US8280525B2 - Dynamically matched microwave antenna for tissue ablation - Google Patents
Dynamically matched microwave antenna for tissue ablation Download PDFInfo
- Publication number
- US8280525B2 US8280525B2 US12/265,024 US26502408A US8280525B2 US 8280525 B2 US8280525 B2 US 8280525B2 US 26502408 A US26502408 A US 26502408A US 8280525 B2 US8280525 B2 US 8280525B2
- Authority
- US
- United States
- Prior art keywords
- inner conductor
- feedline
- choke
- ablation probe
- microwave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000002679 ablation Methods 0.000 title claims abstract description 34
- 239000004020 conductor Substances 0.000 claims abstract description 98
- 239000000523 sample Substances 0.000 claims abstract description 74
- 125000006850 spacer group Chemical group 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 description 16
- 230000005684 electric field Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000011068 loading method Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000005404 monopole Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 238000009217 hyperthermia therapy Methods 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/02—Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/183—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
- A61B2018/1838—Dipole antennas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/183—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
- A61B2018/1853—Monopole antennas
Definitions
- the present disclosure relates generally to microwave applicator probes used in tissue ablation procedures. More particularly, the present disclosure is directed to a microwave probe which can be tuned during ablation procedures to obtain a desired impedance match.
- Treatment of certain diseases requires destruction of malignant tissue growths (e.g., tumors). It is known that tumor cells denature at elevated temperatures that are slightly lower than temperatures injurious to surrounding healthy cells. Therefore, known treatment methods, such as hyperthermia therapy, heat tumor cells to temperatures above 41° C., while maintaining adjacent healthy cells at lower temperatures to avoid irreversible cell damage. Such methods involve applying electromagnetic radiation to heat tissue and include ablation and coagulation of tissue. In particular, microwave energy is used to coagulate and/or ablate tissue to denature or kill the cancerous cells.
- Microwave energy is applied via microwave ablation antenna probes which penetrate tissue to reach tumors.
- microwave probes There are several types of microwave probes, such as monopole, dipole, and helical.
- Monopole probe e.g., antenna
- Dipole probes include a single, elongated microwave conductor surrounded by a dielectric sleeve, having a conductor exposed at the end of the probe.
- Dipole probes have a coaxial construction including an inner conductor and an outer conductor separated by a dielectric portion. More specifically, dipole microwave antennas have a long, thin inner conductor which extends along a longitudinal axis of the probe and is surrounded by an outer conductor. In certain variations, a portion or portions of the outer conductor may be selectively removed to provide for more effective outward radiation of energy.
- This type of microwave probe construction is typically referred to as a “leaky waveguide” or “leaky coaxial” antenna.
- microwave energy is directed in a forward direction. This is due to microwave energy radiating perpendicularly from the antenna, which when in helical configuration directs the energy waves in a forward direction.
- the inner conductor is formed in a uniform spiral pattern (e.g., a helix) to provide the required configuration for effective radiation.
- microwave probes have a narrow operational bandwidth, a wavelength range at which optimal operational efficiency is achieved, and hence, are incapable of maintaining a predetermined impedance match between the microwave delivery system (e.g., generator, cable, etc.) and the tissue surrounding the microwave probe. More specifically, as microwave energy is applied to tissue, the dielectric constant of the tissue immediately surrounding the microwave probe decreases as the tissue is cooked. The drop causes the wavelength of the microwave energy being applied to tissue to increase beyond the bandwidth of the probe. As a result, there is a mismatch between the bandwidth of conventional microwave probe and the microwave energy being applied. Thus, narrow band microwave probes may detune as a result of steam generation and phase transformation of the tissue hindering effective energy delivery and dispersion.
- the microwave delivery system e.g., generator, cable, etc.
- the present disclosure provides for a microwave ablation probe which can be dynamically matched and/or tuned during ablation.
- tissue is ablated, the radiating portion of the probe is actively tuned so that an optimal impedance match is achieved for a desired procedure. This is accomplished by adjusting the shape, size and/or dielectric properties of the components of the probe (e.g., adjusting the length of the conductors, insulating layers, and the like).
- the length of an inner conductor is adjusted to create a more efficient radiator.
- the length of the outer and inner conductors is adjusted such that a predetermined wavelength distance at the radiating portion is maintained despite frequency changes (e.g., inner and outer conductors being 1 ⁇ 4 wavelength long to maintain balanced behavior of a 1 ⁇ 2 wavelength dipole).
- dielectric properties of the radiating portion are adjusted by using materials with thermally changing dielectric properties, thus, as the temperature of the tissue and the probe changes during ablation the dielectric properties of the probe are automatically adjusted.
- a microwave ablation probe for providing microwave energy to tissue.
- the probe includes a feedline having an inner conductor, a secondary inner conductor, an insulating spacer, and an outer conductor.
- the inner conductor is slidably disposed within the secondary inner conductor.
- the feedline also includes a radiating portion having an extruded portion of the inner conductor centrally disposed therein, wherein longitudinal movement of the inner conductor relative to the feedline tunes the radiating portion.
- a microwave ablation probe for providing microwave energy to tissue.
- the probe includes a feedline having an inner conductor, an insulating spacer and an outer conductor, and a radiating portion having an extruded portion of the inner conductor which is centrally disposed therein.
- the probe also includes a choke disposed around at least a portion of the feedline and configured to confine the microwave energy to the radiating portion.
- the choke includes a conductive housing having a chamber for storing a cooling dielectric liquid.
- a microwave ablation probe for providing microwave energy to tissue.
- the probe includes a feedline having an inner conductor, an insulating spacer and an outer conductor, a radiating portion including a radiating portion including at least a portion of the inner conductor centrally disposed therein.
- the probe also includes one or more loadings having an electric field-dependent dielectric material, wherein one or more of the dielectric properties of the electric field-dependent dielectric material varies in response to the electric field supplied thereto.
- FIG. 1 is a schematic diagram of a microwave ablation system according to the present disclosure
- FIG. 2 is a perspective cross-sectional view of a microwave ablation probe according to the present disclosure
- FIGS. 3A-C are side cross-sectional views of the microwave ablation probe of FIG. 2 ;
- FIG. 4 is a perspective cross-sectional view of the microwave ablation probe having liquid cooled choke according to the present disclosure.
- FIG. 5 is a perspective cross-sectional view of one embodiment of the microwave ablation probe having a thermally reactive dielectric material therein according to the present disclosure.
- FIG. 1 shows a microwave ablation system 10 which includes a microwave ablation probe 12 coupled to a microwave generator 14 via a flexible coaxial cable 16 that is coupled to a connector 18 of the generator 14 .
- the generator 14 is configured to provide microwave energy at an operational frequency from about 500 MHz to about 2500 MHz.
- the probe 12 is inserted into tissue and microwave energy is supplied thereto. As tissue surrounding the probe 12 is ablated, the tissue undergoes desiccation and denaturization which results in a drop of the effective dielectric constant of the tissue. The drop in the effective dielectric constant, in turn, lengthens the wavelength of the microwave energy. Since the frequency is held constant during ablation, the increase in the wavelength results in the increase of the operational frequency. At the outset the probe 12 is at an initial match point—a predetermined operational frequency that increases to a higher frequency as the ablation continues. Thus, to maintain an impedance match between the probe 12 and the generator 14 , the radiating properties of the probe 12 are dynamically adjusted throughout the procedure. This is accomplished by modifying the geometry and/or the dielectric properties of the probe 12 .
- FIG. 2 shows one embodiment of the probe 12 including a feedline 26 , a choke 28 and an adjustable radiating portion 30 .
- the feedline 26 extends between the distal end of the probe 12 where the feedline 26 is coupled to the cable 16 , to the radiating portion 30 .
- the feedline 26 is constructed from a coaxial cable having an inner conductor 20 (e.g., wire) surrounded by an insulating spacer 22 which is then surrounded by an outer conductor 24 (e.g., cylindrical conducting sheath).
- the feedline 26 may have a diameter of 0.085 inches and the insulating spacer 22 may have a dielectric constant of 1.7.
- the feedline 26 may be flexible or semi-rigid and may be of variable length from a proximal end of the radiating portion 30 to a distal end of the cable 16 ranging from about 1 to about 10 inches.
- the inner conductor 20 and the outer conductor 24 may be constructed from a variety of metals and alloys, such as copper, gold, stainless steel, and the like. Metals may be selected based on a variety of factors, such as conductivity and tensile strength. Thus, although stainless steel has lower conductivity than copper and/or gold, it provides the strength required to puncture tissue and/or skin. In such cases, the inner and outer conductors 20 and 24 may be plated with conductive material (e.g., copper, gold, etc.) to improve conductivity and/or decrease energy loss.
- conductive material e.g., copper, gold, etc.
- the feedline 26 includes a secondary inner conductor 23 , as shown in FIG. 3A , having a tubular structure which surrounds the inner conductor 20 .
- the inner conductor 20 is slidably disposed within the secondary inner conductor 23 (e.g., moves within the secondary inner conductor 23 while maintaining smooth continuous contact therewith), such that the inner conductor 20 can be slid in either the proximal and/or distal direction to tune the inner conductor 20 to a desired operational frequency.
- the inner conductor 20 and the secondary inner conductor 23 are in electromechanical contact, allowing the inner conductor 20 to slide in and out of the feedline 26 during tuning while continuing to conduct microwave energy.
- the feedline 26 includes one or more grooves 25 which mechanically interface with one or more corresponding stop members 27 disposed on the inner conductor 20 .
- the groove 25 may be disposed in the secondary inner conductor 23 and/or the insulative spacer 22 .
- the groove 25 in conjunction with the corresponding stop member 27 , guides and limits the movement of the inner conductor 20 as the inner conductor 20 is slid within the feedline 26 .
- the groove 25 and stop member 27 combination provides for additional conductive contact between the secondary inner conductor 23 and the inner conductor 20 .
- the location of the groove 25 and the stop member 27 may be interchanged, such that the groove 25 may be disposed within the inner conductor 20 and the stop member 27 may be disposed on the secondary inner conductor 23 .
- the choke 28 of the probe 12 is disposed around the feedline 26 and includes an inner dielectric layer 32 and an outer conductive layer 34 .
- the choke 28 confines the microwave energy from the generator 14 to the radiating portion 30 of the probe 12 thereby limiting the microwave energy deposition zone length along the feedline 26 .
- the choke 28 is implemented with a quarter wave short by using the outer conductive layer 34 around the outer conductor 24 of the feedline 26 separated by the dielectric layer 32 .
- the choke 28 is shorted to the outer conductor 24 of the feedline 26 at the proximal end of the choke 28 by soldering or other means. In embodiments, the length of the choke 28 may be from a quarter to a full wavelength.
- the choke 28 acts as a high impedance to microwave energy conducted down the outside of the feedline 26 thereby limiting energy deposition to the end of the probe.
- the dielectric layer 32 is formed from a fluoropolymer such as tetrafluorethylene, perfluoropropylene, and the like and has a thickness of 0.005 inches.
- the outer conductive layer 34 may be formed from a so-called “perfect conductor” material such as a highly conductive metal (e.g., copper).
- the choke 28 is configured to slide atop the feedline 26 along the longitudinal axis defined by the probe 12 . Sliding the choke 28 in either proximal and/or distal direction along the feedline 26 provides for adjustment of the length of the radiating portion 30 .
- the choke 28 includes a groove 33 disposed within the dielectric layer 32 .
- the groove 33 is configured to mechanically interface with a stop member 35 that is disposed on the outer conductor 24 .
- the stop member 35 guides the sliding of the choke 28 along the length of the groove 33 .
- Moving one or both of the inner conductor 20 and the choke 28 relative to the feedline 26 allows for adjustment of the length of the radiating portion 30 , such as adjusting the choke 28 and the inner conductor 20 to be 1 ⁇ 4 wavelength long as the ablation continues to maintain 1 ⁇ 2 wavelength dipole.
- the inner conductor 20 , the feedline 26 and the choke 28 may have markings and/or indicia thereon to indicate desired wavelength adjustment positions.
- the grooves 25 and 33 and/or the stop members 27 and 35 may include one or more detents (not explicitly shown) which provide tactile feedback when the choke 28 and/or inner conductor 20 are slid along the feedline 26 . This allows for more precise movement of the components and tuning of the radiating portion 30 .
- the probe 12 further includes a tapered end 36 which terminates in a tip 38 at the distal end of the radiating portion 30 .
- the tapered end 36 allows for insertion of the probe 12 into tissue with minimal resistance.
- the tip 38 may be rounded or flat.
- the tapered end 36 may be formed from any hard material such as metal and/or plastic.
- FIG. 4 shows another embodiment of the probe 12 having a liquid-cooled choke 40 that includes a cylindrical conducting housing 42 having a chamber 44 and defining a cylindrical cavity 46 which surrounds the feedline 26 .
- the housing 42 is formed from a conducting metal such as copper, stainless steel, and/or alloys thereof.
- the housing 42 includes one or more inlet tubes 48 and outlet tubes 50 which cycle a cooling dielectric liquid 52 (e.g., water, saline solution, and the like) through the chamber 44 .
- the liquid 52 may be supplied by a pump (not explicitly shown) configured to adjust the flow rate of the liquid 52 through the chamber 44 . As the liquid 52 is supplied into the choke 40 , the heat generated by the feedline 26 is removed.
- compounds used in the liquid 52 may be adjusted to obtain a desired dielectric constant within the choke 28 . This may be useful in multi-frequency probes allowing the resonant frequency of the choke 28 to be adjusted by filling the chamber 44 with varying fluid volume and/or varying the ratio of air and liquid therein.
- the housing 42 also includes an O-ring 54 having an opening 56 allowing the O-ring 54 to fit within the chamber 44 .
- the liquid 52 pushes the O-ring 54 in the distal direction within the chamber 44 .
- the O-ring 54 fits the walls of the chamber 44 in a substantially liquid-tight fashion preventing the liquid 52 from seeping into a distal portion 58 of the chamber 44 . This allows selective or automatic adjustment of the cooling temperature of the choke 28 by limiting the volume of the chamber 44 being filled with the liquid 52 .
- the O-ring 54 is formed from rubber, silicone rubber and other elastomer material such that the frictional forces between the O-ring 54 and the housing 42 maintain the O-ring 54 in position until the flow rate of the liquid 52 is sufficient to shift the O-ring 54 in the distal direction.
- the distal portion 58 includes sloping or chamfered walls 60 inside the chamber 44 . As the O-ring 54 is pushed in the distal direction, the sloping walls 60 compress the O-ring 54 which requires an increase in the flow rate of the liquid 52 .
- FIG. 5 shows a further embodiment of the probe 12 having a ferroelectric material therein. More specifically, the probe 12 includes an internal ferroelectric loading 70 at a distal end of the feedline 26 and an external ferroelectric loading 74 at the distal end of the inner conductor 20 .
- the internal ferroelectric loading 70 may be have a length corresponding to the quarter wave of the microwave frequency and act as a dynamic quarter-wave transformer.
- the ferroelectric loadings 70 and 74 include ferroelectric material such as lead zirconate, lead titanate, barium titanate, and the like. Ferroelectric materials provide for dynamic matching of the probe 12 to the tissue due to changing dielectric properties of such materials when DC electric field is applied across thereof during application of microwave energy to the probe 12 such that the DC electric field biases the ferroelectric material.
- the DC electric field is supplied to the loadings 70 and 74 through the outer conductor 24 and inner conductor 20 respectively. As the DC electric field is supplied to the loadings 70 and 74 , the dielectric constant thereof is varied.
- the “+” and “ ⁇ ” illustrate one possible polarity of DC electric field within the probe 12 .
- the DC electric field is supplied to the loadings 70 and 74 is also adjusted accordingly to increase the dielectric constant accordingly. This counteracts the detuning of the probe 12 due to the changes in the tissue.
- the DC electric field supply (not explicitly shown) may be controlled via a feedback loop by the generator 14 based on impedance measurement of the probe 12 and the cable 16 and other methods within purview of those skilled in the art.
- the supply of the DC current may be varied in a predetermined fashion over time based on empirical laboratory measurements.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims (11)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/265,024 US8280525B2 (en) | 2007-11-16 | 2008-11-05 | Dynamically matched microwave antenna for tissue ablation |
CA002643958A CA2643958A1 (en) | 2007-11-16 | 2008-11-13 | Dynamically matched microwave antenna for tissue ablation |
AU2008245612A AU2008245612B2 (en) | 2007-11-16 | 2008-11-14 | Dynamically matched microwave antenna for tissue ablation |
EP08019920A EP2060239B1 (en) | 2007-11-16 | 2008-11-14 | Dynamically matched microwave antenna for tissue ablation |
DE602008004292T DE602008004292D1 (en) | 2007-11-16 | 2008-11-14 | Dynamically adapted microwave antenna for tissue ablation |
ES10161722T ES2394567T3 (en) | 2007-11-16 | 2008-11-14 | Mirrored antenna dynamically adapted for tissue ablation |
EP11185926.0A EP2425795B1 (en) | 2007-11-16 | 2008-11-14 | Dynamically matched microwave antenna for tissue ablation |
JP2008292811A JP5399688B2 (en) | 2008-11-05 | 2008-11-14 | Dynamically matched microwave antenna for tissue ablation |
EP10161722A EP2208477B1 (en) | 2007-11-16 | 2008-11-14 | Dynamically matched microwave antenna for tissue ablation |
US13/633,256 US8968291B2 (en) | 2007-11-16 | 2012-10-02 | Dynamically matched microwave antenna for tissue ablation |
US14/634,971 US9579151B2 (en) | 2007-11-16 | 2015-03-02 | Dynamically matched microwave antenna for tissue ablation |
US15/429,392 US20170151015A1 (en) | 2007-11-16 | 2017-02-10 | Dynamically matched microwave antenna for tissue ablation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US98869907P | 2007-11-16 | 2007-11-16 | |
US12/265,024 US8280525B2 (en) | 2007-11-16 | 2008-11-05 | Dynamically matched microwave antenna for tissue ablation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/633,256 Continuation US8968291B2 (en) | 2007-11-16 | 2012-10-02 | Dynamically matched microwave antenna for tissue ablation |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090131926A1 US20090131926A1 (en) | 2009-05-21 |
US8280525B2 true US8280525B2 (en) | 2012-10-02 |
Family
ID=40242540
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/265,024 Active 2031-05-25 US8280525B2 (en) | 2007-11-16 | 2008-11-05 | Dynamically matched microwave antenna for tissue ablation |
US13/633,256 Active 2029-06-15 US8968291B2 (en) | 2007-11-16 | 2012-10-02 | Dynamically matched microwave antenna for tissue ablation |
US14/634,971 Active US9579151B2 (en) | 2007-11-16 | 2015-03-02 | Dynamically matched microwave antenna for tissue ablation |
US15/429,392 Abandoned US20170151015A1 (en) | 2007-11-16 | 2017-02-10 | Dynamically matched microwave antenna for tissue ablation |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/633,256 Active 2029-06-15 US8968291B2 (en) | 2007-11-16 | 2012-10-02 | Dynamically matched microwave antenna for tissue ablation |
US14/634,971 Active US9579151B2 (en) | 2007-11-16 | 2015-03-02 | Dynamically matched microwave antenna for tissue ablation |
US15/429,392 Abandoned US20170151015A1 (en) | 2007-11-16 | 2017-02-10 | Dynamically matched microwave antenna for tissue ablation |
Country Status (6)
Country | Link |
---|---|
US (4) | US8280525B2 (en) |
EP (3) | EP2208477B1 (en) |
AU (1) | AU2008245612B2 (en) |
CA (1) | CA2643958A1 (en) |
DE (1) | DE602008004292D1 (en) |
ES (1) | ES2394567T3 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110213351A1 (en) * | 2010-02-26 | 2011-09-01 | Lee Anthony C | Self-Tuning Microwave Ablation Probe |
US20110213352A1 (en) * | 2010-02-26 | 2011-09-01 | Lee Anthony C | Tunable Microwave Ablation Probe |
US20150250540A1 (en) * | 2014-03-10 | 2015-09-10 | Wisconsin Alumni Research Foundation | Microwave ablation antenna system |
US9192440B2 (en) | 2010-02-05 | 2015-11-24 | Covidien Lp | Electrosurgical devices with choke shorted to biological tissue |
US9375252B2 (en) | 2012-08-02 | 2016-06-28 | Covidien Lp | Adjustable length and/or exposure electrodes |
US9579151B2 (en) | 2007-11-16 | 2017-02-28 | Covidien Lp | Dynamically matched microwave antenna for tissue ablation |
US20200188021A1 (en) * | 2018-11-13 | 2020-06-18 | Intuitive Surgical Operations, Inc. | Cooled chokes for ablation systems and methods of use |
US10707581B2 (en) | 2018-01-03 | 2020-07-07 | Wisconsin Alumni Research Foundation | Dipole antenna for microwave ablation |
US20230190241A1 (en) * | 2020-05-15 | 2023-06-22 | Supersonic Imagine | Probe with cooling chamber |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080221650A1 (en) * | 2006-08-04 | 2008-09-11 | Turner Paul F | Microwave applicator with adjustable heating length |
US8292880B2 (en) | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
US8059059B2 (en) * | 2008-05-29 | 2011-11-15 | Vivant Medical, Inc. | Slidable choke microwave antenna |
US8343149B2 (en) * | 2008-06-26 | 2013-01-01 | Vivant Medical, Inc. | Deployable microwave antenna for treating tissue |
US8211098B2 (en) | 2008-08-25 | 2012-07-03 | Vivant Medical, Inc. | Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material |
US8292881B2 (en) | 2009-05-27 | 2012-10-23 | Vivant Medical, Inc. | Narrow gauge high strength choked wet tip microwave ablation antenna |
US20110196356A1 (en) * | 2009-09-15 | 2011-08-11 | Ceramoptec Industries Inc. | Ablative/coagulative urological treatment device and method |
US8355803B2 (en) | 2009-09-16 | 2013-01-15 | Vivant Medical, Inc. | Perfused core dielectrically loaded dipole microwave antenna probe |
US8343145B2 (en) | 2009-09-28 | 2013-01-01 | Vivant Medical, Inc. | Microwave surface ablation using conical probe |
US9993294B2 (en) * | 2009-11-17 | 2018-06-12 | Perseon Corporation | Microwave coagulation applicator and system with fluid injection |
US8414570B2 (en) * | 2009-11-17 | 2013-04-09 | Bsd Medical Corporation | Microwave coagulation applicator and system |
US20110125148A1 (en) * | 2009-11-17 | 2011-05-26 | Turner Paul F | Multiple Frequency Energy Supply and Coagulation System |
US8551083B2 (en) | 2009-11-17 | 2013-10-08 | Bsd Medical Corporation | Microwave coagulation applicator and system |
US8409188B2 (en) * | 2010-03-26 | 2013-04-02 | Covidien Lp | Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same |
US10039601B2 (en) | 2010-03-26 | 2018-08-07 | Covidien Lp | Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same |
US9192436B2 (en) | 2010-05-25 | 2015-11-24 | Covidien Lp | Flow rate verification monitor for fluid-cooled microwave ablation probe |
US8740893B2 (en) | 2010-06-30 | 2014-06-03 | Covidien Lp | Adjustable tuning of a dielectrically loaded loop antenna |
US9504518B2 (en) | 2010-11-29 | 2016-11-29 | Medtronic Ablation Frontiers Llc | System and method for adaptive RF ablation |
US9358066B2 (en) | 2011-04-08 | 2016-06-07 | Covidien Lp | Flexible microwave catheters for natural or artificial lumens |
US9375274B2 (en) * | 2012-01-05 | 2016-06-28 | Covidien Lp | Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment |
WO2013123232A1 (en) * | 2012-02-14 | 2013-08-22 | Georgia Tech Research Corporation | Systems and methods for microwave jamming of molecular recognition |
EP3627968A3 (en) | 2012-03-31 | 2020-05-27 | Microcube, LLC | Returned power for microwave applications |
CN102688094B (en) * | 2012-06-06 | 2014-07-23 | 王建新 | Cold tip temperature control fissure microwave ablation radiator |
US9901398B2 (en) * | 2012-06-29 | 2018-02-27 | Covidien Lp | Microwave antenna probes |
GB201312416D0 (en) | 2013-07-11 | 2013-08-28 | Creo Medical Ltd | Electrosurgical Device |
US10624697B2 (en) | 2014-08-26 | 2020-04-21 | Covidien Lp | Microwave ablation system |
JP7191694B2 (en) | 2015-09-30 | 2022-12-19 | ジ・エ・エッメ・エッセ・エッレ・エッレ | Device for electromagnetic ablation of tissue |
GB2550537B (en) | 2016-02-11 | 2018-04-04 | Gyrus Medical Ltd | Microwave ablation antenna assemblies |
GB2551339B (en) * | 2016-06-13 | 2021-12-08 | Creo Medical Ltd | Electrosurgical device with integrated microwave source |
US10290943B2 (en) * | 2016-11-14 | 2019-05-14 | Amphenol Antenna Solutions, Inc. | Sleeve monopole antenna with spatially variable dielectric loading |
US20180138597A1 (en) * | 2016-11-14 | 2018-05-17 | Amphenol Antenna Solutions, Inc. | Sleeve monopole antenna with spatially variable dielectric loading |
GB2579561B (en) * | 2018-12-03 | 2022-10-19 | Creo Medical Ltd | Electrosurgical instrument |
GB2583715A (en) * | 2019-04-30 | 2020-11-11 | Creo Medical Ltd | Electrosurgical system |
CN111012483B (en) * | 2019-12-31 | 2021-12-17 | 华南理工大学 | Microwave ablation antenna based on spiral gap structure |
EP4096547A1 (en) * | 2020-01-31 | 2022-12-07 | Hepta Medical SAS | Systems and methods for tissue ablation and measurements relating to the same |
CN118021433A (en) * | 2024-03-08 | 2024-05-14 | 江南大学 | Targeted glioma plasma treatment equipment |
Citations (136)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE390937C (en) | 1922-10-13 | 1924-03-03 | Adolf Erb | Device for internal heating of furnace furnaces for hardening, tempering, annealing, quenching and melting |
DE1099658B (en) | 1959-04-29 | 1961-02-16 | Siemens Reiniger Werke Ag | Automatic switch-on device for high-frequency surgical devices |
FR1275415A (en) | 1960-09-26 | 1961-11-10 | Device for detecting disturbances for electrical installations, in particular electrosurgery | |
DE1139927B (en) | 1961-01-03 | 1962-11-22 | Friedrich Laber | High-frequency surgical device |
DE1149832B (en) | 1961-02-25 | 1963-06-06 | Siemens Reiniger Werke Ag | High frequency surgical apparatus |
FR1347865A (en) | 1962-11-22 | 1964-01-04 | Improvements to diathermo-coagulation devices | |
DE1439302A1 (en) | 1963-10-26 | 1969-01-23 | Siemens Ag | High-frequency surgical device |
US3631363A (en) | 1969-11-14 | 1971-12-28 | Gen Electric | High-frequency cavity oscillator having improved tuning means |
SU401367A1 (en) | 1971-10-05 | 1973-10-12 | Тернопольский государственный медицинский институт | BIAKTIVNYE ELECTRO SURGICAL INSTRUMENT |
DE2439587A1 (en) | 1973-08-23 | 1975-02-27 | Matburn Holdings Ltd | ELECTROSURGICAL DEVICE |
DE2455174A1 (en) | 1973-11-21 | 1975-05-22 | Termiflex Corp | INPUT / OUTPUT DEVICE FOR DATA EXCHANGE WITH DATA PROCESSING DEVICES |
DE2407559A1 (en) | 1974-02-16 | 1975-08-28 | Dornier System Gmbh | Tissue heat treatment probe - has water cooling system which ensures heat development only in treated tissues |
DE2415263A1 (en) | 1974-03-29 | 1975-10-02 | Aesculap Werke Ag | Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws |
DE2429021A1 (en) | 1974-06-18 | 1976-01-08 | Erbe Elektromedizin | Remote control for HF surgical instruments - uses cable with two conductors at most |
FR2235669B1 (en) | 1973-07-07 | 1976-05-07 | Lunacek Boris | |
DE2460481A1 (en) | 1974-12-20 | 1976-06-24 | Delma Elektro Med App | Electrode grip for remote HF surgical instrument switching - has shaped insulated piece with contact ring of sterilizable (silicon) rubber |
DE2602517A1 (en) | 1975-01-23 | 1976-07-29 | Dentsply Int Inc | ELECTROSURGICAL DEVICE |
DE2504280A1 (en) | 1975-02-01 | 1976-08-05 | Hans Heinrich Prof Dr Meinke | DEVICE FOR ELECTRIC TISSUE CUTTING IN SURGERY |
DE2627679A1 (en) | 1975-06-26 | 1977-01-13 | Marcel Lamidey | HEMATISTIC HIGH FREQUENCY EXTRACTOR FORCEPS |
DE2540968A1 (en) | 1975-09-13 | 1977-03-17 | Erbe Elektromedizin | Circuit for bipolar coagulation tweezers - permits preparation of tissues prior to coagulation |
FR2276027B3 (en) | 1974-06-25 | 1977-05-06 | Medical Plastics Inc | |
DE2820908A1 (en) | 1977-05-16 | 1978-11-23 | Joseph Skovajsa | DEVICE FOR THE LOCAL TREATMENT OF A PATIENT IN PARTICULAR FOR ACUPUNCTURE OR AURICULAR THERAPY |
DE2803275A1 (en) | 1978-01-26 | 1979-08-02 | Aesculap Werke Ag | HF surgical appts. with active treatment and patient electrodes - has sensor switching generator to small voltage when hand-operated switch is closed |
DE2823291A1 (en) | 1978-05-27 | 1979-11-29 | Rainer Ing Grad Koch | Coagulation instrument automatic HF switching circuit - has first lead to potentiometer and second to transistor base |
SU727201A2 (en) | 1977-11-02 | 1980-04-15 | Киевский Научно-Исследовательский Институт Нейрохирургии | Electric surgical apparatus |
FR2313708B1 (en) | 1975-06-02 | 1980-07-04 | Sybron Corp | |
DE2946728A1 (en) | 1979-11-20 | 1981-05-27 | Erbe Elektromedizin GmbH & Co KG, 7400 Tübingen | HF surgical appts. for use with endoscope - provides cutting or coagulation current at preset intervals and of selected duration |
DE3143421A1 (en) | 1980-11-04 | 1982-05-27 | The Agency of Industrial Science and Technology, Tokyo | Laser scalpel |
DE3045996A1 (en) | 1980-12-05 | 1982-07-08 | Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg | Electro-surgical scalpel instrument - has power supply remotely controlled by surgeon |
DE3120102A1 (en) | 1981-05-20 | 1982-12-09 | F.L. Fischer GmbH & Co, 7800 Freiburg | ARRANGEMENT FOR HIGH-FREQUENCY COAGULATION OF EGG WHITE FOR SURGICAL PURPOSES |
FR2517953A1 (en) | 1981-12-10 | 1983-06-17 | Alvar Electronic | Diaphanometer for optical examination of breast tissue structure - measures tissue transparency using two plates and optical fibre bundle cooperating with photoelectric cells |
US4397313A (en) | 1981-08-03 | 1983-08-09 | Clini-Therm Corporation | Multiple microwave applicator system and method for microwave hyperthermia treatment |
US4462412A (en) | 1980-04-02 | 1984-07-31 | Bsd Medical Corporation | Annular electromagnetic radiation applicator for biological tissue, and method |
FR2502935B1 (en) | 1981-03-31 | 1985-10-04 | Dolley Roger | METHOD AND DEVICE FOR CONTROLLING THE COAGULATION OF TISSUES USING A HIGH FREQUENCY CURRENT |
US4572190A (en) | 1983-05-26 | 1986-02-25 | Cgr/Mev | Hyperthermia apparatus |
DE3510586A1 (en) | 1985-03-23 | 1986-10-02 | Erbe Elektromedizin GmbH, 7400 Tübingen | Control device for a high-frequency surgical instrument |
FR2573301B3 (en) | 1984-11-16 | 1987-04-30 | Lamidey Gilles | SURGICAL PLIERS AND ITS CONTROL AND CONTROL APPARATUS |
DE3604823A1 (en) | 1986-02-15 | 1987-08-27 | Flachenecker Gerhard | HIGH FREQUENCY GENERATOR WITH AUTOMATIC PERFORMANCE CONTROL FOR HIGH FREQUENCY SURGERY |
EP0246350A1 (en) | 1986-05-23 | 1987-11-25 | Erbe Elektromedizin GmbH. | Coagulation electrode |
DE8712328U1 (en) | 1987-09-11 | 1988-02-18 | Jakoubek, Franz, 7201 Emmingen-Liptingen | Endoscopy forceps |
DE3711511C1 (en) | 1987-04-04 | 1988-06-30 | Hartmann & Braun Ag | Method for determining gas concentrations in a gas mixture and sensor for measuring thermal conductivity |
US4798215A (en) | 1984-03-15 | 1989-01-17 | Bsd Medical Corporation | Hyperthermia apparatus |
DE3904558A1 (en) | 1989-02-15 | 1990-08-23 | Flachenecker Gerhard | Radio-frequency generator with automatic power control for radio-frequency surgery |
DE3942998A1 (en) | 1989-12-27 | 1991-07-04 | Delma Elektro Med App | Electro-surgical HF instrument for contact coagulation - has monitoring circuit evaluating HF voltage at electrodes and delivering switch=off signal |
US5057106A (en) | 1986-02-27 | 1991-10-15 | Kasevich Associates, Inc. | Microwave balloon angioplasty |
US5097844A (en) | 1980-04-02 | 1992-03-24 | Bsd Medical Corporation | Hyperthermia apparatus having three-dimensional focusing |
EP0481685A1 (en) | 1990-10-15 | 1992-04-22 | Cook Incorporated | Medical device for localizing a lesion |
US5188122A (en) | 1989-06-20 | 1993-02-23 | Rocket Of London Limited | Electromagnetic energy generation method |
DE4238263A1 (en) | 1991-11-15 | 1993-05-19 | Minnesota Mining & Mfg | Adhesive comprising hydrogel and crosslinked polyvinyl:lactam - is used in electrodes for biomedical application providing low impedance and good mechanical properties when water and/or moisture is absorbed from skin |
EP0521264A3 (en) | 1991-07-03 | 1993-06-16 | W.L. Gore & Associates Gmbh | Antenna device with feed |
EP0556705A1 (en) | 1992-02-20 | 1993-08-25 | DELMA ELEKTRO-UND MEDIZINISCHE APPARATEBAU GESELLSCHAFT mbH | High frequency surgery device |
EP0558429A1 (en) | 1992-02-26 | 1993-09-01 | PECHINEY RECHERCHE (Groupement d'Intérêt Economique géré par l'ordonnance no. 67-821 du 23 Septembre 1967) | Method of simultaneous measuring of electrical resistivety and thermal conductivity |
US5246438A (en) | 1988-11-25 | 1993-09-21 | Sensor Electronics, Inc. | Method of radiofrequency ablation |
US5248312A (en) | 1992-06-01 | 1993-09-28 | Sensor Electronics, Inc. | Liquid metal-filled balloon |
EP0572131A1 (en) | 1992-05-21 | 1993-12-01 | Everest Medical Corporation | Surgical scissors with bipolar coagulation feature |
US5275597A (en) | 1992-05-18 | 1994-01-04 | Baxter International Inc. | Percutaneous transluminal catheter and transmitter therefor |
US5300068A (en) | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
DE4303882A1 (en) | 1993-02-10 | 1994-08-18 | Kernforschungsz Karlsruhe | Combined instrument for separating and coagulating in minimally invasive surgery |
US5364392A (en) | 1993-05-14 | 1994-11-15 | Fidus Medical Technology Corporation | Microwave ablation catheter system with impedance matching tuner and method |
US5405346A (en) | 1993-05-14 | 1995-04-11 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter |
DE4339049A1 (en) | 1993-11-16 | 1995-05-18 | Erbe Elektromedizin | Surgical system and instruments configuration device |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5558672A (en) | 1994-06-24 | 1996-09-24 | Vidacare, Inc. | Thin layer ablation apparatus |
DE29616210U1 (en) | 1996-09-18 | 1996-11-14 | Olympus Winter & Ibe Gmbh, 22045 Hamburg | Handle for surgical instruments |
DE19608716C1 (en) | 1996-03-06 | 1997-04-17 | Aesculap Ag | Bipolar surgical holding instrument |
US5662647A (en) * | 1991-07-22 | 1997-09-02 | Transamerican Technologies International | Electrode assembly for electrosurgical instrument |
US5683382A (en) | 1995-05-15 | 1997-11-04 | Arrow International Investment Corp. | Microwave antenna catheter |
US5688269A (en) * | 1991-07-10 | 1997-11-18 | Electroscope, Inc. | Electrosurgical apparatus for laparoscopic and like procedures |
US5693082A (en) | 1993-05-14 | 1997-12-02 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter system and method |
EP0541930B1 (en) | 1991-10-17 | 1998-03-25 | Smith & Nephew, Inc. | Transmission link for use in surgical instruments |
DE19751106A1 (en) | 1996-11-27 | 1998-05-28 | Eastman Kodak Co | Laser printer with array of laser diodes |
US5776176A (en) | 1996-06-17 | 1998-07-07 | Urologix Inc. | Microwave antenna for arterial for arterial microwave applicator |
US5800494A (en) | 1996-08-20 | 1998-09-01 | Fidus Medical Technology Corporation | Microwave ablation catheters having antennas with distal fire capabilities |
DE19717411A1 (en) | 1997-04-25 | 1998-11-05 | Aesculap Ag & Co Kg | Monitoring of thermal loading of patient tissue in contact region of neutral electrode of HF treatment unit |
US5861021A (en) | 1996-06-17 | 1999-01-19 | Urologix Inc | Microwave thermal therapy of cardiac tissue |
US5902251A (en) | 1996-05-06 | 1999-05-11 | Vanhooydonk; Neil C. | Transcervical intrauterine applicator for intrauterine hyperthermia |
DE19751108A1 (en) | 1997-11-18 | 1999-05-20 | Beger Frank Michael Dipl Desig | Electrosurgical operation tool, especially for diathermy |
DE19801173C1 (en) | 1998-01-15 | 1999-07-15 | Kendall Med Erzeugnisse Gmbh | Clamp connector for film electrodes |
US5931807A (en) | 1997-04-10 | 1999-08-03 | Sonique Surgical Systems, Inc. | Microwave-assisted liposuction apparatus |
EP0836868A3 (en) | 1996-10-18 | 1999-11-24 | Gebr. Berchtold GmbH & Co. | High frequency surgical apparatus and method for operating same |
US6019757A (en) | 1995-07-07 | 2000-02-01 | Target Therapeutics, Inc. | Endoluminal electro-occlusion detection apparatus and method |
US6031375A (en) | 1997-11-26 | 2000-02-29 | The Johns Hopkins University | Method of magnetic resonance analysis employing cylindrical coordinates and an associated apparatus |
DE19848540A1 (en) | 1998-10-21 | 2000-05-25 | Reinhard Kalfhaus | Circuit layout and method for operating a single- or multiphase current inverter connects an AC voltage output to a primary winding and current and a working resistance to a transformer's secondary winding and current. |
EP1034748A1 (en) | 1999-03-05 | 2000-09-13 | Gyrus Medical Limited | UHF electrosurgery system |
JP2000342599A (en) | 1999-05-21 | 2000-12-12 | Gyrus Medical Ltd | Generator for electrosurgical operation, electrosurgical operation system, method for operating this system and method for performing amputation and resection of tissue by electrosurgical operation |
JP2000350732A (en) | 1999-05-21 | 2000-12-19 | Gyrus Medical Ltd | Electrosurgical system, generator for electrosurgery, and method for cutting or excising tissue by electrosurgery |
JP2001008944A (en) | 1999-05-28 | 2001-01-16 | Gyrus Medical Ltd | Electric surgical signal generator and electric surgical system |
JP2001029356A (en) | 1999-06-11 | 2001-02-06 | Gyrus Medical Ltd | Electric and surgical signal generator |
JP2001128990A (en) | 1999-05-28 | 2001-05-15 | Gyrus Medical Ltd | Electro surgical instrument and electrosurgical tool converter |
US6287302B1 (en) | 1999-06-14 | 2001-09-11 | Fidus Medical Technology Corporation | End-firing microwave ablation instrument with horn reflection device |
US6306132B1 (en) | 1999-06-17 | 2001-10-23 | Vivant Medical | Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use |
US6325796B1 (en) | 1999-05-04 | 2001-12-04 | Afx, Inc. | Microwave ablation instrument with insertion probe |
US6347251B1 (en) | 1999-12-23 | 2002-02-12 | Tianquan Deng | Apparatus and method for microwave hyperthermia and acupuncture |
US20020022836A1 (en) | 1999-03-05 | 2002-02-21 | Gyrus Medical Limited | Electrosurgery system |
US6375606B1 (en) | 1999-03-17 | 2002-04-23 | Stereotaxis, Inc. | Methods of and apparatus for treating vascular defects |
US6383183B1 (en) | 1998-04-09 | 2002-05-07 | Olympus Optical Co., Ltd. | High frequency treatment apparatus |
US6398781B1 (en) | 1999-03-05 | 2002-06-04 | Gyrus Medical Limited | Electrosurgery system |
US20020087151A1 (en) | 2000-12-29 | 2002-07-04 | Afx, Inc. | Tissue ablation apparatus with a sliding ablation instrument and method |
US6471696B1 (en) | 2000-04-12 | 2002-10-29 | Afx, Inc. | Microwave ablation instrument with a directional radiation pattern |
US6496738B2 (en) | 1995-09-06 | 2002-12-17 | Kenneth L. Carr | Dual frequency microwave heating apparatus |
US6496736B1 (en) | 1996-04-17 | 2002-12-17 | The United States Of America As Represented By The United States National Aeronatucis And Space Administration | Endothelium preserving microwave treatment for atherosclerosis |
US6508815B1 (en) | 1998-05-08 | 2003-01-21 | Novacept | Radio-frequency generator for powering an ablation device |
EP1278007A1 (en) | 2001-07-18 | 2003-01-22 | Lumitex, Inc. | Light delivery systems and applications thereof |
EP1159926A3 (en) | 2000-06-03 | 2003-03-19 | Aesculap Ag | Scissor- or forceps-like surgical instrument |
US20030065317A1 (en) | 2001-09-19 | 2003-04-03 | Rudie Eric N. | Microwave ablation device |
US6582427B1 (en) | 1999-03-05 | 2003-06-24 | Gyrus Medical Limited | Electrosurgery system |
US6603994B2 (en) | 2000-12-28 | 2003-08-05 | Scimed Life Systems, Inc. | Apparatus and method for internally inducing a magnetic field in an aneurysm to embolize aneurysm with magnetically-controllable substance |
WO2003088858A1 (en) | 2002-04-16 | 2003-10-30 | Vivant Medical, Inc. | Microwave antenna having a curved configuration |
DE10224154A1 (en) | 2002-05-27 | 2003-12-18 | Celon Ag Medical Instruments | Application device for electrosurgical device for body tissue removal via of HF current has electrode subset selected from active electrode set in dependence on measured impedance of body tissue |
US6699241B2 (en) | 2000-08-11 | 2004-03-02 | Northeastern University | Wide-aperture catheter-based microwave cardiac ablation antenna |
US20040049254A1 (en) * | 2001-01-31 | 2004-03-11 | Iginio Longo | Interstitial microwave antenna with miniaturized choke hyperthermia in medicine and surgery |
US6725080B2 (en) | 2000-03-01 | 2004-04-20 | Surgical Navigation Technologies, Inc. | Multiple cannula image guided tool for image guided procedures |
US20040097805A1 (en) | 2002-11-19 | 2004-05-20 | Laurent Verard | Navigation system for cardiac therapies |
US20040242992A1 (en) | 2003-03-25 | 2004-12-02 | Olympus Corporation | Treatment system |
WO2004112628A1 (en) | 2003-06-23 | 2004-12-29 | Microsulis Limited | Radiation applicator for microwave medical treatment |
DE10328514B3 (en) | 2003-06-20 | 2005-03-03 | Aesculap Ag & Co. Kg | Endoscopic surgical scissor instrument has internal pushrod terminating at distal end in transverse cylindrical head |
US20050222558A1 (en) * | 1999-07-14 | 2005-10-06 | Cardiofocus, Inc. | Methods of cardiac ablation employing a deflectable sheath catheter |
US20050245919A1 (en) | 2004-04-29 | 2005-11-03 | Van Der Weide Daniel W | Triaxial antenna for microwave tissue ablation |
DE202005015147U1 (en) | 2005-09-26 | 2006-02-09 | Health & Life Co., Ltd., Chung-Ho | Biosensor test strip with identifying function for biological measuring instruments has functioning electrode and counter electrode, identification zones with coating of electrically conductive material and reaction zone |
EP1186274B1 (en) | 2000-09-12 | 2006-04-05 | AFX, Inc. | Surgical microwave ablation assembly |
DE102004022206B4 (en) | 2004-05-04 | 2006-05-11 | Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt | Sensor for measuring thermal conductivity comprises a strip composed of two parallel sections, and two outer heating strips |
FR2862813B1 (en) | 2003-11-20 | 2006-06-02 | Pellenc Sa | METHOD FOR BALANCED LOADING OF LITHIUM-ION OR POLYMER LITHIUM BATTERY |
US7070595B2 (en) | 1998-12-14 | 2006-07-04 | Medwaves, Inc. | Radio-frequency based catheter system and method for ablating biological tissues |
US20060189973A1 (en) | 2004-04-29 | 2006-08-24 | Van Der Weide Daniel W | Segmented catheter for tissue ablation |
US20060287649A1 (en) | 1998-12-14 | 2006-12-21 | Ormsby Theodore C | Radio-frequency based catheter system and method for ablating biological tissues |
US20070016181A1 (en) | 2004-04-29 | 2007-01-18 | Van Der Weide Daniel W | Microwave tissue resection tool |
US7194297B2 (en) | 2001-11-13 | 2007-03-20 | Boston Scientific Scimed, Inc. | Impedance-matching apparatus and construction for intravascular device |
US20070185554A1 (en) | 2006-02-07 | 2007-08-09 | Angiodynamics, Inc. | Interstitial microwave system and method for thermal treatment of diseases |
WO2007112081A1 (en) | 2006-03-24 | 2007-10-04 | Micrablate | Transmission line with heat transfer ability |
US20070265610A1 (en) | 2006-05-12 | 2007-11-15 | Thapliyal Hira V | Device for Ablating Body Tissue |
US20070282320A1 (en) | 2006-05-30 | 2007-12-06 | Sherwood Services Ag | System and method for controlling tissue heating rate prior to cellular vaporization |
US7393352B2 (en) | 2000-04-12 | 2008-07-01 | Maquet Cardiovascular Llc | Electrode arrangement for use in a medical instrument |
US7439736B2 (en) | 2002-09-27 | 2008-10-21 | The Trustees Of Dartmouth College | Imaging by magnetic resonance adsorption, elastography and tomography |
US7565207B2 (en) | 2005-11-22 | 2009-07-21 | Bsd Medical Corporation | Apparatus for creating hyperthermia in tissue |
FR2864439B1 (en) | 2003-12-30 | 2010-12-03 | Image Guided Therapy | DEVICE FOR TREATING A VOLUME OF BIOLOGICAL TISSUE BY LOCALIZED HYPERTHERMIA |
EP1810627B1 (en) | 2006-01-24 | 2012-09-05 | Covidien AG | System for controlling delivery of energy to divide tissue |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH055106Y2 (en) | 1986-02-28 | 1993-02-09 | ||
JPH0540112Y2 (en) | 1987-03-03 | 1993-10-12 | ||
GB9309142D0 (en) | 1993-05-04 | 1993-06-16 | Gyrus Medical Ltd | Laparoscopic instrument |
GB9322464D0 (en) | 1993-11-01 | 1993-12-22 | Gyrus Medical Ltd | Electrosurgical apparatus |
GB9413070D0 (en) | 1994-06-29 | 1994-08-17 | Gyrus Medical Ltd | Electrosurgical apparatus |
GB9425781D0 (en) | 1994-12-21 | 1995-02-22 | Gyrus Medical Ltd | Electrosurgical instrument |
US5611798A (en) * | 1995-03-02 | 1997-03-18 | Eggers; Philip E. | Resistively heated cutting and coagulating surgical instrument |
US6293942B1 (en) | 1995-06-23 | 2001-09-25 | Gyrus Medical Limited | Electrosurgical generator method |
WO1997043971A2 (en) | 1996-05-22 | 1997-11-27 | Somnus Medical Technologies, Inc. | Method and apparatus for ablating turbinates |
US6200312B1 (en) * | 1997-09-11 | 2001-03-13 | Vnus Medical Technologies, Inc. | Expandable vein ligator catheter having multiple electrode leads |
EP0923907A1 (en) | 1997-12-19 | 1999-06-23 | Gyrus Medical Limited | An electrosurgical instrument |
GB9807303D0 (en) | 1998-04-03 | 1998-06-03 | Gyrus Medical Ltd | An electrode assembly for an electrosurgical instrument |
US6451015B1 (en) | 1998-11-18 | 2002-09-17 | Sherwood Services Ag | Method and system for menu-driven two-dimensional display lesion generator |
US6233490B1 (en) * | 1999-02-09 | 2001-05-15 | Kai Technologies, Inc. | Microwave antennas for medical hyperthermia, thermotherapy and diagnosis |
US6427089B1 (en) | 1999-02-19 | 2002-07-30 | Edward W. Knowlton | Stomach treatment apparatus and method |
GB9904373D0 (en) | 1999-02-25 | 1999-04-21 | Microsulis Plc | Radiation applicator |
US6287297B1 (en) | 1999-03-05 | 2001-09-11 | Plc Medical Systems, Inc. | Energy delivery system and method for performing myocardial revascular |
GB9905210D0 (en) | 1999-03-05 | 1999-04-28 | Gyrus Medical Ltd | Electrosurgical system |
WO2001001847A1 (en) | 1999-07-06 | 2001-01-11 | Inbae Yoon | Penetrating endoscope and endoscopic surgical instrument with cmos image sensor and display |
US6758846B2 (en) * | 2000-02-08 | 2004-07-06 | Gyrus Medical Limited | Electrosurgical instrument and an electrosurgery system including such an instrument |
US6869430B2 (en) | 2000-03-31 | 2005-03-22 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
US6866624B2 (en) | 2000-12-08 | 2005-03-15 | Medtronic Ave,Inc. | Apparatus and method for treatment of malignant tumors |
US6878147B2 (en) * | 2001-11-02 | 2005-04-12 | Vivant Medical, Inc. | High-strength microwave antenna assemblies |
GB2390545B (en) * | 2002-07-09 | 2005-04-20 | Barts & London Nhs Trust | Hollow organ probe |
US7311703B2 (en) | 2003-07-18 | 2007-12-25 | Vivant Medical, Inc. | Devices and methods for cooling microwave antennas |
JP2005268312A (en) | 2004-03-16 | 2005-09-29 | Semiconductor Leading Edge Technologies Inc | Resist removing method and semiconductor device manufactured using same |
US8211099B2 (en) | 2007-01-31 | 2012-07-03 | Tyco Healthcare Group Lp | Thermal feedback systems and methods of using the same |
US8280525B2 (en) | 2007-11-16 | 2012-10-02 | Vivant Medical, Inc. | Dynamically matched microwave antenna for tissue ablation |
US8292880B2 (en) | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
US8945111B2 (en) | 2008-01-23 | 2015-02-03 | Covidien Lp | Choked dielectric loaded tip dipole microwave antenna |
US7642451B2 (en) | 2008-01-23 | 2010-01-05 | Vivant Medical, Inc. | Thermally tuned coaxial cable for microwave antennas |
US8435237B2 (en) | 2008-01-29 | 2013-05-07 | Covidien Lp | Polyp encapsulation system and method |
US8262703B2 (en) | 2008-01-31 | 2012-09-11 | Vivant Medical, Inc. | Medical device including member that deploys in a spiral-like configuration and method |
US8353902B2 (en) | 2008-01-31 | 2013-01-15 | Vivant Medical, Inc. | Articulating ablation device and method |
US8221418B2 (en) | 2008-02-07 | 2012-07-17 | Tyco Healthcare Group Lp | Endoscopic instrument for tissue identification |
US8965536B2 (en) | 2008-03-03 | 2015-02-24 | Covidien Lp | Intracooled percutaneous microwave ablation probe |
US9949794B2 (en) | 2008-03-27 | 2018-04-24 | Covidien Lp | Microwave ablation devices including expandable antennas and methods of use |
US9198723B2 (en) | 2008-03-31 | 2015-12-01 | Covidien Lp | Re-hydration antenna for ablation |
US8246614B2 (en) | 2008-04-17 | 2012-08-21 | Vivant Medical, Inc. | High-strength microwave antenna coupling |
US8059059B2 (en) | 2008-05-29 | 2011-11-15 | Vivant Medical, Inc. | Slidable choke microwave antenna |
US8192427B2 (en) | 2008-06-09 | 2012-06-05 | Tyco Healthcare Group Lp | Surface ablation process with electrode cooling methods |
US9271796B2 (en) | 2008-06-09 | 2016-03-01 | Covidien Lp | Ablation needle guide |
US8343149B2 (en) | 2008-06-26 | 2013-01-01 | Vivant Medical, Inc. | Deployable microwave antenna for treating tissue |
US8834409B2 (en) | 2008-07-29 | 2014-09-16 | Covidien Lp | Method for ablation volume determination and geometric reconstruction |
US20100030206A1 (en) | 2008-07-29 | 2010-02-04 | Brannan Joseph D | Tissue Ablation System With Phase-Controlled Channels |
US9700366B2 (en) | 2008-08-01 | 2017-07-11 | Covidien Lp | Polyphase electrosurgical system and method |
US8182480B2 (en) | 2008-08-19 | 2012-05-22 | Tyco Healthcare Group Lp | Insulated tube for suction coagulator |
US20100045559A1 (en) | 2008-08-25 | 2010-02-25 | Vivant Medical, Inc. | Dual-Band Dipole Microwave Ablation Antenna |
US9173706B2 (en) | 2008-08-25 | 2015-11-03 | Covidien Lp | Dual-band dipole microwave ablation antenna |
US8211098B2 (en) | 2008-08-25 | 2012-07-03 | Vivant Medical, Inc. | Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material |
US8251987B2 (en) | 2008-08-28 | 2012-08-28 | Vivant Medical, Inc. | Microwave antenna |
US8394086B2 (en) | 2008-09-03 | 2013-03-12 | Vivant Medical, Inc. | Microwave shielding apparatus |
US20100076422A1 (en) | 2008-09-24 | 2010-03-25 | Tyco Healthcare Group Lp | Thermal Treatment of Nucleus Pulposus |
US20100087808A1 (en) | 2008-10-03 | 2010-04-08 | Vivant Medical, Inc. | Combined Frequency Microwave Ablation System, Devices and Methods of Use |
US9375272B2 (en) | 2008-10-13 | 2016-06-28 | Covidien Lp | Antenna assemblies for medical applications |
US8512328B2 (en) | 2008-10-13 | 2013-08-20 | Covidien Lp | Antenna assemblies for medical applications |
US9113924B2 (en) | 2008-10-17 | 2015-08-25 | Covidien Lp | Choked dielectric loaded tip dipole microwave antenna |
US8202270B2 (en) | 2009-02-20 | 2012-06-19 | Vivant Medical, Inc. | Leaky-wave antennas for medical applications |
US8197473B2 (en) | 2009-02-20 | 2012-06-12 | Vivant Medical, Inc. | Leaky-wave antennas for medical applications |
US8118808B2 (en) | 2009-03-10 | 2012-02-21 | Vivant Medical, Inc. | Cooled dielectrically buffered microwave dipole antenna |
US9277969B2 (en) | 2009-04-01 | 2016-03-08 | Covidien Lp | Microwave ablation system with user-controlled ablation size and method of use |
US10045819B2 (en) | 2009-04-14 | 2018-08-14 | Covidien Lp | Frequency identification for microwave ablation probes |
US8216227B2 (en) | 2009-05-06 | 2012-07-10 | Vivant Medical, Inc. | Power-stage antenna integrated system with junction member |
US8463396B2 (en) | 2009-05-06 | 2013-06-11 | Covidien LLP | Power-stage antenna integrated system with high-strength shaft |
US8353903B2 (en) | 2009-05-06 | 2013-01-15 | Vivant Medical, Inc. | Power-stage antenna integrated system |
US8292881B2 (en) | 2009-05-27 | 2012-10-23 | Vivant Medical, Inc. | Narrow gauge high strength choked wet tip microwave ablation antenna |
US8834460B2 (en) | 2009-05-29 | 2014-09-16 | Covidien Lp | Microwave ablation safety pad, microwave safety pad system and method of use |
US8235981B2 (en) | 2009-06-02 | 2012-08-07 | Vivant Medical, Inc. | Electrosurgical devices with directional radiation pattern |
-
2008
- 2008-11-05 US US12/265,024 patent/US8280525B2/en active Active
- 2008-11-13 CA CA002643958A patent/CA2643958A1/en not_active Abandoned
- 2008-11-14 ES ES10161722T patent/ES2394567T3/en active Active
- 2008-11-14 EP EP10161722A patent/EP2208477B1/en not_active Not-in-force
- 2008-11-14 AU AU2008245612A patent/AU2008245612B2/en not_active Ceased
- 2008-11-14 EP EP11185926.0A patent/EP2425795B1/en active Active
- 2008-11-14 DE DE602008004292T patent/DE602008004292D1/en active Active
- 2008-11-14 EP EP08019920A patent/EP2060239B1/en not_active Not-in-force
-
2012
- 2012-10-02 US US13/633,256 patent/US8968291B2/en active Active
-
2015
- 2015-03-02 US US14/634,971 patent/US9579151B2/en active Active
-
2017
- 2017-02-10 US US15/429,392 patent/US20170151015A1/en not_active Abandoned
Patent Citations (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE390937C (en) | 1922-10-13 | 1924-03-03 | Adolf Erb | Device for internal heating of furnace furnaces for hardening, tempering, annealing, quenching and melting |
DE1099658B (en) | 1959-04-29 | 1961-02-16 | Siemens Reiniger Werke Ag | Automatic switch-on device for high-frequency surgical devices |
FR1275415A (en) | 1960-09-26 | 1961-11-10 | Device for detecting disturbances for electrical installations, in particular electrosurgery | |
DE1139927B (en) | 1961-01-03 | 1962-11-22 | Friedrich Laber | High-frequency surgical device |
DE1149832B (en) | 1961-02-25 | 1963-06-06 | Siemens Reiniger Werke Ag | High frequency surgical apparatus |
FR1347865A (en) | 1962-11-22 | 1964-01-04 | Improvements to diathermo-coagulation devices | |
DE1439302A1 (en) | 1963-10-26 | 1969-01-23 | Siemens Ag | High-frequency surgical device |
US3631363A (en) | 1969-11-14 | 1971-12-28 | Gen Electric | High-frequency cavity oscillator having improved tuning means |
SU401367A1 (en) | 1971-10-05 | 1973-10-12 | Тернопольский государственный медицинский институт | BIAKTIVNYE ELECTRO SURGICAL INSTRUMENT |
FR2235669B1 (en) | 1973-07-07 | 1976-05-07 | Lunacek Boris | |
DE2439587A1 (en) | 1973-08-23 | 1975-02-27 | Matburn Holdings Ltd | ELECTROSURGICAL DEVICE |
DE2455174A1 (en) | 1973-11-21 | 1975-05-22 | Termiflex Corp | INPUT / OUTPUT DEVICE FOR DATA EXCHANGE WITH DATA PROCESSING DEVICES |
DE2407559A1 (en) | 1974-02-16 | 1975-08-28 | Dornier System Gmbh | Tissue heat treatment probe - has water cooling system which ensures heat development only in treated tissues |
DE2415263A1 (en) | 1974-03-29 | 1975-10-02 | Aesculap Werke Ag | Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws |
DE2429021A1 (en) | 1974-06-18 | 1976-01-08 | Erbe Elektromedizin | Remote control for HF surgical instruments - uses cable with two conductors at most |
FR2276027B3 (en) | 1974-06-25 | 1977-05-06 | Medical Plastics Inc | |
DE2460481A1 (en) | 1974-12-20 | 1976-06-24 | Delma Elektro Med App | Electrode grip for remote HF surgical instrument switching - has shaped insulated piece with contact ring of sterilizable (silicon) rubber |
DE2602517A1 (en) | 1975-01-23 | 1976-07-29 | Dentsply Int Inc | ELECTROSURGICAL DEVICE |
DE2504280A1 (en) | 1975-02-01 | 1976-08-05 | Hans Heinrich Prof Dr Meinke | DEVICE FOR ELECTRIC TISSUE CUTTING IN SURGERY |
FR2313708B1 (en) | 1975-06-02 | 1980-07-04 | Sybron Corp | |
DE2627679A1 (en) | 1975-06-26 | 1977-01-13 | Marcel Lamidey | HEMATISTIC HIGH FREQUENCY EXTRACTOR FORCEPS |
DE2540968A1 (en) | 1975-09-13 | 1977-03-17 | Erbe Elektromedizin | Circuit for bipolar coagulation tweezers - permits preparation of tissues prior to coagulation |
DE2820908A1 (en) | 1977-05-16 | 1978-11-23 | Joseph Skovajsa | DEVICE FOR THE LOCAL TREATMENT OF A PATIENT IN PARTICULAR FOR ACUPUNCTURE OR AURICULAR THERAPY |
SU727201A2 (en) | 1977-11-02 | 1980-04-15 | Киевский Научно-Исследовательский Институт Нейрохирургии | Electric surgical apparatus |
DE2803275A1 (en) | 1978-01-26 | 1979-08-02 | Aesculap Werke Ag | HF surgical appts. with active treatment and patient electrodes - has sensor switching generator to small voltage when hand-operated switch is closed |
DE2823291A1 (en) | 1978-05-27 | 1979-11-29 | Rainer Ing Grad Koch | Coagulation instrument automatic HF switching circuit - has first lead to potentiometer and second to transistor base |
DE2946728A1 (en) | 1979-11-20 | 1981-05-27 | Erbe Elektromedizin GmbH & Co KG, 7400 Tübingen | HF surgical appts. for use with endoscope - provides cutting or coagulation current at preset intervals and of selected duration |
US5097844A (en) | 1980-04-02 | 1992-03-24 | Bsd Medical Corporation | Hyperthermia apparatus having three-dimensional focusing |
US4462412A (en) | 1980-04-02 | 1984-07-31 | Bsd Medical Corporation | Annular electromagnetic radiation applicator for biological tissue, and method |
DE3143421A1 (en) | 1980-11-04 | 1982-05-27 | The Agency of Industrial Science and Technology, Tokyo | Laser scalpel |
DE3045996A1 (en) | 1980-12-05 | 1982-07-08 | Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg | Electro-surgical scalpel instrument - has power supply remotely controlled by surgeon |
FR2502935B1 (en) | 1981-03-31 | 1985-10-04 | Dolley Roger | METHOD AND DEVICE FOR CONTROLLING THE COAGULATION OF TISSUES USING A HIGH FREQUENCY CURRENT |
DE3120102A1 (en) | 1981-05-20 | 1982-12-09 | F.L. Fischer GmbH & Co, 7800 Freiburg | ARRANGEMENT FOR HIGH-FREQUENCY COAGULATION OF EGG WHITE FOR SURGICAL PURPOSES |
US4397313A (en) | 1981-08-03 | 1983-08-09 | Clini-Therm Corporation | Multiple microwave applicator system and method for microwave hyperthermia treatment |
FR2517953A1 (en) | 1981-12-10 | 1983-06-17 | Alvar Electronic | Diaphanometer for optical examination of breast tissue structure - measures tissue transparency using two plates and optical fibre bundle cooperating with photoelectric cells |
US4572190A (en) | 1983-05-26 | 1986-02-25 | Cgr/Mev | Hyperthermia apparatus |
US4798215A (en) | 1984-03-15 | 1989-01-17 | Bsd Medical Corporation | Hyperthermia apparatus |
FR2573301B3 (en) | 1984-11-16 | 1987-04-30 | Lamidey Gilles | SURGICAL PLIERS AND ITS CONTROL AND CONTROL APPARATUS |
DE3510586A1 (en) | 1985-03-23 | 1986-10-02 | Erbe Elektromedizin GmbH, 7400 Tübingen | Control device for a high-frequency surgical instrument |
DE3604823A1 (en) | 1986-02-15 | 1987-08-27 | Flachenecker Gerhard | HIGH FREQUENCY GENERATOR WITH AUTOMATIC PERFORMANCE CONTROL FOR HIGH FREQUENCY SURGERY |
US5057106A (en) | 1986-02-27 | 1991-10-15 | Kasevich Associates, Inc. | Microwave balloon angioplasty |
EP0246350A1 (en) | 1986-05-23 | 1987-11-25 | Erbe Elektromedizin GmbH. | Coagulation electrode |
DE3711511C1 (en) | 1987-04-04 | 1988-06-30 | Hartmann & Braun Ag | Method for determining gas concentrations in a gas mixture and sensor for measuring thermal conductivity |
DE8712328U1 (en) | 1987-09-11 | 1988-02-18 | Jakoubek, Franz, 7201 Emmingen-Liptingen | Endoscopy forceps |
US5370644A (en) | 1988-11-25 | 1994-12-06 | Sensor Electronics, Inc. | Radiofrequency ablation catheter |
US5246438A (en) | 1988-11-25 | 1993-09-21 | Sensor Electronics, Inc. | Method of radiofrequency ablation |
DE3904558A1 (en) | 1989-02-15 | 1990-08-23 | Flachenecker Gerhard | Radio-frequency generator with automatic power control for radio-frequency surgery |
US5188122A (en) | 1989-06-20 | 1993-02-23 | Rocket Of London Limited | Electromagnetic energy generation method |
DE3942998A1 (en) | 1989-12-27 | 1991-07-04 | Delma Elektro Med App | Electro-surgical HF instrument for contact coagulation - has monitoring circuit evaluating HF voltage at electrodes and delivering switch=off signal |
EP0481685A1 (en) | 1990-10-15 | 1992-04-22 | Cook Incorporated | Medical device for localizing a lesion |
EP0521264A3 (en) | 1991-07-03 | 1993-06-16 | W.L. Gore & Associates Gmbh | Antenna device with feed |
US5688269A (en) * | 1991-07-10 | 1997-11-18 | Electroscope, Inc. | Electrosurgical apparatus for laparoscopic and like procedures |
US5662647A (en) * | 1991-07-22 | 1997-09-02 | Transamerican Technologies International | Electrode assembly for electrosurgical instrument |
EP0541930B1 (en) | 1991-10-17 | 1998-03-25 | Smith & Nephew, Inc. | Transmission link for use in surgical instruments |
DE4238263A1 (en) | 1991-11-15 | 1993-05-19 | Minnesota Mining & Mfg | Adhesive comprising hydrogel and crosslinked polyvinyl:lactam - is used in electrodes for biomedical application providing low impedance and good mechanical properties when water and/or moisture is absorbed from skin |
EP0556705A1 (en) | 1992-02-20 | 1993-08-25 | DELMA ELEKTRO-UND MEDIZINISCHE APPARATEBAU GESELLSCHAFT mbH | High frequency surgery device |
EP0558429A1 (en) | 1992-02-26 | 1993-09-01 | PECHINEY RECHERCHE (Groupement d'Intérêt Economique géré par l'ordonnance no. 67-821 du 23 Septembre 1967) | Method of simultaneous measuring of electrical resistivety and thermal conductivity |
US5300068A (en) | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
US5275597A (en) | 1992-05-18 | 1994-01-04 | Baxter International Inc. | Percutaneous transluminal catheter and transmitter therefor |
EP0572131A1 (en) | 1992-05-21 | 1993-12-01 | Everest Medical Corporation | Surgical scissors with bipolar coagulation feature |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5248312A (en) | 1992-06-01 | 1993-09-28 | Sensor Electronics, Inc. | Liquid metal-filled balloon |
DE4303882A1 (en) | 1993-02-10 | 1994-08-18 | Kernforschungsz Karlsruhe | Combined instrument for separating and coagulating in minimally invasive surgery |
US5364392A (en) | 1993-05-14 | 1994-11-15 | Fidus Medical Technology Corporation | Microwave ablation catheter system with impedance matching tuner and method |
US5405346A (en) | 1993-05-14 | 1995-04-11 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter |
US5957969A (en) | 1993-05-14 | 1999-09-28 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter system and method |
US5693082A (en) | 1993-05-14 | 1997-12-02 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter system and method |
DE4339049A1 (en) | 1993-11-16 | 1995-05-18 | Erbe Elektromedizin | Surgical system and instruments configuration device |
US5558672A (en) | 1994-06-24 | 1996-09-24 | Vidacare, Inc. | Thin layer ablation apparatus |
US5683382A (en) | 1995-05-15 | 1997-11-04 | Arrow International Investment Corp. | Microwave antenna catheter |
US6019757A (en) | 1995-07-07 | 2000-02-01 | Target Therapeutics, Inc. | Endoluminal electro-occlusion detection apparatus and method |
US6496738B2 (en) | 1995-09-06 | 2002-12-17 | Kenneth L. Carr | Dual frequency microwave heating apparatus |
DE19608716C1 (en) | 1996-03-06 | 1997-04-17 | Aesculap Ag | Bipolar surgical holding instrument |
US6496736B1 (en) | 1996-04-17 | 2002-12-17 | The United States Of America As Represented By The United States National Aeronatucis And Space Administration | Endothelium preserving microwave treatment for atherosclerosis |
US5902251A (en) | 1996-05-06 | 1999-05-11 | Vanhooydonk; Neil C. | Transcervical intrauterine applicator for intrauterine hyperthermia |
US5776176A (en) | 1996-06-17 | 1998-07-07 | Urologix Inc. | Microwave antenna for arterial for arterial microwave applicator |
US5861021A (en) | 1996-06-17 | 1999-01-19 | Urologix Inc | Microwave thermal therapy of cardiac tissue |
US5800494A (en) | 1996-08-20 | 1998-09-01 | Fidus Medical Technology Corporation | Microwave ablation catheters having antennas with distal fire capabilities |
DE29616210U1 (en) | 1996-09-18 | 1996-11-14 | Olympus Winter & Ibe Gmbh, 22045 Hamburg | Handle for surgical instruments |
EP0836868A3 (en) | 1996-10-18 | 1999-11-24 | Gebr. Berchtold GmbH & Co. | High frequency surgical apparatus and method for operating same |
DE19751106A1 (en) | 1996-11-27 | 1998-05-28 | Eastman Kodak Co | Laser printer with array of laser diodes |
US5931807A (en) | 1997-04-10 | 1999-08-03 | Sonique Surgical Systems, Inc. | Microwave-assisted liposuction apparatus |
DE19717411A1 (en) | 1997-04-25 | 1998-11-05 | Aesculap Ag & Co Kg | Monitoring of thermal loading of patient tissue in contact region of neutral electrode of HF treatment unit |
DE19751108A1 (en) | 1997-11-18 | 1999-05-20 | Beger Frank Michael Dipl Desig | Electrosurgical operation tool, especially for diathermy |
US6031375A (en) | 1997-11-26 | 2000-02-29 | The Johns Hopkins University | Method of magnetic resonance analysis employing cylindrical coordinates and an associated apparatus |
DE19801173C1 (en) | 1998-01-15 | 1999-07-15 | Kendall Med Erzeugnisse Gmbh | Clamp connector for film electrodes |
US6383183B1 (en) | 1998-04-09 | 2002-05-07 | Olympus Optical Co., Ltd. | High frequency treatment apparatus |
US6508815B1 (en) | 1998-05-08 | 2003-01-21 | Novacept | Radio-frequency generator for powering an ablation device |
DE19848540A1 (en) | 1998-10-21 | 2000-05-25 | Reinhard Kalfhaus | Circuit layout and method for operating a single- or multiphase current inverter connects an AC voltage output to a primary winding and current and a working resistance to a transformer's secondary winding and current. |
US20060287649A1 (en) | 1998-12-14 | 2006-12-21 | Ormsby Theodore C | Radio-frequency based catheter system and method for ablating biological tissues |
US7070595B2 (en) | 1998-12-14 | 2006-07-04 | Medwaves, Inc. | Radio-frequency based catheter system and method for ablating biological tissues |
US6582427B1 (en) | 1999-03-05 | 2003-06-24 | Gyrus Medical Limited | Electrosurgery system |
EP1034748A1 (en) | 1999-03-05 | 2000-09-13 | Gyrus Medical Limited | UHF electrosurgery system |
US6398781B1 (en) | 1999-03-05 | 2002-06-04 | Gyrus Medical Limited | Electrosurgery system |
US20020022836A1 (en) | 1999-03-05 | 2002-02-21 | Gyrus Medical Limited | Electrosurgery system |
US6375606B1 (en) | 1999-03-17 | 2002-04-23 | Stereotaxis, Inc. | Methods of and apparatus for treating vascular defects |
US7226446B1 (en) | 1999-05-04 | 2007-06-05 | Dinesh Mody | Surgical microwave ablation assembly |
US20070203480A1 (en) | 1999-05-04 | 2007-08-30 | Dinesh Mody | Surgical microwave ablation assembly |
US6325796B1 (en) | 1999-05-04 | 2001-12-04 | Afx, Inc. | Microwave ablation instrument with insertion probe |
JP2000342599A (en) | 1999-05-21 | 2000-12-12 | Gyrus Medical Ltd | Generator for electrosurgical operation, electrosurgical operation system, method for operating this system and method for performing amputation and resection of tissue by electrosurgical operation |
JP2000350732A (en) | 1999-05-21 | 2000-12-19 | Gyrus Medical Ltd | Electrosurgical system, generator for electrosurgery, and method for cutting or excising tissue by electrosurgery |
JP2001128990A (en) | 1999-05-28 | 2001-05-15 | Gyrus Medical Ltd | Electro surgical instrument and electrosurgical tool converter |
JP2001008944A (en) | 1999-05-28 | 2001-01-16 | Gyrus Medical Ltd | Electric surgical signal generator and electric surgical system |
JP2001029356A (en) | 1999-06-11 | 2001-02-06 | Gyrus Medical Ltd | Electric and surgical signal generator |
US6527768B2 (en) | 1999-06-14 | 2003-03-04 | Afx Inc. | End-firing microwave ablation instrument with horn reflection device |
US6287302B1 (en) | 1999-06-14 | 2001-09-11 | Fidus Medical Technology Corporation | End-firing microwave ablation instrument with horn reflection device |
US6306132B1 (en) | 1999-06-17 | 2001-10-23 | Vivant Medical | Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use |
US20050222558A1 (en) * | 1999-07-14 | 2005-10-06 | Cardiofocus, Inc. | Methods of cardiac ablation employing a deflectable sheath catheter |
US6347251B1 (en) | 1999-12-23 | 2002-02-12 | Tianquan Deng | Apparatus and method for microwave hyperthermia and acupuncture |
US6725080B2 (en) | 2000-03-01 | 2004-04-20 | Surgical Navigation Technologies, Inc. | Multiple cannula image guided tool for image guided procedures |
US6471696B1 (en) | 2000-04-12 | 2002-10-29 | Afx, Inc. | Microwave ablation instrument with a directional radiation pattern |
US7393352B2 (en) | 2000-04-12 | 2008-07-01 | Maquet Cardiovascular Llc | Electrode arrangement for use in a medical instrument |
EP1159926A3 (en) | 2000-06-03 | 2003-03-19 | Aesculap Ag | Scissor- or forceps-like surgical instrument |
US6699241B2 (en) | 2000-08-11 | 2004-03-02 | Northeastern University | Wide-aperture catheter-based microwave cardiac ablation antenna |
EP1186274B1 (en) | 2000-09-12 | 2006-04-05 | AFX, Inc. | Surgical microwave ablation assembly |
US6603994B2 (en) | 2000-12-28 | 2003-08-05 | Scimed Life Systems, Inc. | Apparatus and method for internally inducing a magnetic field in an aneurysm to embolize aneurysm with magnetically-controllable substance |
US20020087151A1 (en) | 2000-12-29 | 2002-07-04 | Afx, Inc. | Tissue ablation apparatus with a sliding ablation instrument and method |
US20040049254A1 (en) * | 2001-01-31 | 2004-03-11 | Iginio Longo | Interstitial microwave antenna with miniaturized choke hyperthermia in medicine and surgery |
EP1278007A1 (en) | 2001-07-18 | 2003-01-22 | Lumitex, Inc. | Light delivery systems and applications thereof |
US20030065317A1 (en) | 2001-09-19 | 2003-04-03 | Rudie Eric N. | Microwave ablation device |
US7194297B2 (en) | 2001-11-13 | 2007-03-20 | Boston Scientific Scimed, Inc. | Impedance-matching apparatus and construction for intravascular device |
WO2003088858A1 (en) | 2002-04-16 | 2003-10-30 | Vivant Medical, Inc. | Microwave antenna having a curved configuration |
DE10224154A1 (en) | 2002-05-27 | 2003-12-18 | Celon Ag Medical Instruments | Application device for electrosurgical device for body tissue removal via of HF current has electrode subset selected from active electrode set in dependence on measured impedance of body tissue |
US7439736B2 (en) | 2002-09-27 | 2008-10-21 | The Trustees Of Dartmouth College | Imaging by magnetic resonance adsorption, elastography and tomography |
US20040097805A1 (en) | 2002-11-19 | 2004-05-20 | Laurent Verard | Navigation system for cardiac therapies |
US20040242992A1 (en) | 2003-03-25 | 2004-12-02 | Olympus Corporation | Treatment system |
DE10328514B3 (en) | 2003-06-20 | 2005-03-03 | Aesculap Ag & Co. Kg | Endoscopic surgical scissor instrument has internal pushrod terminating at distal end in transverse cylindrical head |
WO2004112628A1 (en) | 2003-06-23 | 2004-12-29 | Microsulis Limited | Radiation applicator for microwave medical treatment |
FR2862813B1 (en) | 2003-11-20 | 2006-06-02 | Pellenc Sa | METHOD FOR BALANCED LOADING OF LITHIUM-ION OR POLYMER LITHIUM BATTERY |
FR2864439B1 (en) | 2003-12-30 | 2010-12-03 | Image Guided Therapy | DEVICE FOR TREATING A VOLUME OF BIOLOGICAL TISSUE BY LOCALIZED HYPERTHERMIA |
US7101369B2 (en) | 2004-04-29 | 2006-09-05 | Wisconsin Alumni Research Foundation | Triaxial antenna for microwave tissue ablation |
US20060189973A1 (en) | 2004-04-29 | 2006-08-24 | Van Der Weide Daniel W | Segmented catheter for tissue ablation |
US20060293652A1 (en) | 2004-04-29 | 2006-12-28 | Wisconsin Alumni Research Foundation | Triaxial antenna for microwave tissue ablation |
US20070016181A1 (en) | 2004-04-29 | 2007-01-18 | Van Der Weide Daniel W | Microwave tissue resection tool |
US7467015B2 (en) | 2004-04-29 | 2008-12-16 | Neuwave Medical, Inc. | Segmented catheter for tissue ablation |
US20050245919A1 (en) | 2004-04-29 | 2005-11-03 | Van Der Weide Daniel W | Triaxial antenna for microwave tissue ablation |
DE102004022206B4 (en) | 2004-05-04 | 2006-05-11 | Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt | Sensor for measuring thermal conductivity comprises a strip composed of two parallel sections, and two outer heating strips |
DE202005015147U1 (en) | 2005-09-26 | 2006-02-09 | Health & Life Co., Ltd., Chung-Ho | Biosensor test strip with identifying function for biological measuring instruments has functioning electrode and counter electrode, identification zones with coating of electrically conductive material and reaction zone |
US7565207B2 (en) | 2005-11-22 | 2009-07-21 | Bsd Medical Corporation | Apparatus for creating hyperthermia in tissue |
EP1810627B1 (en) | 2006-01-24 | 2012-09-05 | Covidien AG | System for controlling delivery of energy to divide tissue |
US20070185554A1 (en) | 2006-02-07 | 2007-08-09 | Angiodynamics, Inc. | Interstitial microwave system and method for thermal treatment of diseases |
WO2007112081A1 (en) | 2006-03-24 | 2007-10-04 | Micrablate | Transmission line with heat transfer ability |
US20070265609A1 (en) | 2006-05-12 | 2007-11-15 | Thapliyal Hira V | Method for Ablating Body Tissue |
US20070265610A1 (en) | 2006-05-12 | 2007-11-15 | Thapliyal Hira V | Device for Ablating Body Tissue |
US20070282320A1 (en) | 2006-05-30 | 2007-12-06 | Sherwood Services Ag | System and method for controlling tissue heating rate prior to cellular vaporization |
Non-Patent Citations (276)
Title |
---|
Alexander et al., "Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy" Journal Neurosurgery, 83 (1995), pp. 271-276. |
Anderson et al., "A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia" International Journal of Bio-Medical Computing, 35 (1994), pp. 297-307. |
Anonymous. (1987) Homer Mammalok(TM) Breast Lesion Needle/Wire Localizer, Namic® Angiographic Systems Division, Glens Falls, New York, (Hospital products price list), 4 pages. |
Anonymous. (1987) Homer Mammalok™ Breast Lesion Needle/Wire Localizer, Namic® Angiographic Systems Division, Glens Falls, New York, (Hospital products price list), 4 pages. |
Anonymous. (1999) Auto Suture MIBB Site Marker: Single Use Clip Applier, United States Surgical (Product instructions), 2 pages. |
Anonymous. (1999) MIBB Site Marker, United States Surgical (Sales brochure), 4 pages. |
Anonymous. (2001) Disposable Chiba Biopsy Needles and Trays, Biopsy and Special Purpose Needles Cook Diagnostic and Interventional Products Catalog (products list), 4 pages. |
Anonymous. Blunt Tubes with Finished Ends. Pointed Cannula, Popper & Sons Biomedical Instrument Division, (Products Price List), one page, Jul. 19, 2000. |
Anonymous. Ground Cannulae, ISPG, New Milford, CT, (Advertisement) one page, Jul. 19, 2000. |
B. F. Mullan et al., (May 1999) "Lung Nodules: Improved Wire for CT-Guided Localization," Radiology 211:561-565. |
B. Levy M.D. et al., "Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy" Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
B. Levy M.D. et al., "Update on Hysterectomy New Technologies and Techniques" OBG Management, Feb. 2003. |
B. Levy M.D., "Use of a New Vessel Ligation Device During Vaginal Hysterectomy" FIGO 2000, Washington, D.C. |
B. T. Heniford M.D. et al., "Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer" Oct. 1999. |
Bergdahl et al., "Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator" Journal of Neurosurgery 75:1 (Jul. 1991), pp. 148-151. |
Bulletin of the American Physical Society, vol. 47, No. 5, Aug. 2002, p. 41. |
C. F. Gottlieb et al., "Interstitial Microwave Hyperthermia Applicators having Submillimetre Diameters", Int. J. Hyperthermia, vol. 6, No. 3, pp. 707-714, 1990. |
C. H. Durney et al., "Antennas for Medical Applications", Antenna Handbook: Theory Application and Design, p. 24-40, Van Nostrand Reinhold, 1988 New York, V.T. Lo, S.W. Lee. |
Carbonell et al., "Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure(TM) Device in the Hemostasis of Small, Medium, and Large-Sized Arteries" Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC 2003. |
Carbonell et al., "Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure™ Device in the Hemostasis of Small, Medium, and Large-Sized Arteries" Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC 2003. |
Carus et al., "Initial Experience With the LigaSure(TM) Vessel Sealing System in Abdominal Surgery" Innovations That Work, Jun. 2002. |
Carus et al., "Initial Experience With the LigaSure™ Vessel Sealing System in Abdominal Surgery" Innovations That Work, Jun. 2002. |
Chicharo et al., "A Sliding Goertzel Algorithm" Aug. 1996 DOS pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 52, No. 3. |
Chou, C.K., (1995) "Radiofrequency Hyperthermia in Cancer Therapy," Chapter 941n Biologic Effects of Nonionizing Electromagnetic Fields, CRC Press, Inc., pp. 1424-1428. |
Chung et al., "Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure(TM)" Diseases of the Colon & Rectum, vol. 46, No. 1, Jan. 2003. |
Chung et al., "Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure™" Diseases of the Colon & Rectum, vol. 46, No. 1, Jan. 2003. |
Cosman et al., "Methods of Making Nervous System Lesions" in William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw Hill, vol. 111, (1984), pp. 2490-2499. |
Cosman et al., "Radiofrequency Lesion Generation and its Effect on Tissue Impedence", Applied Neurophysiology, 51:230-242, 1988. |
Cosman et al., "Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone" Neurosurgery 15:(1984), pp. 945-950. |
Crawford et al., "Use of the LigaSure(TM) Vessel Sealing System in Urologic Cancer Surger" Grand Rounds in Urology 1999, vol. 1, Issue 4, pp. 10-17. |
Crawford et al., "Use of the LigaSure™ Vessel Sealing System in Urologic Cancer Surger" Grand Rounds in Urology 1999, vol. 1, Issue 4, pp. 10-17. |
Dulemba et al., "Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy" Sales/Product Literature; Jan. 2004. |
E. David Crawford, "Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery" Sales/Product Literature 2000. |
E. David Crawford, "Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex" Sales/Product Literature 2000. |
Esterline Product Literature, "Light Key: Visualize a Virtual Keyboard. One With no Moving Parts", 4 pages. |
Esterline Product Literature, "Light Key: Visualize a Virtual Keyboard. One With No Moving Parts", Nov. 1, 2003; 4 pages. |
Esterline, "Light Key Projection Keyboard" 2004 Advanced Input Systems, located at: <http://www.advanced-input.com/lightkey> last visited on Feb. 10, 2005. |
Esterline, "Light Key Projection Keyboard" 2004 Advanced Input Systems, located at: last visited on Feb. 10, 2005. |
European Search Report EP 03721482 dated Feb. 6, 2006. |
European Search Report EP 04009964 dated Jul. 28, 2004. |
European Search Report EP 04013772 dated Apr. 11, 2005. |
European Search Report EP 04015980 dated Nov. 3, 2004. |
European Search Report EP 04015981.6 dated Oct. 25, 2004. |
European Search Report EP 04027314 dated Mar. 31, 2005. |
European Search Report EP 04027479 dated Mar. 17, 2005. |
European Search Report EP 04027705 dated Feb. 10, 2005. |
European Search Report EP 04710258 dated Oct. 15, 2004. |
European Search Report EP 04752343.6 dated Jul. 31, 2007. |
European Search Report EP 04778192.7 dated Jul. 1, 2009. |
European Search Report EP 05002027.0 dated May 12, 2005. |
European Search Report EP 05002769.7 dated Jun. 19, 2006. |
European Search Report EP 05013463.4 dated Oct. 7, 2005. |
European Search Report EP 05013895 dated Oct. 21, 2005. |
European Search Report EP 05014156.3 dated Jan. 4, 2006. |
European Search Report EP 05016399 dated Jan. 13, 2006. |
European Search Report EP 05017281 dated Nov. 24, 2005. |
European Search Report EP 05019130.3 dated Oct. 27, 2005. |
European Search Report EP 05019882 dated Feb. 16, 2006. |
European Search Report EP 05020665.5 dated Feb. 27, 2006. |
European Search Report EP 05020666.3 dated Feb. 27, 2006. |
European Search Report EP 05021025.1 dated Mar. 13, 2006. |
European Search Report EP 05021197.8 dated Feb. 20, 2006. |
European Search Report EP 05021777 dated Feb. 23, 2006. |
European Search Report EP 05021779.3 dated Feb. 2, 2006. |
European Search Report EP 05021780.1 dated Feb. 23, 2006. |
European Search Report EP 05021935 dated Jan. 27, 2006. |
European Search Report EP 05021936.9 dated Feb. 6, 2006. |
European Search Report EP 05021937.7 dated Jan. 23, 2006. |
European Search Report EP 05021939 dated Jan. 27, 2006. |
European Search Report EP 05021944.3 dated Jan. 25, 2006. |
European Search Report EP 05022350.2 dated Jan. 30, 2006. |
European Search Report EP 05023017.6 dated Feb. 24, 2006. |
European Search Report EP 05025423.4 dated Jan. 19, 2007. |
European Search Report EP 05025424 dated Jan. 30, 2007. |
European Search Report EP 05810523 dated Jan. 29, 2009. |
European Search Report EP 06000708.5 dated May 15, 2006. |
European Search Report EP 06002279.5 dated Mar. 30, 2006. |
European Search Report EP 06005185.1 dated May 10, 2006. |
European Search Report EP 06005540 dated Sep. 24, 2007. |
European Search Report EP 06006717.0 dated Aug. 11, 2006. |
European Search Report EP 06006961 dated Oct. 22, 2007. |
European Search Report EP 06006963 dated Jul. 25, 2006. |
European Search Report EP 06008779.8 dated Jul. 13, 2006. |
European Search Report EP 06009435 dated Jul. 13, 2006. |
European Search Report EP 06010499.9 dated Jan. 29, 2008. |
European Search Report EP 06014461.5 dated Oct. 31, 2006. |
European Search Report EP 06018206.0 dated Oct. 20, 2006. |
European Search Report EP 06019768 dated Jan. 17, 2007. |
European Search Report EP 06020574.7 dated Oct. 2, 2007. |
European Search Report EP 06020583.8 dated Feb. 7, 2007. |
European Search Report EP 06020584.6 dated Feb. 1, 2007. |
European Search Report EP 06020756.0 dated Feb. 16, 2007. |
European Search Report EP 06022028.2 dated Feb. 13, 2007. |
European Search Report EP 06023756.7 dated Feb. 21, 2008. |
European Search Report EP 06024122.1 dated Apr. 16, 2007. |
European Search Report EP 06024123.9 dated Mar. 6, 2007. |
European Search Report EP 06025700.3 dated Apr. 12, 2007. |
European Search Report EP 07000885.9 dated May 15, 2007. |
European Search Report EP 07001480.8 dated Apr. 19, 2007. |
European Search Report EP 07001481.6 dated May 2, 2007. |
European Search Report EP 07001485.7 dated May 23, 2007. |
European Search Report EP 07001488.1 dated Jun. 5, 2007. |
European Search Report EP 07001489.9 dated Dec. 20, 2007. |
European Search Report EP 07001491 dated Jun. 6, 2007. |
European Search Report EP 07001527.6 dated May 18, 2007. |
European Search Report EP 07007783.9 dated Aug. 14, 2007. |
European Search Report EP 07008207.8 dated Sep. 13, 2007. |
European Search Report EP 07009026.1 dated Oct. 8, 2007. |
European Search Report EP 07009028 dated Jul. 16, 2007. |
European Search Report EP 07009029.5 dated Jul. 20, 2007. |
European Search Report EP 07009321.6 dated Aug. 28, 2007. |
European Search Report EP 07009322.4 dated Jan. 14, 2008. |
European Search Report EP 07010672.9 dated Oct. 16, 2007. |
European Search Report EP 07010673.7 dated Oct. 5, 2007. |
European Search Report EP 07013779.9 dated Oct. 26, 2007. |
European Search Report EP 07015191.5 dated Jan. 23, 2007. |
European Search Report EP 07015601.3 dated Jan. 4, 2007. |
European Search Report EP 07015602.1 dated Dec. 20, 2007. |
European Search Report EP 07018375.1 dated Jan. 8, 2008. |
European Search Report EP 07018821 dated Jan. 14, 2008. |
European Search Report EP 07019173.9 dated Feb. 12, 2008. |
European Search Report EP 07019174.7 dated Jan. 29, 2008. |
European Search Report EP 07019178.8 dated Feb. 12, 2008. |
European Search Report EP 07020283.3 dated Feb. 5, 2008. |
European Search Report EP 07253835.8 dated Dec. 20, 2007. |
European Search Report EP 08001019 dated Sep. 23, 2008. |
European Search Report EP 08004975 dated Jul. 24, 2008. |
European Search Report EP 08006731.7 dated Jul. 29, 2008. |
European Search Report EP 08006733 dated Jul. 7, 2008. |
European Search Report EP 08006734.1 dated Aug. 18, 2008. |
European Search Report EP 08006735.8 dated Jan. 8, 2009. |
European Search Report EP 08011282 dated Aug. 14, 2009. |
European Search Report EP 08011705 dated Aug. 20, 2009. |
European Search Report EP 08012829.1 dated Oct. 29, 2008. |
European Search Report EP 08015842 dated Dec. 5, 2008. |
European Search Report EP 08019920.1 dated Mar. 27, 2009. |
European Search Report EP 08169973.8 dated Apr. 6, 2009. |
European Search Report EP 09156861.8 dated Aug. 4, 2009. |
European Search Report EP 09161502.1 dated Sep. 2, 2009. |
European Search Report EP 09166708 dated Oct. 15, 2009. |
European Search Report EP 98300964.8 dated Dec. 13, 2000. |
European Search Report EP 98944778 dated Nov. 7, 2000. |
European Search Report EP 98958575.7 dated Oct. 29, 2002. |
European Search Report for European Application No. 11185926.0 dated Jan. 23, 2012. |
Geddes et al., "The Measurement of Physiologic Events by Electrical Impedence" Am. J. MI, Jan. Mar. 1964, pp. 16-27. |
Goldberg et al., "Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities-Part I", (2001) J Vasc. Interv. Radiol, vol. 12, pp. 1021-1032. |
Goldberg et al., "Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume" Acad Radio (1995) vol. 2, No. 5, pp. 399-404. |
H. Schwarzmaier et al., "Magnetic Resonance Imaging of Microwave Induced Tissue Heating" Dept. of Laser Medicine & Dept. of Diagnostic Radiology; Heinrich-Heine-University, Duesseldorf, Germany; Dec. 8, 1994; pp. 729-731. |
Heniford et al., "Initial Results with an Electrothermal Bipolar Vessel Sealer" Surgical Endoscopy (2001) 15:799-801. |
Herman at al., "Laparoscopic Intestinal Resection With the LigaSure(TM) Vessel Sealing System: A Case Report" Innovations That Work, Feb. 2002. |
Herman at al., "Laparoscopic Intestinal Resection With the LigaSure™ Vessel Sealing System: A Case Report" Innovations That Work, Feb. 2002. |
Ian D. McRury et al., The Effect of Ablation Sequence and Duration on Lesion Shape Using Rapidly Pulsed Radiofrequency Energy Through Electrodes, Feb. 2000, Springer Netherlands, vol. 4; No. 1, pp. 307-320. |
International Search Report EP08/019920 dated Mar. 27, 2009. |
International Search Report EP10161722 dated Jun. 16, 2010. |
International Search Report PCT/US01/11218 dated Aug. 14, 2001. |
International Search Report PCT/US01/11224 dated Nov. 13, 2001. |
International Search Report PCT/US01/11340 dated Aug. 16, 2001. |
International Search Report PCT/US01/11420 dated Oct. 16, 2001. |
International Search Report PCT/US02/01890 dated Jul. 25, 2002. |
International Search Report PCT/US02/11100 dated Jul. 16, 2002. |
International Search Report PCT/US03/09483 dated Aug. 13, 2003. |
International Search Report PCT/US03/22900 dated Dec. 2, 2003. |
International Search Report PCT/US03/37110 dated Jul. 25, 2005. |
International Search Report PCT/US03/37111 dated Jul. 28, 2004. |
International Search Report PCT/US03/37310 dated Aug. 13, 2004. |
International Search Report PCT/US04/13273 dated Dec. 15, 2004. |
International Search Report PCT/US04/15311 dated Jan. 12, 2004. |
International Search Report PCT/US05/36168 dated Aug. 28, 2006. |
International Search Report PCT/US08/052460 dated Apr. 24, 2008. |
International Search Report PCT/US09/31658 dated Mar. 11, 2009. |
International Search Report PCT/US98/18640 dated Jan. 29, 1998. |
International Search Report PCT/US98/23950 dated Jan. 14, 1998. |
International Search Report PCT/US99/24869 dated Feb. 11, 2000. |
International Search Report PCT/USO4/04685 dated Aug. 27, 2004. |
Jarrett et al., "Use of the LigaSure™ Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy" Sales/Product Literature 2000. |
Johnson et al., "Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy" Sales/Product Literature, Jan. 2004. |
Johnson, "Evaluation of the LigaSure™ Vessel Sealing System in Hemorrhoidectormy" American College of Surgeons (ACS) Clinic La Congress Poster (2000). |
Johnson, "Use of the LigaSure™ Vessel Sealing System in Bloodless Hemorrhoidectomy" Innovations That Work, Mar. 2000. |
Joseph G. Andriole M.D. et al., "Biopsy Needle Characteristics Assessed in the Laboratory", Radiology 148: 659-662, Sep. 1983. |
Joseph Ortenberg, "LigaSure™ System Used in Laparoscopic 1st and 2nd Stage Orchiopexy" Innovations That Work, Nov. 2002. |
K. Ogata, Modern Control Engineering, Prentice-Hall, Englewood Cliffs, N.J., 1970. |
Kennedy et al., "High-burst-strength, feedback-controlled bipolar vessel sealing" Surgical Endoscopy (1998) 12: 876-878. |
Kopans, D.B. et al., (Nov. 1985) "Spring Hookwire Breast Lesion Localizer: Use with Rigid-Compression. Mammographic Systems," Radiology 157(2):537-538. |
Koyle et al., "Laparoscopic Palomo Varicocele Ligation in Children and Adolescents" Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
LigaSure™ Vessel Sealing System, The Seal of Confidence in General , Gynecologic, Urologic, and Laparaoscopic Surgery, Sales/Product Literature, Jan. 2004. |
Livraghi et al., (1995) "Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases", Radiology, pp. 205-210. |
Lyndon B. Johnson Space Center, Houston, Texas, "Compact Directional Microwave Antenna for Localized Heating," NASA Tech Briefs, Mar. 2008. |
M. A. Astrahan, "A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants" Medical Physics. 9(3), May/Jun. 1982. |
Magdy F. Iskander et al., "Design Optimization of Interstitial Antennas", IEEE Transactions on Biomedical Engineering, vol. 36, No. 2, Feb. 1989, pp. 238-246. |
McGahan et al., (1995) "Percutaneous Ultrasound-guided Radiofrequency Electrocautery Ablation of Prostate Tissue in Dogs", Acad Radiol, vol. 2, No. 1: pp. 61-65. |
McLellan et al., "Vessel Sealing for Hemostasis During Pelvic Surgery" Int'l Federation of Gynecology and Obstetrics Figo World Congress 2000, Washington, DC. |
MDTECH product literature (Dec. 1999) "FlexStrand": product description, 1 page. |
MDTECH product literature (Mar. 2000) I'D Wire: product description, 1 page. |
Medtrex Brochure "The O.R. Pro 300" 1 page, Sep. 1998. |
Michael Choti, "Abdominoperineal Resection with the LigaSure™ Vessel Sealing System and LigaSure™ Atlas 20 cm Open Instrument" Innovations That Work, Jun. 2003. |
Muller et al., "Extended Left Hemicolectomy Using the LigaSure™ Vessel Sealing System" Innovations That Work. LJ, Sep. 1999. |
Murakami, R. et al., (1995). "Treatment of Hepatocellular Carcinoma: Value of Percutaneous Microwave Coagulation," American Journal of Radiology (AJR) 164:1159-1164. |
Ni Wei et al., "A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . " Journal of Applied Sciences Yingyong Kexue Xuebao, Shangha CN, vol. 23, No. 2:(Mar. 2005); pp. 160-184. |
Ogden, "Goertzel Alternative to the Fourier Transform" Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG, vol. 99, No. 9, 1687. |
Olsson M.D. et al., "Radical Cystectomy in Females" Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Organ, L W., "Electrophysiologic Principles of Radiofrequency Lesion Making" Appl. Neurophysiol, vol. 39: pp. 69-76 (1976/1977). |
P.R. Stauffer et al., "Interstitial Heating Technologies", Thermoradiotheray and Thermochemotherapy (1995) vol. I, Biology, Physiology, Physics, pp. 279-320. |
Palazzo et al., "Randomized clinical trial of LigaSure™ versus open haemorrhoidectomy" British Journal of Surgery 2002,89,154-157 "Innovations in Electrosurgery" Sales/Product Literature; Dec. 31, 2000. |
Paul G. Horgan, "A Novel Technique for Parenchymal Division During Hepatectomy" The American Journal of Surgery, vol. 181, No. 3, Oapril 2001, pp. 236-237. |
Peterson et al., "Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing" Surgical Technology International (2001). |
R. Gennari et al., (Jun. 2000) "Use of Technetium-99m-Labeled Colloid Albumin for Preoperative and Intraoperative Localization of Non palpable Breast Lesions," American College of Surgeons. 190(6):692-699. |
Reidenbach, (1995) "First Experimental Results with Special Applicators for High-Frequency Interstitial Thermotherapy", Society Minimally Invasive Therapy, 4(Suppl 1):40 (Abstr). |
Richard Wolf Medical Instruments Corp. Brochure, "Kleppinger Bipolar Forceps & Bipolar Generator" 3 pages, Jan. 1989. |
Rothenberg et al., "Use of the LigaSure™ Vessel Sealing System in Minimally Invasive Surgery in Children" Int'l Pediatric Endosurgery Group (1 PEG) 2000. |
S. Humphries Jr. et al., "Finite Element Codes to Model Electrical Heating and Non•LInear Thermal Transport in Biological Media", Proc. ASME HTD-355, 131 (1997). |
Sayfan et al., "Sutureless Closed Hemorrhoidectomy: A New Technique" Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24. |
Sengupta et al., "Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery" ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Sigel et al., "The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation" Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Solbiati et al., (2001) "Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients", Radiology, vol. 221, pp. 159-166. |
Strasberg et al., "Use of a Bipolar Vassel-Sealing Device for Parenchymal Transection During Liver Surgery" Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Stuart W. Young, Nuclear Magnetic Resonance Imaging—Basic Principles, Raven Press, New York, 1984. |
Sugita et al., "Bipolar Coagulator with Automatic Thermocontrol" J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779. |
Sylvain Labonte et al., "Monopole Antennas for Microwave Catheter Ablation", IEEE Trans. on Microwave Theory and Techniques, vol. 44, No. 10, pp. 1832-1840, Oct. 1995. |
T. Matsukawa et al., "Percutaneous Microwave Coagulation Therapy in Liver Tumors", Acta Radiologica, vol. 38, pp. 410-415, 1997. |
T. Seki et al., (1994) "Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma," Cancer 74(3):817 825. |
U.S. Appl. No. 08/136,098, filed Oct. 14, 1993. |
U.S. Appl. No. 08/483,742, filed Jun. 7, 1995. |
U.S. Appl. No. 09/195,118, filed Nov. 18, 1998. |
U.S. Appl. No. 10/244,346, filed Sep. 16, 2002. |
U.S. Appl. No. 11/053,987, filed Feb. 8, 2005. |
U.S. Appl. No. 12/023,606, filed Jan. 31, 2008. |
U.S. Appl. No. 12/129,482, filed May 29, 2008. |
U.S. Appl. No. 12/135,425, filed Jun. 9, 2008. |
U.S. Appl. No. 12/135,690, filed Jun. 9, 2008. |
U.S. Appl. No. 12/147,093, filed Jun. 26, 2008. |
U.S. Appl. No. 12/181,504, filed Jul. 29, 2008. |
U.S. Appl. No. 12/184,556, filed Aug. 1, 2008. |
U.S. Appl. No. 12/194,254, filed Aug. 19, 2008. |
U.S. Appl. No. 12/197,405, filed Aug. 25, 2008. |
U.S. Appl. No. 12/197,473, filed Aug. 25, 2008. |
U.S. Appl. No. 12/197,601, filed Aug. 25, 2008. |
U.S. Appl. No. 12/199,935, filed Aug. 28, 2008. |
U.S. Appl. No. 12/203,474, filed Sep. 3, 2008. |
U.S. Appl. No. 12/236,686, filed Sep. 24, 2008. |
U.S. Appl. No. 12/244,850, filed Oct. 3, 2008. |
U.S. Appl. No. 12/250,110, filed Oct. 13, 2008. |
U.S. Appl. No. 12/250,171, filed Oct. 13, 2008. |
U.S. Appl. No. 12/253,457, filed Oct. 17, 2008. |
U.S. Appl. No. 12/277,951, filed Nov. 25, 2008. |
U.S. Appl. No. 12/350,292, filed Jan. 8, 2009. |
U.S. Appl. No. 12/351,633, filed Jan. 9, 2009. |
U.S. Appl. No. 12/353,617, filed Jan. 14, 2009. |
U.S. Appl. No. 12/353,623, filed Jan. 14, 2009. |
U.S. Appl. No. 12/356,650, filed Jan. 21, 2009. |
U.S. Appl. No. 12/366,298, filed Feb. 5, 2009. |
U.S. Appl. No. 12/389,906, filed Feb. 20, 2009. |
U.S. Appl. No. 12/389,915, filed Feb. 20, 2009. |
U.S. Appl. No. 12/395,034, filed Feb. 27, 2009. |
U.S. Appl. No. 12/399,222, filed Mar. 6, 2009. |
U.S. Appl. No. 12/401,268, filed Mar. 10, 2009. |
U.S. Appl. No. 12/413,011, filed Mar. 27, 2009. |
U.S. Appl. No. 12/413,023, filed Mar. 27, 2009. |
U.S. Appl. No. 12/416,583, filed Apr. 1, 2009. |
U.S. Appl. No. 12/419,395, filed Apr. 7, 2009. |
U.S. Appl. No. 12/423,609, filed Apr. 14, 2009. |
U.S. Appl. No. 12/434,903, filed May 4, 2009. |
U.S. Appl. No. 12/436,231, filed May 6, 2009. |
U.S. Appl. No. 12/436,237, filed May 6, 2009. |
U.S. Appl. No. 12/436,239, filed May 6, 2009. |
U.S. Appl. No. 12/472,831, filed May 27, 2009. |
U.S. Appl. No. 12/475,082, filed May 29, 2009. |
U.S. Appl. No. 12/476,960, filed Jun. 2, 2009. |
Urologix, Inc.-Medical Professionals: Targis™ Technology (Date Unknown). "Overcoming the Challenge" located at: <http://www.urologix.com!medicaUtechnology.html > last visited on Apr. 27, 2001, 3 pages. |
Urrutia et al., (1988). "Retractable-Barb Needle for Breast Lesion Localization: Use in 60 Cases," Radiology 169(3):845-847. |
ValleyLab Brochure, "Electosurgery: A Historical Overview", Innovations in Electrosurgery, 1999. |
Valleylab Brochure, "Reducing Needlestick Injuries in the Operating Room" 1 page, Mar. 2001. |
Valleylab Brochure, "Valleylab Electroshield Monitoring System" 2 pages, Nov. 1995. |
Vallfors et al., "Automatically Controlled Bipolar Electrocoagulation-‘COA-COMP’" Neurosurgical Review 7:2-3 (1984) pp. 187-190. |
W. Scott Helton, "LigaSure™ Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery" Sales/Product Literature 1999. |
Wald et al., "Accidental Burns", JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921. |
Walt Boyles, "Instrumentation Reference Book", 2002, Butterworth-Heinemann, pp. 262-264. |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9579151B2 (en) | 2007-11-16 | 2017-02-28 | Covidien Lp | Dynamically matched microwave antenna for tissue ablation |
US9192440B2 (en) | 2010-02-05 | 2015-11-24 | Covidien Lp | Electrosurgical devices with choke shorted to biological tissue |
US10028787B2 (en) * | 2010-02-26 | 2018-07-24 | Covidien Lp | Tunable microwave ablation probe |
US20140114302A1 (en) * | 2010-02-26 | 2014-04-24 | Covidien Lp | Tunable microwave ablation probe |
US8777939B2 (en) * | 2010-02-26 | 2014-07-15 | Covidien Lp | Self-tuning microwave ablation probe |
US20110213351A1 (en) * | 2010-02-26 | 2011-09-01 | Lee Anthony C | Self-Tuning Microwave Ablation Probe |
US20170296270A1 (en) * | 2010-02-26 | 2017-10-19 | Covidien Lp | Tunable microwave ablation probe |
US8617153B2 (en) * | 2010-02-26 | 2013-12-31 | Covidien Lp | Tunable microwave ablation probe |
US9375275B2 (en) * | 2010-02-26 | 2016-06-28 | Covidien Lp | Tunable microwave ablation probe |
US20160296283A1 (en) * | 2010-02-26 | 2016-10-13 | Covidien Lp | Tunable microwave ablation probe |
US20110213352A1 (en) * | 2010-02-26 | 2011-09-01 | Lee Anthony C | Tunable Microwave Ablation Probe |
US9700374B2 (en) * | 2010-02-26 | 2017-07-11 | Covidien Lp | Tunable microwave ablation probe |
US9375252B2 (en) | 2012-08-02 | 2016-06-28 | Covidien Lp | Adjustable length and/or exposure electrodes |
US20150250540A1 (en) * | 2014-03-10 | 2015-09-10 | Wisconsin Alumni Research Foundation | Microwave ablation antenna system |
WO2015138050A1 (en) * | 2014-03-10 | 2015-09-17 | Wisconsin Alumni Research Foundation | Microwave ablation antenna system |
US10765477B2 (en) * | 2014-03-10 | 2020-09-08 | Wisconsin Alumni Research Foundation | Microwave ablation antenna system |
US10707581B2 (en) | 2018-01-03 | 2020-07-07 | Wisconsin Alumni Research Foundation | Dipole antenna for microwave ablation |
US20200188021A1 (en) * | 2018-11-13 | 2020-06-18 | Intuitive Surgical Operations, Inc. | Cooled chokes for ablation systems and methods of use |
US11730537B2 (en) * | 2018-11-13 | 2023-08-22 | Intuitive Surgical Operations, Inc. | Cooled chokes for ablation systems and methods of use |
US20230190241A1 (en) * | 2020-05-15 | 2023-06-22 | Supersonic Imagine | Probe with cooling chamber |
Also Published As
Publication number | Publication date |
---|---|
US20170151015A1 (en) | 2017-06-01 |
AU2008245612A1 (en) | 2009-06-04 |
US8968291B2 (en) | 2015-03-03 |
EP2425795B1 (en) | 2013-06-05 |
US9579151B2 (en) | 2017-02-28 |
EP2060239A1 (en) | 2009-05-20 |
AU2008245612B2 (en) | 2013-07-18 |
CA2643958A1 (en) | 2009-05-16 |
US20150173831A1 (en) | 2015-06-25 |
EP2425795A1 (en) | 2012-03-07 |
EP2208477B1 (en) | 2012-09-12 |
EP2060239B1 (en) | 2011-01-05 |
US20090131926A1 (en) | 2009-05-21 |
DE602008004292D1 (en) | 2011-02-17 |
ES2394567T3 (en) | 2013-02-01 |
US20130041365A1 (en) | 2013-02-14 |
EP2208477A1 (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9579151B2 (en) | Dynamically matched microwave antenna for tissue ablation | |
US10966784B2 (en) | Electrosurgical devices with balun structure | |
CA2636393C (en) | Broadband microwave applicator | |
US8202270B2 (en) | Leaky-wave antennas for medical applications | |
US8968292B2 (en) | Leaky-wave antennas for medical applications | |
US8361062B2 (en) | Slidable choke microwave antenna | |
US20160045260A1 (en) | Dual-band dipole microwave ablation antenna | |
JP5399688B2 (en) | Dynamically matched microwave antenna for tissue ablation | |
ES2357171T3 (en) | MICROWAVE ANTENNA ADAPTED DYNAMICALLY FOR TISSUE ABLATION. | |
AU2017219068A1 (en) | Dual-band dipole microwave ablation antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TYCO HEALTHCARE GROUP LP, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUSIN, CHRISTOPHER T.;BRANNAN, JOSEPH;SIGNING DATES FROM 20081030 TO 20081104;REEL/FRAME:021788/0186 Owner name: TYCO HEALTHCARE GROUP LP, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUSIN, CHRISTOPHER T.;BRANNAN, JOSEPH;REEL/FRAME:021788/0186;SIGNING DATES FROM 20081030 TO 20081104 |
|
AS | Assignment |
Owner name: VIVANT MEDICAL, INC., COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:021814/0750 Effective date: 20081110 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: COVIDIEN LP, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIVANT LLC;REEL/FRAME:030982/0606 Effective date: 20130402 Owner name: VIVANT LLC, COLORADO Free format text: CHANGE OF NAME;ASSIGNOR:VIVANT MEDICAL, INC.;REEL/FRAME:030982/0599 Effective date: 20121226 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: VIVANT MEDICAL LLC, COLORADO Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED ON REEL 030982 FRAME 599. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME OF VIVANT MEDICAL, INC. TO VIVANT MEDICAL LLC;ASSIGNOR:VIVANT MEDICAL, INC.;REEL/FRAME:037172/0176 Effective date: 20121226 |
|
AS | Assignment |
Owner name: COVIDIEN LP, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIVANT MEDICAL LLC;REEL/FRAME:038250/0869 Effective date: 20121228 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |