US8263328B2 - Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method - Google Patents

Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method Download PDF

Info

Publication number
US8263328B2
US8263328B2 US13/278,306 US201113278306A US8263328B2 US 8263328 B2 US8263328 B2 US 8263328B2 US 201113278306 A US201113278306 A US 201113278306A US 8263328 B2 US8263328 B2 US 8263328B2
Authority
US
United States
Prior art keywords
constituent
approximately
formulation
chromagen
carrier substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US13/278,306
Other languages
English (en)
Other versions
US20120100563A1 (en
Inventor
Randice Lisa Altschul
Myron Rapkin
Rebecca O'Brien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pop Test LLC
Original Assignee
Pop Test LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/278,306 priority Critical patent/US8263328B2/en
Application filed by Pop Test LLC filed Critical Pop Test LLC
Assigned to Pop Test LLC reassignment Pop Test LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALTSCHUL, RANDICE LISA, O'BRIEN, REBECCA, RAPKIN, MYRON
Publication of US20120100563A1 publication Critical patent/US20120100563A1/en
Priority to US13/606,299 priority patent/US8431386B2/en
Application granted granted Critical
Publication of US8263328B2 publication Critical patent/US8263328B2/en
Priority to US13/836,679 priority patent/US9005914B2/en
Priority to US14/684,861 priority patent/US9366674B2/en
Priority to US15/155,803 priority patent/US9562256B2/en
Priority to US15/388,697 priority patent/US9651545B1/en
Priority to US15/481,782 priority patent/US9957547B2/en
Priority to US15/925,929 priority patent/US10160994B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/60Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/62Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving uric acid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/521Single-layer analytical elements
    • G01N33/523Single-layer analytical elements the element being adapted for a specific analyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/98Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving alcohol, e.g. ethanol in breath

Definitions

  • the present invention relates generally to devices and formulations for reagents employed in such devices that enable detecting, screening and monitoring levels of certain constituents in bodily fluids sampled from humans and animals, and pertains, more specifically, to the construction and manufacture of such devices.
  • the present invention provides formulations and devices that enable a user to employ a bodily fluid, such as saliva or another oral fluid, serum or plasma, utilizing devices that provide color changes to indicate the presence and level of a certain constituent in the bodily fluid. Further, the present invention provides methods of construction and manufacture that enable such devices to be made available for widespread use for detecting, screening or monitoring the presence and level of any one of a plurality of certain constituents with increased ease and economy.
  • a bodily fluid such as saliva or another oral fluid, serum or plasma
  • the present invention attains several objects and advantages, some of which are summarized as follows: Provides devices of simplified construction for widespread use in detecting, screening and monitoring the presence and level of any selected one of a plurality of certain constituents in bodily fluids; enables an exceptionally rapid response in a quick and easy non-invasive procedure for determining the presence and level of a particular constituent in a bodily fluid; provides for the economical manufacture and distribution of devices capable of detecting, screening and monitoring the presence of certain constituents in bodily fluids; makes available a simplified visual reading of a color change to determine the presence and level of a certain constituent in a bodily fluid; provides an economical and reliable device for simplified use in detecting, screening or monitoring the presence of a selected certain constituent in a bodily fluid; encourages widespread use to the benefit of a larger number of users who can enjoy greater economy and convenience in reaching and maintaining higher goals in healthcare.
  • the present invention may be described briefly as a method of making a device for conducting a non-invasive analysis of a bodily fluid to determine the presence and the level of a certain constituent carried by the bodily fluid, the device including an indicator formulation capable of changing color in response to exposure to the certain constituent to provide a visible indication of the presence and the level of the certain constituent carried by the bodily fluid, the method comprising: providing a carrier substrate of a material having voids establishing a high void volume within the carrier substrate; applying a chromagen formulation to the carrier substrate to create a chromagen-laden carrier member; and subsequently applying to the chromagen-laden carrier member a selected reagent having a particular constituent-specific formulation to combine the selected reagent with the chromagen formulation applied to the carrier substrate, thereby establishing the indicator formulation within the carrier substrate in place for reception of a sample of the bodily fluid later placed upon the carrier substrate.
  • the invention provides a device for conducting a non-invasive analysis of a bodily fluid to determine the presence and the level of a certain constituent carried by the bodily fluid, the device including an indicator formulation capable of changing color in response to exposure to the certain constituent to provide a visible indication of the presence and the level of the certain constituent carried by the bodily fluid, the device comprising: a carrier substrate of a material having voids establishing a high void volume within the carrier substrate; and an indicator formulation carried by the carrier substrate, the indicator formulation consisting essentially of a chromagen formulation and a constituent-specific formulation selected from formulations responsive to levels of any one of a plurality of different certain constituents.
  • FIG. 1 is a pictorial view of a device constructed in accordance with the present invention
  • FIG. 2 is an enlarged, somewhat diagrammatic, cross-sectional view taken along line 2 - 2 of FIG. 1 ;
  • FIG. 3 is a flow diagram illustrating a method of the present invention
  • FIG. 4 is a plan view of another device constructed in accordance with the present invention.
  • FIG. 5 is a pictorial view showing use of the device of FIG. 4 ;
  • FIG. 6 is a pictorial view showing the use of still another device constructed in accordance with the present invention.
  • FIG. 7 is a pictorial view showing the use of yet another device constructed in accordance with the present invention.
  • a device constructed in accordance with the present invention is shown at 20 and is seen to include a carrier substrate in the form of a pad 22 of a material having voids 24 establishing a high void volume within the pad 22 .
  • An indicator formulation is carried by the pad 22 and is illustrated at 30 in the form of a layer 32 carried by fibers 34 of the material, in juxtaposition with voids 24 within the pad 22 .
  • Indicator formulation 30 consists essentially of a chromagen formulation and a reagent having a constituent-specific formulation selected from formulations responsive to one of a plurality of constituents, as will be set forth in greater detail below.
  • the reagent having a constituent-specific formulation and the chromagen formulation are combined within the pad 22 such that the indicator formulation 30 is capable of changing color in response to exposure to the certain constituent to provide a visible indication on the pad 22 of the presence and the level of the certain constituent carried by a sample of a bodily fluid applied to the pad 22 .
  • the occurrence of a visible color change will provide at least a qualitative indication of the presence of the particular specific constituent to which the constituent-specific formulation will react. An absence of any visible color change will indicate that the specific constituent is not present in any significant amount in the saliva sample.
  • the preferred material for pad 22 is a non-woven fibrous material which provides the requisite high void volume.
  • the high void volume provides pad 22 with the ability to absorb rapidly the sample of bodily fluid applied to the target area 36 , to enable rapid interaction of the sample with the indicator formulation 30 , and to maximize exposure of the interacting sample and indicator formulation to ambient air for promoting a quick response through accelerating a reaction between the certain constituent carried by the sample and the indicator formulation.
  • Non-woven synthetic polymeric materials are available commercially, one such material being a non-woven polyester fibrous material. Suitable glass-fiber non-woven fibrous materials and cellulose non-woven fibrous materials also are available commercially in forms suitable for use in the construction of pad 22 .
  • the preferred materials are chosen to provide pad 22 with a void volume within a range of about eight to twelve percent of the total volume of the material.
  • Device 20 is constructed in several different variations such that one variation is available to provide a visible color change as an indication of at least the presence of a corresponding one of several certain constituents, namely, glucose, cholesterol, ethanol, uric acid and galactose, and, preferably, the level of the certain constituent, in the sample of bodily fluid applied to the target area 36 of the pad 22 .
  • Each variation requires that the pad 22 carry a formulation specific to the constituent to be detected, as a component of the indicator fromulation 30 ; however, the chromagen formulation remains unchanged among the different variations of the pad 22 so that the same chromagen formulation can serve in every variation of the pad 22 . Accordingly, the manufacture and distribution of the devices 20 is simplified and rendered more economical, as will be described below.
  • pad 22 of device 20 is manufactured by first applying to the material of pad 22 the chromagen formulation, as seen in step 40 , to create a chromagen-laden carrier member in the form of pad 22 with the chromagen formulation placed in juxtaposition with voids 24 of the pad 22 . Subsequently, a selected reagent having a particular constituent-specific formulation is applied to the chromagen-laden carrier member, as indicated at step 42 , to combine the selected reagent with the chromagen formulation applied earlier to the material of pad 22 , thereby establishing the indicator formulation 30 within the completed pad 22 .
  • Pad 22 is placed at target area 36 of device 20 for reception of the sample of bodily fluid upon the pad 22 . Since the chromagen formulation remains the same for all variations of the device 20 , economies are realized in the manufacturing process which requires only one component common to all variations and only one station for the application of that common component; however, further economy and convenience are accomplished by the ability to store the intermediate product, that is, the material of pad 22 with the applied chromagen formulation, is stored, as seen in step 44 . Subsequently applying any selected one of the constituent-specific formulations is applied, at a later time, in accordance with the requirement for any number of a particular device or particular devices, the completed carrier member with the indicator formulation being available at step 46 .
  • the common chromagen formulation consists essentially of the following components, in an example prepared as follows: Approximately equal volumes of about 0.05 to 0.5 M MBTH in distilled water is mixed with about 0.05 to 0.5 M DMAB in ethanol. The mixture is impregnated into the material of the carrier member and the impregnated material subsequently is dried, leaving the material with the chromagen formulation coated upon the fibers of the material.
  • a constituent-specific formulation consists essentially of the following components, in an example prepared as follows: Dissolve approximately equal amounts of the enzymes glucose oxidase with an activity of approximately 200 U/mg and peroxidase with an activity of approximately 200 U/mg in distilled water in the presence of approximately equal amounts of 0.05 to 0.5 M HEPES, a blend of surface active agents within the range of about 0.1% to 10% each, and a stabilizer, the preferred stabilizer being a PVP/copolymer complex in which the copolymer is methylvinylether/maleic anhydride, available commercially under the trademark GANTREZ®, the complex being prepared from 5% PVP K30 in distilled water and 5% GANTREZ® AN 139 at a pH of about 7.5.
  • the prepared constituent-specific formulation then is impregnated into the material previously impregnated with the chromagen formulation to complete a pad 22 having an indicator formulation 30 responsive to
  • a constituent-specific formulation consists essentially of the following components, in an example prepared as follows: Dissolve approximately equal amounts of the enzymes cholesterol esterase with an activity of approximately 180 U/mg and peroxidase with an activity of approximately 200 U/mg and twice as much cholesterol oxidase with an activity of approximately 47 U/mg) in distilled water in the presence of approximately equal amounts of 0.05 to 0.5 M HEPES, a blend of surface active agents within the range of about 0.1% to 10% each and a stabilizer, the preferred stabilizer being a PVP/copolymer complex in which the copolymer is methylvinylether/maleic anhydride, available commercially under the trademark GANTREZ®, the complex being prepared from 5% PVP K30 in distilled water and 5% GANTREZ® AN 139 at a pH of about 7.5.
  • the prepared constituent-specific formulation then is impregnated into the material previously impregnated with the
  • a constituent-specific formulation consists essentially of the following components, in an example prepared as follows: Mix together approximately equal amounts of about 1% to 20% PVP K30 in distilled water, about 0.5% to 5% ethoxylated surfactant in distilled water and about 0.05 to 0.5 M phosphate buffer at pH 8.5 together with one-half the same amount of alcohol oxidase with an activity of approximately 400 U/ml and one-quarter the same amount of peroxidase with an activity of approximately 200 U/mg. The prepared constituent-specific formulation then is impregnated into the material previously impregnated with the chromagen formulation to complete a pad 22 having an indicator formulation 30 responsive to the presence and level of ethanol in an applied sample of a bodily fluid.
  • a constituent-specific formulation consists essentially of the following components, in an example prepared as follows: In approximately one-hundred ml of 0.05 to 0.5 M phosphate buffered saline at pH 6.4, mix together approximately ten mg of uricase, fifteen mg of ascorbate oxidase and about six mg of peroxidase with an activity of approximately 200 U/mg. The prepared constituent-specific formulation then is impregnated into the material previously impregnated with the chromagen formulation to complete a pad 22 having an indicator formulation 30 responsive to the presence and level of uric acid in an applied sample of a bodily fluid.
  • a constituent-specific formulation consists essentially of the following components, in an example prepared as follows: Mix together approximately five ml each of about 0.05 to 0.5 M phosphate buffer at pH 7.0, peroxidase with an activity of about 200 U/mg, and ethanol (95%) together with about twenty-five ml of 10% polyvinyl alcohol in distilled water and 4200 units of galactose oxidase. The prepared constituent-specific formulation then is impregnated into the material previously impregnated with the chromagen formulation to complete a pad 22 having an indicator formulation 30 responsive to the presence and level of galactose in an applied sample of a bodily fluid.
  • a disk-shaped device 100 includes a pad 110 constructed of the material previously described in connection with pad 22 of device 20 .
  • Pad 110 provides a target area 112 which, in device 110 , is substantially surrounded by an integrated color gauge 114 having patches 116 of different colors that can be matched visually with a color change at the target area 112 .
  • an integrated color gauge 114 having patches 116 of different colors that can be matched visually with a color change at the target area 112 .
  • alpha-numeric characters may be displayed in juxtaposition with the patches 116 for a direct reading of the level detected.
  • device 100 provides a simple semi-qualitative/semi-quantitative measure of the presence and level of a particular certain constituent carried by a sample of bodily fluid applied to the target area 112 .
  • the semi-qualitative/semi-quantitative indication while more comprehensive than the generally qualitative indication provided by device 20 described above, is convenient, as shown in FIG. 5 where the device 100 is placed readily within the palm 118 of a user's hand, but not as comprehensive as the indication provided by other embodiments of the invention, as set forth below.
  • a device 120 is constructed as described in detail in the aforesaid patents, U.S. Pat. Nos. 7,824,344 and 7,993,283, and is inserted into a reader 122 that employs an algorithm which converts a sensed color change into an accurate digital readout at a display 124 , for a more accurate quantitative evaluation of the presence and level of a particular certain constituent carried by a bodily fluid sample.
  • a device 130 carries a strip 132 similar in construction to pad 22 described above, and arranged in a coil 134 held within the device 130 .
  • a sample of bodily fluid is applied to the strip 132 , at a target area registered with an access door 140 through which the sample is passed to the strip 132 .
  • a color change is sensed and an algorithm converts the sensed color change into an accurate digital readout at a display 142 .
  • the used portion 144 of the strip 132 is advanced through a slot 146 and is torn off and discarded.
  • FIGS. 6 and 7 are conveniently available to a user wishing to control and maintain weight levels.
  • the algorithms provided by these embodiments can convert the detected glucose level into glycemic control readily understood and employed by a user in connection with a weight control regimen.
  • the user is provided with information to refine glycemic control, enabling the user to adjust diet, supplement intake and exercise for the purpose of glycemic control and weight control.
  • the present invention attains all of the objects and advantages summarized above, namely: Provides devices of simplified construction for widespread use in detecting, screening and monitoring the presence and level of any selected one of a plurality of certain constituents in bodily fluids; enables an exceptionally rapid response in a quick and easy non-invasive procedure for determining the presence and level of a particular constituent in a bodily fluid; provides for the economical manufacture and distribution of devices capable of detecting, screening and monitoring the presence of certain constituents in bodily fluids; makes available a simplified visual reading of a color change to determine the presence and level of a certain constituent in a bodily fluid; provides an economical and reliable device for simplified use in detecting, screening or monitoring the presence of a selected certain constituent in a bodily fluid; encourages widespread use to the benefit of a larger number of users who can enjoy greater economy and convenience in reaching and maintaining higher goals in healthcare.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Emergency Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
US13/278,306 2010-10-23 2011-10-21 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method Expired - Fee Related US8263328B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/278,306 US8263328B2 (en) 2010-10-23 2011-10-21 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US13/606,299 US8431386B2 (en) 2010-10-23 2012-09-07 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US13/836,679 US9005914B2 (en) 2010-10-23 2013-03-15 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US14/684,861 US9366674B2 (en) 2010-10-23 2015-04-13 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US15/155,803 US9562256B2 (en) 2010-10-23 2016-05-16 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US15/388,697 US9651545B1 (en) 2010-10-23 2016-12-22 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US15/481,782 US9957547B2 (en) 2010-10-23 2017-04-07 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US15/925,929 US10160994B2 (en) 2010-10-23 2018-03-20 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US45553210P 2010-10-23 2010-10-23
US45552810P 2010-10-23 2010-10-23
US45553110P 2010-10-23 2010-10-23
US201161462890P 2011-02-09 2011-02-09
US13/278,306 US8263328B2 (en) 2010-10-23 2011-10-21 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/606,299 Division US8431386B2 (en) 2010-10-23 2012-09-07 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US13/606,299 Continuation-In-Part US8431386B2 (en) 2010-10-23 2012-09-07 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method

Publications (2)

Publication Number Publication Date
US20120100563A1 US20120100563A1 (en) 2012-04-26
US8263328B2 true US8263328B2 (en) 2012-09-11

Family

ID=45973328

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/278,306 Expired - Fee Related US8263328B2 (en) 2010-10-23 2011-10-21 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US13/606,299 Active US8431386B2 (en) 2010-10-23 2012-09-07 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/606,299 Active US8431386B2 (en) 2010-10-23 2012-09-07 Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method

Country Status (9)

Country Link
US (2) US8263328B2 (fr)
EP (1) EP2629663B1 (fr)
JP (2) JP6219719B2 (fr)
CN (1) CN103179901B (fr)
AU (1) AU2011316896B2 (fr)
BR (1) BR112013009797A2 (fr)
CA (1) CA2814350C (fr)
RU (1) RU2013121787A (fr)
WO (1) WO2012054803A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180355405A1 (en) * 2017-06-09 2018-12-13 Accessible Diagnostics, LLC System and Method for Determining Glucose Oxidase in an Analyte

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381921A (en) * 1978-12-27 1983-05-03 Eastman Kodak Company Element, structure and method for the analysis or transport of liquids
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US20030212344A1 (en) 2002-05-09 2003-11-13 Vadim Yuzhakov Physiological sample collection devices and methods of using the same
US20040158137A1 (en) 1998-03-06 2004-08-12 Eppstein Jonathan A. Integrated poration, harvesting and analysis device, and method therefor
US20070003993A1 (en) 2001-07-19 2007-01-04 Amnon Kritzman Secretion-monitoring article
US7364695B2 (en) * 2001-12-12 2008-04-29 Taylor Technologies, Inc. High void volume and/or high liquid imbibing based apparatus
US20100166604A1 (en) 2008-09-04 2010-07-01 Lim Sung H Colorimetric sensor arrays based on nanoporous pigments

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357363A (en) * 1978-12-27 1982-11-02 Eastman Kodak Company Element, structure and method for the analysis or transport of liquids
CA1134247A (fr) * 1979-04-13 1982-10-26 Giovanni Berti Dosage de l'acide urique a l'aide d'un compose resistant a la bilirubine
JPS5934155A (ja) * 1982-08-19 1984-02-24 Konishiroku Photo Ind Co Ltd 免疫分析素子
US4543338A (en) * 1983-06-03 1985-09-24 Miles Laboratories, Inc. Wipe-off test device
US4734360A (en) * 1983-07-12 1988-03-29 Lifescan, Inc. Colorimetric ethanol analysis method and test device
US4680259A (en) * 1984-09-26 1987-07-14 Eastman Kodak Company Analytical element and method for colorimetric determination of total cholesterol
DE3631195A1 (de) * 1986-05-16 1987-11-19 Miles Lab Verfahren zur herstellung von teststreifen durch impraegnieren saugfaehiger substrate
JP3097370B2 (ja) * 1992-12-28 2000-10-10 富士レビオ株式会社 過酸化水素の測定方法
US5719034A (en) * 1995-03-27 1998-02-17 Lifescan, Inc. Chemical timer for a visual test strip
AU706456B2 (en) * 1995-03-27 1999-06-17 Lifescan, Inc. Chemical timer for a direct-reading reagent test strip
US6251083B1 (en) * 1999-09-07 2001-06-26 Amira Medical Interstitial fluid methods and devices for determination of an analyte in the body
DE102004007617B4 (de) * 2004-02-17 2007-02-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Vliesstoffes, Vliesstoff und dessen Verwendung
DE102004007618A1 (de) * 2004-02-17 2005-09-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Vliesstoffen, Vliesstoff und dessen Verwendung
US7993283B1 (en) * 2007-07-23 2011-08-09 Pop Test LLC Method and apparatus for non-invasive analysis of saliva
US8410576B2 (en) * 2010-06-16 2013-04-02 National Semiconductor Corporation Inductive structure and method of forming the inductive structure with an attached core structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381921A (en) * 1978-12-27 1983-05-03 Eastman Kodak Company Element, structure and method for the analysis or transport of liquids
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US20040158137A1 (en) 1998-03-06 2004-08-12 Eppstein Jonathan A. Integrated poration, harvesting and analysis device, and method therefor
US20070003993A1 (en) 2001-07-19 2007-01-04 Amnon Kritzman Secretion-monitoring article
US7364695B2 (en) * 2001-12-12 2008-04-29 Taylor Technologies, Inc. High void volume and/or high liquid imbibing based apparatus
US20030212344A1 (en) 2002-05-09 2003-11-13 Vadim Yuzhakov Physiological sample collection devices and methods of using the same
US20100166604A1 (en) 2008-09-04 2010-07-01 Lim Sung H Colorimetric sensor arrays based on nanoporous pigments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ugwu et al. "The effect of buffers on protein conformational stability", Pharmaceutical Technology, 2004, pp. 86,88,90,92,94,96,98,100,102,104,106,108,110-113. *

Also Published As

Publication number Publication date
CN103179901A (zh) 2013-06-26
AU2011316896A1 (en) 2013-05-23
JP6219719B2 (ja) 2017-10-25
WO2012054803A3 (fr) 2012-07-12
JP2016197119A (ja) 2016-11-24
EP2629663B1 (fr) 2018-01-10
EP2629663A4 (fr) 2014-05-07
CA2814350C (fr) 2018-05-22
US20120100563A1 (en) 2012-04-26
RU2013121787A (ru) 2014-11-27
EP2629663A2 (fr) 2013-08-28
CA2814350A1 (fr) 2012-04-26
BR112013009797A2 (pt) 2020-06-09
AU2011316896B2 (en) 2015-10-22
CN103179901B (zh) 2015-11-25
US8431386B2 (en) 2013-04-30
US20130023000A1 (en) 2013-01-24
WO2012054803A2 (fr) 2012-04-26
JP2013542731A (ja) 2013-11-28

Similar Documents

Publication Publication Date Title
US5610072A (en) Detection of caffeine in beverages
US4973549A (en) Quantitative diagnostic assay employing signal producing agent bound to support and measuring migration distance of detectable signal
US20030175993A1 (en) Ketone assay
US4361648A (en) Color fixed chromogenic analytical element
US8067188B2 (en) Analyte detection
US9005914B2 (en) Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US8747773B2 (en) Portable detection apparatus for beverage ingredients
US8263328B2 (en) Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
US20180208965A1 (en) Devices and Formulations for Detecting, Screening and Monitoring Levels of Certain Constituents in Bodily Fluids and Method
WO2001079838A1 (fr) Dispositif destine a la detection d'analytes et a la mesure du ph dans un echantillon
EP0813681A1 (fr) Analyses pour composes d'articles consommables
US9366674B2 (en) Devices and formulations for detecting, screening and monitoring levels of certain constituents in bodily fluids and method
EP0620437B1 (fr) Dispositif multicouche
US6500665B2 (en) Disposable caffeine testing device
EP0840124B1 (fr) Elément d'analyse à réactif sec
WO2017180108A1 (fr) Dispositifs et formulations permettant de détecter, sélectionner et surveiller des niveaux de certains constituants dans des fluides corporels, et procédé
CA1221008A (fr) Analyse rapide de l'ethanol dans les liquides corporels
CN117805400A (zh) 一种用于辅助监测宠物抑郁情绪的试剂盒
CA2390490A1 (fr) Kit personnel de test de grossesse

Legal Events

Date Code Title Description
AS Assignment

Owner name: POP TEST LLC, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALTSCHUL, RANDICE LISA;RAPKIN, MYRON;O'BRIEN, REBECCA;REEL/FRAME:027113/0208

Effective date: 20111019

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362