US8299168B2 - Siloxane-containing binder dispersions - Google Patents

Siloxane-containing binder dispersions Download PDF

Info

Publication number
US8299168B2
US8299168B2 US12/338,419 US33841908A US8299168B2 US 8299168 B2 US8299168 B2 US 8299168B2 US 33841908 A US33841908 A US 33841908A US 8299168 B2 US8299168 B2 US 8299168B2
Authority
US
United States
Prior art keywords
aqueous formulation
formula
integer
inorganic particles
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/338,419
Other languages
English (en)
Other versions
US20090163648A1 (en
Inventor
Thomas Münzmay
Arno Nennemann
Markus Mechtel
Nusret Yuva
Meike Niesten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Assigned to BAYER MATERIALSCIENCE AG reassignment BAYER MATERIALSCIENCE AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUNZMAY, ALICE, MECHTEL, MARKUS, YUVA, NUSRET, NENNEMANN, ARNO, NIESTEN, MEIKE
Publication of US20090163648A1 publication Critical patent/US20090163648A1/en
Application granted granted Critical
Publication of US8299168B2 publication Critical patent/US8299168B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/625Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
    • C08G18/6254Polymers of alpha-beta ethylenically unsaturated carboxylic acids and of esters of these acids containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/703Isocyanates or isothiocyanates transformed in a latent form by physical means
    • C08G18/705Dispersions of isocyanates or isothiocyanates in a liquid medium
    • C08G18/706Dispersions of isocyanates or isothiocyanates in a liquid medium the liquid medium being water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the invention relates to aqueous formulations comprising organic binders having a siloxane content and inorganic nanoparticles, a process for the preparation thereof and the use thereof for the preparation of aqueous coating compositions.
  • clear lacquer plays an essential role as the top layer.
  • the protective function of the clear lacquer is an essential aspect.
  • the clear lacquer protects the underlying lacquer layers against external influences, such as sunlight, water, solvents and aggressive chemicals, and last but not least against mechanical stress.
  • the scratch resistance of automobile clear lacquers is therefore still an essential criterion for the quality of an automobile clear lacquer.
  • Nanoparticles in polymeric coatings can improve properties such as scratch resistance, UV protection or conductivity in a targeted manner. Control of the surface modification and dispersion of the nanoparticles determines the required transparent appearance of the coatings and the properties thereof.
  • the particles can be mixed directly into the resin or curing agent component or into the coating composition ready for application.
  • aqueous systems there is the possibility of dispersing the particles in the aqueous phase.
  • the in situ preparation of the particles in one of the binder components and adaptation of the surface to either the resin or the curing agent component have furthermore been described.
  • the nanoparticles are advantageous to disperse the nanoparticles as stable masterbatches in one of the components, so that a long-term storage stability and a simple ease of handling in the formulation of lacquers is ensured.
  • the nanoparticles must likewise be readily dispersible in a finely divided manner, so that advantageous properties such as transparency, scratch resistance or conductivity result.
  • the nanoparticles are conventionally dispersed into the resin component, into the aqueous phase or into the finished mixture of curing agent and resin shortly before curing.
  • the surface of the nanoparticles is necessary to adapt the surface of the nanoparticles to the specific matrix of the coating composition or of the adhesive.
  • the disadvantage of simple mixing in of modified nanoparticles is the dependency of the stability on the complete formulation, i.e. on all the formulation constituents. Variation of one parameter can lead here to demixing (Pilotek, Steffen; Tabellion, Frank (2005), European Coatings Journal, 4, 170 et seq.).
  • PDMS polydimethylsiloxanes
  • organofunctional PDMS types such as alkyleneamine- or alkylenehydroxy-functional PDMS derivatives, are often used.
  • Such lacquer systems are described e.g. in WO91/18954, EP-A 0 329 260 or U.S. Pat. No. 4,774,278.
  • the amine-functional PDMS types have the disadvantage that the pot life of polyurethane systems based on these is shortened in an extreme manner because of the high tendency towards formation of urea.
  • aqueous copolymers which contain polyorganosiloxanes containing hydroxyl groups are suitable, in combination with inorganic nanoparticles, for the production of coatings having a significantly improved scratch resistance with excellent gloss and very low haze (cloudiness).
  • Another embodiment of the present invention is the above aqueous formulation, wherein said copolymer a1) is built up from
  • Another embodiment of the present invention is the above aqueous formulation, wherein said compound of formula (I) has a number-average molecular weight of from 250 to 2,250 g/mol.
  • Another embodiment of the present invention is the above aqueous formulation, wherein B) are inorganic particles in the form of their aqueous formulations.
  • Yet another embodiment of the present invention is an aqueous coating composition
  • aqueous coating composition comprising the above aqueous formulation and at least one crosslinking agent.
  • Yet another embodiment of the present invention is a two-component aqueous coating composition comprising the above aqueous formulation and a polyisocyanate.
  • the polyorganosiloxanes a2) containing hydroxyl groups are compounds according to the general formula (I)
  • the copolymer a1) is built up from
  • the content of monomers Ia)/IIa) in the copolymer a1) is 34.3 to 89.4 parts by wt., preferably 51.8 to 85.3 parts by wt. and particularly preferably 58 to 81.5 parts by wt.
  • the content of monomers Ib)/IIb) in the copolymer a2) is 10 to 65 parts by wt., preferably 13.5 to 46.5 parts by wt. and particularly preferably 17.25 to 40 parts by wt.
  • the content of monomers IIc) in the copolymer a2) is 0.6 to 12 parts by wt., preferably 1.2 to 5.5 parts by wt. and particularly preferably 1.25 to 3.5 parts by wt.
  • Suitable monomers Ia)/IIa) are the esterification products of acrylic or methacrylic acid with simple alcohols, e.g. ethyl acrylate, ethyl methacrylate, n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, methyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate, tert-butyl methacrylate, cyclohexyl acrylate or cyclohexyl methacrylate, and vinylphenyls, such as styrene, vinyltoluene, ⁇ -methylstyrene or mixtures of these and other monomers.
  • simple alcohols e.g. ethyl acrylate, ethyl methacrylate, n-butyl
  • esters of acrylic acid or methacrylic acid with linear aliphatic monools having eight carbon atoms such as e.g. the so-called fatty alcohols (monools), or with linear aliphatic saturated alcohols which are derived from naturally occurring fatty acids, such as lauryl (C 12 ), myristyl (C 14 ), palmityl (C 16 ) or stearyl (C 18 ) alcohol.
  • Aliphatic saturated alcohols which are likewise suitable are e.g. n-octanol, nonanol or n-decanol.
  • Suitable monomers of the (meth)acrylic acid ester type which contain an aliphatic radical having at least eight carbon atoms are e.g. n-octyl acrylate, nonyl acrylate, n-decyl acrylate, lauryl acrylate, myristyl acrylate, palmityl acrylate, stearyl acrylate and the corresponding methacrylic acid derivative.
  • Monomers of the abovementioned type which are furthermore suitable are esters of acrylic acid or methacrylic acid with cycloaliphatic alcohols (monools) having at least 10 carbon atoms, such as e.g. i-bornyl acrylate, n-bornyl methacrylate, dihydroxydicyclopentadienyl acrylate or 3,3,5-trimethylcyclohexyl methacrylate.
  • Suitable monomers Ia/IIa) are furthermore the esterification products of vinyl alcohol with linear or branched aliphatic carboxylic acids, such as, for example, vinyl acetate, vinyl propionate or vinyl butyrate.
  • Vinyl esters which are preferred are those of branched aliphatic carboxylic acids of the general formula (II)
  • R 1 and R 2 are saturated alkyl groups containing together 6, 7 or 8 C atoms, corresponding to the compounds VeoVaTM 9, 10 and 11.
  • Further monomers which are capable of free-radical copolymerization can also optionally be employed as compounds of component Ia/IIa) in the preparation of copolymer a1).
  • These can be, for example, derivatives of acrylic or methacrylic acid, such as acrylamide, methacrylamide, acrylonitrile or methacrylonitrile.
  • Vinyl ethers or vinyl acetates are furthermore optionally possible.
  • Possible further components Ia/IIa) which are optionally to be employed in minor amounts are (meth)acrylate monomers which are difunctional or more than difunctional and/or vinyl monomers, such as e.g. hexanediol di(meth)acrylate or divinylbenzene.
  • Suitable olefinically unsaturated acid-functional monomers IIc) are sulfonic or carboxylic acid-functional monomers, preferably carboxylic acid-functional monomers, such as acrylic acid, methacrylic acid, ⁇ -carboxyethyl acrylate, crotonic acid, fumaric acid, maleic anhydride, itaconic acid or monoalkyl esters of dibasic acids or anhydrides, such as e.g. maleic acid monoalkyl esters, and acrylic or methacrylic acid are particularly preferred.
  • carboxylic acid-functional monomers such as acrylic acid, methacrylic acid, ⁇ -carboxyethyl acrylate, crotonic acid, fumaric acid, maleic anhydride, itaconic acid or monoalkyl esters of dibasic acids or anhydrides, such as e.g. maleic acid monoalkyl esters, and acrylic or methacrylic acid are particularly preferred.
  • Unsaturated compounds which can undergo free-radical polymerization and have phosphate or phosphonate, or sulfonic acid or sulfonate groups, such as are described e.g., in WO-A 00/39181 (p., 1. 13-p. 9, 1. 19) are furthermore also suitable as compounds of component IIc).
  • Suitable initiators for the polymerization reaction are organic peroxides, such as di-tert-butyl peroxide, di-tert-amyl peroxide or tert-butyl peroxy-2-ethylhexanoate, and azo compounds, such as azodiisobutyric acid nitrile (AIBN).
  • organic peroxides such as di-tert-butyl peroxide, di-tert-amyl peroxide or tert-butyl peroxy-2-ethylhexanoate
  • azo compounds such as azodiisobutyric acid nitrile (AIBN).
  • AIBN azodiisobutyric acid nitrile
  • the preparation of the copolymer a1) is carried out by a copolymerization, initiated by free radicals, of the monomer mixture I) and II) in organic solvent (mixtures).
  • the amount of organic solvents is chosen such that the resulting solutions of the copolymers a1) have a solids content of from 95 to 60 wt. %, preferably 92.5 to 80 wt. %.
  • suitable organic solvents are any desired solvents known in lacquer technology, preferably those which are conventionally employed as co-solvents in aqueous dispersions, such as e.g. alcohols, ethers, alcohols containing ether groups, esters, ketones or non-polar hydrocarbons, e.g. aliphatic or aromatic hydrocarbons or mixtures of these solvents.
  • the hydroxy-functional hydrophilic polymer II) is prepared from the monomers IIa) to IIe) in the solution of the polymer I) obtained from step (i), this hydroxy-functional hydrophilic polymer II) having an OH number of from 20 to 250 mg of KOH/g of solid, preferably from 120 to 220 mg of KOH/g of solid, and an acid number of from 50 to 250 mg of KOH/g of solid, preferably from 110 to 200 mg of KOH/g of solid.
  • the neutralizing agent is added in amounts such that the degree of neutralization is 70 to 130%, preferably 90 to 105% of the carboxyl groups, an amount of neutralizing agent such that after conversion of all the carboxyl groups into the salt form free neutralizing agent is still present particularly preferably being added. This corresponds to a degree of neutralization of >100%.
  • Suitable polyorganosiloxanes a2) of the general formula (I) containing hydroxyl groups are characterized by a number-average molecular weight of from 200 to 3,000 g/mol and an average OH functionality of ⁇ 1.8.
  • the polyorganosiloxanes a2) of the general formula (I) containing hydroxyl groups preferably have number-average molecular weights of from 250 to 2,250 g/mol, particularly preferably from 350 to 1,500 g/mol.
  • the epoxy-functional siloxanes employed for this preferably contain 1 to 4, particularly preferably 2 epoxide groups per molecule. They furthermore have number-average molecular weights of from 150 to 2,000 g/mol, preferably from 250 to 1,500 g/mol, very particularly preferably from 250 to 1,250 g/mol.
  • R 1 in the formulae (I) and (III) is preferably phenyl, alkyl, aralkyl, fluoroalkyl, alkylethylene-copropylene oxide groups or hydrogen, wherein phenyl or methyl groups are particularly preferred.
  • R 1 is very particularly preferably a methyl group.
  • Suitable compounds corresponding to formula (III) are, for example, those of the formulae IIIa) and IIIb):
  • Examples of commercially obtainable products of this series are, for example, CoatOsil® 2810 (Momentive Performance Materials, Leverkusen, Germany) or Tegomer® E-Si2330 (Tego Chemie Service GmbH, Essen, Germany).
  • Hydroxyalkyl-functional siloxanes a2) of the formula (I) which have been obtained by the abovementioned reaction of epoxy-functional polyorganosiloxanes with hydroxyalkylamines are particularly preferably employed.
  • Particularly preferred polyorganosiloxanes a2) are, for example, those of the formulae Ia) to Ih):
  • Siloxanes which are likewise suitable as component a2) are, for example, hydroxyalkyl-functional siloxanes ( ⁇ , ⁇ -carbinols) corresponding to the formula (V)
  • Z is H or methyl, preferably H and
  • a further route for the preparation of suitable hydroxy-functional polyorganosiloxanes corresponding to component a2) is the reaction of the abovementioned hydroxyalkyl-functional siloxanes of the ⁇ , ⁇ -carbinol type of the formula (V) with cyclic lactones.
  • Suitable cyclic lactones are, for example, ⁇ -caprolactone, ⁇ -butyrolactone or valerolactone.
  • m can be 5 to 15 and
  • y can be 2 to 4, preferably 4.
  • the polyorganosiloxanes a2) containing hydroxyl groups are preferably added to the resin melt of component a2) before dispersion thereof in water and incorporated homogeneously.
  • the polyorganosiloxanes a2) containing hydroxyl groups are particularly preferably incorporated into the resin melt of component a2) simultaneously with the component employed for neutralization of the carboxyl groups incorporated into the copolymer a1).
  • Possible particles B) are inorganic oxides, mixed oxides, hydroxides, sulfates, carbonates, carbides, borides and nitrides of elements of main group II to IV and/or elements of subgroup I to VIII of the periodic table, including the lanthanides.
  • Preferred particles B) are silicon oxide, aluminium oxide, cerium oxide, zirconium oxide, niobium oxide and titanium oxide, and silicon oxide nanoparticles are particularly preferred.
  • the particles employed in B) preferably have average particles sizes, determined as the z-mean by means of dynamic light scattering in dispersion, of from 5 to 100 nm, particularly preferably 5 to 50 nm.
  • At least 75%, particularly preferably at least 90%, very particularly preferably at least 95% of all the particles employed have the sizes defined above.
  • the optionally surface-modified nanoparticles B) are introduced during or after the preparation of the mixture of components a1) and a2). This can be carried out by simply stirring in the particles.
  • an increased dispersing energy such as, for example, by ultrasound, jet dispersion or high-speed stirrers according to the rotor-stator principle, is also conceivable. Simple mechanical stirring-in is preferred.
  • the particles B) can in principle be employed both in powder form and in the form of colloidal suspensions or dispersions in suitable solvents.
  • the inorganic nanoparticles B) are preferably employed in a colloidally disperse form in organic solvents (organosols) or in water.
  • Suitable solvents for the organosols are methanol, ethanol, i-propanol, acetone, 2-butanone, methyl isobutyl ketone, butyl acetate, ethyl acetate, 1-methoxy-2-propyl acetate, toluene, xylene, 1,4-dioxane, diacetone alcohol, ethylene glycol n-propyl ether or any desired mixtures of such solvents.
  • Suitable organosols have a solids content of from 10 to 60 wt. %, preferably 15 to 50 wt. %.
  • Suitable organosols are, for example, silicon dioxide organosols, such as are obtainable e.g. under the trade names Organosilicasol® and Suncolloid® (Nissan Chem. Am. Corp.) or under the name Highlink®NanO G (Clariant GmbH).
  • the nanoparticles are employed in organic solvents (organosols), these are mixed with the mixture of components a1) and a2) before dispersion thereof with water. The resulting mixtures are then dispersed in water by addition of water or by transfer into water.
  • the mixing of the organosols with the mixture of components a1) and a2) can be carried out either before or after neutralization of the carboxyl groups polymerized into the mixture of components a1) and a2).
  • the organic solvent of the organosol can be removed by distillation before or after the dispersing with water, preferably after the dispersing with water.
  • inorganic particles B) are furthermore preferably used in the form of their aqueous formulations.
  • the use of inorganic particles B) in the form of aqueous formulations of surface-modified inorganic nanoparticles is particularly preferred.
  • These can be modified by silanization, for example, before or at the same time as the incorporation into the silane-modified polymeric organic binder or an aqueous dispersion of the silane-modified polymeric organic binder. This method is known in principle from the literature and is described, for example, in DE-A 19846660 or WO 03/44099.
  • the surface of the inorganic nanoparticles can furthermore be modified adsorptively/associatively by surfactants or block copolymers, as described, for example, in WO 2006/008120.
  • Preferred surface modification is the silanization with alkoxysilanes and/or chlorosilanes. Partial modification with ⁇ -glycidoxypropyltrimethoxysilane corresponding to WO 2004/035474 is particularly preferred.
  • aqueous commercial nanoparticle dispersions are Levasils® (H.C. Starci GmbH, Goslar, Germany) and Bindzils® (EKA Chemical AB, Bohus, Sweden).
  • Aqueous dispersions of Bindzil® CC 15, Bindzil® CC 30 and Bindzil® CC 40 from EKA (EKA Chemical AB, Bohus, Sweden) are particularly preferably employed.
  • nanoparticles are employed in aqueous form, these are added to the aqueous dispersions of the copolymers a1).
  • aqueous nanoparticle colloids are added to the copolymers a1) after neutralization of the carboxyl groups polymerized into the mixture of components a1) and a2) and the mixture is optionally then diluted further with water.
  • aqueous formulations according to the invention can be processed to aqueous coating compositions.
  • crosslinking agents D depending on the reactivity or, where appropriate, blocking of the crosslinking agents
  • both one-component lacquers and two-component lacquers can be prepared.
  • One-component lacquers in the context of the present invention are to be understood here as meaning coating compositions in which the binder component and crosslinking component can be stored together without a crosslinking reaction taking place to an extent which is noticeable or harmful for the later application.
  • the crosslinking reaction takes place only on application after activation of the crosslinking agent. This activation can be effected e.g. by increasing the temperature.
  • Two-component lacquers in the context of the present invention are understood as meaning coating compositions in which the binder component and crosslinking component must be stored in separate vessels because of their high reactivity.
  • the two components are mixed only shortly before application and then in general react without additional activation.
  • catalysts can also be employed or higher temperatures applied in order to accelerate the crosslinking reaction.
  • the present invention therefore also provides aqueous coating compositions comprising the aqueous formulations according to the invention and at least one crosslinking agent D).
  • Suitable crosslinking agents D) are, for example, polyisocyanate crosslinking agents, amide- and amine-formaldehyde resins, phenolic resins and aldehyde and ketone resins.
  • Preferred crosslinking agents D) are free or blocked polyisocyanates, which can optionally be hydrophilically modified, and/or non-blocked polyisocyanates which are at least partly hydrophilically modified.
  • the present invention likewise provides aqueous two-component (2C) coating compositions comprising the aqueous formulations according to the invention and a polyisocyanate.
  • aqueous two-component (2C) coating compositions comprising the aqueous formulations according to the invention and a polyisocyanate.
  • Suitable polyisocyanates are difunctional isocyanates, such as e.g. isophorone-diisocyanate, hexamethylene-diisocyanate, 2,4- or 2,6-diisocyanatotoluene, 4,4′-diphenylmethane-diisocyanate and/or higher molecular weight trimers thereof, biurets, urethanes, iminooxadiazinedione and/or allophanates.
  • difunctional isocyanates such as e.g. isophorone-diisocyanate, hexamethylene-diisocyanate, 2,4- or 2,6-diisocyanatotoluene, 4,4′-diphenylmethane-diisocyanate and/or higher molecular weight trimers thereof, biurets, urethanes, iminooxadiazinedione and/or allophanates.
  • the abovementioned polyisocyanates are reacted with blocking agents, such as e.g. methanol, ethanol, butanol, hexanol, benzyl alcohol, acetoxime, butanone oxime, caprolactam, phenol, diethyl malonate, dimethyl malonate, dimethylpyrazole, triazole, dimethyltriazole, ethyl acetoacetate, diisopropylamine, dibutylamine, tert-butylbenzylamine, cyclopentanone carboxyethyl ester, dicyclohexylamine and/or tert-butylisopropylamine.
  • blocking agents such as e.g. methanol, ethanol, butanol, hexanol, benzyl alcohol, acetoxime, butanone oxime, caprolactam, phenol, diethyl malonate, dimethyl malonate, dimethylpyrazo
  • the non-blocked and blocked polyisocyanates can also be converted into a water-dispersible form by incorporation of hydrophilic groups, such as e.g. carboxylate, sulfonate and/or polyethylene oxide structures, and employed in this way in combination with the formulations according to the invention.
  • the blocked polyisocyanates mentioned can also be prepared co-using hydroxy- or amino-functional, also higher molecular weight components, such as e.g. diols, trials, amino alcohols, polyesters, polyethers, polycarbonates and mixtures of the raw materials mentioned and/or other raw materials.
  • the polyisocyanates employed as crosslinking agent D) in general have a viscosity at 23° C. of from 10 to 5,000 mPas and, if desired for adjusting the viscosity, can also be employed as a mixture with small amounts of inert solvents.
  • auxiliary substances and additives of lacquer technology such as e.g. defoaming agents, thickening agents, pigments, dispersing auxiliaries, catalysts, skin prevention agents, antisettling agents or emulsifiers, can be added before, during or after the preparation of the aqueous formulations according to the invention.
  • aqueous coating compositions comprising the formulations according to the invention are suitable for all fields of use in which aqueous paint and coating systems with high requirements on the resistance of the films are used, e.g. for coating of mineral building material surfaces, lacquering and sealing of wood and wood materials, coating of metallic surfaces (metal coating), coating and lacquering of asphalt- or bitumen-containing coverings, lacquering and sealing of diverse surfaces of plastic (coating of plastics) and as high gloss lacquers.
  • aqueous coating compositions comprising the formulations according to the invention are employed for the preparation of primers, fillers, pigmented or transparent top lacquers, clear lacquers and high gloss lacquers as well as one-coat lacquers, which can be used in individual or series application, e.g. in the field of industrial lacquering and automobile first and repair lacquering.
  • Curing of the aqueous coating compositions comprising the formulations according to the invention is typically carried out in this context at temperatures of from 0 to 160° C., preferably from 18 to 130° C.
  • These coatings have, together with very good optical properties of the film, a high level of scratch resistance, resistance to solvents and chemicals, good weather resistance, high hardness and rapid drying.
  • the coatings can be produced by the various spraying processes, such as, for example, pneumatically or by airless or electrostatic spraying processes, using one- or optionally two-component spraying installations.
  • the lacquers and coating compositions comprising the aqueous coating compositions according to the invention can also be applied by other methods, for example by brushing, rolling or knife coating.
  • percent data are to be understood as percent by weight.
  • hydroxyl number (OH number) was determined in accordance with DIN 53240-2.
  • the viscosity was determined by means of a rotary viscometer “Paar Physica MCR51” in accordance with DINEN ISO 3219.
  • the acid number was determined in accordance with DIN EN ISO 2114.
  • a mixture 4) of 14.5 g of di-tert-butyl peroxide in 14.5 g of Dowanol® PnB was metered in over a period of 5 hours.
  • a mixture 5) of 4 g of di-tert-butyl peroxide in 4 g of Dowanol® PnB was then metered in over a period of 1 hour.
  • the mixture was then cooled to 100° C. and 31.2 g of N,N-dimethylethanolamine were added. After homogenizing for 30 minutes, dispersing was carried out with 1,245 g of water at 80° C. over a period of 2 hours.
  • a copolymer dispersion having the following data was obtained:
  • a mixture 4) of 14.5 g of di-tert-butyl peroxide in 14.5 g of Dowanol® PnB was metered in over a period of 5 hours.
  • a mixture 5) of 4 g of di-tert-butyl peroxide in 4 g of Dowanol® PnB was then metered in over a period of 1 hour.
  • the mixture was then cooled to 100° C. and 31.2 g of N,N-dimethylethanolamine and 12.5 g of hydroxy-functional polydimethylsiloxane Example 1 were added. After homogenizing for 30 minutes, dispersing was carried out with 1,260 g of water at 80° C. over a period of 2 hours.
  • a copolymer dispersion having the following data was obtained:
  • a mixture 4) of 14.5 g of di-tert-butyl peroxide in 14.5 g of Dowanol® PnB was metered in over a period of 5 hours.
  • a mixture 5) of 4 g of di-tert-butyl peroxide in 4 g of Dowanol® PnB was then metered in over a period of 1 hour.
  • the mixture was then cooled to 100° C. and 31.2 g of N,N-dimethylethanolamine and 12.5 g of Baysilon® OFOH (6%) were added. After homogenizing for 30 minutes, dispersing was carried out with 1,260 g of water at 80° C. over a period of 2 hours.
  • a copolymer dispersion having the following data was obtained:
  • the gloss was measured in accordance with DIN EN ISO 2813. The higher the gloss measurement value, the better the gloss.
  • the haze was measured in accordance with DIN EN ISO 13803. The lower the haze value, the clearer the lacquer.
  • formulations E and F according to the invention are distinguished by improved scratch resistance, while retaining the good optical properties, in particular low haze.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)
US12/338,419 2007-12-19 2008-12-18 Siloxane-containing binder dispersions Expired - Fee Related US8299168B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007061875A DE102007061875A1 (de) 2007-12-19 2007-12-19 Siloxanhaltige Bindemitteldispersionen
DE102007061875.3 2007-12-19
DE102007061875 2007-12-19

Publications (2)

Publication Number Publication Date
US20090163648A1 US20090163648A1 (en) 2009-06-25
US8299168B2 true US8299168B2 (en) 2012-10-30

Family

ID=40521948

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/338,419 Expired - Fee Related US8299168B2 (en) 2007-12-19 2008-12-18 Siloxane-containing binder dispersions

Country Status (9)

Country Link
US (1) US8299168B2 (es)
EP (1) EP2072553A2 (es)
JP (1) JP2009173886A (es)
KR (1) KR20090067074A (es)
CN (1) CN101463173A (es)
BR (1) BRPI0805539A2 (es)
DE (1) DE102007061875A1 (es)
MX (1) MX2008015375A (es)
TW (1) TW200951182A (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020206108A1 (en) * 2019-04-04 2020-10-08 Arkema France Impact resistant hydrophobic high heat optical acrylic copolymers
US11891466B2 (en) 2022-03-04 2024-02-06 Trinseo Europe Gmbh Heat resistant PMMA copolymers having high temperature and high humidity environmental stability for electronic component applications

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007061871A1 (de) * 2007-12-19 2009-06-25 Bayer Materialscience Ag Silan-modifizierte Bindemitteldispersion
JP2010261012A (ja) * 2009-04-09 2010-11-18 Shin-Etsu Chemical Co Ltd 紫外線遮蔽性コーティング組成物及び被覆物品
DE102009040868A1 (de) 2009-09-09 2011-03-10 Bayer Materialscience Ag Mit Nanopartikeln modifizierte Bindemitteldispersionen zur Herstellung funktioneller transparenter Lacke
ES2627915T5 (es) 2010-02-19 2021-09-29 Exxonmobil Chemical Patents Inc Mezclas de polímeros elastoméricos y procedimientos para su producción
JP5827790B2 (ja) * 2010-04-28 2015-12-02 東レ・ダウコーニング株式会社 高級アルコール変性シリコーンを含有してなる化粧料および皮膚外用剤
AT12285U1 (de) 2010-08-31 2012-03-15 Senoplast Klepsch & Co Gmbh Mehrlagige körper, umfassend eine substratlage und eine kunststofflage
JP5664560B2 (ja) * 2011-01-26 2015-02-04 信越化学工業株式会社 光拡散性ジメチルシリコーンゴム組成物
US20120283381A1 (en) * 2011-05-04 2012-11-08 Ryuta Tamiya Macroinitiator containing hydrophobic segment
CN102702968A (zh) * 2012-06-12 2012-10-03 天长市巨龙车船涂料有限公司 一种抗划伤双组份水性木器漆及制备方法
CN103214618B (zh) * 2013-04-01 2015-08-12 重庆博多涂料有限公司 热塑性丙烯酸树脂及其制备方法
KR101947421B1 (ko) * 2014-10-20 2019-02-14 (주)엘지하우시스 표면코팅용 수성 조성물 및 이를 적용한 자동차용 시트
WO2016161586A1 (en) * 2015-04-09 2016-10-13 Rhodia Operations Water based composition comprising light diffusion particles and a siloxane-modified acrylic resin
TWI694112B (zh) * 2015-12-18 2020-05-21 芬蘭商英克倫股份有限公司 具有矽氧烷聚合物的組成物及製造矽氧烷粒子組成物的方法
CN110423553B (zh) * 2019-08-30 2021-09-14 深圳市联星服装辅料有限公司 一种热转印金属拉链布带涂层液、热转印金属拉链及其制备方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774278A (en) 1985-10-01 1988-09-27 Shin-Etsu Chemical Co., Ltd. Coating compositions
EP0329260A2 (en) 1988-02-19 1989-08-23 Nippon Paint Co., Ltd. Resinous composition for coating use
US4886551A (en) * 1986-10-31 1989-12-12 Th. Goldschmidt Ag Method for improving the scratch resistance and increasing the sliding ability of coated surfaces and improved coating materials
WO1991018954A1 (de) 1990-05-26 1991-12-12 Basf Lacke + Farben Aktiengesellschaft Lacke und verwendung dieser lacke als decklacke zur lackierung von automobilkarosserien
US5120812A (en) * 1990-10-09 1992-06-09 Siltech Inc. Silicone polymers
US5175327A (en) * 1992-01-27 1992-12-29 Siltech Inc. Process for the preparation of silonal alkoxylates
US5196499A (en) * 1991-03-25 1993-03-23 Siltech, Inc. Terminal silicone ester quaternary compounds
US5248783A (en) * 1991-11-06 1993-09-28 Siltech Inc. Silicone alkoxylated esters carboxylate salts
US5296625A (en) * 1991-11-06 1994-03-22 Siltech Inc. Silicone alkoxylated esters carboxylates
US6020419A (en) * 1998-03-18 2000-02-01 Bayer Aktiengesellschaft Transparent coating compositions containing nanoscale particles and having improved scratch resistance
DE19846660A1 (de) 1998-10-09 2000-04-13 Inst Oberflaechenmodifizierung Hochtemperaturbeständige polymerisierbare Metalloxidpartikel
WO2000039181A1 (en) 1998-12-24 2000-07-06 Akzo Nobel N.V. Aqueous coating composition and a polyol for such a composition
US20010056154A1 (en) * 1998-03-30 2001-12-27 Harald Blum Aqueous dispersions containing a mixture of copolymers and their use in binders
US20020004054A1 (en) * 1997-12-15 2002-01-10 Revlon Consumer Products Corporation Cosmetic compositions containing crosslinkable polymers
WO2003044099A1 (de) 2001-11-23 2003-05-30 Deutsche Amphibolin-Werke Von Robert Murjahn Gmbh & Co. Kg Beschichtungsmasse enthaltend nanopartikel, verwendung der beschichtungsmasse und verfahren zur herstellung von beschichtungen
WO2004035474A1 (en) 2002-10-14 2004-04-29 Akzo Nobel N.V. Aqueous silica dispersion
WO2006008120A1 (de) 2004-07-16 2006-01-26 Alberdingk Boley Gmbh Wässrige bindemitteldispersion mit nanopartikeln, verfahren zu deren herstellung und deren verwendung
WO2007025670A1 (de) 2005-09-03 2007-03-08 Bayer Materialscience Ag Wässrige 2k-pur systeme enthaltend hydroxy-funktionelle polydimethylsiloxane
US20080214766A1 (en) * 2007-03-02 2008-09-04 Bayer Materialscience Ag Binder combinations based on polyacrylate dispersions
US20090105409A1 (en) * 2007-07-27 2009-04-23 Bayer Materialscience Ag Aqueous secondary polymer dispersions for the production of coatings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539290A1 (de) * 1995-10-23 1997-04-24 Bayer Ag Verfahren zur Herstellung von Poly-(diorganosiloxan)-Polycarbonat-Blockcopolymeren
JP3319353B2 (ja) * 1996-11-07 2002-08-26 信越化学工業株式会社 シリコーン樹脂含有エマルジョン組成物及びその製造方法並びに該組成物の硬化被膜を有する物品
JP3521775B2 (ja) * 1998-12-03 2004-04-19 信越化学工業株式会社 シリコーン樹脂含有エマルジョン組成物及び該組成物の硬化被膜を有する物品
JP2000281971A (ja) * 1999-03-29 2000-10-10 Shin Etsu Chem Co Ltd シリコーン樹脂含有エマルジョン塗料組成物及びこの組成物の硬化被膜が形成された物品
DE102005018691A1 (de) * 2005-04-22 2006-10-26 Bayer Materialscience Ag Niederviskose Oligocarbonatpolyole

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774278A (en) 1985-10-01 1988-09-27 Shin-Etsu Chemical Co., Ltd. Coating compositions
US4886551A (en) * 1986-10-31 1989-12-12 Th. Goldschmidt Ag Method for improving the scratch resistance and increasing the sliding ability of coated surfaces and improved coating materials
EP0329260A2 (en) 1988-02-19 1989-08-23 Nippon Paint Co., Ltd. Resinous composition for coating use
US5430083A (en) 1990-05-26 1995-07-04 Basf Lacke & Farben Aktiengesellschaft Paints and use of these paints as topcoats for the finishing of automobile bodies
WO1991018954A1 (de) 1990-05-26 1991-12-12 Basf Lacke + Farben Aktiengesellschaft Lacke und verwendung dieser lacke als decklacke zur lackierung von automobilkarosserien
US5120812A (en) * 1990-10-09 1992-06-09 Siltech Inc. Silicone polymers
US5196499A (en) * 1991-03-25 1993-03-23 Siltech, Inc. Terminal silicone ester quaternary compounds
US5248783A (en) * 1991-11-06 1993-09-28 Siltech Inc. Silicone alkoxylated esters carboxylate salts
US5296625A (en) * 1991-11-06 1994-03-22 Siltech Inc. Silicone alkoxylated esters carboxylates
US5175327A (en) * 1992-01-27 1992-12-29 Siltech Inc. Process for the preparation of silonal alkoxylates
US20020004054A1 (en) * 1997-12-15 2002-01-10 Revlon Consumer Products Corporation Cosmetic compositions containing crosslinkable polymers
US6020419A (en) * 1998-03-18 2000-02-01 Bayer Aktiengesellschaft Transparent coating compositions containing nanoscale particles and having improved scratch resistance
US20010056154A1 (en) * 1998-03-30 2001-12-27 Harald Blum Aqueous dispersions containing a mixture of copolymers and their use in binders
US6720072B1 (en) 1998-10-09 2004-04-13 Institut Fuer Oberflaechenmodifizierung E.V. High-temperature resistant polymerizable metal oxide particles
DE19846660A1 (de) 1998-10-09 2000-04-13 Inst Oberflaechenmodifizierung Hochtemperaturbeständige polymerisierbare Metalloxidpartikel
WO2000039181A1 (en) 1998-12-24 2000-07-06 Akzo Nobel N.V. Aqueous coating composition and a polyol for such a composition
WO2003044099A1 (de) 2001-11-23 2003-05-30 Deutsche Amphibolin-Werke Von Robert Murjahn Gmbh & Co. Kg Beschichtungsmasse enthaltend nanopartikel, verwendung der beschichtungsmasse und verfahren zur herstellung von beschichtungen
WO2004035474A1 (en) 2002-10-14 2004-04-29 Akzo Nobel N.V. Aqueous silica dispersion
WO2006008120A1 (de) 2004-07-16 2006-01-26 Alberdingk Boley Gmbh Wässrige bindemitteldispersion mit nanopartikeln, verfahren zu deren herstellung und deren verwendung
US20080017071A1 (en) 2004-07-16 2008-01-24 Helmut Moebus Aqueous Binder Dispersion Comprising Nanoparticles, Method for the Production Thereof, and Use Thereof
WO2007025670A1 (de) 2005-09-03 2007-03-08 Bayer Materialscience Ag Wässrige 2k-pur systeme enthaltend hydroxy-funktionelle polydimethylsiloxane
US20070055016A1 (en) 2005-09-03 2007-03-08 Bayer Materialscience Ag Aqueous, two-component polyurethane compositions containing OH-functional polydimethylsiloxanes
US20080214766A1 (en) * 2007-03-02 2008-09-04 Bayer Materialscience Ag Binder combinations based on polyacrylate dispersions
US20090105409A1 (en) * 2007-07-27 2009-04-23 Bayer Materialscience Ag Aqueous secondary polymer dispersions for the production of coatings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020206108A1 (en) * 2019-04-04 2020-10-08 Arkema France Impact resistant hydrophobic high heat optical acrylic copolymers
US11891466B2 (en) 2022-03-04 2024-02-06 Trinseo Europe Gmbh Heat resistant PMMA copolymers having high temperature and high humidity environmental stability for electronic component applications

Also Published As

Publication number Publication date
US20090163648A1 (en) 2009-06-25
BRPI0805539A2 (pt) 2009-09-15
JP2009173886A (ja) 2009-08-06
EP2072553A2 (de) 2009-06-24
DE102007061875A1 (de) 2009-06-25
MX2008015375A (es) 2009-06-18
CN101463173A (zh) 2009-06-24
TW200951182A (en) 2009-12-16
KR20090067074A (ko) 2009-06-24

Similar Documents

Publication Publication Date Title
US8299168B2 (en) Siloxane-containing binder dispersions
US8802775B2 (en) Silane-modified binder dispersions
US8772408B2 (en) Binders containing nanoparticles
US7875672B2 (en) Two component waterborne polyurethane coatings for anti-graffiti application
US20070055016A1 (en) Aqueous, two-component polyurethane compositions containing OH-functional polydimethylsiloxanes
US7232860B2 (en) Aqueous binder dispersions as coating compositions
JP2000219711A (ja) 水性コポリマ―、その製造方法および被覆用組成物でのその使用
US20060100348A1 (en) Polyester-polyacrylate dispersions with reactive diluents based on hydroxy-functional esters
CN108410343B (zh) 一种水性双组分涂料
JP7071607B1 (ja) 塗料組成物及び複層塗膜形成方法
US20060100332A1 (en) Polyester-polyacrylate dispersions with reactive diluents based on compounds containing lactone groups
ES2309712T3 (es) Dispersiones con funcionalidad oh de bajo contenido en disolvente ii.
WO2020225822A1 (en) Aqueous polymer composition
JP2023157445A (ja) 塗料組成物及び複層塗膜形成方法
TW202319402A (zh) 單包式之周溫可交聯固化之乙烯基分枝酯類與乙烯基矽烷共聚物組合物及其用途
WO1999058589A1 (en) Water-based 2k coating compositions

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER MATERIALSCIENCE AG,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUNZMAY, ALICE;NENNEMANN, ARNO;MECHTEL, MARKUS;AND OTHERS;SIGNING DATES FROM 20080116 TO 20090129;REEL/FRAME:022809/0711

Owner name: BAYER MATERIALSCIENCE AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUNZMAY, ALICE;NENNEMANN, ARNO;MECHTEL, MARKUS;AND OTHERS;SIGNING DATES FROM 20080116 TO 20090129;REEL/FRAME:022809/0711

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20161030