CN102630300B - 确定电介质物体的电介质介电常数的方法 - Google Patents

确定电介质物体的电介质介电常数的方法 Download PDF

Info

Publication number
CN102630300B
CN102630300B CN201080053656.XA CN201080053656A CN102630300B CN 102630300 B CN102630300 B CN 102630300B CN 201080053656 A CN201080053656 A CN 201080053656A CN 102630300 B CN102630300 B CN 102630300B
Authority
CN
China
Prior art keywords
dielectric
microwave
dielectric object
video image
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080053656.XA
Other languages
English (en)
Other versions
CN102630300A (zh
Inventor
A.V.库兹内特索夫
I.Y.戈尔什科夫
V.P.艾弗亚诺夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apstec Systems Ltd
Original Assignee
Apstec Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44055871&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102630300(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Apstec Systems Ltd filed Critical Apstec Systems Ltd
Publication of CN102630300A publication Critical patent/CN102630300A/zh
Application granted granted Critical
Publication of CN102630300B publication Critical patent/CN102630300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons

Landscapes

  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明涉及电子工程领域,且更具体地涉及电介质的电介质介电常数的远程测量。为了确定电介质物体相对于反射体背景的电介质介电常数,利用N个频率的相干微波辐射来照射电介质物体,以便产生电介质物体和反射体的三维微波图像,并且与微波辐射源同步地利用两个或多个视频摄像机来产生视频图像。所述视频图像被转换为数字形式并且构造出给定区域的三维视频图像。三维视频图像和微波图像被转换到一般坐标系统中。计算微波辐射源与没有电介质物体的反射体之间的距离Z1以及微波辐射源与电介质物体区域中反射体的微波图像部分之间的距离Z2。基于视频图像,在一般坐标系统中确定微波辐射源与电介质物体的视频图像之间的距离Z3。随后根据关系(I)来确定电介质物体的电介质介电常数。本发明使得能够远程地确定运动的不规则形状的电介质物体的电介质介电常数。

Description

确定电介质物体的电介质介电常数的方法
技术领域
本发明涉及电子工程领域,且更具体地涉及电介质的电介质介电常数的远程测量。
背景技术
确定材料的电介质介电常数的一种公知方法包括使用双臂发射器利用电磁波来照射一取样、改变发射器双臂中的信号相位之间的差并且测量以一角度发射的波的幅度、以及确定电介质介电常数。通过改变发射器双臂中的信号相位之间的差,会消除所发射波的幅度对所述臂的长度的依赖。通过下列公式来确定电介质介电常数:
ϵ = λ 0 2 Sin 2 Q · ( 1 Δ - 1 λ b ) 2 ,
其中λo是自由空间波长;λb是双臂发射器中的波长;Δ是针对所发射波的“零”幅度的周期,以及角度θ是根据下列关系选择的:
( d k &lambda; b - 1 ) < d k &lambda; 0 &epsiv; Sin&theta; < ( d k &lambda; b + 1 ) ,
其中dk是发射器的臂的最大尺寸,请参看USSR专利No.SU 1800333A1。
这种方法的缺点是它需要发射器与其电介质介电常数将要确定的物体之间的接触。而且,该取样必须表面平坦以便确保与发射器相接触。这些要求并不允许使用这种方法用于远程确定物体的电介质介电常数。
确定电介质物体的电介质介电常数的另一种公知方法采用N个频率的相干微波辐射(coherent microwave radiation)来照射电介质物体。相对于反射体的背景进行照射,从而物体的层之间的边界、或者电介质物体与空气之间的边界、或者其上放置被测试电介质物体的物理本体用作反射体。从电介质物体和反射体反射的信号被记录。检测到的信号在时域上被转换。确定时间谱中的高峰时间分量(Peak temporal component)并且测量所确定的高峰时间分量的时间。使用这些数据来确定电介质介电常数和层的厚度。在角度象限上进行探测(Probing)和接收。随后通过下列公式来确定电介质介电常数和层的厚度:
&epsiv; i = &epsiv; 1 Sin &theta; nao 1 ( i ) * c * ( t i - 2 c &Sigma; p = 1 i - 1 &epsiv; p &Delta; 1 p 1 - &epsiv; 1 / &epsiv; p * Sin 2 &theta; nao 1 ( i ) ) 2 * ( d 2 - &Sigma; p - 1 i - 1 &Delta; 1 p * &epsiv; 1 Sin &theta; nao 1 ( i ) &epsiv; p - &epsiv; 1 Sin 2 &theta; nao 1 ( i ) ) ;
&Delta; 1 i = ( t i - 2 c &Sigma; p = 1 i - 1 &epsiv; p 1 * &Delta; 1 p 1 - &epsiv; 1 / &epsiv; p * Sin 2 &theta; nao 1 ( i ) ) * c * 1 - &epsiv; 1 &epsiv; i Sin 2 &theta; nao 1 ( i ) 2 &epsiv; i ,
其中i是层的数量;εi和εp是层i和p的电介质介电常数;ε1是其上进行信号的探测和接收的媒介的电介质介电常数;Δli是i层的厚度;其中h1和h2分别是第一层与第二层的边界到从中进行探测的点以及信号接收点之间的高度;是从层i与i+1之间的边界反射的接收信号的角度;c是光速;ti是与来自层i与i+1之间的边界的信号的反射对应的时间谱的高峰i组分的频率;以及d是探测的点与信号接收点之间的距离的探测表面上的投影,请参考俄罗斯专利No.RU 2039352 C1。
用作本发明的原型的这种方法的缺点是需要电介质物体的层的平行结构。如果物体由单层组成,则它的侧面应当平行。因此这种方法可被仅用于具有所需特征的定制物体。而且,这种方法也要求微波辐射朝向电介质物体的入射和反射的角度是明确的。
上述内容呈现事实上不能使用这种方法来确定具有不平行层或侧面的运动和隐藏物体的电介质介电常数,尤其对于人体上隐藏的电介质爆炸化合物的存在的隐秘检测。已知的是,巨量的这种化合物的电介质介电常数介于2,9-3,1之间。
发明内容
本发明的目的是提供一种用于远程确定不规则形状的运动电介质物体的电介质介电常数的方法。
本发明提供了一种用于确定电介质物体相对于反射体背景的电介质介电常数的方法,所述方法包括:
利用N个频率的相干微波辐射来照射电介质物体,
检测从电介质物体和反射体反射的信号,
相干处理检测到的信号并且接收电介质物体和反射体的三维微波图像;
使用两个或更多视频摄像机与微波辐射源同步地另外获得一区域的视频图像,所述电介质物体和反射体位于所述区域中;
将所获得的视频图像转换为数字形式并且构造所述区域的三维视频图像;
将三维视频图像和微波图像转换到一般坐标系统中;
根据一般坐标系统中的微波图像,确定微波辐射源与没有电介质物体的反射体的微波图像的部分之间的距离Z1、以及微波辐射源与电介质物体的部分中的反射体的微波图像的部分之间的距离Z2
基于视频图像,在一般坐标系统中确定微波辐射源与电介质物体的视频图像之间的距离Z3;从而
根据以下关系确定电介质物体的电介质介电常数ε:
&epsiv; = ( z 2 - z 3 z 1 - z 3 ) 2 .
申请人不知道与请求保护的主题相同的任何技术方案。这暗示本发明符合新颖性的要求。
本发明的特征的实现导致请求保护的主题的新的重要特征。事实上,本发明使得能够远程地确定运动的不规则形状的电介质物体的电介质介电常数。
申请人不知道提供关于本发明的特征与所实现的技术效果之间的关系的任何知识的任何信息源。以申请人的角度来看,上面概述的请求保护的主题的新的特征论证本发明的主题符合非显而易见性的要求。
附图说明
下面,通过不参考附图的示例的详细描述来解释本发明。
具体实施方式
为了示范所述用于确定电介质物体相对于反射体背景的电介质介电常数的方法,使用试验模型(test dummy)来模仿用作反射体的人体。所述模型具有附着到身体的电介质物体(蜂蜡)。该实验的目的是确定蜂蜡的电介质介电常数。以频率范围从8到12GHz的14个等距频率的相干微波辐射来照射具有附着的电介质物体的测试模型。使用转换平面天线阵列来进行照射,该转换平面天线阵列具有六角形结构的发射元件并且包括256个初级发射器。被反射的信号以两个正交分量的形式被两个平行接收通道接收并且被12位的模数转换器检测。来自接收通道的输出的对应于检测到的散射电磁场的电分量的数据被传送到计算机,其中使用聚焦方法(相干处理)来形成微波图像。微波图像对应于仅一个三维表面,该三维表面是用对应于电介质物体的散射体和反射体的重构结构的最大密度值的点形成的。在通过微波照射进行辐射的同时,使用两个数字空间分离的视频摄像机SDU-415来获得电介质物体和反射体的视频图像。使用该数据,构造出具有电介质物体和反射体的部分的三维视频图像。该微波图像和三维视频图像被转换到一般坐标系统中。在这种特殊情况下,通过天线阵列平面和与其垂直的轴并且在它的中心交叉天线来设定一般坐标系统。在一般坐标系统中分析微波图像和三维视频图像。确定Z1的值(微波辐射源与没有电介质物体的反射体的微波图像部分之间的距离),并且确定微波辐射源与其中电介质物体所在的反射体的微波图像的部分之间的距离Z2。使用视频图像,确定微波辐射源与电介质物体的视频图像之间的距离Z3。物体相对于反射体背景的电介质介电常数根据下列关系来确定:
&epsiv; = ( z 2 - z 3 z 1 - z 3 ) 2 .
在我们的特殊示例中,距离如下:
Z1=122cm,Z2=128cm,Z3=112cm,和
ε=2.56。
基于所确定的检验物体的值ε,人们可以得出该物体不属于广泛传播且当前使用的爆炸化合物,例如TNT、黑素金炸药、三硝基苯甲硝胺炸药或塑胶炸药。
本发明也可用于其他目的,例如用于确定电子工业中使用的电介质的物理特性。
工业实用性
为了执行本发明,使用了已知的材料和设备。因此在申请人的观念上,本发明符合工业实用性的需求。

Claims (1)

1.一种确定电介质物体相对于反射体背景的电介质介电常数的方法,所述方法包括:
利用N个频率的相干微波辐射来照射电介质物体,
检测从电介质物体和反射体反射的信号,从而所述方法进一步包括:
相干处理检测到的信号并且接收电介质物体和反射体的三维微波图像;
使用两个或更多视频摄像机与微波辐射源同步地另外获得一区域的视频图像,所述电介质物体和反射体位于所述区域中;
将所获得的视频图像转换为数字形式并且构造所述区域的三维视频图像;
将三维视频图像和微波图像转换到一般坐标系统中;
根据一般坐标系统中的微波图像,确定微波辐射源与没有电介质物体的反射体的微波图像的部分之间的距离Z1、以及微波辐射源与电介质物体的部分中的反射体的微波图像的部分之间的距离Z2
基于视频图像,在一般坐标系统中确定微波辐射源与电介质物体的视频图像之间的距离Z3;从而
根据以下关系确定电介质物体的电介质介电常数ε:
&epsiv; = ( z 2 - z 3 z 1 - z 3 ) 2 .
CN201080053656.XA 2009-11-26 2010-11-24 确定电介质物体的电介质介电常数的方法 Active CN102630300B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2009145423/07A RU2408005C1 (ru) 2009-11-26 2009-11-26 Способ определения диэлектрической проницаемости диэлектрического объекта
RU2009145423 2009-11-26
PCT/RU2010/000724 WO2011065868A1 (ru) 2009-11-26 2010-11-24 Способ определения диэлектрической проницаемости диэлектрического объекта

Publications (2)

Publication Number Publication Date
CN102630300A CN102630300A (zh) 2012-08-08
CN102630300B true CN102630300B (zh) 2014-11-26

Family

ID=44055871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080053656.XA Active CN102630300B (zh) 2009-11-26 2010-11-24 确定电介质物体的电介质介电常数的方法

Country Status (19)

Country Link
US (1) US8228374B2 (zh)
EP (1) EP2505995B1 (zh)
JP (1) JP5260799B2 (zh)
KR (1) KR101332957B1 (zh)
CN (1) CN102630300B (zh)
BR (1) BR112012012587B1 (zh)
CA (1) CA2781590C (zh)
DK (1) DK2505995T3 (zh)
ES (1) ES2557457T3 (zh)
HK (1) HK1176404A1 (zh)
IL (1) IL219999A (zh)
MX (1) MX2012006103A (zh)
NZ (1) NZ599725A (zh)
PL (1) PL2505995T3 (zh)
PT (1) PT2505995E (zh)
RU (1) RU2408005C1 (zh)
UA (1) UA102197C2 (zh)
WO (1) WO2011065868A1 (zh)
ZA (1) ZA201203382B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3071998T3 (da) 2013-11-19 2019-05-06 Apstec Systems Usa Llc Aktiv mikrobølgeindretning og påvisningsfremgangsmåde
EP3071998B1 (en) * 2013-11-19 2019-01-30 Apstec Systems USA LLC Active microwave device and detection method
WO2015077167A1 (en) * 2013-11-19 2015-05-28 Apstec Systems Usa Llc Smart screening barrier
CN104931797B (zh) * 2015-07-16 2017-08-25 上海无线电设备研究所 基于透波机制的有耗媒质介电常数的测量方法
RU2652530C1 (ru) * 2017-05-05 2018-04-26 Алексей Андреевич Калмыков Трехмерная система голографического радиовидения для досмотра

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2039352C1 (ru) * 1992-04-30 1995-07-09 Научно-исследовательский центр "Резонанс" Способ определения диэлектрических проницаемостей и толщин слоев многослойной среды
US7040168B1 (en) * 2004-11-12 2006-05-09 Frigoscandia Equipment Ab Apparatus for determining physical parameters in an object using simultaneous microwave and ultrasound radiation and measurement
US7288941B2 (en) * 2004-10-06 2007-10-30 Enerize Corporation Method and apparatus for measuring conductivity of powder materials using eddy currents

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590845A (en) * 1978-12-29 1980-07-09 Sumitomo Electric Ind Ltd Dielectric constant surveilance device
US5081530A (en) 1987-06-26 1992-01-14 Antonio Medina Three dimensional camera and range finder
RU1800333C (ru) 1990-08-01 1993-03-07 Институт Проблем Машиностроения Ан Усср Способ определени диэлектрической проницаемости и устройство дл его осуществлени
US5859609A (en) * 1991-08-30 1999-01-12 Battelle Memorial Institute Real-time wideband cylindrical holographic surveillance system
RU2096767C1 (ru) * 1994-07-01 1997-11-20 Северо-Западный Заочный Политехнический Институт Радиолокатор-интроскоп
JP3369393B2 (ja) * 1996-03-13 2003-01-20 日野自動車株式会社 誘電材料の識別装置
US6359582B1 (en) 1996-09-18 2002-03-19 The Macaleese Companies, Inc. Concealed weapons detection system
US6057761A (en) * 1997-01-21 2000-05-02 Spatial Dynamics, Ltd. Security system and method
RU2121671C1 (ru) * 1997-01-24 1998-11-10 Открытое акционерное общество "Центральный научно-исследовательский институт радиоэлектронных систем" Устройство зондирования строительных конструкций
JPH1183996A (ja) 1997-09-03 1999-03-26 Omron Corp ミリ波検出装置
US6950054B1 (en) * 2001-12-03 2005-09-27 Cyterra Corporation Handheld radar frequency scanner for concealed object detection
US6927691B2 (en) * 2002-03-25 2005-08-09 Spatial Dynamics, Ltd. Dielectric personnel scanning
KR100465235B1 (ko) * 2002-04-16 2005-01-13 삼성전자주식회사 정전용량에 의해 rf 신호에 대한 전력을 측정하는 rf파워센서
JP2005043219A (ja) 2003-07-22 2005-02-17 National Institute Of Information & Communication Technology 生体電磁環境推定装置、生体電磁環境推定方法及び生体電磁環境推定プログラム
US7205926B2 (en) * 2004-04-14 2007-04-17 Safeview, Inc. Multi-source surveillance system
EP1788946A4 (en) * 2004-09-10 2009-11-04 Ind Res Ltd PICTURE SYSTEM
WO2006028397A1 (en) 2004-09-10 2006-03-16 Industrial Research Limited Synthetic focusing method
US6967612B1 (en) * 2004-10-22 2005-11-22 Gorman John D System and method for standoff detection of human carried explosives
US20100069744A1 (en) * 2006-03-10 2010-03-18 Ray Andrew Simpkin Imaging System
TWI368026B (en) * 2008-02-27 2012-07-11 Univ Nat Chiao Tung Modified tdr method and apparatus for suspended solid concentration measurement
CA3018910C (en) * 2008-03-18 2020-05-12 Radio Physics Solutions Limited Remote detection and measurement of objects
US20090273770A1 (en) 2008-04-30 2009-11-05 Honeywell International Inc. Systems and methods for safe laser imaging, detection and ranging (lidar) operation
US8044838B1 (en) * 2008-08-13 2011-10-25 The Boeing Company Methods and systems for determining the phase constant for a dielectric medium
WO2010099328A2 (en) * 2009-02-25 2010-09-02 The University Of Memphis Research Foundation Spatially-selective reflector structures, reflector disks, and systems and methods for use thereof
US8653819B2 (en) * 2009-09-08 2014-02-18 California Institute Of Technology Technique for performing dielectric property measurements at microwave frequencies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2039352C1 (ru) * 1992-04-30 1995-07-09 Научно-исследовательский центр "Резонанс" Способ определения диэлектрических проницаемостей и толщин слоев многослойной среды
US7288941B2 (en) * 2004-10-06 2007-10-30 Enerize Corporation Method and apparatus for measuring conductivity of powder materials using eddy currents
US7040168B1 (en) * 2004-11-12 2006-05-09 Frigoscandia Equipment Ab Apparatus for determining physical parameters in an object using simultaneous microwave and ultrasound radiation and measurement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平9-243577A 1997.09.19 *

Also Published As

Publication number Publication date
EP2505995A4 (en) 2013-06-26
DK2505995T3 (en) 2016-01-11
NZ599725A (en) 2014-11-28
ZA201203382B (en) 2013-01-30
EP2505995A1 (en) 2012-10-03
CN102630300A (zh) 2012-08-08
ES2557457T3 (es) 2016-01-26
AU2010325268A1 (en) 2012-08-16
CA2781590A1 (en) 2011-06-03
US20110304698A1 (en) 2011-12-15
PL2505995T3 (pl) 2016-04-29
KR20120112421A (ko) 2012-10-11
US8228374B2 (en) 2012-07-24
HK1176404A1 (zh) 2013-07-26
WO2011065868A1 (ru) 2011-06-03
IL219999A0 (en) 2012-07-31
KR101332957B1 (ko) 2013-11-25
JP5260799B2 (ja) 2013-08-14
CA2781590C (en) 2013-10-01
MX2012006103A (es) 2012-10-05
BR112012012587B1 (pt) 2019-09-17
UA102197C2 (ru) 2013-06-10
JP2013512430A (ja) 2013-04-11
BR112012012587A2 (pt) 2017-12-12
PT2505995E (pt) 2016-01-26
EP2505995B1 (en) 2015-11-04
IL219999A (en) 2016-03-31
RU2408005C1 (ru) 2010-12-27

Similar Documents

Publication Publication Date Title
CN102630300B (zh) 确定电介质物体的电介质介电常数的方法
US9304190B2 (en) Method and system for unveiling hidden dielectric object
Yektakhah et al. All-directions through-the-wall radar imaging using a small number of moving transceivers
Yektakhah et al. All-directions through-the-wall imaging using a small number of moving omnidirectional bi-static FMCW transceivers
Zhang et al. Two-dimensional diffraction tomographic algorithm for through-the-wall radar imaging
Grosdidier et al. HF bistatic ocean Doppler spectra: Simulation versus experimentation
Estatico et al. Buried object detection by means of a L p Banach-space inversion procedure
Buonanno et al. A new measurement method for through-the-wall detection and tracking of moving targets
Ponti et al. Electromagnetic scattering of a pulsed signal by conducting cylindrical targets embedded in a half-space medium
Akune et al. Accurate and nonparametric imaging algorithm for targets buried in dielectric medium for UWB radars
US20190113647A1 (en) Sub-surface imaging of dielectric structures and voids via narrowband electromagnetic resonance scattering
Salman et al. Environmental imaging with a mobile UWB security robot for indoor localisation and positioning applications
Ermoshkin et al. Estimation of the wind-driven wave spectrum using a high spatial resolution coherent radar
Kidera et al. High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars
Aljurbua et al. Detection and localization of buried pipelines using a 3-D multistatic imaging radar
Rappaport Accurate determination of underground GPR wavefront and B-scan shape from above-ground point sources
Liu et al. Simulation of radar echoes from Mars' surface/subsurface and inversion of surface media parameters
Frezza et al. Short-pulse electromagnetic scattering by buried perfectly conducting cylinders
Ding et al. Near-field phase cross correlation focusing imaging and parameter estimation for penetrating radar
Kidera et al. Fast and shadow region 3-dimensional imaging algorithm with range derivative of doubly scattered signals for UWB radars
Souma et al. Accurate permittivity estimation method with iterative waveform correction for UWB internal imaging radar
Hantscher et al. Pulse-based radar imaging using a genetic optimization approach for echo separation
Feng et al. WiFi‐based imaging for ground penetrating radar applications: fundamental study and experimental results
Biancheri-Astier et al. Modeling the configuration of HF electrical antennas for deep bistatic subsurface sounding
Salman et al. Super-resolution object recognition approach for complex edged objects by UWB radar

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: APSTEK SYSTEM LTD.

Free format text: FORMER OWNER: APPLIED PHYSICS SCIENCE AND TECHNOLOGY CENTER COMPANY WITH LIMITED RESPONSIBILITY

Effective date: 20121213

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20121213

Address after: Malta's Voight front

Applicant after: Apstek System Ltd.

Address before: Russia St Petersburg

Applicant before: Applied Physics Science and Technology Center Company with Limited Responsibility

C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Malta Aikelin

Applicant after: Apstek System Ltd.

Address before: Malta's Voight front

Applicant before: Apstek System Ltd.

C14 Grant of patent or utility model
GR01 Patent grant