US8031019B2 - Integrated voltage-controlled oscillator circuits - Google Patents
Integrated voltage-controlled oscillator circuits Download PDFInfo
- Publication number
- US8031019B2 US8031019B2 US12/363,911 US36391109A US8031019B2 US 8031019 B2 US8031019 B2 US 8031019B2 US 36391109 A US36391109 A US 36391109A US 8031019 B2 US8031019 B2 US 8031019B2
- Authority
- US
- United States
- Prior art keywords
- gate
- inductance
- transistor
- drain
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000008878 coupling Effects 0.000 claims description 40
- 238000010168 coupling process Methods 0.000 claims description 40
- 238000005859 coupling reaction Methods 0.000 claims description 40
- 230000006854 communication Effects 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 12
- 239000003990 capacitor Substances 0.000 claims description 10
- 238000013461 design Methods 0.000 description 18
- 230000008901 benefit Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 102100036285 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Human genes 0.000 description 1
- 101000875403 Homo sapiens 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/08—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
- H03B5/12—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
- H03B5/1228—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/08—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
- H03B5/12—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/08—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
- H03B5/12—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
- H03B5/1206—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
- H03B5/1212—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
- H03B5/1215—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair the current source or degeneration circuit being in common to both transistors of the pair, e.g. a cross-coupled long-tailed pair
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/08—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
- H03B5/12—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
- H03B5/1206—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
- H03B5/1218—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the generator being of the balanced type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/08—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
- H03B5/12—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
- H03B5/1237—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
- H03B5/124—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
- H03B5/1243—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/08—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
- H03B5/12—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
- H03B5/1296—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the feedback circuit comprising a transformer
Definitions
- the disclosure relates to integrated circuit design, and, more particularly, to the design of voltage-controlled oscillator (VCO) circuits.
- VCO voltage-controlled oscillator
- a local oscillator In a communications transceiver for a wireless communications system, a local oscillator (LO) generates a signal with a predetermined frequency to be mixed with transmit and/or receive signals.
- An LO design may include a voltage-controlled oscillator (VCO) coupled to a frequency divider circuit used to divide down the frequency of the VCO output.
- VCO voltage-controlled oscillator
- the LO output may be coupled to a mixer that mixes the VCO output signal with another signal to generate a signal having an upconverted or downconverted frequency.
- a VCO buffer may be provided between the VCO output and the frequency divider or mixer to isolate the VCO output from subsequent loads.
- the out-of-band phase noise requirement can be difficult to meet under a given power budget.
- the far-offset phase noise of the LO output is often dominated by contributions from the VCO buffer and the frequency divider.
- the VCO buffer may be eliminated; however, the frequency divider may still contribute significant phase noise. Reducing the phase noise of the frequency divider is typically achieved only by consuming a great deal of power.
- the provision of a VCO and a mixer as separate circuit blocks may also consume significant power.
- An aspect of the present disclosure provides an apparatus comprising a voltage controlled oscillator (VCO) coupled to a mixer, the VCO comprising: a first transistor configured to be DC biased by a first bias current; a second transistor configured to be DC biased by a second bias current; at least one gate inductance coupling the gate of the first transistor to the gate of the second transistor; a first drain inductance magnetically coupled to a gate inductance, the first drain inductance coupled to the drain of the first transistor; a second drain inductance magnetically coupled to a gate inductance, the second drain inductance coupled to the drain of the second transistor; and at least one variable capacitance coupling the gate of the first transistor to the gate of the second transistor; the mixer comprising first and second input nodes coupled to the first and second drain inductances, respectively, the mixer configured to be biased by the first and second bias currents.
- VCO voltage controlled oscillator
- VCO voltage controlled oscillator
- a frequency divider circuit comprising: a first transistor configured to be DC biased by a first bias current; a second transistor configured to be DC biased by a second bias current; at least one gate inductance coupling the gate of the first transistor to the gate of the second transistor; a first drain inductance magnetically coupled to a gate inductance, the first drain inductance coupled to the drain of the first transistor; a second drain inductance magnetically coupled to a gate inductance, the second drain inductance coupled to the drain of the second transistor; and at least one variable capacitance coupling the gate of the first transistor to the gate of the second transistor; the frequency divider circuit comprising first and second input nodes coupled to the first and second drain inductances, respectively, the frequency divider configured to be biased by the first and second bias currents.
- VCO voltage controlled oscillator
- Yet another aspect of the present disclosure provides a method for generating a mixed signal, the method comprising: DC biasing a first transistor using a first bias current; DC biasing a second transistor using a second bias current; coupling the gate of the first transistor to the gate of the second transistor using at least one gate inductance; magnetically coupling a first drain inductance to a gate inductance, the first drain inductance coupled to the drain of the first transistor; magnetically coupling a second drain inductance to a gate inductance, the second drain inductance coupled to the drain of the second transistor; selecting the capacitance of a variable capacitance element coupling the gate of the first transistor to the gate of the second transistor; mixing the differential current flowing in the first and second drain inductances with another signal using a mixer to generate at least one mixed signal; and biasing the mixer using the first and second bias currents.
- Yet another aspect of the present disclosure provides a method for generating a frequency divided signal, the method comprising: DC biasing a first transistor using a first bias current; DC biasing a second transistor using a second bias current; coupling the gate of the first transistor to the gate of the second transistor using at least one gate inductance; magnetically coupling a first drain inductance to a gate inductance, the first drain inductance coupled to the drain of the first transistor; magnetically coupling a second drain inductance to a gate inductance, the second drain inductance coupled to the drain of the second transistor; selecting the capacitance of a variable capacitance element coupling the gate of the first transistor to the gate of the second transistor; dividing the frequency of said differential current flowing in the first and second drain inductances using a frequency divider to generate at least one frequency divided signal; and biasing the frequency divider using the first and second bias currents.
- VCO voltage controlled oscillator
- VCO voltage controlled oscillator
- a device for wireless communications comprising a TX LO signal generator, at least one baseband TX amplifier, an upconverter coupled to the TX LO signal generator and the at least one baseband TX amplifier, a TX filter coupled to the output of the upconverter, a power amplifier (PA) coupled to the TX filter, an RX LO signal generator, an RX filter, a downconverter coupled to the RX LO signal generator and the RX filter, a low-noise amplifier (LNA) coupled to the RX filter, and a duplexer coupled to the PA and the LNA, at least one of the TX LO signal generator and RX LO signal generator comprising a voltage controlled oscillator (VCO) coupled to a frequency divider, the VCO comprising: a first transistor configured to be DC biased by a first bias current; a second transistor configured to be DC biased by a second bias current; at least one gate inductance coupling the gate of the first transistor to the gate
- VCO voltage controlled oscillator
- a device for wireless communications comprising a TX LO signal generator, at least one baseband TX amplifier, an upconverter coupled to the TX LO signal generator and the at least one baseband TX amplifier, a TX filter coupled to the output of the upconverter, a power amplifier (PA) coupled to the TX filter, an RX LO signal generator, an RX filter, a downconverter coupled to the RX LO signal generator and the RX filter, a low-noise amplifier (LNA) coupled to the RX filter, and a duplexer coupled to the PA and the LNA, the TX LO signal generator and upconverter comprising a voltage controlled oscillator (VCO) coupled to a mixer, the VCO comprising: a first transistor configured to be DC biased by a first bias current; a second transistor configured to be DC biased by a second bias current; at least one gate inductance coupling the gate of the first transistor to the gate of the second transistor; a first
- VCO voltage controlled oscillator
- a device for wireless communications comprising a TX LO signal generator, at least one baseband TX amplifier, an upconverter coupled to the TX LO signal generator and the at least one baseband TX amplifier, a TX filter coupled to the output of the upconverter, a power amplifier (PA) coupled to the TX filter, an RX LO signal generator, an RX filter, a downconverter coupled to the RX LO signal generator and the RX filter, a low-noise amplifier (LNA) coupled to the RX filter, and a duplexer coupled to the PA and the LNA, the RX LO signal generator and downconverter comprising a voltage controlled oscillator (VCO) coupled to a mixer, the VCO comprising: a first transistor configured to be DC biased by a first bias current; a second transistor configured to be DC biased by a second bias current; at least one gate inductance coupling the gate of the first transistor to the gate of the second transistor; a first
- VCO voltage controlled oscillator
- FIG. 1 illustrates a prior art implementation of a local oscillator (LO) generator utilizing a voltage-controlled oscillator (VCO);
- LO local oscillator
- VCO voltage-controlled oscillator
- FIG. 1A illustrates another prior art implementation of an LO utilizing a VCO and a mixer
- FIG. 1B illustrates a prior art implementation of a VCO coupled to a mixer as part of downconversion circuitry
- FIG. 1C illustrates a prior art implementation of a VCO coupled to a mixer as part of upconversion circuitry
- FIG. 2 illustrates a prior art implementation of an LO, wherein a VCO is coupled to a divide-by-two circuit
- FIG. 3 illustrates an alternative prior art implementation of an LO, wherein a VCO is coupled to a mixer circuit
- FIG. 4 illustrates an exemplary embodiment of an LO according to the present disclosure
- FIG. 5 illustrates an exemplary embodiment of an LO wherein an exemplary divide-by-two circuit is explicitly shown
- FIG. 6 further illustrates an alternative exemplary embodiment wherein a VCO is coupled to a mixer employing a similar design to that of the mixer of FIG. 3 ;
- FIGS. 7 and 7A illustrate an exemplary method according to the present disclosure.
- FIG. 8 shows a block diagram of a design of a wireless communication device in which the techniques of the present disclosure may be implemented.
- FIG. 1 illustrates a prior art implementation of a local oscillator (LO) 100 utilizing a voltage-controlled oscillator (VCO) 105 .
- the VCO 105 generates an output signal having frequency f_VCO.
- the VCO output signal is coupled to a divide-by-two circuit 110 , which divides the frequency of the VCO output by a factor of two.
- the divide-by-two circuit 110 may be followed by another divide-by-two circuit 120 , to generate an output signal having a frequency f_VCO/4.
- the second divide-by-two circuit 120 may be omitted, and any number of divide-by-two or any other frequency divider circuits may be provided after the VCO 105 to adjust the VCO frequency accordingly.
- FIG. 1A illustrates another prior art implementation of an LO 130 utilizing a VCO 135 and a mixer 150 .
- the output signal of the VCO 135 is coupled to a divide-by-two circuit 140 .
- the output of divide-by-two circuit 140 is mixed with the output signal of the VCO 135 using a mixer 150 , and band-pass filtered using band-pass filter (BPF) 160 .
- BPF 160 has a frequency f_VCO*3/2.
- the aforementioned prior art schemes employ a VCO coupled to a frequency divider and/or a mixer for generating the LO signal, and are useful for reducing VCO pulling and interference caused by LO leakage. Furthermore, a VCO followed by a divide-by-two circuit may provide more accurate quadrature LO signals than other prior art LO signal generation schemes, e.g., those directly employing quadrature VCO's, or a VCO followed by a poly-phase filter.
- FIG. 1B illustrates a prior art implementation of a VCO 185 coupled to a mixer 182 as part of downconversion circuitry 180 .
- an RF signal is mixed with the VCO output using mixer 182 , and the mixer output is band-pass filtered by BPF 184 to generate the downconverted signal.
- FIG. 1C illustrates a prior art implementation of a VCO 195 coupled to a mixer 192 as part of upconversion circuitry 190 .
- a baseband signal is mixed with the VCO output using mixer 192 , and the mixer output is band-pass filtered by BPF 194 to generate the upconverted signal.
- FIG. 2 illustrates a prior art implementation of an LO 200 wherein a VCO 210 is coupled to a divide-by-two circuit 220 .
- a VCO 210 is coupled to a divide-by-two circuit 220 .
- FIG. 2 illustrates a prior art implementation of an LO 200 wherein a VCO 210 is coupled to a divide-by-two circuit 220 .
- LO 200 For further details of the LO 200 , see, e.g., Kyung-Gyu Park, et al., “Current Reusing VCO and Divide-by-Two Frequency Divider for Quadrature LO Generation,” IEEE Microwave and Wireless Components Letters, pp. 413-415, June 2008.
- VCO 210 includes a cross-coupled NMOS pair 267 , 268 coupled to an LC tank including capacitors C Bank , C 1 , C 2 , C 3 , C 4 , and inductors L 1 , L 2 .
- L 1 , L 2 may also be viewed as a single inductor center-tapped by a DC supply voltage VDD.
- C Bank may include a bank of switchable capacitors (not shown) for coarse tuning of the tank resonant frequency, while C 1 , C 2 may be varactors whose capacitances are controlled by a fine control voltage Vtune.
- the varactors C 1 , C 2 may be further biased by a voltage Vbias.
- the LC tank is effectively coupled in parallel with the negative resistance formed by the cross-coupled NMOS pair 267 , 268 . This causes a differential oscillating signal to be generated across the LC tank at the tank resonant frequency. Note during AC operation, the sources of 267 , 268 are coupled to ground via capacitor C AC .
- the differential ends of the VCO oscillating signal are coupled to a frequency divider circuit 220 via coupling capacitors C 5 and C 6 .
- One end of the differential VCO oscillating signal is coupled to the gates of transistors 251 , 254 , while the other end is coupled to the gates of transistors 252 , 253 .
- the differential VCO oscillating signal selectively modulates the currents flowing through 251 - 254 .
- the modulated currents are in turn coupled to transistors 255 - 262 , which are configured so as to divide by two the frequency of the modulated currents, in a manner well-known to one of ordinary skill in the art.
- transistors 255 - 262 For the output of the divide-by-two circuit 220 , transistors 255 - 262 generate a differential in-phase voltage across nodes VI 1 and VI 2 , and a differential quadrature voltage across nodes VQ 1 and VQ 2 , both at a frequency half that of the differential currents flowing through 251 - 254 .
- One of ordinary skill in the art will appreciate that one disadvantage of the prior art LO 200 is that there is a relatively large number of circuit elements stacked in series between the DC supply voltage VDD and ground, including the cross-coupled transistor pair 267 , 268 . These elements increase the required supply voltage VDD. Furthermore, capacitors C AC , C 5 , C 6 are seen to perform an AC coupling function, and may therefore consume significant die area on an integrated circuit.
- FIG. 3 illustrates an alternative prior art implementation of circuitry 300 , wherein a VCO 310 is coupled to a mixer 320 .
- a VCO 310 is coupled to a mixer 320 .
- FIG. 3 illustrates an alternative prior art implementation of circuitry 300 , wherein a VCO 310 is coupled to a mixer 320 .
- the LO 300 see, e.g., To-Po Wang, et al., “A Low-Power Oscillator Mixer in 0.18- ⁇ m CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, pp. 88-95, January 2006.
- VCO 310 also includes a cross-coupled NMOS pair 355 , 356 , and an LC tank formed by capacitors C 1 , C 2 , and inductors L 1 , L 2 , which may also be viewed as a single inductor center-tapped by a DC voltage VDD 2 .
- the differential current I 1 -I 2 flowing through the NMOS pair 355 , 356 contains a component that oscillates at the tank resonant frequency.
- the currents I 1 and I 2 are further coupled to transistors 351 - 354 of the mixer 320 , which is configured to mix the differential current I 1 -I 2 with a differential voltage V RF1 -V RF2 , in a manner well-known to one of ordinary skill in the art.
- the output of the mixing is provided as differential voltage V out1 -V out2 .
- circuitry 300 requires at least three DC bias voltages VDD 1 , VDD 2 , and VG, which may collectively increase the level of noise present in the circuit. Furthermore, as the sources of transistors 351 - 354 of the mixer 320 are directly coupled to the LC tank of VCO 310 , any noise generated by 351 - 354 may also couple directly to the LC tank, thus adversely affecting the VCO's phase-noise performance.
- FIG. 4 illustrates an exemplary embodiment of circuitry 400 according to the present disclosure, wherein a VCO 410 is current-coupled to either a mixer or a frequency divider 420 .
- the VCO 410 utilizes a transformer-based design, wherein inductors L 2 and L 3 are mutually magnetically coupled with the orientation shown, and inductors L 1 and L 4 are similarly mutually coupled.
- inductors L 3 and L 4 may be implemented as a single coil, also denoted herein as a primary coil, with the voltage Vbias tapped from an appropriate point (e.g., the center) on the primary coil.
- Inductors L 1 and L 2 are also denoted herein as secondary coils.
- the LC tank variable capacitances (varactors) C 1 and C 2 are coupled to the gates of 451 and 452 , and a further switchable capacitor bank (not shown) may also be provided at the gates of 451 and 452 .
- a voltage Vtune may adjust the capacitance of C 1 and C 2 through resistance Rtune to control the tank resonant frequency.
- the currents I 1 and I 2 contain DC components that bias the transistors 451 and 452 , as well as AC components that oscillate at the tank resonant frequency.
- I 1 and I 2 are coupled to the mixer or frequency divider 420 , with the differential current I 1 -I 2 containing the output signal of the VCO 410 .
- circuitry 400 offers certain design advantages. For example, the same DC current used to bias the transistors of VCO 410 is used to bias the mixer or frequency divider 420 , and therefore the circuitry 400 benefits from “current reuse” to reduce power consumption. Furthermore, as the mixer or frequency divider 420 is coupled to the drains of transistors 451 , 452 via inductors L 1 and L 2 , which ideally consume zero DC voltage drop, the VCO 410 consumes minimal voltage headroom from the supply voltage VDD.
- LC tank elements C 1 , C 2 , L 3 , L 4 which are placed at the gates of 451 , 452 , are isolated from the mixer or frequency divider 420 , whose input terminals are placed at the drains of 451 , 452 .
- these advantages are not found in either the prior art circuitry 200 or 300 . Note the preceding enumerated advantages are given for illustrative purposes only, and are not meant to restrict the scope of the present disclosure to embodiments that explicitly exhibit the advantages described.
- the inductors L 1 , L 2 may be relatively low quality factor (low-Q) inductors, and hence may be kept thin without compromising the phase-noise performance of the VCO 410 .
- the phase-noise performance of the transformer-based VCO is generally only weakly dependent on the quality factor of the secondary coils.
- the primary coil and two secondary coils in 410 may be implemented as a single transformer, wherein the two secondary coils are laid-out as thin coils inside the primary coil, or wherein the two secondary coils are stacked underneath the primary coil in thin metal layers, thus avoiding the area overhead of additional coils.
- FIG. 5 illustrates an exemplary embodiment of an LO generator 500 wherein the VCO 410 is coupled to a frequency divider 520 .
- Note the exemplary embodiment is shown for illustrative purposes only, and is not meant to limit the scope of the present disclosure to any particular frequency divider or divide-by-two circuit shown.
- divide-by-two circuitry 520 utilizes resistive loads R 1 -R 4 .
- the in-phase and quadrature output signals of 520 may be taken as the differential voltages VI 1 (a positive in-phase voltage) ⁇ VI 2 (a negative in-phase voltage) and VQ 1 (a positive quadrature voltage) ⁇ VQ 2 (a negative quadrature voltage), respectively.
- the current I 1 generated by VCO 410 is supplied to transistors 551 , 552 , 557 , 558 in the divide-by-two circuit 520 , while the current I 2 generated by VCO 410 may be supplied to transistors 553 , 554 , 555 , 556 in 520 .
- circuits producing divider ratios other than two may also be combined with the VCO 410 in the manner shown.
- a latch-based digital divider known in the art may generate a divider ratio of four.
- Other types of divider circuits e.g., injection locked dividers, may also be utilized to generate divider ratios higher than two.
- Such alternative frequency dividers may be readily be modified to be combined with the VCO 410 according to the techniques of the present disclosure, and such alternative exemplary embodiments are contemplated to be within the scope of the present disclosure.
- FIG. 6 further illustrates an alternative exemplary embodiment wherein the VCO 410 is coupled to a mixer 620 .
- the exemplary embodiment is shown for illustrative purposes only, and is not meant to limit the scope of the present disclosure to any particular mixer implementation shown.
- the circuitry 600 may be appropriately modified to implement any of the circuitry 130 , 180 , 190 shown in FIGS. 1A , 1 B, 1 C, respectively.
- the current I 1 generated by VCO 410 is supplied to 651 , 652 in 620
- the current I 2 generated by VCO 410 is supplied to 653 , 654 in 620
- the differential current I 1 -I 2 is mixed with the differential voltage V RF1 -V RF2 .
- the output of the mixer may be taken as the differential voltage V out1 -V out2 .
- the circuitry 600 may be employed to generate a downconverted signal at V out1 -V out2 , such as shown in the circuitry 180 of FIG. 1B .
- the circuitry 600 may also be readily applied to applications wherein, e.g., the differential current I 1 -I 2 of the VCO 410 is directly used as an LO signal to upconvert a baseband signal V INP -V INN using mixer 620 , such as shown in the circuitry 190 of FIG. 1C .
- the circuitry 600 may be employed to generate a local oscillator signal at V out1 -V out2 such as shown in the circuitry 130 of FIG. 1A , by providing the blocks 135 and 150 of circuitry 130 using circuitry 600 .
- Such exemplary embodiments are contemplated to be within the scope of the present disclosure.
- circuit simulations to determine the performance of the LO 500 preferably simultaneously account for both the VCO 410 and the divide-by-two module 520 , as the behaviors of the two modules are generally inter-dependent.
- the performance of the circuit 400 in FIG. 4 may be sensitive to any output loading stages that follow the mixer 620 or frequency divider 520 , e.g., an output buffer.
- FIGS. 7 and 7A illustrate an exemplary method 700 according to the present disclosure. Note the method depicted is given for illustrative purposes only, and is not meant to restrict the scope of the present disclosure to any particular method explicitly shown. Note further that the particular sequence of steps shown is not meant to be limiting, and in general the steps may be interchangeable in sequence unless otherwise noted.
- a first transistor is DC biased using a first bias current.
- the first transistor may be, e.g., 451 in FIG. 4 .
- a second transistor is DC biased using a second bias current.
- the second transistor may be, e.g., 452 in FIG. 4 .
- the first transistor gate is coupled to the second transistor gate using at least one gate inductance.
- the at least one gate inductance may include the inductors L 3 , L 4 in FIG. 4 , which may be implemented as two series-coupled inductors, or as one single coil, according to techniques well known in the art.
- a first drain inductance may be coupled to a gate inductance.
- the first drain inductance may correspond to the inductance L 1 in FIG. 4
- the gate inductance coupled to may correspond to the inductance L 4 in FIG. 4 .
- a second drain inductance may be coupled to a gate inductance.
- the second drain inductance may correspond to the inductance L 2 in FIG. 4
- the gate inductance coupled to may correspond to the inductance L 3 in FIG. 4 .
- the capacitance of a variable capacitance element coupling the first transistor gate to the second transistor gate may be selected.
- the variable capacitance element may correspond to the capacitance elements C 1 and C 2 in FIG. 4 .
- the differential current flowing in the first and second drain inductances may be mixed with another signal using a mixer, or the frequency of the differential current may be divided using a frequency divider, to generate at least one frequency divided signal.
- the differential current may correspond to the differential current I 1 -I 2 in FIG. 4 .
- the mixer or frequency divider may be biased by the first and second bias currents.
- MOSFET's MOS transistors
- BJT's bipolar junction transistors
- the VCO 410 in FIG. 4 may utilize BJT's rather than MOSFET's, with the collectors, bases, and emitters of the BJT's coupled as shown for the drains, gates, and sources, respectively, of the MOSFET's in the VCO 410 .
- drain may encompass both the conventional meanings of those terms associated with MOSFET's, as well as the corresponding nodes of other three-terminal transconductance devices, such as BJT's, which correspondence will be evident to one of ordinary skill in the art of circuit design.
- FIG. 8 shows a block diagram of a design of a wireless communication device 800 in which the techniques of the present disclosure may be implemented.
- wireless device 800 includes a transceiver 820 and a data processor 810 having a memory 812 to store data and program codes.
- Transceiver 820 includes a transmitter 830 and a receiver 850 that support bi-directional communication.
- wireless device 800 may include any number of transmitters and any number of receivers for any number of communication systems and frequency bands.
- a transmitter or a receiver may be implemented with a super-heterodyne architecture or a direct-conversion architecture.
- a signal is frequency converted between radio frequency (RF) and baseband in multiple stages, e.g., from RF to an intermediate frequency (IF) in one stage, and then from IF to baseband in another stage for a receiver.
- IF intermediate frequency
- the direct-conversion architecture a signal is frequency converted between RF and baseband in one stage.
- the super-heterodyne and direct-conversion architectures may use different circuit blocks and/or have different requirements.
- transmitter 830 and receiver 850 are implemented with the direct-conversion architecture.
- data processor 810 processes data to be transmitted and provides I and Q analog output signals to transmitter 830 .
- lowpass filters 832 a and 832 b filter the I and Q analog output signals, respectively, to remove undesired images caused by the prior digital-to-analog conversion.
- Amplifiers (Amp) 834 a and 834 b amplify the signals from lowpass filters 832 a and 832 b , respectively, and provide I and Q baseband signals.
- An upconverter 840 upconverts the I and Q baseband signals with I and Q transmit (TX) local oscillating (LO) signals from a TX LO signal generator 870 and provides an upconverted signal.
- TX transmit
- LO local oscillating
- a filter 842 filters the upconverted signal to remove undesired images caused by the frequency upconversion as well as noise in a receive frequency band.
- a power amplifier (PA) 844 amplifies the signal from filter 842 to obtain the desired output power level and provides a transmit RF signal.
- the transmit RF signal is routed through a duplexer or switch 846 and transmitted via an antenna 848 .
- antenna 848 receives signals transmitted by base stations and provides a received RF signal, which is routed through duplexer or switch 846 and provided to a low noise amplifier (LNA) 852 .
- the received RF signal is amplified by LNA 852 and filtered by a filter 854 to obtain a desirable RF input signal.
- a downconverter 860 downconverts the RF input signal with I and Q receive (RX) LO signals from an RX LO signal generator 880 and provides I and Q baseband signals.
- the I and Q baseband signals are amplified by amplifiers 862 a and 862 b and further filtered by lowpass filters 864 a and 864 b to obtain I and Q analog input signals, which are provided to data processor 810 .
- TX LO signal generator 870 generates the I and Q TX LO signals used for frequency upconversion.
- RX LO signal generator 880 generates the I and Q RX LO signals used for frequency downconversion.
- Each LO signal is a periodic signal with a particular fundamental frequency.
- a PLL 872 receives timing information from data processor 810 and generates a control signal used to adjust the frequency and/or phase of the TX LO signals from LO signal generator 870 .
- a PLL 882 receives timing information from data processor 810 and generates a control signal used to adjust the frequency and/or phase of the RX LO signals from LO signal generator 880 .
- FIG. 8 shows an example transceiver design.
- the conditioning of the signals in a transmitter and a receiver may be performed by one or more stages of amplifier, filter, upconverter, downconverter, etc.
- These circuit blocks may be arranged differently from the configuration shown in FIG. 8 .
- other circuit blocks not shown in FIG. 8 may also be used to condition the signals in the transmitter and receiver.
- Some circuit blocks in FIG. 8 may also be omitted. All or a portion of transceiver 820 may be implemented on one or more analog integrated circuits (ICs), RF ICs (RFICs), mixed-signal ICs, etc.
- ICs analog integrated circuits
- RFICs RF ICs
- mixed-signal ICs etc.
- LO signal generators 870 and 880 may each include a frequency divider that receives a clock signal and provides a divider output signal.
- the clock signal may be generated by a voltage-controlled oscillator (VCO) or some other types of oscillator.
- VCO voltage-controlled oscillator
- the clock signal may also be referred to as a VCO signal, an oscillator signal, etc. In any case, it may be desirable to obtain differential output signals from a frequency divider.
- the techniques of the present disclosure may be readily applied to the design of LO signal generators 870 and 880 .
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
- a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
- a software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
- An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
- the storage medium may be integral to the processor.
- the processor and the storage medium may reside in an ASIC.
- the ASIC may reside in a user terminal
- the processor and the storage medium may reside as discrete components in a user terminal.
- the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
- Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
- a storage media may be any available media that can be accessed by a computer.
- such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
- any connection is properly termed a computer-readable medium.
- the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
- the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
- Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
- Transceivers (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/363,911 US8031019B2 (en) | 2009-02-02 | 2009-02-02 | Integrated voltage-controlled oscillator circuits |
| EP10702392.1A EP2392071B1 (de) | 2009-02-02 | 2010-02-02 | Integrierte spannungsgesteuerte oszillatorschaltungen |
| PCT/US2010/022937 WO2010093530A2 (en) | 2009-02-02 | 2010-02-02 | Integrated voltage-controlled oscillator circuits |
| JP2011548411A JP5718255B2 (ja) | 2009-02-02 | 2010-02-02 | 集積電圧制御発振器回路 |
| KR1020117020582A KR101284768B1 (ko) | 2009-02-02 | 2010-02-02 | 전압-제어 발진기를 포함하는 무선 통신을 위한 장치 및 디바이스 및 믹싱된 신호 또는 주파수 분할된 신호를 생성하기 위한 방법 |
| TW099103060A TW201037963A (en) | 2009-02-02 | 2010-02-02 | Integrated voltage-controlled oscillator circuits |
| CN201080006271.8A CN102301587B (zh) | 2009-02-02 | 2010-02-02 | 集成压控振荡器电路 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/363,911 US8031019B2 (en) | 2009-02-02 | 2009-02-02 | Integrated voltage-controlled oscillator circuits |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20100194485A1 US20100194485A1 (en) | 2010-08-05 |
| US8031019B2 true US8031019B2 (en) | 2011-10-04 |
Family
ID=42342504
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/363,911 Active 2029-06-06 US8031019B2 (en) | 2009-02-02 | 2009-02-02 | Integrated voltage-controlled oscillator circuits |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US8031019B2 (de) |
| EP (1) | EP2392071B1 (de) |
| JP (1) | JP5718255B2 (de) |
| KR (1) | KR101284768B1 (de) |
| TW (1) | TW201037963A (de) |
| WO (1) | WO2010093530A2 (de) |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100238843A1 (en) * | 2009-03-18 | 2010-09-23 | Qualcomm Incorporated | Transformer-based cmos oscillators |
| US20110156829A1 (en) * | 2009-12-28 | 2011-06-30 | Renesas Electronics Corporation | Oscillator combined circuit, semiconductor device, and current reuse method |
| US20110241789A1 (en) * | 2010-04-01 | 2011-10-06 | National Tsing Hua University (Taiwan) | Integrated circuit capable of repeatedly using current |
| US8723609B2 (en) | 2012-03-13 | 2014-05-13 | Idustrial Technology Research Institute | Voltage-controlled oscillator module and method for generating oscillator signals |
| US9093949B2 (en) | 2013-09-19 | 2015-07-28 | International Business Machines Corporation | Current re-use oscillator, doubler and regulator circuit |
| US20150311908A1 (en) * | 2014-04-29 | 2015-10-29 | Telefonaktiebolaget L M Ericsson (Publ) | Local oscillator interference cancellation |
| US9184498B2 (en) | 2013-03-15 | 2015-11-10 | Gigoptix, Inc. | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through fine control of a tunable frequency of a tank circuit of a VCO thereof |
| US9275690B2 (en) | 2012-05-30 | 2016-03-01 | Tahoe Rf Semiconductor, Inc. | Power management in an electronic system through reducing energy usage of a battery and/or controlling an output power of an amplifier thereof |
| US9397673B2 (en) | 2014-04-23 | 2016-07-19 | Telefonaktiebolaget L M Ericsson (Publ) | Oscillator crosstalk compensation |
| US9444431B2 (en) * | 2015-02-05 | 2016-09-13 | University Of Macau | Ultra-low-voltage current-reuse voltage-controlled oscillator and transconductance-capacitor filter |
| US9509351B2 (en) | 2012-07-27 | 2016-11-29 | Tahoe Rf Semiconductor, Inc. | Simultaneous accommodation of a low power signal and an interfering signal in a radio frequency (RF) receiver |
| US9531070B2 (en) | 2013-03-15 | 2016-12-27 | Christopher T. Schiller | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through accommodating differential coupling between VCOs thereof |
| US9614702B2 (en) | 2011-11-30 | 2017-04-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Technique for crosstalk reduction |
| US9666942B2 (en) | 2013-03-15 | 2017-05-30 | Gigpeak, Inc. | Adaptive transmit array for beam-steering |
| US9716315B2 (en) | 2013-03-15 | 2017-07-25 | Gigpeak, Inc. | Automatic high-resolution adaptive beam-steering |
| US9722310B2 (en) | 2013-03-15 | 2017-08-01 | Gigpeak, Inc. | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through frequency multiplication |
| US9780449B2 (en) | 2013-03-15 | 2017-10-03 | Integrated Device Technology, Inc. | Phase shift based improved reference input frequency signal injection into a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation to reduce a phase-steering requirement during beamforming |
| US9837714B2 (en) | 2013-03-15 | 2017-12-05 | Integrated Device Technology, Inc. | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through a circular configuration thereof |
| US10447203B2 (en) | 2017-01-03 | 2019-10-15 | Fci Inc. | Local oscillator generation system and generation method thereof |
| US10541717B1 (en) | 2018-09-07 | 2020-01-21 | Intel Corporation | Cascaded transmit and receive local oscillator distribution network |
| US11496094B1 (en) | 2021-04-26 | 2022-11-08 | International Business Machines Corporation | Voltage-controlled oscillator with centertap bias |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8615205B2 (en) | 2007-12-18 | 2013-12-24 | Qualcomm Incorporated | I-Q mismatch calibration and method |
| US8970272B2 (en) * | 2008-05-15 | 2015-03-03 | Qualcomm Incorporated | High-speed low-power latches |
| US8712357B2 (en) | 2008-11-13 | 2014-04-29 | Qualcomm Incorporated | LO generation with deskewed input oscillator signal |
| US8718574B2 (en) * | 2008-11-25 | 2014-05-06 | Qualcomm Incorporated | Duty cycle adjustment for a local oscillator signal |
| US8847638B2 (en) * | 2009-07-02 | 2014-09-30 | Qualcomm Incorporated | High speed divide-by-two circuit |
| US8791740B2 (en) * | 2009-07-16 | 2014-07-29 | Qualcomm Incorporated | Systems and methods for reducing average current consumption in a local oscillator path |
| US8854098B2 (en) | 2011-01-21 | 2014-10-07 | Qualcomm Incorporated | System for I-Q phase mismatch detection and correction |
| US8742880B2 (en) * | 2011-10-28 | 2014-06-03 | Qualcomm Incorporated | Single differential transformer core |
| WO2013095328A1 (en) * | 2011-12-19 | 2013-06-27 | Intel Corporation | Voltage-controlled oscillator with reduced single-ended capacitance |
| US9154077B2 (en) * | 2012-04-12 | 2015-10-06 | Qualcomm Incorporated | Compact high frequency divider |
| TWI508428B (zh) | 2012-11-22 | 2015-11-11 | Ind Tech Res Inst | 電流重複使用除頻器及其方法與所應用的電壓控制振盪器模組以及鎖相迴路 |
| US9444400B2 (en) * | 2015-01-09 | 2016-09-13 | Qualcomm Incorporated | System and method for dynamically biasing oscillators for optimum phase noise |
| CN113014201A (zh) * | 2015-01-27 | 2021-06-22 | 华为技术有限公司 | 射频振荡器 |
| US10931230B2 (en) * | 2018-06-29 | 2021-02-23 | Taiwan Semiconductor Manufacturing Company Ltd. | Voltage controlled oscillator circuit, device, and method |
| US10992262B2 (en) * | 2018-06-29 | 2021-04-27 | Taiwan Semiconductor Manufacturing Company Ltd. | Oscillator circuit, device, and method |
| US10778145B2 (en) * | 2019-01-02 | 2020-09-15 | Mediatek Inc. | Magnetically pumped voltage controlled oscillator |
| TWI713318B (zh) * | 2019-04-09 | 2020-12-11 | 瑞昱半導體股份有限公司 | 適用於藍牙裝置的功率放大系統和相關功率放大方法 |
| US12107611B2 (en) | 2020-12-11 | 2024-10-01 | Intel Corporation | Receiver with reduced noise figure using split LNA and digital combining |
Citations (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4818953A (en) | 1988-04-07 | 1989-04-04 | Genlyte Group, Inc. | Oscillator improvement |
| US6201287B1 (en) | 1998-10-26 | 2001-03-13 | Micron Technology, Inc. | Monolithic inductance-enhancing integrated circuits, complementary metal oxide semiconductor (CMOS) inductance-enhancing integrated circuits, inductor assemblies, and inductance-multiplying methods |
| US6356602B1 (en) | 1998-05-04 | 2002-03-12 | Trimble Navigation Limited | RF integrated circuit for downconverting a GPS signal |
| US6606008B2 (en) | 2000-11-17 | 2003-08-12 | Infineon Technologies Ag | Oscillator circuit |
| US20040203479A1 (en) | 2002-04-25 | 2004-10-14 | Tsung-Hsien Lin | 50% duty-cycle clock generator |
| US20050046499A1 (en) | 2003-08-29 | 2005-03-03 | The Hong Kong University Of Science And Technology | Low voltage low-phase-noise oscillator |
| US6867656B2 (en) | 2002-06-17 | 2005-03-15 | California Institute Of Technology | Self-dividing oscillators |
| US6982605B2 (en) * | 2003-05-01 | 2006-01-03 | Freescale Semiconductor, Inc. | Transformer coupled oscillator and method |
| US20060181362A1 (en) * | 2005-02-15 | 2006-08-17 | Isao Ikuta | Voltage-controlled oscillator and RF-IC |
| US7107035B2 (en) * | 2002-09-26 | 2006-09-12 | Kabushiki Kaisha Toshiba | Frequency converter and radio communication apparatus |
| US7116183B2 (en) | 2004-02-05 | 2006-10-03 | Qualcomm Incorporated | Temperature compensated voltage controlled oscillator |
| US7154349B2 (en) * | 2004-08-11 | 2006-12-26 | Qualcomm, Incorporated | Coupled-inductor multi-band VCO |
| US20070057740A1 (en) | 2005-09-14 | 2007-03-15 | Samsung Electronics Co., Ltd. | Quadrature voltage controlled oscillator and wireless transceiver including the same |
| US7250826B2 (en) * | 2005-07-19 | 2007-07-31 | Lctank Llc | Mutual inductance in transformer based tank circuitry |
| US20070188255A1 (en) | 2006-02-10 | 2007-08-16 | Roland Strandberg | Oscillator gain equalization |
| US7336134B1 (en) | 2004-06-25 | 2008-02-26 | Rf Micro Devices, Inc. | Digitally controlled oscillator |
| US20080174378A1 (en) | 2007-01-17 | 2008-07-24 | Stmicroelectronics S.R.L. | Method of adjusting the resonance frequency of an l-c resonant circuit and resonant circuit |
| US20080197894A1 (en) | 2007-02-15 | 2008-08-21 | National Taiwan University Of Science And Technology | Injection locked frequency divider |
| US7446617B2 (en) * | 2006-11-30 | 2008-11-04 | National Taiwan University Of Science & Technology | Low power consumption frequency divider circuit |
| US20080272851A1 (en) | 2007-05-04 | 2008-11-06 | Mediatek Inc. | LC voltage controlled oscillator with tunable capacitance unit |
| US20090184774A1 (en) * | 2008-01-17 | 2009-07-23 | National Taiwan University | Transistor voltage-controlled oscillator |
| US20090251207A1 (en) | 2008-04-04 | 2009-10-08 | Broadcom Corporation | Enhanced polar modulator for transmitter |
| US7724102B2 (en) | 2006-09-29 | 2010-05-25 | Infineon Technologies Ag | Oscillator circuit |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS549544A (en) * | 1977-06-24 | 1979-01-24 | Citizen Watch Co Ltd | Mutual complement type insulation gate type electric field effect transistor circuit |
| JP3152214B2 (ja) * | 1998-08-18 | 2001-04-03 | 日本電気株式会社 | 2逓倍回路 |
| JP2002529949A (ja) * | 1998-11-04 | 2002-09-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 電流を再利用する組み合わせられた小電力cfcmosミキサおよびvco |
| JP2006080990A (ja) * | 2004-09-10 | 2006-03-23 | Murata Mfg Co Ltd | 複合回路 |
-
2009
- 2009-02-02 US US12/363,911 patent/US8031019B2/en active Active
-
2010
- 2010-02-02 EP EP10702392.1A patent/EP2392071B1/de not_active Not-in-force
- 2010-02-02 TW TW099103060A patent/TW201037963A/zh unknown
- 2010-02-02 WO PCT/US2010/022937 patent/WO2010093530A2/en not_active Ceased
- 2010-02-02 JP JP2011548411A patent/JP5718255B2/ja not_active Expired - Fee Related
- 2010-02-02 KR KR1020117020582A patent/KR101284768B1/ko not_active Expired - Fee Related
Patent Citations (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4818953A (en) | 1988-04-07 | 1989-04-04 | Genlyte Group, Inc. | Oscillator improvement |
| US6356602B1 (en) | 1998-05-04 | 2002-03-12 | Trimble Navigation Limited | RF integrated circuit for downconverting a GPS signal |
| US6201287B1 (en) | 1998-10-26 | 2001-03-13 | Micron Technology, Inc. | Monolithic inductance-enhancing integrated circuits, complementary metal oxide semiconductor (CMOS) inductance-enhancing integrated circuits, inductor assemblies, and inductance-multiplying methods |
| US6606008B2 (en) | 2000-11-17 | 2003-08-12 | Infineon Technologies Ag | Oscillator circuit |
| US20040203479A1 (en) | 2002-04-25 | 2004-10-14 | Tsung-Hsien Lin | 50% duty-cycle clock generator |
| US6867656B2 (en) | 2002-06-17 | 2005-03-15 | California Institute Of Technology | Self-dividing oscillators |
| US7107035B2 (en) * | 2002-09-26 | 2006-09-12 | Kabushiki Kaisha Toshiba | Frequency converter and radio communication apparatus |
| US6982605B2 (en) * | 2003-05-01 | 2006-01-03 | Freescale Semiconductor, Inc. | Transformer coupled oscillator and method |
| US20050046499A1 (en) | 2003-08-29 | 2005-03-03 | The Hong Kong University Of Science And Technology | Low voltage low-phase-noise oscillator |
| US7116183B2 (en) | 2004-02-05 | 2006-10-03 | Qualcomm Incorporated | Temperature compensated voltage controlled oscillator |
| US7336134B1 (en) | 2004-06-25 | 2008-02-26 | Rf Micro Devices, Inc. | Digitally controlled oscillator |
| US7154349B2 (en) * | 2004-08-11 | 2006-12-26 | Qualcomm, Incorporated | Coupled-inductor multi-band VCO |
| US20060181362A1 (en) * | 2005-02-15 | 2006-08-17 | Isao Ikuta | Voltage-controlled oscillator and RF-IC |
| US7250826B2 (en) * | 2005-07-19 | 2007-07-31 | Lctank Llc | Mutual inductance in transformer based tank circuitry |
| US20070057740A1 (en) | 2005-09-14 | 2007-03-15 | Samsung Electronics Co., Ltd. | Quadrature voltage controlled oscillator and wireless transceiver including the same |
| US20070188255A1 (en) | 2006-02-10 | 2007-08-16 | Roland Strandberg | Oscillator gain equalization |
| US7724102B2 (en) | 2006-09-29 | 2010-05-25 | Infineon Technologies Ag | Oscillator circuit |
| US7446617B2 (en) * | 2006-11-30 | 2008-11-04 | National Taiwan University Of Science & Technology | Low power consumption frequency divider circuit |
| US20080174378A1 (en) | 2007-01-17 | 2008-07-24 | Stmicroelectronics S.R.L. | Method of adjusting the resonance frequency of an l-c resonant circuit and resonant circuit |
| US20080197894A1 (en) | 2007-02-15 | 2008-08-21 | National Taiwan University Of Science And Technology | Injection locked frequency divider |
| US20080272851A1 (en) | 2007-05-04 | 2008-11-06 | Mediatek Inc. | LC voltage controlled oscillator with tunable capacitance unit |
| US20090184774A1 (en) * | 2008-01-17 | 2009-07-23 | National Taiwan University | Transistor voltage-controlled oscillator |
| US20090251207A1 (en) | 2008-04-04 | 2009-10-08 | Broadcom Corporation | Enhanced polar modulator for transmitter |
Non-Patent Citations (9)
| Title |
|---|
| International Search Report and Written Opinion-PCT/US2010/022937, International Search Authority-European Patent Office-Aug. 9, 2010. |
| Kyung-Gyu Park, et al., "Current Reusing VCO and Divided-by-Two Frequency Divider for Quadrature LO Generation," IEEE Microwave and Wireless Components Letters, pp. 413-415, Jun. 2008. |
| Lee, et al., "A Transformer-based Low Phase Noise and Widely Tuned CMOS Quadrature VCO," Circuits and Systems 2006, IEEE ISCAS 2006. |
| Lee, et al., "Q-Enhanced 5 GHz CMOS VCO Using 4-port Transformer," Silicon Monolithic Integrated Circuits in RF Systems, 2007 Topical Meeting on (Jan. 2007). |
| Leung, Lincoln L. K. et al: "A 1-V, 9.7mW CMOS Frequency Synthesizer for WLAN 802.11a Transceivers," 2005 Symposium on VLSI Circuits Digest of Technical Papers. Piscataway, NJ, USA, (Jun. 16, 2005), pp. 252-255, XP010818423, DOI:10.1109/VLSIC.2005.1469379, ISBN: 978-4-900784-01-7. |
| Li, et al., "A 21 GHz Complementary Transformer Coupled CMOS VCO," IEEE Microwave and Wireless Components Letters, vol. 18, No. 4, Apr. 2008. |
| Park, Dongmin et al.: "A 1.8 V 900 W 4.5 GHz VCO and Prescaler in 0.18 m CMOS Using Charge-Recycling Technique," IEEE Microwave and Wireless Components Letters, vol. 19 (2), pp. 104-106, Feb. 1, 2009. |
| To-Po Wang, et al., "A Low-Power Oscillator Mixer in 0.18-mum CMOS Technology", IEEE Transactions on Microwave Theory and Techniques, pp. 88-95, Jan. 2006. |
| To-Po Wang, et al., "A Low-Power Oscillator Mixer in 0.18-μm CMOS Technology", IEEE Transactions on Microwave Theory and Techniques, pp. 88-95, Jan. 2006. |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9461652B2 (en) | 2009-03-18 | 2016-10-04 | Qualcomm Incorporated | Transformer-based CMOS oscillators |
| US8736392B2 (en) | 2009-03-18 | 2014-05-27 | Qualcomm Incorporated | Transformer-based CMOS oscillators |
| US20100238843A1 (en) * | 2009-03-18 | 2010-09-23 | Qualcomm Incorporated | Transformer-based cmos oscillators |
| US20110156829A1 (en) * | 2009-12-28 | 2011-06-30 | Renesas Electronics Corporation | Oscillator combined circuit, semiconductor device, and current reuse method |
| US20110241789A1 (en) * | 2010-04-01 | 2011-10-06 | National Tsing Hua University (Taiwan) | Integrated circuit capable of repeatedly using current |
| US10904047B2 (en) | 2011-11-30 | 2021-01-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Technique for crosstalk reduction |
| US10484214B2 (en) | 2011-11-30 | 2019-11-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Technique for crosstalk reduction |
| US9893913B2 (en) | 2011-11-30 | 2018-02-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Technique for crosstalk reduction |
| US9614702B2 (en) | 2011-11-30 | 2017-04-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Technique for crosstalk reduction |
| US8723609B2 (en) | 2012-03-13 | 2014-05-13 | Idustrial Technology Research Institute | Voltage-controlled oscillator module and method for generating oscillator signals |
| US9275690B2 (en) | 2012-05-30 | 2016-03-01 | Tahoe Rf Semiconductor, Inc. | Power management in an electronic system through reducing energy usage of a battery and/or controlling an output power of an amplifier thereof |
| US9509351B2 (en) | 2012-07-27 | 2016-11-29 | Tahoe Rf Semiconductor, Inc. | Simultaneous accommodation of a low power signal and an interfering signal in a radio frequency (RF) receiver |
| US9184498B2 (en) | 2013-03-15 | 2015-11-10 | Gigoptix, Inc. | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through fine control of a tunable frequency of a tank circuit of a VCO thereof |
| US9722310B2 (en) | 2013-03-15 | 2017-08-01 | Gigpeak, Inc. | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through frequency multiplication |
| US9837714B2 (en) | 2013-03-15 | 2017-12-05 | Integrated Device Technology, Inc. | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through a circular configuration thereof |
| US9531070B2 (en) | 2013-03-15 | 2016-12-27 | Christopher T. Schiller | Extending beamforming capability of a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation through accommodating differential coupling between VCOs thereof |
| US9780449B2 (en) | 2013-03-15 | 2017-10-03 | Integrated Device Technology, Inc. | Phase shift based improved reference input frequency signal injection into a coupled voltage controlled oscillator (VCO) array during local oscillator (LO) signal generation to reduce a phase-steering requirement during beamforming |
| US9666942B2 (en) | 2013-03-15 | 2017-05-30 | Gigpeak, Inc. | Adaptive transmit array for beam-steering |
| US9716315B2 (en) | 2013-03-15 | 2017-07-25 | Gigpeak, Inc. | Automatic high-resolution adaptive beam-steering |
| US9190951B2 (en) | 2013-09-19 | 2015-11-17 | International Business Machines Corporation | Current re-use oscillator, doubler and regulator circuit |
| US9093949B2 (en) | 2013-09-19 | 2015-07-28 | International Business Machines Corporation | Current re-use oscillator, doubler and regulator circuit |
| US9397673B2 (en) | 2014-04-23 | 2016-07-19 | Telefonaktiebolaget L M Ericsson (Publ) | Oscillator crosstalk compensation |
| US9407274B2 (en) * | 2014-04-29 | 2016-08-02 | Telefonaktiebolaget L M Ericsson (Publ) | Local oscillator interference cancellation |
| US20150311908A1 (en) * | 2014-04-29 | 2015-10-29 | Telefonaktiebolaget L M Ericsson (Publ) | Local oscillator interference cancellation |
| US9444431B2 (en) * | 2015-02-05 | 2016-09-13 | University Of Macau | Ultra-low-voltage current-reuse voltage-controlled oscillator and transconductance-capacitor filter |
| US10447203B2 (en) | 2017-01-03 | 2019-10-15 | Fci Inc. | Local oscillator generation system and generation method thereof |
| US10541717B1 (en) | 2018-09-07 | 2020-01-21 | Intel Corporation | Cascaded transmit and receive local oscillator distribution network |
| US11496094B1 (en) | 2021-04-26 | 2022-11-08 | International Business Machines Corporation | Voltage-controlled oscillator with centertap bias |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2392071B1 (de) | 2015-09-23 |
| JP2012517158A (ja) | 2012-07-26 |
| TW201037963A (en) | 2010-10-16 |
| KR20110122170A (ko) | 2011-11-09 |
| KR101284768B1 (ko) | 2013-07-17 |
| JP5718255B2 (ja) | 2015-05-13 |
| WO2010093530A2 (en) | 2010-08-19 |
| EP2392071A2 (de) | 2011-12-07 |
| US20100194485A1 (en) | 2010-08-05 |
| CN102301587A (zh) | 2011-12-28 |
| WO2010093530A3 (en) | 2010-10-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8031019B2 (en) | Integrated voltage-controlled oscillator circuits | |
| US8736392B2 (en) | Transformer-based CMOS oscillators | |
| Zong et al. | A 60 GHz frequency generator based on a 20 GHz oscillator and an implicit multiplier | |
| US8842410B2 (en) | Switchable inductor network | |
| US6639481B1 (en) | Transformer coupled quadrature tuned oscillator | |
| US10461695B2 (en) | Planar differential inductor with fixed differential and common mode inductance | |
| Shahmohammadi et al. | Tuning range extension of a transformer-based oscillator through common-mode Colpitts resonance | |
| US9985591B2 (en) | Differential source follower driven power amplifier | |
| US9008601B2 (en) | Single differential-inductor VCO with implicit common-mode resonance | |
| Azizi Poor et al. | A low phase noise quadrature VCO using superharmonic injection, current reuse, and negative resistance techniques in CMOS technology | |
| Bajestan et al. | A 5.12–12.95 GHz triple-resonance low phase noise CMOS VCO for software-defined radio applications | |
| US20190222183A1 (en) | Differential hard-switching radio frequency (rf) power amplifier | |
| CN102301587B (zh) | 集成压控振荡器电路 | |
| US20140347117A1 (en) | Impedance transformer for use with a quadrature passive cmos mixer | |
| Masuch et al. | Low‐power quadrature generators for body area network applications | |
| EP3994797B1 (de) | Ringoszillator mit resonanzkreisen | |
| Abdelghany et al. | A low flicker-noise high conversion gain RF-CMOS mixer with differential active inductor | |
| Abdelghany et al. | Flicker noise reduction in RF CMOS mixer using differential active inductor | |
| Castello et al. | Unconventional Receiver Architectures |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: QUALCOMM INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAWLA, VIPUL;WANG, SHEN;REEL/FRAME:022188/0309 Effective date: 20090115 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |