchronization | |
| US8723672B2 (en) | Automatic audible alarm origination locate | |
| US9607494B2 (en) | Supervised interconnect smoke alarm system and method of using same | |
| CN101352051B (zh) | 在安全系统中产生语音警报信号的方法和装置 | |
| JP2008009480A (ja) | 無線により連動警報するワイヤレス型火災警報器、及びワイヤレス型火災警報システム | |
| JP2002074535A (ja) | 火災警報設備およびそれに利用する火災警報器 | |
| AU2016247180A1 (en) | Synchronization of wirelessly controlled notification devices using wireless communication | |
| JP4713854B2 (ja) | 警報器 | |
| JP2019207502A (ja) | 火災警報器、火災警報システム、異常判断方法およびプログラム | |
| JP5122873B2 (ja) | 住宅用火災警報器 | |
| JP2003044955A (ja) | 住宅用火災警報器及びそれを用いた住宅用火災警報システム | |
| JP4710877B2 (ja) | 火災警報システム | |
| JP5122874B2 (ja) | 住宅用火災警報器 | |
| JP3957600B2 (ja) | 火災受信機 | |
| WO2006087566A1 (en) | Wireless remote controllable fire and smoke alarm system | |
| JP5121855B2 (ja) | 警報器 | |
| JP2010108516A (ja) | 警報器 | |
| JP5097834B2 (ja) | 防災受信機 | |
| JP5123957B2 (ja) | 警報器 | |
| JP4873975B2 (ja) | 警報器 | |
| JPS60220496A (ja) | 警報システムにおける異常検知方法 | |
| JP2007198993A (ja) | 生活見守り報時時計システム | |
| JP2008234564A (ja) | ホームセキュリティシステム | |
| JPS63273198A (ja) | 火災検知器 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOHNSON, ERIK;YERGER, JOHN M.;REEL/FRAME:028374/0405 Effective date: 20120522 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:MICROCHIP TECHNOLOGY INCORPORATED;REEL/FRAME:041675/0617 Effective date: 20170208 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY INTEREST;ASSIGNOR:MICROCHIP TECHNOLOGY INCORPORATED;REEL/FRAME:041675/0617 Effective date: 20170208 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:046426/0001 Effective date: 20180529 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:046426/0001 Effective date: 20180529 |
|
| AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:047103/0206 Effective date: 20180914 Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES C Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:047103/0206 Effective date: 20180914 |
|
| AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, DELAWARE Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INC.;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:053311/0305 Effective date: 20200327 |
|
| AS | Assignment |
Owner name: MICROCHIP TECHNOLOGY INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A, AS ADMINISTRATIVE AGENT;REEL/FRAME:053466/0011 Effective date: 20200529 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A, AS ADMINISTRATIVE AGENT;REEL/FRAME:053466/0011 Effective date: 20200529 Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A, AS ADMINISTRATIVE AGENT;REEL/FRAME:053466/0011 Effective date: 20200529 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A, AS ADMINISTRATIVE AGENT;REEL/FRAME:053466/0011 Effective date: 20200529 Owner name: MICROSEMI CORPORATION, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A, AS ADMINISTRATIVE AGENT;REEL/FRAME:053466/0011 Effective date: 20200529 |
|
| AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INC.;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:053468/0705 Effective date: 20200529 |
|
| AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:055671/0612 Effective date: 20201217 |
|
| AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:057935/0474 Effective date: 20210528 |
|
| AS | Assignment |
Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222 Effective date: 20220218 Owner name: MICROSEMI CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222 Effective date: 20220218 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222 Effective date: 20220218 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222 Effective date: 20220218 Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222 Effective date: 20220218 Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222 Effective date: 20220218 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222 Effective date: 20220218 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222 Effective date: 20220218 Owner name: MICROSEMI CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222 Effective date: 20220218 Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059333/0222 Effective date: 20220218 |
|
| AS | Assignment |
Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:059666/0545 Effective date: 20220218 |
|
| AS | Assignment |
Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001 Effective date: 20220228 Owner name: MICROSEMI CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001 Effective date: 20220228 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001 Effective date: 20220228 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001 Effective date: 20220228 Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001 Effective date: 20220228 Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001 Effective date: 20220228 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001 Effective date: 20220228 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001 Effective date: 20220228 Owner name: MICROSEMI CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001 Effective date: 20220228 Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059358/0001 Effective date: 20220228 |
|
| AS | Assignment |
Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059863/0400 Effective date: 20220228 Owner name: MICROSEMI CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059863/0400 Effective date: 20220228 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059863/0400 Effective date: 20220228 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059863/0400 Effective date: 20220228 Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059863/0400 Effective date: 20220228 Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059863/0400 Effective date: 20220228 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059863/0400 Effective date: 20220228 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059863/0400 Effective date: 20220228 Owner name: MICROSEMI CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059863/0400 Effective date: 20220228 Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059863/0400 Effective date: 20220228 |
|
| AS | Assignment |
Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059363/0001 Effective date: 20220228 Owner name: MICROSEMI CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059363/0001 Effective date: 20220228 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059363/0001 Effective date: 20220228 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059363/0001 Effective date: 20220228 Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059363/0001 Effective date: 20220228 Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059363/0001 Effective date: 20220228 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059363/0001 Effective date: 20220228 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059363/0001 Effective date: 20220228 Owner name: MICROSEMI CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059363/0001 Effective date: 20220228 Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:059363/0001 Effective date: 20220228 |
|
| AS | Assignment |
Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:060894/0437 Effective date: 20220228 Owner name: MICROSEMI CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:060894/0437 Effective date: 20220228 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:060894/0437 Effective date: 20220228 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:060894/0437 Effective date: 20220228 Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:060894/0437 Effective date: 20220228 Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:060894/0437 Effective date: 20220228 Owner name: SILICON STORAGE TECHNOLOGY, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:060894/0437 Effective date: 20220228 Owner name: ATMEL CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:060894/0437 Effective date: 20220228 Owner name: MICROSEMI CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:060894/0437 Effective date: 20220228 Owner name: MICROSEMI STORAGE SOLUTIONS, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:060894/0437 Effective date: 20220228 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |