US8228374B2 - Method to determine dielectric permeability of dielectric object - Google Patents
Method to determine dielectric permeability of dielectric object Download PDFInfo
- Publication number
- US8228374B2 US8228374B2 US13/120,494 US201013120494A US8228374B2 US 8228374 B2 US8228374 B2 US 8228374B2 US 201013120494 A US201013120494 A US 201013120494A US 8228374 B2 US8228374 B2 US 8228374B2
- Authority
- US
- United States
- Prior art keywords
- dielectric
- microwave
- reflector
- dimensional
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N22/00—Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/887—Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
Definitions
- This invention belongs to the field of remote measurement of physical characteristics of the objects, particularly to the remote determination of dielectric permeability of dielectric objects.
- dielectric permeability can then be derived from the following formula:
- ⁇ ⁇ 0 2 Sin 2 ⁇ Q ⁇ ( 1 ⁇ - 1 ⁇ b ) 2 , where ⁇ 0 is free-space wavelength; ⁇ b is length of the wave in double-armed emitter; and ⁇ is period of amplitude “zero” the passed-through wave.
- Angle ⁇ is chosen according to the ratio
- the primary disadvantage of this method is the fact that a contact is required between the emitter and a sample to determine dielectric permeability. Moreover, the sample should have a flat surface to maintain proper contact with the emitter. Thus, this method cannot be used for remote determination of dielectric permeability of the object.
- a second method used to determine dielectric permeability of a dielectric object is irradiating the object with coherent microwave radiation at N-frequencies.
- the microwave radiation is reflected from a background reflector.
- a border between the object's layers, a boundary between the dielectric object and air, or a physical body, on which the irradiated object is placed, may serve as the reflector.
- the signal reflected from the dielectric object is then registered. Then it is transferred to the time domain. Peak temporal components in the temporal spectrum are determined and measured. This data is used to calculate the dielectric permeability and the thickness of the layers. Probing and receiving is made into a sector of angles. Dielectric permeability and thickness of layers are then determined from the formulae:
- ⁇ ⁇ ⁇ l h 1 + h 2 2
- h 1 and h 2 are heights between the border of the first and second layers respectively and points from which probing is made and signal receiving points
- ⁇ (i) nad1 is angle of received signal reflected from the border between i and i+1 layer, c is speed of light
- t 1 is frequency of peak i-constituent of the time spectrum which corresponds with the reflection of the signal from the border between i and i+1 layers
- d is projection of the distance between the point of probing and signal receiving point, see Russian Patent No. RU 2039352.
- the primary purpose of the proposed invention is to fulfill capability of remote determination of dielectric permeability of the moving dielectric object of irregular shape.
- the dielectric object is radiated by coherent microwave radiation at N-frequencies to produce a three-dimensional microwave image of the dielectric object and the reflector.
- the produced video image is converted into digital form, and the three-dimensional video image of the specified area is built.
- the three-dimensional video image and microwave image are transferred into a general system of coordinates; distance Z 1 is determined between the source of microwave radiation and the reflector, free of the dielectric object, and distance Z 2 is determined between the source of microwave radiation and the section of the microwave image of the reflector in the zone of the dielectric object.
- distance Z 3 is determined between the source of microwave radiation and the video image of the dielectric object, at which point dielectric permeability of the object is determined based on ratio:
- the test dummy with the attached dielectric object was radiated with coherent microwave radiation at 14 equidistant frequencies in the range between 8-12 GHz. Irradiation was made using a switched plane antenna array with hexagonal configuration of emitting elements. The array consisted of 256 primary emitters. The reflected signal, in the form of two quadrature components in two parallel receiving channels, was recorded by 12-digit analog-to-digital converters. From these receiving channels, data on the electrical component of the recorded scattered electromagnetic field was transferred onto a PC screen. The microwave image was reconstructed using focusing method (coherent processing). The image was made only for one three-dimensional surface formed with points that have maximal values of intensity in the images of the dielectric object and reflector. Simultaneously, the microwave radiation video image of the dielectric object was received from two digital spatially-separated SDU-415 video cameras. Using this data, the three-dimensional video image of the area with the dielectric object and reflector was obtained.
- the microwave image and three-dimensional video image were transferred into a general system of coordinates.
- the general system of coordinates was set by the antenna array plane and perpendicular intersecting at its center.
- the microwave image and three-dimensional video image were processed.
- Value Z 1 was determined between the source of microwave radiation and the reflector, free of the dielectric object
- distance Z 2 was determined between the source of microwave radiation and the section of the microwave image of the reflector in the zone of the dielectric object.
- distance Z 3 was determined between the source of microwave radiation and the video image of the dielectric object.
- the dielectric permeability of the object was determined based on the ratio:
- ⁇ ( z 2 - z 3 z 1 - z 3 ) 2 .
- This method could be used for various tasks, for example, to determine the physical characteristics of dielectrics used in electrical industry.
Landscapes
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Radar Systems Or Details Thereof (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Geophysics And Detection Of Objects (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009145423/07A RU2408005C1 (ru) | 2009-11-26 | 2009-11-26 | Способ определения диэлектрической проницаемости диэлектрического объекта |
RU2009145423 | 2009-11-26 | ||
PCT/RU2010/000724 WO2011065868A1 (ru) | 2009-11-26 | 2010-11-24 | Способ определения диэлектрической проницаемости диэлектрического объекта |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110304698A1 US20110304698A1 (en) | 2011-12-15 |
US8228374B2 true US8228374B2 (en) | 2012-07-24 |
Family
ID=44055871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/120,494 Active US8228374B2 (en) | 2009-11-26 | 2010-11-24 | Method to determine dielectric permeability of dielectric object |
Country Status (19)
Country | Link |
---|---|
US (1) | US8228374B2 (uk) |
EP (1) | EP2505995B1 (uk) |
JP (1) | JP5260799B2 (uk) |
KR (1) | KR101332957B1 (uk) |
CN (1) | CN102630300B (uk) |
BR (1) | BR112012012587B1 (uk) |
CA (1) | CA2781590C (uk) |
DK (1) | DK2505995T3 (uk) |
ES (1) | ES2557457T3 (uk) |
HK (1) | HK1176404A1 (uk) |
IL (1) | IL219999A (uk) |
MX (1) | MX2012006103A (uk) |
NZ (1) | NZ599725A (uk) |
PL (1) | PL2505995T3 (uk) |
PT (1) | PT2505995E (uk) |
RU (1) | RU2408005C1 (uk) |
UA (1) | UA102197C2 (uk) |
WO (1) | WO2011065868A1 (uk) |
ZA (1) | ZA201203382B (uk) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT3071998T (pt) | 2013-11-19 | 2019-05-24 | Apstec Systems Usa Llc | Dispositivo de micro-ondas ativo e método de deteção |
WO2015077169A1 (en) * | 2013-11-19 | 2015-05-28 | Apstec Systems Usa Llc | Standoff detection and analysis of objects |
HUE057503T2 (hu) * | 2013-11-19 | 2022-05-28 | Apstec Systems Ltd | Tárgyak távoli észlelése és elemzése |
CN104931797B (zh) * | 2015-07-16 | 2017-08-25 | 上海无线电设备研究所 | 基于透波机制的有耗媒质介电常数的测量方法 |
RU2652530C1 (ru) * | 2017-05-05 | 2018-04-26 | Алексей Андреевич Калмыков | Трехмерная система голографического радиовидения для досмотра |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2039352C1 (ru) | 1992-04-30 | 1995-07-09 | Научно-исследовательский центр "Резонанс" | Способ определения диэлектрических проницаемостей и толщин слоев многослойной среды |
RU2096767C1 (ru) | 1994-07-01 | 1997-11-20 | Северо-Западный Заочный Политехнический Институт | Радиолокатор-интроскоп |
RU2121671C1 (ru) | 1997-01-24 | 1998-11-10 | Открытое акционерное общество "Центральный научно-исследовательский институт радиоэлектронных систем" | Устройство зондирования строительных конструкций |
US20030214309A1 (en) * | 2002-04-16 | 2003-11-20 | Samsung Electronics Co., Ltd. | RF power sensor for measuring an RF signal power using capacitance |
US20050021321A1 (en) | 2003-07-22 | 2005-01-27 | Communications Research Laboratory, Independent Administrative Institution | Apparatus, method, and program for estimation of biological electromagnetic compatibility |
US7040168B1 (en) | 2004-11-12 | 2006-05-09 | Frigoscandia Equipment Ab | Apparatus for determining physical parameters in an object using simultaneous microwave and ultrasound radiation and measurement |
US20060127267A1 (en) * | 2004-10-06 | 2006-06-15 | Ener1 Group, Inc. | Method and apparatus for measuring conductivity of powder materials using eddy currents |
US20070293752A1 (en) * | 2004-09-10 | 2007-12-20 | Industrial Research Limited | Synthetic Focusing Method |
US20090024026A9 (en) * | 2004-09-10 | 2009-01-22 | Simpkin Ray A | Imaging system |
US20090212789A1 (en) * | 2008-02-27 | 2009-08-27 | Chih-Ping Lin | Modified tdr method and apparatus for suspended solid concentration measurement |
GB2458764A (en) | 2008-03-18 | 2009-10-07 | Univ Manchester Metropolitan | Remote detection and measurement of a metallic or dielectric object |
US20100069744A1 (en) * | 2006-03-10 | 2010-03-18 | Ray Andrew Simpkin | Imaging System |
US20100253783A1 (en) * | 2009-02-25 | 2010-10-07 | University Of Memphis Research Foundation | Spatially-selective reflector structures, reflector disks, and systems and methods for use thereof |
US20110057653A1 (en) * | 2009-09-08 | 2011-03-10 | California Institute Of Technology | New technique for performing dielectric property measurements at microwave frequencies |
US20110267215A1 (en) * | 2008-08-13 | 2011-11-03 | Samuel Allan Barr | Methods and systems for determining the phase constant for a dielectric medium |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5590845A (en) * | 1978-12-29 | 1980-07-09 | Sumitomo Electric Ind Ltd | Dielectric constant surveilance device |
US5081530A (en) | 1987-06-26 | 1992-01-14 | Antonio Medina | Three dimensional camera and range finder |
RU1800333C (ru) | 1990-08-01 | 1993-03-07 | Институт Проблем Машиностроения Ан Усср | Способ определени диэлектрической проницаемости и устройство дл его осуществлени |
US5859609A (en) | 1991-08-30 | 1999-01-12 | Battelle Memorial Institute | Real-time wideband cylindrical holographic surveillance system |
JP3369393B2 (ja) * | 1996-03-13 | 2003-01-20 | 日野自動車株式会社 | 誘電材料の識別装置 |
US6359582B1 (en) | 1996-09-18 | 2002-03-19 | The Macaleese Companies, Inc. | Concealed weapons detection system |
US6057761A (en) | 1997-01-21 | 2000-05-02 | Spatial Dynamics, Ltd. | Security system and method |
JPH1183996A (ja) | 1997-09-03 | 1999-03-26 | Omron Corp | ミリ波検出装置 |
US6950054B1 (en) * | 2001-12-03 | 2005-09-27 | Cyterra Corporation | Handheld radar frequency scanner for concealed object detection |
US6927691B2 (en) * | 2002-03-25 | 2005-08-09 | Spatial Dynamics, Ltd. | Dielectric personnel scanning |
US7205926B2 (en) * | 2004-04-14 | 2007-04-17 | Safeview, Inc. | Multi-source surveillance system |
US6967612B1 (en) | 2004-10-22 | 2005-11-22 | Gorman John D | System and method for standoff detection of human carried explosives |
US20090273770A1 (en) | 2008-04-30 | 2009-11-05 | Honeywell International Inc. | Systems and methods for safe laser imaging, detection and ranging (lidar) operation |
-
2009
- 2009-11-26 RU RU2009145423/07A patent/RU2408005C1/ru active
-
2010
- 2010-11-24 NZ NZ599725A patent/NZ599725A/en not_active IP Right Cessation
- 2010-11-24 BR BR112012012587-7A patent/BR112012012587B1/pt not_active IP Right Cessation
- 2010-11-24 PL PL10833645T patent/PL2505995T3/pl unknown
- 2010-11-24 KR KR1020127013648A patent/KR101332957B1/ko active IP Right Grant
- 2010-11-24 PT PT108336454T patent/PT2505995E/pt unknown
- 2010-11-24 CA CA2781590A patent/CA2781590C/en active Active
- 2010-11-24 WO PCT/RU2010/000724 patent/WO2011065868A1/ru active Application Filing
- 2010-11-24 ES ES10833645.4T patent/ES2557457T3/es active Active
- 2010-11-24 EP EP10833645.4A patent/EP2505995B1/en active Active
- 2010-11-24 DK DK10833645.4T patent/DK2505995T3/en active
- 2010-11-24 MX MX2012006103A patent/MX2012006103A/es active IP Right Grant
- 2010-11-24 UA UAA201207509A patent/UA102197C2/uk unknown
- 2010-11-24 US US13/120,494 patent/US8228374B2/en active Active
- 2010-11-24 JP JP2012541048A patent/JP5260799B2/ja active Active
- 2010-11-24 CN CN201080053656.XA patent/CN102630300B/zh active Active
-
2012
- 2012-05-08 ZA ZA2012/03382A patent/ZA201203382B/en unknown
- 2012-05-24 IL IL219999A patent/IL219999A/en active IP Right Grant
-
2013
- 2013-03-26 HK HK13103753.6A patent/HK1176404A1/xx not_active IP Right Cessation
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2039352C1 (ru) | 1992-04-30 | 1995-07-09 | Научно-исследовательский центр "Резонанс" | Способ определения диэлектрических проницаемостей и толщин слоев многослойной среды |
RU2096767C1 (ru) | 1994-07-01 | 1997-11-20 | Северо-Западный Заочный Политехнический Институт | Радиолокатор-интроскоп |
RU2121671C1 (ru) | 1997-01-24 | 1998-11-10 | Открытое акционерное общество "Центральный научно-исследовательский институт радиоэлектронных систем" | Устройство зондирования строительных конструкций |
US20030214309A1 (en) * | 2002-04-16 | 2003-11-20 | Samsung Electronics Co., Ltd. | RF power sensor for measuring an RF signal power using capacitance |
US20050021321A1 (en) | 2003-07-22 | 2005-01-27 | Communications Research Laboratory, Independent Administrative Institution | Apparatus, method, and program for estimation of biological electromagnetic compatibility |
US20070293752A1 (en) * | 2004-09-10 | 2007-12-20 | Industrial Research Limited | Synthetic Focusing Method |
US20090024026A9 (en) * | 2004-09-10 | 2009-01-22 | Simpkin Ray A | Imaging system |
US20060127267A1 (en) * | 2004-10-06 | 2006-06-15 | Ener1 Group, Inc. | Method and apparatus for measuring conductivity of powder materials using eddy currents |
US7040168B1 (en) | 2004-11-12 | 2006-05-09 | Frigoscandia Equipment Ab | Apparatus for determining physical parameters in an object using simultaneous microwave and ultrasound radiation and measurement |
US20100069744A1 (en) * | 2006-03-10 | 2010-03-18 | Ray Andrew Simpkin | Imaging System |
US20090212789A1 (en) * | 2008-02-27 | 2009-08-27 | Chih-Ping Lin | Modified tdr method and apparatus for suspended solid concentration measurement |
GB2458764A (en) | 2008-03-18 | 2009-10-07 | Univ Manchester Metropolitan | Remote detection and measurement of a metallic or dielectric object |
US20110267215A1 (en) * | 2008-08-13 | 2011-11-03 | Samuel Allan Barr | Methods and systems for determining the phase constant for a dielectric medium |
US20100253783A1 (en) * | 2009-02-25 | 2010-10-07 | University Of Memphis Research Foundation | Spatially-selective reflector structures, reflector disks, and systems and methods for use thereof |
US20110057653A1 (en) * | 2009-09-08 | 2011-03-10 | California Institute Of Technology | New technique for performing dielectric property measurements at microwave frequencies |
Also Published As
Publication number | Publication date |
---|---|
DK2505995T3 (en) | 2016-01-11 |
IL219999A0 (en) | 2012-07-31 |
IL219999A (en) | 2016-03-31 |
CA2781590A1 (en) | 2011-06-03 |
JP2013512430A (ja) | 2013-04-11 |
WO2011065868A1 (ru) | 2011-06-03 |
EP2505995A1 (en) | 2012-10-03 |
US20110304698A1 (en) | 2011-12-15 |
ZA201203382B (en) | 2013-01-30 |
PT2505995E (pt) | 2016-01-26 |
EP2505995B1 (en) | 2015-11-04 |
KR101332957B1 (ko) | 2013-11-25 |
AU2010325268A1 (en) | 2012-08-16 |
HK1176404A1 (en) | 2013-07-26 |
JP5260799B2 (ja) | 2013-08-14 |
UA102197C2 (uk) | 2013-06-10 |
PL2505995T3 (pl) | 2016-04-29 |
CN102630300B (zh) | 2014-11-26 |
KR20120112421A (ko) | 2012-10-11 |
RU2408005C1 (ru) | 2010-12-27 |
ES2557457T3 (es) | 2016-01-26 |
CA2781590C (en) | 2013-10-01 |
MX2012006103A (es) | 2012-10-05 |
BR112012012587A2 (pt) | 2017-12-12 |
BR112012012587B1 (pt) | 2019-09-17 |
EP2505995A4 (en) | 2013-06-26 |
NZ599725A (en) | 2014-11-28 |
CN102630300A (zh) | 2012-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9304190B2 (en) | Method and system for unveiling hidden dielectric object | |
US8228374B2 (en) | Method to determine dielectric permeability of dielectric object | |
Panwar et al. | Performance and non-destructive evaluation methods of airborne radome and stealth structures | |
US8159534B2 (en) | Method for remote inspection of target in monitored space | |
US8670021B2 (en) | Method for stand off inspection of target in monitored space | |
CN106525862B (zh) | 利用太赫兹成像检测层状绝缘材料内部缺陷的方法和装置 | |
Zhang et al. | Broadband millimeter-wave imaging radar-based 3-D holographic reconstruction for nondestructive testing | |
US20130027244A1 (en) | Near-field millimeter wave imaging | |
WO2020113671A1 (zh) | 一种使用太赫兹电磁波检测物体的电磁特性的系统及方法 | |
CN108444938B (zh) | 太赫兹成像固体火箭发动机界面脱粘缺陷检测方法及系统 | |
Shipilov et al. | Ultra-wideband radio tomographic imaging with resolution near the diffraction limit | |
Mikhnev et al. | Time-domain terahertz imaging of layered dielectric structures with interferometry-enhanced sensitivity | |
RU2563581C1 (ru) | Способ дистанционного определения диэлектрической проницаемости диэлектрического объекта | |
Saleh et al. | Bistatic scattering measurement on low permittivity spheroidal objects | |
Nezadal et al. | Cross-polarized imaging of glass-fibre reinforced plastics at mm-Waves | |
RU2629911C1 (ru) | Способ дистанционного определения диэлектрической проницаемости диэлектрического объекта | |
RU2725514C1 (ru) | Устройство контроля диаграммы направленности и формы отражающей поверхности антенной системы | |
Qi et al. | Microwave imaging of reinforced concrete and design of a broadband antenna | |
Henry et al. | 3-D broadband terahertz synthetic aperture imaging | |
RU2639603C1 (ru) | Способ дистанционного досмотра цели в контролируемой области пространства | |
Mase et al. | Progress in microwave imaging of plasmas and applications | |
TWM614710U (zh) | 縮距天線測試設備 | |
Kovalenko | Method of Selective One-Dimensional Azimuth Ambiguity Reduction for High Resolution SAR | |
Gusev et al. | On the surface cascade radio emission escape into vacuum through the rough lunar surface | |
Shankpal | Modelling and Simulation Studies on Near-field Beamforming Based Through Wall Imaging System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APSTEC SYSTEMS LTD., MALTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUZNETSOV, ANDREY;GORSHKOV, IGOR;AVERYANOV, VALERY;REEL/FRAME:026504/0518 Effective date: 20110627 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: APSTEC SYSTEMS LTD, MALTA Free format text: CHANGE OF ASSIGNEE ADDRESS;ASSIGNOR:APSTEC SYSTEMS LTD;REEL/FRAME:033270/0846 Effective date: 20140703 |
|
AS | Assignment |
Owner name: APSTEC SYSTEMS LTD, MALTA Free format text: CHANGE OF ASSIGNEE ADDRESS;ASSIGNOR:APSTEC SYSTEMS LTD;REEL/FRAME:033554/0257 Effective date: 20140818 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |