US8253885B2 - Liquid crystal display device, backlight source and optical film - Google Patents

Liquid crystal display device, backlight source and optical film Download PDF

Info

Publication number
US8253885B2
US8253885B2 US12/416,257 US41625709A US8253885B2 US 8253885 B2 US8253885 B2 US 8253885B2 US 41625709 A US41625709 A US 41625709A US 8253885 B2 US8253885 B2 US 8253885B2
Authority
US
United States
Prior art keywords
liquid crystal
colored layer
base material
reflective layer
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/416,257
Other languages
English (en)
Other versions
US20090251636A1 (en
Inventor
Tsuyoshi Maeda
Toyokazu Ogasawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAEDA, TSUYOSHI, OGASAWARA, TOYOKAZU
Publication of US20090251636A1 publication Critical patent/US20090251636A1/en
Application granted granted Critical
Publication of US8253885B2 publication Critical patent/US8253885B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight

Definitions

  • the present invention relates to a liquid crystal display device, a backlight source and an optical film.
  • Liquid crystal display devices are in widespread use for monitors of a personal computer and a portable device and a television because of various advantages that they realize low voltage and low power consumption and they can be formed into a thinner film, downsized, or large-screen design.
  • Such a liquid crystal display device has been provided in various modes according to the arrangement state of liquid crystals of a liquid crystal substance layer, for example, a TN (Twisted Nematic) mode, an IPS (In-Plane Switching) mode, an OCB (Optically Compensatory Bend) mode, a VA (Vertically Aligned: vertical orientation) mode.
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • OCB Optically Compensatory Bend
  • VA Vertical orientation
  • This liquid crystal has an issue that the hue in the ease of observing the liquid crystal from a normal direction is different from the hue in the case of observing it from a wide-angle direction in white display.
  • the sheet containing dichroic dyes disclosed in Japanese Patent Application Laid-Open No. 10-293299 needs to be formed while performing an orientation control on the both dichroic dyes and liquid crystal molecules, which makes its manufacture difficult.
  • the present invention has been made in views of such issues, and it is desirable to provide a new and improved liquid crystal display device, backlight source, and optical film which can restrain a hue change observed from the wide-angle in white display and can be manufactured easily.
  • a liquid crystal display device including a liquid crystal panel; a backlight source which irradiates the liquid crystal panel with white light, provided in a rear side of the liquid crystal panel; and an optical film which is provided between the liquid crystal panel and the backlight source, in which the optical film includes a base material which passes the white light irradiated from the backlight source, a colored layer which is partially provided on one surface of the base material at the side of the liquid crystal panel, and a reflective layer which reflects the white light, provided on another surface of the base material at the side of the backlight source opposite to the colored layer.
  • the area of a part of the base material with the colored layer formed may he smaller than that of a part with no colored layer formed.
  • the area of a part of the base material with the reflective layer formed may he smaller than that of a part with no reflective layer formed.
  • the area of the part of the base material with the colored layer formed may he smaller than that of the part of the base material with the reflective layer formed.
  • the colored layer may be formed of a chemical compound having the maximum absorption wavelength in a visible light region of 580 nm and more.
  • a plurality of the colored layers may be provided like islands with each of them in a schematically rectangular shape, and a plurality of the reflective layers may be provided like islands with each of them in a schematically circular shape larger than the corresponding colored layer.
  • the colored layer and the reflective layer may be provided on the base material in a grid shape.
  • the colored layer and the reflective layer may be formed in a grid shape oblique to each edge side of the base material.
  • the colored layer and the reflective layer may be provided on the base material in a stripe shape.
  • a scattering member which scatters the light passing through the optical film does not exist between the optical film and the liquid crystal panel.
  • a backlight source assembly including: a backlight source which emits white light; and an optical film which is arranged on the backlight source, in which the optical film includes a base material which passes the white light emitted from the backlight source, a reflective layer which reflects the white light, partially provided on one surface of the base material at a side of the backlight source, and a colored layer which is provided on another surface opposite to the side of the backlight source, in a way of facing the reflective layer.
  • an optical film including: a base material which passes white light; a reflective layer which reflects the white light, partially provided on one surface of the base material; and a colored layer which is provided on another surface of the base material opposite to the reflective layer.
  • FIG. 1 is a view for explaining a liquid crystal display device according to a first embodiment of the invention
  • FIG. 2A is a view for explaining an example of a colored layer and a reflective layer according to the embodiment
  • FIG. 2B is a view for explaining an example of the colored layer and the reflective layer according to the embodiment.
  • FIG. 2C is a view for explaining an example of the colored layer and the reflective layer according to the embodiment.
  • FIG. 3 is a view for explaining the colored layer and the reflective layer according to the embodiment.
  • FIG. 4 is a view for explaining an example of the colored layer and the reflective layer according to the embodiment.
  • FIG. 5 is a view for explaining an example of the colored layer and the reflective layer according to the embodiment.
  • FIG. 6 is a view for explaining an example of the colored layer and the reflective layer according to the embodiment.
  • FIG. 7 is a view for explaining the colored layer and the reflective layer according to the embodiment.
  • FIG. 8 is a view for explaining a deviation amount between the colored layer and the reflective layer according to the embodiment.
  • FIG. 9 is a spectrum showing an example of an absorption property of a blue pigment according to the embodiment.
  • FIG. 10 is a view for explaining definition of a coordinate system
  • FIG. 11 is a view for explaining a liquid crystal display device in related art
  • FIG. 12 is a graph for explaining polar angle dependency of hue in the liquid crystal display device in related art.
  • FIG. 13 is a view for explaining the liquid crystal display device in related art.
  • a coordinate system as shown in FIG. 10 is adopted with a plane surface of a certain substrate 1 as an xy-plane and a vertical direction of the substrate 1 as a z-axis direction.
  • an angle ⁇ formed by the vector 3 and the z-axis is defined as a polar angle and an angle ⁇ formed by a projection on the xy-plane of the vector 3 and the y-axis is defined as an azimuth.
  • the vector 3 may have a direction of longitudinal axis of molecule of a liquid crystal substance and a pigment or it may have a direction of view when obliquely seeing at the liquid crystal display device with the substrate 1 as the display surface of the liquid crystal display device.
  • FIG. 11 is a view for explaining a hue change in the liquid crystal display device in related art.
  • the liquid crystal display device 900 in related art mainly includes, for example, a backlight source 901 and a liquid crystal panel 903 , as shown in FIG. 11 .
  • the backlight, source 901 is an irradiating unit which irradiates the liquid crystal panel 903 described later, for example, with white light.
  • the liquid crystal panel 903 controls transmission/shielding of the light irradiated from the backlight source 901 according to the on/off voltage applied to an electrode (not illustrated) provided in the liquid crystal panel 903 .
  • the liquid crystal panel 903 includes polarization films 905 and 915 , glass substrates 907 and 913 , a liquid crystal substance layer 909 , and an optical filter 911 .
  • the liquid crystal panel 903 has pixels aligned flatly and electrodes (not illustrated) for applying a predetermined voltage to the respective pixels.
  • the liquid crystal display device 900 in related art as shown in FIG. 11 has such an issue that a white light entering the liquid crystal panel 903 vertically passes through the liquid crystal panel 903 as the white light, but a white light entering the liquid crystal panel 903 obliquely is tinged with yellow after passing through the liquid crystal panel 903 .
  • FIG. 12 is a graph for explaining a polar angle dependency of hue in the liquid crystal display device in related art.
  • the horizontal axis of FIG. 12 shows wavelength and the vertical axis of FIG. 12 shows transmittance.
  • an angle formed by the direction of view and the normal direction of the liquid crystal display device that is, the polar angle ⁇
  • the spectrum when the angle ⁇ is 0° almost agrees with the spectrum when the angle ⁇ is 10° with little difference in the spectrum.
  • a sheet 951 including dichroic dyes is arranged between the backlight source 901 and the liquid crystal panel 903 .
  • a white light entering the sheet 951 vertically passes through the liquid crystal panel 903 as the white light, while a white light entering the sheet 951 obliquely becomes blue light through the dichroic dyes included in the sheet 951 . Therefore, the blue light entering the liquid crystal panel 903 gets white and comes out from the liquid crystal panel 903 as a white light.
  • the above-mentioned sheet 951 containing the dichroic dyes can be manufactured, for example, with the dichroic dyes and liquid crystal molecules, it is necessary to control the orientation of the dichroic dyes and liquid crystal molecules in its manufacture, which makes it difficult to manufacture the sheet 951 .
  • the inventors of the present invention have made intensive studies to overcome the issue and come to invention a liquid crystal display device, a backlight source, and an optical film described below.
  • FIG. 1 is a view for explaining the liquid crystal display device according to the embodiment of the invention.
  • the liquid crystal display device 10 mainly includes an optical film 100 , a backlight source 200 , and a liquid crystal panel 300 .
  • the optical film 100 is a member arranged between the backlight source 200 and the liquid crystal panel 300 described later.
  • the optical film 100 absorbs a part of a white light supplied from the backlight source 200 , and the partially absorbed white light is transmitted to the liquid crystal panel 300 arranged above the upper surface of the optical film 100 .
  • the optical film 100 will be hereinafter described in detail.
  • the backlight source 200 is an irradiating unit which irradiates the optical film 100 and the liquid crystal panel 300 , for example, with the white light.
  • the backlight source 200 according to the embodiment may use a cold-cathode fluorescent lamp (CCFL), a flat fluorescent lamp (FFL), an electro luminescence (EL) element, and a light emitting diode (LED).
  • CCFL cold-cathode fluorescent lamp
  • FTL flat fluorescent lamp
  • EL electro luminescence
  • LED light emitting diode
  • the backlight source 200 according to the embodiment is not limited to the above but any light source can be used as far as it can supply the white light.
  • the liquid crystal panel 300 controls the transmission/shielding of the light passing through the optical film 100 from the backlight source 200 according to the on/off voltage applied to the electrodes (not illustrated) provided in the liquid crystal panel 300 .
  • the liquid crystal panel 300 mainly includes polarization films 301 and 311 , glass substrates 303 and 309 , a liquid crystal substance layer 305 , and an optical filter 307 .
  • the liquid crystal panel 300 has the pixels aligned flatly and the electrodes (not illustrated) for applying a predetermined voltage to the respective pixels.
  • the polarization film 301 controls the polarization of the light passing through the optical film 100 and the polarization film 311 controls the polarization of the light coming out from the liquid crystal panel 300 .
  • the direction of a polarization axis in each polarization film is determined according to the orientation of a liquid crystal substance used for the liquid crystal substance layer 305 described later.
  • one or a plurality of retardation films for compensating the coloration in a voltage-applied state on the liquid crystal substance layer 305 described later may be provided between the polarization films 301 and 311 and the glass substrates 303 and 309 described later.
  • the retardation film for example, an optical uniaxial film can be used. An angle formed by the polarization axis of each optical uniaxial film and the x-axis shown in FIG. 3 can be defined as a predetermined angle.
  • the glass substrates 303 and 309 are provided on and under the liquid crystal substance layer 305 described later, to support the liquid crystal substance forming the liquid crystal substance layer 305 .
  • the glass substrates 303 and 309 are formed of glass including a predetermined component.
  • the electrodes (not illustrated) patterned by one of a predetermined metal and indium-tin oxide (ITO) are formed between the glass substrates 303 and 309 and the liquid crystal substance layer 305 .
  • the surfaces of the glass substrates 303 and 309 may be subjected to what is called orientation processing in order to control the orientation of the liquid crystal substance forming the liquid crystal substance layer 305 described later.
  • orientation processing for example, there are the processing (so-called rubbing processing) for forming an alignment film on the surfaces of the glass substrates 303 and 309 by using polyimide or the like before rubbing the formed thin film to the predetermined direction, and the processing for forming a photo-alignment film on the surfaces of the glass substrates 303 and 309 before irradiating there with the light of a predetermined wavelength.
  • the orientation processing may be performed on the electrodes (not illustrated) formed on the surfaces of the glass substrates 303 and 309 .
  • the liquid crystal substance layer 305 is a film formed of a predetermined liquid crystal substance.
  • the liquid crystal substance forming the liquid crystal substance layer 305 is orientated in a predetermined direction. All the liquid crystal substances are not completely aligned in the same direction, but the respective liquid crystal substances are aligned in the predetermined direction on average.
  • the average orientation direction (more specifically, a unit vector showing the orientation direction on average) is referred to as a director.
  • the liquid crystal display device 10 is preferably a liquid crystal display device of the VA mode in which the director of the liquid crystal substance in the liquid crystal substance layer 305 is substantially parallel with the vertical direction (the direction of the z-axis in FIG. 1 ).
  • the liquid crystal substance forming the liquid crystal substance layer 305 according to the embodiment is preferably a liquid crystal substance (a so-called liquid crystal substance having the negative dielectric anisotropy) having the dielectric constant in the direction of longitudinal axis smaller than the dielectric constant in the direction of short axis of molecule of the liquid crystal substance.
  • Each pixel forming the liquid crystal substance layer 305 may be alignment-divided into two or four regions (domains) of orientation in order to improve a viewing angle property not to deteriorate the display quality even when it is viewed obliquely.
  • the orientation division of the liquid crystal substance layer 305 can be realized by forming each predetermined slit and each rib of a predetermined shape on the electrodes formed on the glass substrates 303 and 309 .
  • the optical filter 307 is provided on the liquid crystal substance layer 305 (the positive side of the z-axis in FIG. 1 ) and works as a band-pass filter in a visible light band.
  • the optical filter 307 is formed in a way that three kinds of microscopic color filters respectively passing the red light only, the green light only, and the blue light only are provided to be a predetermined plane arrangement configuration as shown in FIG. 1 .
  • the optical filter 307 is formed of pigment, colorant, and dye respectively absorbing the respective predetermined wavelength lights.
  • a scattering member such as a scattering filter of scattering the light passing through the optical film 100 is not provided between the optical film 100 and the liquid crystal panel 300 . This is because when the scattering member is provided, the blue light passing through the optical film 100 and going in the wide-angle direction is scattered by the scattering member and it rarely goes in the wide-angle direction.
  • the optical film 100 primarily includes, for example, a base material 101 , a colored layer 105 , and a reflective layer 109 , as shown in FIG. 1 .
  • the base material 101 becomes a substrate of the optical film 100 and is formed of a strong material almost transparent in the visible light region and free from birefringence. Almost transparent in the visible light region means that the transmittance of the light is uniform in the whole wavelength region of about 360 nm to 830 nm and that the incident light is not scattered. When scattering occurs in the base material 101 , it hinders the course of a ray from obliquely going and passing through the colored layer 105 described later, and it is difficult to obtain a predetermined hue correction.
  • acryl resin or plastic resin such as a triacetyl cellulose (TAC) film and a norbornene chemical film can be used for the base material 101 .
  • TAC triacetyl cellulose
  • Any optional material that is almost transparent in the visible light region can be used other than the plastic resin.
  • the thickness of the base material 101 can be changed, according to the design condition of the liquid crystal display device 10 and the backlight source 200 with the optical film 100 according to the embodiment mounted there and it may be defined, for example, as about 1000 ⁇ m.
  • the colored layer 105 is formed on the surface 103 of the base material 101 at the side of the liquid crystal panel 300 and absorbs the light of a predetermined wavelength from the entered white light.
  • the colored layer 105 is partially formed on the surface 103 with the thickness of, for example, about 2 ⁇ m.
  • the colored layer 105 is preferably a blue pigment which has the maximum absorption wavelength, for example, in the band of more than 550 nm to less than 780 nm and strongly absorbs the light on a long wavelength side in the visible light band.
  • the wavelength of 550 nm is not preferable because it is the wavelength close to the maximum luminosity function and the clearness of the liquid crystal display device is deteriorated according to the absorption of the light when using the pigment that absorbs a large amount of the light of this wavelength.
  • the maximum absorption wavelength is more than 780 nm, it is not preferable because it is difficult to absorb the light of the visible light band effectively.
  • the maximum absorption wavelength of the pigment is more preferably, for example, 580 nm or more in order to absorb the light of yellow color and orange color effectively.
  • Such a pigment may be dye or colorant.
  • the pigment there are chemical compounds of xanthenes, squarylium, cyanine, oxonol, azo, pyrromethene, and porphyrin.
  • the area of a part with the colored layer 105 formed is preferably smaller than that of a part with no colored layer 105 formed.
  • the area of the part having the colored layer 105 is larger than that of the part with no colored layer formed, almost all the white lights passing through the optical film 100 are tinged with blue, and the front brightness of the liquid crystal display device 10 is rapidly reduced. Therefore, the area of the part with the colored layer 105 formed is preferably less than about 50% of the whole area of the surface 103 .
  • the white light which enters the colored layer 105 obliquely and passes through the colored layer 105 is tinged with blue because the light of a predetermined wavelength band is absorbed by the pigment, forming the colored layer 105 .
  • the blue-tinged light going in the oblique direction enters the liquid crystal panel 300 and its hue becomes yellowish through the liquid crystal panel 300 .
  • the blue-tinged light entering the liquid crystal panel 300 comes out from the liquid crystal panel 300 as the white light. Therefore, when an observer sees the liquid crystal display device 10 from the wide-angle direction, he or she is to observe the white light.
  • the reflective layer 109 is provided on the surface 107 of the base material 101 at the side of the backlight source 200 and it scatters and reflects the white light supplied from the normal direction of the reflective layer 109 (namely, the side of the negative direction of the z-axis in FIG. 1 ).
  • the reflective layer 109 is partially formed on the surface 107 in a way of overlapping with the colored layer 105 on the plane (namely, opposite to the colored layer 105 ).
  • the reflective layer 109 can be formed of a diffuse reflection board using the white color paint and the thickness can foe fixed at about 2 ⁇ m.
  • the area of the part with the reflective layer 109 formed is preferably smaller than that of the part with no reflective layer 109 formed.
  • the area of the part having the reflective layer 109 is preferably less than 50% of the whole area of the surface 107 .
  • the area of the part with the reflective layer 109 formed is preferably larger than that of the part with the colored layer 105 formed.
  • the hue of the white light supplied from the normal direction of the optical film 100 (at the side of the negative direction of the z-axis in FIG. 1 ) changes to blue and the light passing through the liquid crystal panel 300 is tinged with blue, and it is not preferable.
  • FIG. 2A to FIG. 5 are views for explaining an example of the colored layer and the reflective layer according to the embodiment.
  • FIG. 2A shows a plane view when viewing the optical film 100 according to the embodiment from the side of the liquid crystal panel 300 (the side of the positive direction of the z-axis in FIG. 1 ).
  • the reflective layer 109 formed on the surface 107 on the side of the backlight source 200 is shown by a dotted line.
  • each colored layer 105 is formed on the surface 103 like an island and each reflective layer 109 is formed on the surface 107 like an island.
  • Each colored layer 105 has a schematically rectangle shape and each reflective layer 109 has a schematically circle shape.
  • the shape of the colored layer 105 may be a rectangle and a polygon such as a pentagon and a hexagon, and the shape of the reflective layer 109 may be elliptical.
  • the shape of the colored layer 105 is preferably a square, and the shape of the reflective layer 109 is preferably a circle.
  • the diameter of one reflective layer 109 is the size large enough to include the colored layer 105
  • the reflective layer 109 preferably has the diameter almost circumscribed with the corresponding colored layer 105 .
  • the vertexes of the rectangle of the colored layer 105 are preferably arranged at the positions that do not agree with a polarizing plate absorption axis or transmission axis.
  • the vertexes of the rectangle of the colored layer 105 are preferably arranged at the positions of about 45° from the polarizing plate absorption axis or the transmission axis. Therefore, the direction of each side of the rectangle of the colored layer 105 is arranged to be almost coincident with the direction of the polarizing plate absorption axis or the transmission axis, thereby making the vertexes of the rectangle of the colored layer 105 at the angle of about 45° from the polarizing plate absorption axis or the transmission axis.
  • FIG. 2B shows the one reflective layer 109 and the colored layer 105 provided at a position corresponding to this reflective layer 109 in an enlarged way
  • FIG. 3 is a cross-sectional view showing the optical film cut at the cut line shown in FIG. 2A .
  • the white light L 1 vertically entering the reflective layer 109 is reflected by the reflective layer 109 and does not enter the colored layer 105 , as shown in FIG. 3 .
  • the white light L 1 entering the part with no reflective layer 109 formed passes through the optical film 100 as the white light without, passing through the colored layer 105 .
  • a part of the white light L 2 entering the optical film 100 obliquely is refracted by the base material 101 and passes through the colored layer 105 .
  • the light for a predetermined wavelength band is absorbed in the colored layer 105 and it becomes a blue-tinged light (blue light) L 4 , hence to come out from the colored layer 105 .
  • the width of the colored layer 105 is the same as the width of the reflective layer 109 in the diagonal line direction of the colored layer 105 (in other words, in the direction of an azimuth angle 45°). Therefore, the ratio that the white light L 3 entered from the diagonal line direction of the colored layer 105 is reflected by the reflective layer 109 is reduced, and the ratio that the white light L 3 passes through the colored layer 105 is increased.
  • a hue change is the largest when seeing the liquid, crystal panel from the direction of the azimuth angle 45°. In the example shown in FIG. 2A and FIG.
  • FIG. 2A shows 16 colored layers 105 and 16 reflective layers 109
  • the number of the colored layers 105 and the reflective layers 109 provided on the base material 101 is not limited to the example shown in the view.
  • the colored layers 105 and the reflective layers 109 may be arranged as shown in FIG. 2A or may be arranged in a staggered shape. Although the colored layers 105 and the reflective layers 109 are arranged uniformly in FIG. 2A , the arrangement may be nonuniform.
  • liquid crystal panel adopting the VA mode has been described as an example in FIG. 2A and FIG. 2B , it is possible to correct a hue in the liquid crystal panel adopting the IPS liquid crystal mode by providing the colored layers 105 and the reflective layers 109 shown in FIG. 2A and FIG. 2B . Further, it is also possible to correct a hue similarly in the liquid crystal panel adopting the TN liquid crystal mode by providing the colored layer 105 and the reflective layer 109 , for example, as shown in FIG. 2C .
  • the colored layer 105 and the reflective layer 109 may have the same shape such as schematic rectangular shape or schematic circular shape.
  • the colored layer 105 is formed on the surface 103 in a grid shape obliquely crossing the edge side of the surface 103 .
  • the reflective layer 109 is formed on the surface 107 in a grid shape obliquely crossing the edge side of the surface 107 .
  • the width of the colored layer 105 is the same as the width of the reflective layer 109 shown in FIG. 4 . Therefore, similarly to the colored layer 105 and the reflective layer 109 shown in FIG. 2A , the colored layer 105 and the reflective layer 109 shown in FIG. 4 can perform a hue-correction on the white light having the maximum hue change in the liquid crystal panel adopting the VA mode (namely, white light, entered from the direction of the azimuth angle 45°) most effectively.
  • the colored layer 105 and the reflective layer 109 according to the embodiment may be formed on the substrate 101 in a grid shape as shown in FIG. 5 or in a stripe shape as shown in FIG. 6 .
  • FIG. 7 is a view for explaining the colored layer and the reflective layer according to the embodiment.
  • FIG. 8 is a view for explaining the deviation amount between the colored layer and the reflective layer according to the embodiment.
  • the width W(A) of the colored layer 105 , the width G(A) between the neighboring colored layers 105 , the width W(B) of the reflective layer 109 , and the width G(B) between the neighboring reflective layers 109 can be determined according to the optical characteristics such as the refractive index of a material forming each of the colored layer 105 and the reflective layer 109 , the optical characteristics of a material forming the base material 101 , and the condition of mounting the optical film 100 .
  • the width W(A) of the colored layer 105 can be set based on the size of the base material 101 and the condition of mounting the optical film 100 .
  • a deviation between the edge of the colored layer 105 and the edge of the reflective layer 109 is defined as ⁇ W as shown in FIG. 8
  • the maximum value of ⁇ W, Max ( ⁇ W) can be determined as follows.
  • the refractive index of the part with the reflective layer 109 formed is defined as n 1 and the refractive index of the base material 101 is defined as n 2 .
  • the angle formed by the normal direction of the base material 101 and the incident light L 2 is defined as ⁇ 1 and ⁇ 2 respectively and the thickness of the base material 101 is defined as d mm.
  • the Snell's rule shown in the following formula 1 is formed between the angles ⁇ 1 and ⁇ 2 , and the relation shown in the following formula 2 is formed between ⁇ W, d, and ⁇ 2 . Therefore, the maximum value of ⁇ W, Max ( ⁇ W) can be expressed as the formula 3.
  • the angle ⁇ 2 is expressed by the angle ⁇ 1 using the formula 1, the Max ( ⁇ W) becomes the value as shown in the following Table 1 according to d and ⁇ 1 .
  • n 1 uses the refractive index of the air
  • 1.0 and n 2 uses the refractive index of an acrylic base material, 1.5.
  • Any optional method that can realize a microscopic pattern can be used in order to form the colored layer 105 and the reflective layer 109 on the base material 101 .
  • optical film 100 according to the embodiment is independent of the backlight source 200 and the liquid crystal panel 300 has been described in the above, it is not limited to the example.
  • the optical film 100 according to the embodiment may be formed integrally with the backlight source 200 and realized as the backlight source including the optical film 100 according to the embodiment.
  • the optical film 100 according to the embodiment may be formed integrally with the liquid crystal panel 300 and realized as the liquid crystal panel 300 including the optical film 100 according to the embodiment.
  • the liquid crystal display device 10 including the optical film 100 including the optical film 100 according to the embodiment, a simulation is performed on the front brightness and the color difference with the following conditions set.
  • the color difference ⁇ xy in observing the display from the polar angle 60° and the azimuth angle 45° is calculated as for the color difference.
  • the blue pigment has the maximum absorption wavelength about 620 nm as shown in FIG. 9 and that the colored layer 105 and the reflective layer 109 are formed on the base material 101 having the thickness of 1000 ⁇ m under the condition shown in the Table 2.
  • the colored layer 105 and the reflective layer 109 have substantially circle shapes and formed on the base material 101 like islands.
  • the front brightness is reduced by 10 cd/m 2 compared with the conventional example, but that a hue change in the oblique direction (deviation observed from the front) can be reduced to half or less of the conventional example, as shown in the Table 2.
  • the colored layer 105 may be provided at a position deviated to one edge of the reflective layer 109 according to the arrangement position of the base material 101 .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
US12/416,257 2008-04-04 2009-04-01 Liquid crystal display device, backlight source and optical film Expired - Fee Related US8253885B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008098611A JP4471014B2 (ja) 2008-04-04 2008-04-04 液晶表示装置、バックライト光源および光学フィルム
JPP2008-098611 2008-04-04

Publications (2)

Publication Number Publication Date
US20090251636A1 US20090251636A1 (en) 2009-10-08
US8253885B2 true US8253885B2 (en) 2012-08-28

Family

ID=41132929

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/416,257 Expired - Fee Related US8253885B2 (en) 2008-04-04 2009-04-01 Liquid crystal display device, backlight source and optical film

Country Status (3)

Country Link
US (1) US8253885B2 (ja)
JP (1) JP4471014B2 (ja)
CN (1) CN101551547B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120012823A1 (en) * 2009-02-17 2012-01-19 Sony Corporation Color imaging element and method of manufacturing the same, photosensor and method of manufacturing the same, photoelectric transducer and method of manufacturing the same, and electronic device
US20140333873A1 (en) * 2013-05-09 2014-11-13 Samsung Electronics Co., Ltd. Display device
US20180024404A1 (en) * 2015-02-04 2018-01-25 Merck Patent Gmbh Electro-optical switching element and display device
US10267964B2 (en) 2015-05-28 2019-04-23 Boe Technology Group Co., Ltd. Color filter substrate, producing method thereof and display apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826599B2 (ja) * 2008-04-10 2011-11-30 ソニー株式会社 液晶表示装置、偏光板およびバックライト光源
KR101195849B1 (ko) * 2008-09-22 2012-11-05 삼성코닝정밀소재 주식회사 컬러시프트 저감 광학필터 및 이를 구비하는 디스플레이 장치
TWI465808B (zh) * 2010-11-25 2014-12-21 Lg伊諾特股份有限公司 背光單元及其顯示設備
WO2017010659A1 (en) 2015-07-14 2017-01-19 Samsung Electronics Co., Ltd. Display device and backlight unit included therein
JP2020064084A (ja) * 2017-02-17 2020-04-23 パナソニックIpマネジメント株式会社 光学デバイス及び光学システム
CN108873445A (zh) * 2017-05-12 2018-11-23 京东方科技集团股份有限公司 显示基板、其制作方法及反射型液晶显示面板、显示装置
CN111193083B (zh) * 2020-02-26 2022-02-01 京东方科技集团股份有限公司 带通滤波器及其制备方法和驱动方法、电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293299A (ja) 1997-04-18 1998-11-04 Nec Corp 液晶表示装置及び二色性色素含有シートの製造方法
US6147740A (en) * 1997-04-02 2000-11-14 Fujitsu Limited Liquid crystal panel and display including dichroic dye for absorbing yellow component of incident light
US6246506B1 (en) * 1996-09-05 2001-06-12 Fujitsu Limited Optical display device having a reflection-type polarizer
US20060291236A1 (en) * 2005-06-24 2006-12-28 Innolux Display Corp. Light guide plate with translucent ink film, and backlight module and liquid crystal display device using the same
US20080297530A1 (en) * 2007-05-31 2008-12-04 Monte Jerome Ramstad Four primary color display apparatus and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438188B2 (ja) * 2000-06-29 2010-03-24 大日本印刷株式会社 カラーフィルタ及びその製造方法、並びに液晶表示装置
JP2005283673A (ja) * 2004-03-26 2005-10-13 Sharp Corp 液晶表示装置
CN101017279A (zh) * 2006-02-07 2007-08-15 瀚宇彩晶股份有限公司 液晶显示器背光模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246506B1 (en) * 1996-09-05 2001-06-12 Fujitsu Limited Optical display device having a reflection-type polarizer
US6147740A (en) * 1997-04-02 2000-11-14 Fujitsu Limited Liquid crystal panel and display including dichroic dye for absorbing yellow component of incident light
JPH10293299A (ja) 1997-04-18 1998-11-04 Nec Corp 液晶表示装置及び二色性色素含有シートの製造方法
US20060291236A1 (en) * 2005-06-24 2006-12-28 Innolux Display Corp. Light guide plate with translucent ink film, and backlight module and liquid crystal display device using the same
US20080297530A1 (en) * 2007-05-31 2008-12-04 Monte Jerome Ramstad Four primary color display apparatus and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120012823A1 (en) * 2009-02-17 2012-01-19 Sony Corporation Color imaging element and method of manufacturing the same, photosensor and method of manufacturing the same, photoelectric transducer and method of manufacturing the same, and electronic device
US8952357B2 (en) * 2009-02-17 2015-02-10 Sony Corporation Cytochrome c552 color imaging element and method of manufacturing the same, cytochrome c552 photosensor and method of manufacturing the same, cytochrome c552 photoelectric transducer and method of manufacturing the same, and cytochrome c552 electronic device
US20140333873A1 (en) * 2013-05-09 2014-11-13 Samsung Electronics Co., Ltd. Display device
US20180024404A1 (en) * 2015-02-04 2018-01-25 Merck Patent Gmbh Electro-optical switching element and display device
US10545378B2 (en) * 2015-02-04 2020-01-28 Merck Patent Gmbh Electro-optical switching element and display device
US10267964B2 (en) 2015-05-28 2019-04-23 Boe Technology Group Co., Ltd. Color filter substrate, producing method thereof and display apparatus

Also Published As

Publication number Publication date
CN101551547B (zh) 2011-11-09
US20090251636A1 (en) 2009-10-08
JP2009251247A (ja) 2009-10-29
JP4471014B2 (ja) 2010-06-02
CN101551547A (zh) 2009-10-07

Similar Documents

Publication Publication Date Title
US8253885B2 (en) Liquid crystal display device, backlight source and optical film
US10067343B2 (en) Liquid crystal display device for head-up display device, and head-up display device
US8208097B2 (en) Color compensation multi-layered member for display apparatus, optical filter for display apparatus having the same and display apparatus having the same
US8749733B2 (en) Liquid crystal display device
US9588273B2 (en) Optical pattern sheet, backlight unit, and liquid crystal display having the same
KR19990078041A (ko) 액정표시장치
KR20050067056A (ko) 액정 표시 장치
KR20140052819A (ko) 시야각 제어가 가능한 백라이트 유닛을 구비한 액정표시장치
US8149356B2 (en) Liquid crystal display device, polarizing plate and backlight source
US20140176859A1 (en) Wide-color gamut film, display apparatus with the wide-color gamut film, and method for manufacturing the film
US20080284951A1 (en) Liquid crystal display device
KR101415683B1 (ko) 액정표시장치
JP4605206B2 (ja) 液晶表示装置
CN110727139A (zh) 开关设备及显示装置
US20100165248A1 (en) Backlight unit and liquid crystal display device having the same
JP2010122435A (ja) 液晶表示装置、バックライトユニットおよび光学フィルタ
TW201329545A (zh) 液晶顯示裝置
SK51262007A3 (sk) Prenosové zobrazovacie zariadenie
JP5454443B2 (ja) 液晶表示装置
CN207216218U (zh) 背光模块及显示装置
KR101904355B1 (ko) 액정 표시 장치 및 액정 표시 장치의 제조 방법
US20160161786A1 (en) Liquid crystal display panel and liquid crystal display including the same
JP7503092B2 (ja) 液晶表示装置
KR102262569B1 (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
US9971199B2 (en) Liquid crystal display panel and liquid crystal display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAEDA, TSUYOSHI;OGASAWARA, TOYOKAZU;REEL/FRAME:022507/0653

Effective date: 20090216

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20160828