US8644119B2 - Record carrier and apparatus for scanning the record carrier - Google Patents

Record carrier and apparatus for scanning the record carrier Download PDF

Info

Publication number
US8644119B2
US8644119B2 US11/845,140 US84514007A US8644119B2 US 8644119 B2 US8644119 B2 US 8644119B2 US 84514007 A US84514007 A US 84514007A US 8644119 B2 US8644119 B2 US 8644119B2
Authority
US
United States
Prior art keywords
variation
frequency
record carrier
modulated
periods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/845,140
Other versions
US20080002535A1 (en
Inventor
Cornelis Marinus Schep
Aalbert Stek
Sebastian Egner
Constant Paul Marie Jozef Baggen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8180582&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US8644119(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Priority to US11/845,140 priority Critical patent/US8644119B2/en
Publication of US20080002535A1 publication Critical patent/US20080002535A1/en
Priority to US14/143,073 priority patent/US9449642B2/en
Application granted granted Critical
Publication of US8644119B2 publication Critical patent/US8644119B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10481Improvement or modification of read or write signals optimisation methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/24Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by sensing features on the record carrier other than the transducing track ; sensing signals or marks recorded by another method than the main recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00745Sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24082Meandering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/215Recordable discs
    • G11B2220/216Rewritable discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/215Recordable discs
    • G11B2220/218Write-once discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2525Magneto-optical [MO] discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2545CDs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor

Definitions

  • the invention relates to a record carrier comprising a servo track indicating an information track intended for recording information blocks, which servo track has a variation of a physical parameter at a predetermined frequency which variation is modulated for encoding record carrier information, and which servo track has modulated parts in which the frequency and/or phase of the variation deviates from the predetermined frequency, and non-modulated parts having only said periodic variation.
  • the invention further relates to recording and/or playback device comprising means for writing and/or reading information blocks in an information track on a record carrier that comprises a servo track indicating the information track, which device comprises means for scanning the servo track and demodulation means for retrieving record carrier information from a variation of a physical parameter of the servo track at a predetermined frequency, which servo track has modulated parts in which the frequency and/or phase of the variation deviates from the predetermined frequency, and non-modulated parts having only said periodic variation.
  • the invention further relates to a method for manufacturing the record carrier.
  • a record carrier and device for reading and/or writing information are known from WO 00/43996 (PHN 17323).
  • the information is encoded into an information signal which includes address codes and is subdivided in accordance with the address codes into information blocks.
  • the record carrier has a servo track, usually called pregroove, for causing servo signals to be generated when scanning the track,
  • a physical parameter, e.g. the radial position, of the pregroove periodically varies constituting a so-called wobble. During the scanning of the track, this wobble leads to a variation of the servo signals and a wobble signal can be generated.
  • the wobble is modulated using phase modulation for encoding position information.
  • phase modulation used for encoding digital position information is called Phase Shift Keying (PSK).
  • PSK Phase Shift Keying
  • the position information is retrieved from the wobble signal and is used for positioning the information blocks by keeping a predefined relation between the address codes in the information blocks and the position information.
  • the wobble signal comprises low frequency components in the frequency range which is used by the tracking servo system. Hence the servo system is disturbed by the wobble modulation. Further the modulated wobble signal may comprise high frequency components in the frequency range of the information signal, and therefore disturb the correct detection of the information from the retrieved information signal.
  • a record carrier as defined in the opening paragraph is characterized in that the slope of the variation is substantially continuous at transitions between the modulated and non-modulated parts.
  • the recording and/or playback device as described in the opening paragraph is characterized in that the demodulation means comprise detection means for detecting modulated parts starting at transitions between the modulated and non-modulated parts at which the slope of the variation is substantially continuous.
  • the invention is based on the following recognition. Many optical recording formats contain a periodic variation of the servo track, usually called wobble, inter alia for write-clock generation, which wobble is usually predominantly monotonic to reduce write-clock jitter.
  • a further embodiment of the record carrier is characterized in that the variation is substantially sinusoidal and the transitions are located at the minima and/or maxima of said sinus.
  • the advantage is that at the peak values of a sinus, i.e. the minima and maxima, the slope of the signal is zero. Hence a change in frequency can be applied while the slope of the signal is continuous.
  • FIG. 1 a shows a record carrier with a servo track (top view)
  • FIG. 1 b shows a servo track (cross section)
  • FIG. 1 c shows a wobble of a servo track (detail)
  • FIG. 1 d shows a further wobble of a servo track (detail)
  • FIG. 2 a shows the modulation of MSK-sin
  • FIG. 2 b shows the modulation of MSK-cos
  • FIG. 3 shows MSK-sin and MSK-cos signals
  • FIG. 4 shows the power spectral density of a data bit
  • FIG. 5 shows a device for reading information blocks
  • FIG. 6 shows a device for writing information blocks
  • FIG. 7 a shows the power spectral densities for a bit pattern
  • FIG. 7 b shows the power spectral densities for a further bit pattern
  • FIG. 1 a shows a disc-shaped record carrier 1 provided with a track 9 intended for recording and a central hole 10 .
  • the track 9 is arranged in accordance with a spiral pattern of windings 3 .
  • FIG. 1 b is a cross-section taken on the line b-b of the record carrier 1 , in which a transparent substrate 5 is provided with a recording layer 6 and a protective layer 7 .
  • the recording layer 6 may be optically writable, for example via phase change, or magneto-optically writable by a device for writing information such as the known CD-Rewritable or CD-Recordable.
  • the recording layer may also be provided with information via a production process, in which first a master disc is made which is subsequently multiplied through pressing.
  • the information is organized in information blocks and is represented by optically readable marks in the form of a succession of areas reflecting much radiation and little radiation such as, for example a succession of pits of different lengths in a CD.
  • the track 9 on the record carrier of a rewritable type is indicated by a servopattern which is provided during manufacture of the blank record carrier.
  • the servopattern is formed, for example by a pregroove 4 which enables a write head to follow the track 9 during scanning.
  • the pregroove 4 may be implemented as a deeper or a raised part, or as a material property deviating from its ambience.
  • the servopattern may consist of an alternation of elevated and deeper windings, referred to as land and groove patterns, with a transition from land to groove or vice versa talking place per winding.
  • FIGS. 1 c and 1 d show two examples of a periodical variation of a physical parameter of the pregroove, called wobble.
  • FIG. 1 c shows variation of the lateral position
  • FIG. 1 d shows variation of the width.
  • This wobble produces a wobble signal in a tracking servosensor.
  • the wobble is, for example, frequency-modulated, and position information such as an address, a time code or winding information is coded in the modulation.
  • a description of a rewritable CD system which is provided with position information in such a way can be found in U.S. Pat. No. 4,901,300 (PHN 12.398).
  • a servopattern may also consist of, for example, regularly distributed sub-patterns which periodically cause tracking signals.
  • the variation of the servo track includes relatively large parts of monotone wobble, so called non modulated parts. Further the servo track has relatively short parts where the frequency and/or phase of the wobble deviates from the predetermined wobble frequency, called modulated parts.
  • FIG. 2 a shows the modulation of MSK-sin.
  • the figure shows the variations in a modulated part of the wobble.
  • a data value 0 is represented by a full period of the wobble 21 or an inverted period 22 , starting at the zero crossing of the wobble.
  • the data value 1 is represented by a frequency which is 1.5 times higher, so a positive starting wobble 23 or a negative starting wobble 24 .
  • the MSK modulation is based on sine waves with frequency 1.0 times the wobble frequency (fwob) and sine waves with frequency 1.5*fwob.
  • the frequency changes at the zero crossings of the wobble signal. At the points where the frequency changes the slope is discontinuous.
  • FIG. 2 b shows the modulation of MSK-cos.
  • the figure shows the variations in a modulated part of the wobble.
  • a data value 0 is represented by a fall period of the wobble 25 or an inverted period 26 , starting at the maximum or minimum amplitude of the wobble.
  • the data value 1 is represented by a frequency which is 1.5 times higher, so a positive starting wobble 27 or a negative starting wobble 28 , also starting at the maximum or minimum.
  • the MSK modulation is based on sine waves with frequency 1.0*fwob and sine waves with frequency 1.5*fwob. With MSK-cos the frequency changes at the maxima or minima of the wobble signal.
  • the slope is continuous. It is to be noted that all waveforms of the MSK-cos are without a DC component when integrated on the length of one wobble frequency period, whereas the 1.5*fwob waveform of MSK-sin has a DC component.
  • the DC component may be balanced by an inverted 1.5*fwob MSK-sin waveform, but the absence of such DC components in the MSK-cos modulation results in less disturbing frequency components in the low frequency range relevant to servo systems.
  • FIG. 3 shows MSK-sin and MSK-cos signals.
  • the figure shows examples of the modulated wave forms for MSK-sin ( 32 ) and MSK-cos ( 35 ) for a single data bit.
  • the central traces ( 32 , 35 ) show the wave form on the disc (solid lines) for MSK-sin (left) and MSK-cos (right).
  • the single-tone sine or cosine signals are also shown (dotted lines). Both examples are for data bit with a length of 3 wobble periods. The first and last parts of such a data bit are described above with reference to FIGS. 2 a and 2 b . In the middle period of said 3 periods an inverted wobble is present.
  • the top traces ( 31 , 34 ) show the difference between the MSK-sin (left) and MSK-cos (right) wave forms and a reference not modulated wobble.
  • the bottom traces ( 33 , 36 ) show the result of multiplying the wave forms ( 32 , 35 ) with the reference wobble.
  • FIG. 4 shows the power spectral density of a data bit.
  • the solid line 42 is the spectrum for MSK-sin
  • the dashed line 41 is the spectrum for MSK-cos.
  • the spectrum 41 of MSK-cos is narrower than the spectrum 42 of MSK-sin. In other words, MSK-cos is producing less disturbing frequency components and can be filtered more narrowly by the detector than MSK-sin. The detection performance of MSK-cos will be better compared to MSK-sin, depending on the resulting signal to noise ratio after filtering.
  • FIG. 5 shows a reading device for scanning a record carrier 1 .
  • Writing and reading of information on optical discs and formatting, error correcting and channel coding rules, are well-known in the art, e.g. from the CD system.
  • the apparatus of FIG. 5 is arranged for reading the record carrier 1 , which record carrier is identical to the record carriers shown in FIG. 1 .
  • the device is provided with a read head 52 for scanning the track on the record carrier and read control means comprising drive unit 55 for rotating the record carrier 1 , a read circuit 53 for example comprising a channel decoder and an error corrector, tracking unit 51 and a system control unit 56 .
  • the read head comprises optical elements of the usual type for generating a radiation spot 66 focused on a track of the recording layer of the record carrier via a radiation beam 65 guided through optical elements.
  • the radiation beam 65 is generated by a radiation source, e.g. a laser diode.
  • the read head further comprises a focusing actuator for focusing the radiation beam 65 on the recording layer and a tracking actuator 59 for fine positioning of the spot 66 in radial direction on the center of the track.
  • the apparatus has a positioning unit 54 for coarsely positioning the read head 52 in the radial direction on the track.
  • the tracking actuator 59 may comprise coils for radially moving an optical element or may be arranged for changing the angle of a reflecting element on a movable part of the read head or on a part on a fixed position in the case part of the optical system is mounted on a fixed position.
  • the radiation reflected by the recording layer is detected by a detector of a usual type, e.g. a four-quadrant diode, for generating detector signals 57 including a read signal, a tracking error and a focusing error signal.
  • the tracking unit 51 is coupled to the read head for receiving the tracking error signal from the read head and controlling the tracking actuator 59 . During reading, the read signal is converted into output information, indicated by arrow 64 , in the read circuit 53 .
  • the apparatus is provided with an address detector 50 for detecting and the retrieving address information from the detector signals 57 when scanning the servo track of the record carrier.
  • the device is further provided with a system control unit 56 for receiving commands from a controlling computer system or from a user and for controlling the apparatus via control lines 58 , e.g. a system bus connected to the drive unit 55 , the positioning unit 54 , the address detector 50 , the tracking unit 51 and the read circuit 53 .
  • the system control unit comprises control circuitry, for example a microprocessor, a program memory and control gates, for performing the procedures described below.
  • the system control unit 56 may also be implemented as a state machine in logic circuits.
  • the read device is arranged for reading a disc having tracks having a periodic variation, e.g. a continuous wobble.
  • the read control unit or means are arranged for detecting the periodic variations and for reading in dependence thereon a predetermined amount data from the track.
  • the read clock is synchronized to the periodic variations and the read circuit 53 reads a fixed number of channel bits for each instance of the periodic variations.
  • the read control means are arranged for retrieving the data from an area of the track following an unrecorded area.
  • the read clock is synchronized to the periodic variations in the unrecorded area and the reading speed is adjusted during scanning the unrecorded area. Hence at the start of the recorded area the read circuit 53 is locked in to the speed of the recorded data.
  • the address detector 50 is arranged for reading record carrier information, e.g. position information and recording control data, from the modulated signal derived from the modulated wobble.
  • the address detector 50 has a detection unit for detecting modulated wobbles starting at a predefined transition point in the wobble signal, at which transition point the slope of the wobble is continuous. For a sinusoidal wobble having the transitions at the maxima (or minima) the detecting starting point is at said maxima (or minima).
  • the address detector 50 includes a matched filter based on the frequency spectrum of the wobble signal.
  • the matched filter improves the signal to noise ratio of the modulated wobble signal, because the frequency spectrum of the wobble signal is narrower than the spectrum of a wobble signal having transitions at the zero crossing.
  • the address detector further has a word detection unit for retrieving the words of record carrier information. The beginning of such a word is detected from a synchronisation signal after a long sequence of non modulated wobbles. The occurrence and value of a data bit is detected based on the modulated wobbles. In further embodiments other types of synchronisation or decoding of the values of the record carrier information may be applied.
  • FIG. 6 shows a device for writing information on a record carrier according to the invention of a type which is (re)writable in, for example a magneto-optical or optical manner (via phase change or dye) by means of a beam 65 of electromagnetic radiation.
  • the device is also equipped for reading and comprises the same elements as the apparatus for reading described above with FIG. 5 , except that it has a write/read head 62 and recording control means which comprise the same elements as the read control means, except for a write circuit 60 that comprises for example a formatter, an error encoder and a channel encoder.
  • the write/read head 62 has the same function as the read head 52 together with a write function and is coupled to the write circuit 60 .
  • the information presented to the input of the write circuit 60 (indicated by the arrow 63 ) is distributed over logical and physical sectors according to formatting and encoding rules and converted into a write signal 61 for the write/read head 62 .
  • the system control unit 56 is arranged for controlling the write circuit 60 and for performing the position information recovery and positioning procedure as described above for the reading apparatus.
  • marks representing the information are formed on the record carrier.
  • the recording control means are arranged for detecting the periodic variations, for example by locking a phase locked loop to the periodicity thereof.
  • the address detector 50 is described above with reference to FIG. 5 .
  • FIGS. 7 a and 7 b show the power spectral densities (PSDs) for MSK-sin and MSK-cos for two different bit patterns that are repeated periodically.
  • FIG. 7 a shows for a certain bit pattern the PSD 71 for MSK-sin and the PSD 72 for MSK-cos.
  • FIG. 7 b shows for another bit pattern the PSD 73 for MSK-sin and the PSD 74 for MSK-cos. It shows that the PSDs for MSK-sin and MSK-cos are substantially the same in the central parts of the spectrum. However, at low frequencies around 0.1*fwob the PSD of MSK-cos is more than 10 dB lower than the PSD of MSK-sin.
  • any other suitable parameter of the track may be modulated, e.g. the track width.
  • an optical disc has been described, but other media, such as a magnetic disc or tape, may be used.
  • any reference signs do not limit the scope of the claims, that the invention may be implemented by means of both hardware and software, and that several ‘means’ may be represented by the same item of hardware. Further, the scope of the invention is not limited to the embodiments, and the invention lies in each and every novel feature or combination of features described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Moving Of The Head To Find And Align With The Track (AREA)

Abstract

A record carrier has a servo track indicating an information track intended for recording information blocks, which servo track has a variation of a physical parameter, referred to as wobble. The wobble is modulated for encoding record carrier information, such as addresses. The servo track is subdivided in non-modulated and parts modulated parts in which the frequency and/or phase of the variation deviates from the wobble frequency. The slope of the wobble is substantially continuous at transitions between the modulated and non-modulated parts by using wobbles starting at the maxima or minima of the wobble.

Description

CROSS REFERENCE TO RELATED APPLICATION
This is a continuation of prior application Ser. No. 10/481,143 filed Dec. 17, 2003.
The invention relates to a record carrier comprising a servo track indicating an information track intended for recording information blocks, which servo track has a variation of a physical parameter at a predetermined frequency which variation is modulated for encoding record carrier information, and which servo track has modulated parts in which the frequency and/or phase of the variation deviates from the predetermined frequency, and non-modulated parts having only said periodic variation.
The invention further relates to recording and/or playback device comprising means for writing and/or reading information blocks in an information track on a record carrier that comprises a servo track indicating the information track, which device comprises means for scanning the servo track and demodulation means for retrieving record carrier information from a variation of a physical parameter of the servo track at a predetermined frequency, which servo track has modulated parts in which the frequency and/or phase of the variation deviates from the predetermined frequency, and non-modulated parts having only said periodic variation.
The invention further relates to a method for manufacturing the record carrier.
A record carrier and device for reading and/or writing information are known from WO 00/43996 (PHN 17323). The information is encoded into an information signal which includes address codes and is subdivided in accordance with the address codes into information blocks. The record carrier has a servo track, usually called pregroove, for causing servo signals to be generated when scanning the track, A physical parameter, e.g. the radial position, of the pregroove periodically varies constituting a so-called wobble. During the scanning of the track, this wobble leads to a variation of the servo signals and a wobble signal can be generated. The wobble is modulated using phase modulation for encoding position information. Usually the phase modulation used for encoding digital position information is called Phase Shift Keying (PSK). During recording the position information is retrieved from the wobble signal and is used for positioning the information blocks by keeping a predefined relation between the address codes in the information blocks and the position information.
A problem of the known system is that the wobble signal comprises low frequency components in the frequency range which is used by the tracking servo system. Hence the servo system is disturbed by the wobble modulation. Further the modulated wobble signal may comprise high frequency components in the frequency range of the information signal, and therefore disturb the correct detection of the information from the retrieved information signal.
It is an object of the invention, for example, to provide a record carrier and device in which the above disturbance due to the wobble signal is reduced.
According to the invention a record carrier as defined in the opening paragraph is characterized in that the slope of the variation is substantially continuous at transitions between the modulated and non-modulated parts. Further, the recording and/or playback device as described in the opening paragraph is characterized in that the demodulation means comprise detection means for detecting modulated parts starting at transitions between the modulated and non-modulated parts at which the slope of the variation is substantially continuous. The invention is based on the following recognition. Many optical recording formats contain a periodic variation of the servo track, usually called wobble, inter alia for write-clock generation, which wobble is usually predominantly monotonic to reduce write-clock jitter. In modulated parts the frequency is changed or even phase jumps are used, and the transitions between not modulated and modulated parts occur when the amplitude of the wobble is zero. The inventors have seen that due to the discontinuities in the slope of the wobble of such transitions additional low and high frequency components are generated in the resulting wobble signal. By shifting the transitions to a point in the wobble where the amplitude is not zero but where the slope of the non modulated signal before and the modulated signal after the transition are substantially equal such disturbing frequency components are reduced.
A further embodiment of the record carrier is characterized in that the variation is substantially sinusoidal and the transitions are located at the minima and/or maxima of said sinus. The advantage is that at the peak values of a sinus, i.e. the minima and maxima, the slope of the signal is zero. Hence a change in frequency can be applied while the slope of the signal is continuous.
These and other aspects of the invention will be apparent from and elucidated further with reference to the embodiments described by way of example in the following description and with reference to the accompanying drawings, in which
FIG. 1 a shows a record carrier with a servo track (top view),
FIG. 1 b shows a servo track (cross section),
FIG. 1 c shows a wobble of a servo track (detail),
FIG. 1 d shows a further wobble of a servo track (detail),
FIG. 2 a shows the modulation of MSK-sin,
FIG. 2 b shows the modulation of MSK-cos,
FIG. 3 shows MSK-sin and MSK-cos signals,
FIG. 4 shows the power spectral density of a data bit,
FIG. 5 shows a device for reading information blocks,
FIG. 6 shows a device for writing information blocks,
FIG. 7 a shows the power spectral densities for a bit pattern
FIG. 7 b shows the power spectral densities for a further bit pattern
In the Figures, elements which correspond to elements already described have the same reference numerals.
FIG. 1 a shows a disc-shaped record carrier 1 provided with a track 9 intended for recording and a central hole 10. The track 9 is arranged in accordance with a spiral pattern of windings 3. FIG. 1 b is a cross-section taken on the line b-b of the record carrier 1, in which a transparent substrate 5 is provided with a recording layer 6 and a protective layer 7. The recording layer 6 may be optically writable, for example via phase change, or magneto-optically writable by a device for writing information such as the known CD-Rewritable or CD-Recordable. The recording layer may also be provided with information via a production process, in which first a master disc is made which is subsequently multiplied through pressing. The information is organized in information blocks and is represented by optically readable marks in the form of a succession of areas reflecting much radiation and little radiation such as, for example a succession of pits of different lengths in a CD. In one embodiment, the track 9 on the record carrier of a rewritable type is indicated by a servopattern which is provided during manufacture of the blank record carrier. The servopattern is formed, for example by a pregroove 4 which enables a write head to follow the track 9 during scanning. The pregroove 4 may be implemented as a deeper or a raised part, or as a material property deviating from its ambience. Alternatively, the servopattern may consist of an alternation of elevated and deeper windings, referred to as land and groove patterns, with a transition from land to groove or vice versa talking place per winding. FIGS. 1 c and 1 d show two examples of a periodical variation of a physical parameter of the pregroove, called wobble. FIG. 1 c shows variation of the lateral position, and FIG. 1 d shows variation of the width. This wobble produces a wobble signal in a tracking servosensor. The wobble is, for example, frequency-modulated, and position information such as an address, a time code or winding information is coded in the modulation. A description of a rewritable CD system which is provided with position information in such a way can be found in U.S. Pat. No. 4,901,300 (PHN 12.398). A servopattern may also consist of, for example, regularly distributed sub-patterns which periodically cause tracking signals.
The variation of the servo track includes relatively large parts of monotone wobble, so called non modulated parts. Further the servo track has relatively short parts where the frequency and/or phase of the wobble deviates from the predetermined wobble frequency, called modulated parts.
FIG. 2 a shows the modulation of MSK-sin. The figure shows the variations in a modulated part of the wobble. In the Minimum Shift Keying sinus type (MSK-sin) a data value 0 is represented by a full period of the wobble 21 or an inverted period 22, starting at the zero crossing of the wobble. The data value 1 is represented by a frequency which is 1.5 times higher, so a positive starting wobble 23 or a negative starting wobble 24. Hence the MSK modulation is based on sine waves with frequency 1.0 times the wobble frequency (fwob) and sine waves with frequency 1.5*fwob. With MSK-sin the frequency changes at the zero crossings of the wobble signal. At the points where the frequency changes the slope is discontinuous.
FIG. 2 b shows the modulation of MSK-cos. The figure shows the variations in a modulated part of the wobble. In the Minimum Shift Keying cosinus type (MSK-cos) a data value 0 is represented by a fall period of the wobble 25 or an inverted period 26, starting at the maximum or minimum amplitude of the wobble. The data value 1 is represented by a frequency which is 1.5 times higher, so a positive starting wobble 27 or a negative starting wobble 28, also starting at the maximum or minimum. Hence the MSK modulation is based on sine waves with frequency 1.0*fwob and sine waves with frequency 1.5*fwob. With MSK-cos the frequency changes at the maxima or minima of the wobble signal. At the points where the frequency changes the slope is continuous. It is to be noted that all waveforms of the MSK-cos are without a DC component when integrated on the length of one wobble frequency period, whereas the 1.5*fwob waveform of MSK-sin has a DC component. The DC component may be balanced by an inverted 1.5*fwob MSK-sin waveform, but the absence of such DC components in the MSK-cos modulation results in less disturbing frequency components in the low frequency range relevant to servo systems.
FIG. 3 shows MSK-sin and MSK-cos signals. The figure shows examples of the modulated wave forms for MSK-sin (32) and MSK-cos (35) for a single data bit. The central traces (32,35) show the wave form on the disc (solid lines) for MSK-sin (left) and MSK-cos (right). For reference, the single-tone sine or cosine signals are also shown (dotted lines). Both examples are for data bit with a length of 3 wobble periods. The first and last parts of such a data bit are described above with reference to FIGS. 2 a and 2 b. In the middle period of said 3 periods an inverted wobble is present. The top traces (31,34) show the difference between the MSK-sin (left) and MSK-cos (right) wave forms and a reference not modulated wobble. The bottom traces (33,36) show the result of multiplying the wave forms (32,35) with the reference wobble.
FIG. 4 shows the power spectral density of a data bit. The solid line 42 is the spectrum for MSK-sin, the dashed line 41 is the spectrum for MSK-cos. The spectrum 41 of MSK-cos is narrower than the spectrum 42 of MSK-sin. In other words, MSK-cos is producing less disturbing frequency components and can be filtered more narrowly by the detector than MSK-sin. The detection performance of MSK-cos will be better compared to MSK-sin, depending on the resulting signal to noise ratio after filtering.
FIG. 5 shows a reading device for scanning a record carrier 1. Writing and reading of information on optical discs and formatting, error correcting and channel coding rules, are well-known in the art, e.g. from the CD system. The apparatus of FIG. 5 is arranged for reading the record carrier 1, which record carrier is identical to the record carriers shown in FIG. 1. The device is provided with a read head 52 for scanning the track on the record carrier and read control means comprising drive unit 55 for rotating the record carrier 1, a read circuit 53 for example comprising a channel decoder and an error corrector, tracking unit 51 and a system control unit 56. The read head comprises optical elements of the usual type for generating a radiation spot 66 focused on a track of the recording layer of the record carrier via a radiation beam 65 guided through optical elements. The radiation beam 65 is generated by a radiation source, e.g. a laser diode. The read head further comprises a focusing actuator for focusing the radiation beam 65 on the recording layer and a tracking actuator 59 for fine positioning of the spot 66 in radial direction on the center of the track. The apparatus has a positioning unit 54 for coarsely positioning the read head 52 in the radial direction on the track. The tracking actuator 59 may comprise coils for radially moving an optical element or may be arranged for changing the angle of a reflecting element on a movable part of the read head or on a part on a fixed position in the case part of the optical system is mounted on a fixed position. The radiation reflected by the recording layer is detected by a detector of a usual type, e.g. a four-quadrant diode, for generating detector signals 57 including a read signal, a tracking error and a focusing error signal. The tracking unit 51 is coupled to the read head for receiving the tracking error signal from the read head and controlling the tracking actuator 59. During reading, the read signal is converted into output information, indicated by arrow 64, in the read circuit 53. The apparatus is provided with an address detector 50 for detecting and the retrieving address information from the detector signals 57 when scanning the servo track of the record carrier. The device is further provided with a system control unit 56 for receiving commands from a controlling computer system or from a user and for controlling the apparatus via control lines 58, e.g. a system bus connected to the drive unit 55, the positioning unit 54, the address detector 50, the tracking unit 51 and the read circuit 53. To this end, the system control unit comprises control circuitry, for example a microprocessor, a program memory and control gates, for performing the procedures described below. The system control unit 56 may also be implemented as a state machine in logic circuits. The read device is arranged for reading a disc having tracks having a periodic variation, e.g. a continuous wobble. The read control unit or means are arranged for detecting the periodic variations and for reading in dependence thereon a predetermined amount data from the track. In an embodiment the read clock is synchronized to the periodic variations and the read circuit 53 reads a fixed number of channel bits for each instance of the periodic variations. In an embodiment the read control means are arranged for retrieving the data from an area of the track following an unrecorded area. In the read circuit 53 the read clock is synchronized to the periodic variations in the unrecorded area and the reading speed is adjusted during scanning the unrecorded area. Hence at the start of the recorded area the read circuit 53 is locked in to the speed of the recorded data. In particular the address detector 50 is arranged for reading record carrier information, e.g. position information and recording control data, from the modulated signal derived from the modulated wobble. The address detector 50 has a detection unit for detecting modulated wobbles starting at a predefined transition point in the wobble signal, at which transition point the slope of the wobble is continuous. For a sinusoidal wobble having the transitions at the maxima (or minima) the detecting starting point is at said maxima (or minima). In a preferred embodiment the address detector 50 includes a matched filter based on the frequency spectrum of the wobble signal. The matched filter improves the signal to noise ratio of the modulated wobble signal, because the frequency spectrum of the wobble signal is narrower than the spectrum of a wobble signal having transitions at the zero crossing. The address detector further has a word detection unit for retrieving the words of record carrier information. The beginning of such a word is detected from a synchronisation signal after a long sequence of non modulated wobbles. The occurrence and value of a data bit is detected based on the modulated wobbles. In further embodiments other types of synchronisation or decoding of the values of the record carrier information may be applied.
FIG. 6 shows a device for writing information on a record carrier according to the invention of a type which is (re)writable in, for example a magneto-optical or optical manner (via phase change or dye) by means of a beam 65 of electromagnetic radiation. The device is also equipped for reading and comprises the same elements as the apparatus for reading described above with FIG. 5, except that it has a write/read head 62 and recording control means which comprise the same elements as the read control means, except for a write circuit 60 that comprises for example a formatter, an error encoder and a channel encoder. The write/read head 62 has the same function as the read head 52 together with a write function and is coupled to the write circuit 60. The information presented to the input of the write circuit 60 (indicated by the arrow 63) is distributed over logical and physical sectors according to formatting and encoding rules and converted into a write signal 61 for the write/read head 62. The system control unit 56 is arranged for controlling the write circuit 60 and for performing the position information recovery and positioning procedure as described above for the reading apparatus. During the writing operation, marks representing the information are formed on the record carrier. The recording control means are arranged for detecting the periodic variations, for example by locking a phase locked loop to the periodicity thereof. The address detector 50 is described above with reference to FIG. 5.
FIGS. 7 a and 7 b show the power spectral densities (PSDs) for MSK-sin and MSK-cos for two different bit patterns that are repeated periodically. FIG. 7 a shows for a certain bit pattern the PSD 71 for MSK-sin and the PSD 72 for MSK-cos. FIG. 7 b shows for another bit pattern the PSD 73 for MSK-sin and the PSD 74 for MSK-cos. It shows that the PSDs for MSK-sin and MSK-cos are substantially the same in the central parts of the spectrum. However, at low frequencies around 0.1*fwob the PSD of MSK-cos is more than 10 dB lower than the PSD of MSK-sin. This is related to the absence of DC content of a one fwob period segment of the MSK-cos signal (for example at 1.5*fwob), whereas such a one period segment of MSK-sin does have a DC content which is compensated later in the signal at the next (inverse) MSK-sin segment. The low-frequency spectrum of MSK-cos is thus substantially lower than that of MSK-sin which is an advantage because of the lower distortion of the servo. Further, a more smooth wave form for MSK-cos is caused by the continuous slope in contrast to MSK-sin where the slope is discontinuous at the point where the frequency changes. Also in the high frequency range above 2*fwob the PSD for MSK-cos is somewhat lower than the PSD for MSK-cos. Hence less disturbing frequency components are present in the higher frequency ranges also.
Although the invention has been explained by embodiments using a wobble modulation, any other suitable parameter of the track may be modulated, e.g. the track width. Also for the record carrier an optical disc has been described, but other media, such as a magnetic disc or tape, may be used. It is noted, that in this document the word ‘comprising’ does not exclude the presence of other elements or steps than those listed and the word ‘a’ or ‘an’ preceding an element does not exclude lie presence of a plurality of such elements, that any reference signs do not limit the scope of the claims, that the invention may be implemented by means of both hardware and software, and that several ‘means’ may be represented by the same item of hardware. Further, the scope of the invention is not limited to the embodiments, and the invention lies in each and every novel feature or combination of features described above.

Claims (18)

The invention claimed is:
1. A record carrier comprising a servo track indicating an information track intended for recording information blocks, the servo track having a variation of a physical parameter, including a wobble configured to generate a wobble signal during scanning of the servo track, wherein the variation is modulated for encoding record carrier information, and wherein the servo track has: non-modulated parts having only said variations at a predetermined frequency, and modulated parts in which the frequency and/or phase of the variation deviates from the frequency and/or phase of the non-modulated parts for representing data bits of the record carrier information, wherein the data bits always start at a maximum or minimum amplitude of the wobble signal, wherein a first part of the modulated parts comprises a variation at a transition frequency, the length of the first part corresponding to m periods of the predetermined frequency and corresponding to n+0.5 periods of the transition frequency, n and m being integers.
2. The record carrier as claimed in claim 1, wherein the length of the first part corresponds to one period of the predetermined frequency, and n equals 1.
3. The record carrier as claimed in claim 1, wherein the modulated parts comprise at least one variation of a phase inverse to the phase of the non-modulated periodic variations.
4. The record carrier as claimed in claim 1, wherein at least one of the modulated parts comprises a variation at a second frequency, a length of said modulated part corresponding to m/2 periods of the predetermined frequency and corresponding to p/2 periods of the second frequency, n and p being different integers and being both odd or both even.
5. The record carrier as claimed in claim 1, wherein a last part of the modulated parts comprises a variation at the transition frequency, a length of the last part corresponding to m periods of the predetermined frequency, the first part and the last part being separated by an intermediate part comprising a variation at the predetermined frequency having a phase inverse to the phase of the variation in the non-modulated parts.
6. The record carrier as claimed in claim 1, wherein the length of the first part corresponds to one period of the predetermined frequency, and n equals 1.
7. The record carrier of claim 1, wherein a data bit having a value of zero is represented by a full period of the wobble signal, and a data bit having a value of one is represented by a higher frequency which is 1.5 times higher than a frequency of the wobble signal, and wherein a frequency change to the higher frequency starts at a further maximum amplitude of the wobble signal.
8. The record carrier of claim 1, wherein the data bits end at a further maximum amplitude of the wobble signal.
9. The record carrier of claim 8, wherein a data bit has a length of three wobble periods, wherein the data bit starts and ends at maximum amplitudes of the wobble signal during first and third periods of the three wobble periods, and wherein the data bit includes an inverted wobble signal at a second period between the first and third periods.
10. A recording and/or playback device comprising: means for writing and/or reading information blocks in an information track on a record carrier that comprises a servo track indicating the information track, means for scanning the servo track, and demodulation means for retrieving record carrier information from a signal generated by a variation of a physical parameter of the servo track, which servo track has: non-modulated parts having only said variation at a predetermined frequency, and modulated parts in which the frequency and/or phase of the variation deviates from the frequency and/or phase of the non-modulated parts for representing data bits of the record carrier information, wherein the demodulation means comprise detection means for detecting the modulated parts starting at transitions between the modulated and non-modulated parts at which the slope of the variation is substantially continuous, the variation being substantially a sinusoidal variation, and the transitions being located at the minima and/or maxima of said sinusoidal variation, and the detection means are for detecting, starting at said minima and/or maxima, and wherein the data bits always start at a maximum or minimum amplitude of the wobble signal, wherein a first part of the modulated parts comprises a variation at a transition frequency, the length of the first part corresponding to m periods of the predetermined frequency and corresponding to n+0.5 periods of the transition frequency, n and m being integers.
11. The device as claimed in claim 10, wherein the detection means are for detecting a number of periodic variations of a phase inverse to the phase of the non-modulated periodic variations.
12. The device as claimed in claim 10, wherein the detection means comprise a matched filter based on a frequency spectrum of the signal generated by the modulated parts.
13. The device of claim 12, wherein the matched filter has a narrower passband than a filter used when the data bits do not start at the maximum amplitude of the wobble signal.
14. The device as claimed in claim 10, wherein the detection means are adapted for detecting the modulated parts having a last part comprising a variation at the transition frequency, a length of the last part corresponding to m periods of the predetermined frequency, the first part and the last part being separated by an intermediate part comprising a variation at the predetermined frequency having a phase inverse to the phase of the variation in the non-modulated parts.
15. The device as claimed in claim 10, wherein the first part has a length corresponding to one period of the predetermined frequency, and n equals 1.
16. The device of claim 10, wherein the means for writing and/or reading writes the data bit including a data bit having a value of zero and a data bit having a value of one, wherein the data bit having the value of zero is represented by a full period of the wobble signal, and the data bit having the value of one is represented by a higher frequency which is 1.5 times higher than a frequency of the wobble signal, and wherein a frequency change to the higher frequency starts at a further maximum amplitude of the wobble signal.
17. The device of claim 10, wherein the means for writing and/or reading writes a data bit having a length of three wobble periods, wherein the data bit starts and ends at maximum amplitudes of the wobble signal during first and third periods of the three wobble periods, and wherein the data bit includes an inverted wobble signal at a second period between the first and third periods.
18. A method of manufacturing a record carrier comprising the acts of: providing the record carrier with a servo track indicating an information track intended for recording information blocks; providing the servo track with a variation of a physical parameter at a predetermined frequency; modulating the variation for encoding record carrier information; providing servo track with: non-modulated parts having only said variation at a predetermined frequency, and modulated parts in which the frequency and/or phase of the variation deviates from the frequency and/or phase of the non-modulated parts for representing data bits of the record carrier information, wherein the data bits always start at a maximum or minimum amplitude of the wobble signal; and providing transitions between the modulated and non-modulated parts when a slope of the variation is substantially continuous, the variation being substantially a sinusoidal variation, and the transitions being located at the minima and/or maxima of said sinusoidal variation, wherein a first part of the modulated parts comprises a variation at a transition frequency, the length of the first part corresponding to m periods of the predetermined frequency and corresponding to n+0.5 periods of the transition frequency, n and m being integers.
US11/845,140 2001-07-02 2007-08-27 Record carrier and apparatus for scanning the record carrier Active 2026-09-30 US8644119B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/845,140 US8644119B2 (en) 2001-07-02 2007-08-27 Record carrier and apparatus for scanning the record carrier
US14/143,073 US9449642B2 (en) 2001-07-02 2013-12-30 Record carrier and apparatus for scanning the record carrier

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP01202545 2001-07-02
EP01202545 2001-07-02
EP01202545.8 2001-07-02
PCT/IB2002/002736 WO2003005350A1 (en) 2001-07-02 2002-06-27 Record carrier and apparatus for scanning the record carrier
US10/481,143 US7274627B2 (en) 2001-07-02 2002-06-27 Record carrier and apparatus for scanning the record carrier
US11/845,140 US8644119B2 (en) 2001-07-02 2007-08-27 Record carrier and apparatus for scanning the record carrier

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US10481143 Continuation 2002-06-27
PCT/IB2002/002736 Continuation WO2003005350A1 (en) 2001-07-02 2002-06-27 Record carrier and apparatus for scanning the record carrier
US10/481,143 Continuation US7274627B2 (en) 2001-07-02 2002-06-27 Record carrier and apparatus for scanning the record carrier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/143,073 Continuation US9449642B2 (en) 2001-07-02 2013-12-30 Record carrier and apparatus for scanning the record carrier

Publications (2)

Publication Number Publication Date
US20080002535A1 US20080002535A1 (en) 2008-01-03
US8644119B2 true US8644119B2 (en) 2014-02-04

Family

ID=8180582

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/481,143 Expired - Lifetime US7274627B2 (en) 2001-07-02 2002-06-27 Record carrier and apparatus for scanning the record carrier
US11/845,140 Active 2026-09-30 US8644119B2 (en) 2001-07-02 2007-08-27 Record carrier and apparatus for scanning the record carrier
US14/143,073 Expired - Fee Related US9449642B2 (en) 2001-07-02 2013-12-30 Record carrier and apparatus for scanning the record carrier

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/481,143 Expired - Lifetime US7274627B2 (en) 2001-07-02 2002-06-27 Record carrier and apparatus for scanning the record carrier

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/143,073 Expired - Fee Related US9449642B2 (en) 2001-07-02 2013-12-30 Record carrier and apparatus for scanning the record carrier

Country Status (26)

Country Link
US (3) US7274627B2 (en)
EP (2) EP1926093B1 (en)
JP (2) JP4490686B2 (en)
KR (1) KR100900733B1 (en)
CN (2) CN100370525C (en)
AR (1) AR034683A1 (en)
AT (2) ATE474314T1 (en)
BR (1) BRPI0205695B1 (en)
CO (1) CO5550510A2 (en)
CY (2) CY1109643T1 (en)
DE (2) DE60237051D1 (en)
DK (2) DK1926093T3 (en)
EA (1) EA005639B1 (en)
EG (1) EG23269A (en)
ES (2) ES2348846T3 (en)
HK (1) HK1064206A1 (en)
HR (1) HRP20030143B1 (en)
IL (1) IL159668A0 (en)
MA (1) MA26205A1 (en)
MX (1) MXPA03001745A (en)
MY (1) MY149315A (en)
NO (1) NO20030927L (en)
PT (2) PT1405306E (en)
TN (1) TNSN03009A1 (en)
TW (1) TWI233607B (en)
WO (1) WO2003005350A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112116A1 (en) * 2001-07-02 2014-04-24 Koninklijke Philips N.V. Record carrier and apparatus for scanning the record carrier
US20200220707A1 (en) * 2019-01-09 2020-07-09 Electronics And Telecommunications Research Institute Method and apparatus for backscatter communication of pattern-based demodulation

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652641B2 (en) * 2001-10-11 2011-03-16 ソニー株式会社 Disc recording medium, disc drive apparatus, and playback method
JP3789423B2 (en) 2001-11-17 2006-06-21 エルジー電子株式会社 Apparatus and method for encoding wobble signal recorded on optical disk, and apparatus and method for decoding wobble signal read from optical disk
TWI298156B (en) 2002-10-24 2008-06-21 Tian Holdings Llc Discrimination method for light storage device
CN100377219C (en) * 2003-03-31 2008-03-26 上海乐金广电电子有限公司 Demodulation device/method of optical disk dither signal and demodulation device/method thereof
EP1489612B1 (en) * 2003-06-16 2017-05-03 Thomson Licensing Wobble demodulation for high density optical recording media
EP1489611A1 (en) 2003-06-16 2004-12-22 Deutsche Thomson-Brandt Gmbh Wobble demodulation for high density optical recording media
CN100412972C (en) 2003-09-15 2008-08-20 宇田控股有限公司 Method for ascertaining the format of an loaded optical disc
DE10345950A1 (en) 2003-10-02 2005-05-19 Pari GmbH Spezialisten für effektive Inhalation Inhalation therapy device with valve
US20050226114A1 (en) 2004-03-31 2005-10-13 Stanley Liow Method and apparatus for generating absolute time in pregroove data
JP4114605B2 (en) * 2003-12-24 2008-07-09 ソニー株式会社 Information processing apparatus, information recording medium, information processing method, and computer program
US7626907B2 (en) 2004-05-25 2009-12-01 Ricky Chang Method and apparatus for determining type of digital versatile disc
US7570561B2 (en) 2004-05-25 2009-08-04 Bryan Tai Method for determining type of digital versatile discs
US7746745B2 (en) 2004-05-25 2010-06-29 Ricky Chang Method for determining the type of digital versatile disc
WO2005117008A1 (en) * 2004-05-25 2005-12-08 Via Technologies, Inc. Method and apparatus for type determination of digital versatile discs
US7161753B2 (en) * 2005-01-28 2007-01-09 Komag, Inc. Modulation of sidewalls of servo sectors of a magnetic disk and the resultant disk
FR2898226B1 (en) * 2006-03-06 2009-03-06 Excem Soc Par Actions Simplifi ELECTROLUMINESCENT TRANSMISSION DEVICE FOR OPTICAL TRANSMISSION IN FREE SPACE
FR2907272B1 (en) * 2006-10-13 2008-12-26 Commissariat Energie Atomique METHOD FOR MANAGING THE END OF DISCHARGE OF A RECHARGEABLE BATTERY
TWI347596B (en) 2007-01-11 2011-08-21 Ind Tech Res Inst Optical recording carrier, signal generating apparatus, information recording method, and information reading apparatus
WO2012063326A1 (en) * 2010-11-09 2012-05-18 株式会社 東芝 Information recording medium, information reproducing device, and information recording device
US8582405B1 (en) * 2012-09-25 2013-11-12 Oracle International Corporation Matched pattern signal decoding

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542424A (en) * 1981-03-25 1985-09-17 Sony Corporation Tape speed control apparatus
US4901300A (en) 1988-01-22 1990-02-13 U.S. Philips Corporation Method of and apparatus for recording an information signal
CA1319984C (en) 1988-01-22 1993-07-06 Wilhelmus P.M. Raaijmakers Optically readable record carrier with servo track
US5363360A (en) * 1993-09-27 1994-11-08 Eastman Kodak Company Method and apparatus for detecting and processing synchronization marks extracted from a prerecorded wobbled groove on a compact disk
JPH10208249A (en) 1997-01-21 1998-08-07 Sony Corp Optical disk
US5999504A (en) * 1996-08-29 1999-12-07 Ricoh Company, Ltd. Optical disc and optical disc apparatus for forming wobbled tracks
WO2000043996A1 (en) 1999-01-25 2000-07-27 Koninklijke Philips Electronics N.V. Record carrier and apparatus for scanning the record carrier
US6151281A (en) 1996-11-18 2000-11-21 U.S. Philips Corporation Reading and writing an incomplete recording on an optical disk
KR20010092389A (en) 2000-03-21 2001-10-24 이데이 노부유끼 Disc drive apparatus and wobble information generating method
US6310838B1 (en) 1997-09-03 2001-10-30 U.S. Philips Corporation Record carrier and apparatus for scanning the record carrier
US20030099180A1 (en) * 2001-11-17 2003-05-29 Park Jung Bae Apparatus and method for encoding wobble signal to be recorded on optical disc, and apparatus and method for decoding wobble signal read from optical disc
US20040160884A1 (en) * 2001-05-02 2004-08-19 Samsung Electronics, Co., Ltd. Optical disc having uniform structure
JP2004534346A (en) 2001-07-02 2004-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Record carrier and apparatus for scanning record carrier
US6827999B2 (en) 2001-02-09 2004-12-07 Ricoh Company, Ltd. Optical information recording medium
US6952388B2 (en) 2000-12-11 2005-10-04 Koninklijke Philips Electronics N.V. Optical record carrier containing special codes
US6999391B2 (en) * 2001-10-16 2006-02-14 Koninklijke Philips Electronics N.V. Disc driving device and wobble information detection method
US7110332B2 (en) * 2001-10-15 2006-09-19 Koninklijke Philips Electronics N.V. Record carrier having a servo track with position information in accordance with a modulation type and permanent information in accordance with a different modulation type, and apparatus for scanning the record carrier
US7184391B2 (en) * 2001-05-24 2007-02-27 Samsung Electronics Co., Ltd. Optical recording medium on which multi-modulated header signals are recorded, apparatus and method of recording header signals and apparatus and method of reproducing header signals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1204120A (en) * 1997-05-08 1999-01-06 索尼株式会社 Frequency demodulating circuit, optical disk apparatus thereof and preforming device
JP3339436B2 (en) * 1998-12-08 2002-10-28 住友金属工業株式会社 Mold powder for continuous casting
JP4099914B2 (en) * 1999-12-10 2008-06-11 ソニー株式会社 Optical disc and optical disc apparatus
JP5175413B2 (en) * 2001-03-12 2013-04-03 ソニー株式会社 Disc recording medium, reproducing device, recording device
TWI229854B (en) * 2001-03-16 2005-03-21 Koninkl Philips Electronics Nv Record carrier and apparatus for scanning the record carrier
WO2004107344A1 (en) * 2003-05-27 2004-12-09 Koninklijke Philips Electronics N.V. Bit synchronization detection means

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542424A (en) * 1981-03-25 1985-09-17 Sony Corporation Tape speed control apparatus
US4901300A (en) 1988-01-22 1990-02-13 U.S. Philips Corporation Method of and apparatus for recording an information signal
CA1319984C (en) 1988-01-22 1993-07-06 Wilhelmus P.M. Raaijmakers Optically readable record carrier with servo track
US5363360A (en) * 1993-09-27 1994-11-08 Eastman Kodak Company Method and apparatus for detecting and processing synchronization marks extracted from a prerecorded wobbled groove on a compact disk
US5999504A (en) * 1996-08-29 1999-12-07 Ricoh Company, Ltd. Optical disc and optical disc apparatus for forming wobbled tracks
US6151281A (en) 1996-11-18 2000-11-21 U.S. Philips Corporation Reading and writing an incomplete recording on an optical disk
JPH10208249A (en) 1997-01-21 1998-08-07 Sony Corp Optical disk
US6310838B1 (en) 1997-09-03 2001-10-30 U.S. Philips Corporation Record carrier and apparatus for scanning the record carrier
US6538982B1 (en) * 1999-01-25 2003-03-25 Koninklijke Philips Electronics Record carrier and apparatus for scanning the record carrier
WO2000043996A1 (en) 1999-01-25 2000-07-27 Koninklijke Philips Electronics N.V. Record carrier and apparatus for scanning the record carrier
US6765861B2 (en) * 1999-01-25 2004-07-20 Koninklijke Philips Electronics N.V. Record carrier and apparatus for scanning the record carrier
JP2001338421A (en) 2000-03-21 2001-12-07 Sony Corp Disk drive device and wobble information generating method
US20020018411A1 (en) 2000-03-21 2002-02-14 Eiji Kumagai Disc drive apparatus and method for generating wobble information
KR20010092389A (en) 2000-03-21 2001-10-24 이데이 노부유끼 Disc drive apparatus and wobble information generating method
US6952388B2 (en) 2000-12-11 2005-10-04 Koninklijke Philips Electronics N.V. Optical record carrier containing special codes
US6827999B2 (en) 2001-02-09 2004-12-07 Ricoh Company, Ltd. Optical information recording medium
US20040160884A1 (en) * 2001-05-02 2004-08-19 Samsung Electronics, Co., Ltd. Optical disc having uniform structure
US7184391B2 (en) * 2001-05-24 2007-02-27 Samsung Electronics Co., Ltd. Optical recording medium on which multi-modulated header signals are recorded, apparatus and method of recording header signals and apparatus and method of reproducing header signals
JP2004534346A (en) 2001-07-02 2004-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Record carrier and apparatus for scanning record carrier
US20080002535A1 (en) 2001-07-02 2008-01-03 Koninklijke Philips Electronics, N.V. Record carrier and apparatus for scanning the record carrier
US7110332B2 (en) * 2001-10-15 2006-09-19 Koninklijke Philips Electronics N.V. Record carrier having a servo track with position information in accordance with a modulation type and permanent information in accordance with a different modulation type, and apparatus for scanning the record carrier
US6999391B2 (en) * 2001-10-16 2006-02-14 Koninklijke Philips Electronics N.V. Disc driving device and wobble information detection method
US20030099180A1 (en) * 2001-11-17 2003-05-29 Park Jung Bae Apparatus and method for encoding wobble signal to be recorded on optical disc, and apparatus and method for decoding wobble signal read from optical disc

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112116A1 (en) * 2001-07-02 2014-04-24 Koninklijke Philips N.V. Record carrier and apparatus for scanning the record carrier
US9449642B2 (en) * 2001-07-02 2016-09-20 Koninklijke Philips N.V. Record carrier and apparatus for scanning the record carrier
US20200220707A1 (en) * 2019-01-09 2020-07-09 Electronics And Telecommunications Research Institute Method and apparatus for backscatter communication of pattern-based demodulation
US10944539B2 (en) * 2019-01-09 2021-03-09 Electronics And Telecommunications Research Institute Method and apparatus for backscatter communication of pattern-based demodulation

Also Published As

Publication number Publication date
IL159668A0 (en) 2004-06-01
CN101025989B (en) 2012-10-10
TNSN03009A1 (en) 2005-04-08
EP1405306B1 (en) 2009-08-26
BR0205695A (en) 2003-07-15
HRP20030143A2 (en) 2005-04-30
EP1405306A1 (en) 2004-04-07
NO20030927L (en) 2003-04-30
DE60233498D1 (en) 2009-10-08
US20080002535A1 (en) 2008-01-03
ES2348846T3 (en) 2010-12-15
KR20030029875A (en) 2003-04-16
US7274627B2 (en) 2007-09-25
CO5550510A2 (en) 2005-08-31
ES2331873T3 (en) 2010-01-19
DE60237051D1 (en) 2010-08-26
MA26205A1 (en) 2004-07-01
EP1926093A2 (en) 2008-05-28
KR100900733B1 (en) 2009-06-05
PT1405306E (en) 2009-11-17
CN100370525C (en) 2008-02-20
MY149315A (en) 2013-08-30
WO2003005350A1 (en) 2003-01-16
NO20030927D0 (en) 2003-02-27
US9449642B2 (en) 2016-09-20
EP1926093A3 (en) 2009-01-14
CN101025989A (en) 2007-08-29
HRP20030143B1 (en) 2011-05-31
ATE474314T1 (en) 2010-07-15
EA005639B1 (en) 2005-04-28
DK1926093T3 (en) 2010-10-18
MXPA03001745A (en) 2004-09-10
TWI233607B (en) 2005-06-01
EP1926093B1 (en) 2010-07-14
DK1405306T3 (en) 2009-12-07
HK1064206A1 (en) 2005-01-21
US20140112116A1 (en) 2014-04-24
CY1110818T1 (en) 2015-06-10
US20040170091A1 (en) 2004-09-02
CY1109643T1 (en) 2014-08-13
PT1926093E (en) 2010-09-30
JP4490686B2 (en) 2010-06-30
ATE441180T1 (en) 2009-09-15
JP2004534346A (en) 2004-11-11
EG23269A (en) 2004-10-31
JP2009295275A (en) 2009-12-17
BRPI0205695B1 (en) 2015-08-18
AR034683A1 (en) 2004-03-03
CN1522436A (en) 2004-08-18
JP4649528B2 (en) 2011-03-09
EA200400133A1 (en) 2004-04-29

Similar Documents

Publication Publication Date Title
US8644119B2 (en) Record carrier and apparatus for scanning the record carrier
CA2325450C (en) Record carrier and apparatus for scanning the record carrier
US7668062B2 (en) Disk recording medium, disk production method, disk drive apparatus
USRE44088E1 (en) Record carrier having a servo track with position information in accordance with a modulation type and permanent information in accordance with a different modulation type, and apparatus for scanning the record carrier
JP2004534346A5 (en)
AU2002339218A1 (en) Record carrier and apparatus for scanning the record carrier
US7158472B2 (en) Record carrier and apparatus for scanning the record carrier
ZA200005068B (en) Record carrier and apparatus for scanning the record carrier.

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8