US7928339B2 - Device for gaseous plasma sterilization - Google Patents
Device for gaseous plasma sterilization Download PDFInfo
- Publication number
- US7928339B2 US7928339B2 US11/722,722 US72272205A US7928339B2 US 7928339 B2 US7928339 B2 US 7928339B2 US 72272205 A US72272205 A US 72272205A US 7928339 B2 US7928339 B2 US 7928339B2
- Authority
- US
- United States
- Prior art keywords
- magnetron
- diode
- joined
- peak
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/14—Plasma, i.e. ionised gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/66—Circuits
- H05B6/68—Circuits for monitoring or control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2242/00—Auxiliary systems
- H05H2242/20—Power circuits
- H05H2242/24—Radiofrequency or microwave generators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2245/00—Applications of plasma devices
- H05H2245/30—Medical applications
- H05H2245/36—Sterilisation of objects, liquids, volumes or surfaces
Definitions
- the present invention pertains to a sterilization device for medical instruments in particular, of the type which uses a gas plasma.
- a gas which does not itself have bactericidal properties, which is subjected to a sufficiently high electric field to cause its ionisation and the separation of its molecules.
- the gas produced downstream of the plasma called “post-discharge” gas has sterilizing properties. This gas enters a treatment chamber where it exerts its bactericidal action on the instruments to be sterilized.
- the high frequency current technique has the disadvantage of using electrodes subject to wear and with which it is not possible to obtain good stability of the device so that the device needs to be permanently adjusted.
- the microwave technique does not have these drawbacks but is nonetheless not free of some constraints, in particular regarding lifetime and the frequency stability of the magnetron generating the microwaves.
- a microwave source consists of a magnetron delivering its energy within a waveguide which transmits this energy to an energy-absorbing cavity resonator in which it is desired to conduct a certain task.
- This cavity therefore absorbs part of the emitted energy, and part of the remaining energy is reflected towards the magnetron.
- the lifetime of the magnetron is directly related to this reflected power. If it is too high, it generates a rise in temperature of the magnetron which may lead to its final breakdown.
- the magnetron should have a long lifetime compatible with the lifetimes generally accepted in medical industry sectors.
- the power absorbed in the resonant cavity is essentially variable since its depends upon the mass of instruments to be sterilized. Therefore it is important that the magnetron should be able to operate with a reflected power corresponding to its total power (which corresponds to an almost empty cavity resonator) and for a large number of times without undergoing irreversible damage.
- the purpose of the present invention is to propose a microwave generator intended for the production of a gas plasma, which remedies these disadvantages by ensuring excellent operating stability and an optimal lifetime of its magnetron.
- a further subject of the invention is a device for producing a gas plasma by ionising a gas using a microwave source of determined nominal power, comprising a magnetron receiving its electric energy from a supply circuit, characterized in that the power delivered to the magnetron by the supply circuit is at least equal to one quarter of the nominal power of the magnetron. Preferably, this power lies between one tenth and one quarter of the magnetron's nominal power.
- the power delivered to the magnetron by the supply circuit is no more than one quarter of the product of the magnetron's nominal power multiplied by the reflection coefficient of the magnetron.
- the inventive device may comprise means able to limit the power delivered to the magnetron, which are such that its temperature does not exceed 80° C.
- the present invention is of particular interest at production cost level, in that it can have recourse to circuits available on the household products market and which, since they are mass produced, have a particularly competitive cost price.
- One disadvantage of such circuits when it is desired to use the same in areas such as the medical sterilization sector, is that firstly they have a power in the order of 800 W whereas for sterilization the power which can be absorbed by the treatment cavity is in the order of only 100 W, and secondly their reliability is low.
- magnetrons for start-up, require a peak voltage of relatively high value in the order of 3 to 4 kv.
- the power supplied to the magnetron is limited, which will limit the energy reflected towards it, and this limitation is achieved without reducing the required starting load.
- One manner of particular interest for reducing the electric power supplied to the magnetron, whilst maintaining said peak voltage at a sufficient value, is to use a voltage doubler having a diode and a capacitor arranged in series at the terminals of the secondary winding and to use a capacitor of sufficiently low value to cause the voltage to drop. Under these conditions it was found that the power supplied to the magnetron is sufficiently reduced to ensure its sufficient reliability whilst preserving its starting peak load.
- SWR Standing Wave Ratio
- the energy able to be thermally dissipated by a magnetron is proportional to its power. Therefore, bearing in mind that the mean SWR for a magnetron is in the order of 4, the corresponding reflection coefficient r is 0.6, which means that a magnetron having a nominal power of 800 watts will have a permissible reflected power of 480 watts, whereas this same value for a magnetron having a nominal power of 300 watts will only be 180 watts.
- P n being the nominal power of the magnetron.
- FIG. 1 is a schematic view of an inventive device
- FIG. 2 is a curve showing the variation in power delivered to the magnetron in relation to the capacity value of the capacitor in the supply means.
- FIG. 3 is a curve showing the variation in voltage in relation to time at the terminals of the magnetron in a device of the type shown FIG. 1 ,
- FIG. 4 is a schematic view of a variant of embodiment of the invention.
- FIG. 1 shows a supply device able to supply the magnetron with the energy it needs to produce a gas plasma.
- This gas plasma is particularly intended, via its post-discharge gas, to ensure a sterilizing function.
- the supply essentially consists of a voltage step-up supply transformer 1 , having a ratio of approximately 10, so that with a peak-to-peak supply voltage of 220 V, the peak-to-peak voltage at its secondary winding will be approximately 2200 V.
- a capacitor C and a diode D Arranged in series in the secondary circuit 1 b are a capacitor C and a diode D between whose terminals A and B a magnetron 7 is connected. This magnetron is joined by a waveguide 8 to a cavity resonator 9
- the diode D and capacitor C form a voltage doubler making it possible to multiply by 2 the output voltage of transformer 1 , since capacitor C becomes charged during positive alternation and when alternation becomes negative the voltage of the capacitor is added to its voltage value.
- a curve was plotted showing the variation in power P supplied by the supply circuit to the magnetron 7 in relation to the value of the capacitor C. It is therefore found in FIG. 2 that the power P decreases with the value of the capacitor. Therefore for a capacitor C of 0.9 ⁇ F, the value conventionally used for the supply of household microwave ovens, the delivered power is approximately 900 W, whereas if the value of capacitor C is reduced to 0.1 ⁇ F, this power drops to 100 W which is a value corresponding to the power used in the particular area of gas plasma production for sterilization purposes using its post-discharge gas. This is of particular interest since, even if the power is fully reflected, its value will be below the value of the permissible return power, which for a magnetron of 800 W nominal power is 480 W.
- FIG. 3 a curve is shown FIG. 3 expressing the variation in voltage at terminals A and B of the magnetron supply. It is found that the peak voltage thereupon at the start of alternation is well maintained, making it possible to provide the magnetron with a proper starting load.
- FIG. 4 It is also possible, according to the invention, as is shown FIG. 4 to provide a double alternating supply to the magnetron.
- a loop is provided comprising two diodes in series, namely a first diode D 1 and a second diode D 2 , the output of the first being joined to the input of the second, and two capacitors C 1 and C 2 .
- An output terminal E of transformer 1 is joined between the two capacitors C 1 and C 2 and the other output terminal F is joined via a resistance R to the input of diode D 2 .
- the magnetron is supplied between the input terminal A′ of the first diode D 1 and the output terminal B′ of the second diode D 2 .
- Said assembly accumulates the two voltage doublers and the voltage delivered between terminals A′ and B′ is the sum of the voltages at the terminals of capacitors C 1 and C 2 .
- capacitor C 1 charges via diode D 1 .
- alternation becomes negative capacitor C 2 charges via diode D 2 .
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Plasma Technology (AREA)
- Microwave Tubes (AREA)
- Rectifiers (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0413818A FR2880235B1 (fr) | 2004-12-23 | 2004-12-23 | Dispositif de sterilisation par plasma gazeux |
FR0413818 | 2004-12-23 | ||
PCT/FR2005/003223 WO2006070107A1 (fr) | 2004-12-23 | 2005-12-21 | Dispositif de sterilisation par plasma gazeux |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090035196A1 US20090035196A1 (en) | 2009-02-05 |
US7928339B2 true US7928339B2 (en) | 2011-04-19 |
Family
ID=34952664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/722,722 Expired - Fee Related US7928339B2 (en) | 2004-12-23 | 2005-12-21 | Device for gaseous plasma sterilization |
Country Status (16)
Country | Link |
---|---|
US (1) | US7928339B2 (fr) |
EP (1) | EP1829438B1 (fr) |
JP (1) | JP5107052B2 (fr) |
KR (1) | KR20070107681A (fr) |
CN (1) | CN101147431B (fr) |
AU (1) | AU2005321172B2 (fr) |
BR (1) | BRPI0519220B1 (fr) |
CA (1) | CA2594004C (fr) |
DK (1) | DK1829438T3 (fr) |
ES (1) | ES2532261T3 (fr) |
FR (1) | FR2880235B1 (fr) |
HK (1) | HK1117327A1 (fr) |
IL (1) | IL183864A (fr) |
RU (1) | RU2388195C2 (fr) |
TW (1) | TWI389710B (fr) |
WO (1) | WO2006070107A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10763814B2 (en) | 2016-08-09 | 2020-09-01 | John Bean Technologies Corporation | Radio frequency processing apparatus and method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113426020B (zh) * | 2021-05-25 | 2022-09-09 | 深圳市飞立电器科技有限公司 | 一种接触式等离子消毒仪 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4317976A (en) | 1978-06-28 | 1982-03-02 | Tokyo Shibaura Denki Kabushiki Kaisha | High frequency heating apparatus |
US4849595A (en) | 1985-06-17 | 1989-07-18 | Robertshaw Controls Company | Electrically operated control device and system for a microwave oven |
JPH06104079A (ja) | 1992-09-16 | 1994-04-15 | Sanyo Electric Co Ltd | 高周波加熱装置 |
US5325020A (en) | 1990-09-28 | 1994-06-28 | Abtox, Inc. | Circular waveguide plasma microwave sterilizer apparatus |
US6445596B1 (en) | 1999-06-15 | 2002-09-03 | Matsushita Electric Industrial Co., Ltd. | Magnetron drive power supply |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS491523Y1 (fr) * | 1969-05-22 | 1974-01-16 | ||
JPH0635662B2 (ja) * | 1985-09-19 | 1994-05-11 | 松下電器産業株式会社 | プラズマ装置 |
JPS62208378A (ja) * | 1986-02-28 | 1987-09-12 | 東洋製罐株式会社 | デユアル・オ−ブナブル容器 |
GB8613567D0 (en) * | 1986-06-04 | 1986-07-09 | Electrolux Ab | Power supply circuits |
KR910006172B1 (ko) * | 1987-07-06 | 1991-08-16 | 마쯔시다덴기산교 가부시기가이샤 | 전기기기의 제어장치 |
JPH02279160A (ja) * | 1989-03-08 | 1990-11-15 | Abtox Inc | プラズマ滅菌方法及び滅菌装置 |
JPH0594899A (ja) * | 1991-10-02 | 1993-04-16 | Nippon Steel Corp | プラズマ処理装置 |
JPH05144381A (ja) * | 1991-11-20 | 1993-06-11 | Hitachi Ltd | マグネトロン応用装置 |
JP5138131B2 (ja) * | 2001-03-28 | 2013-02-06 | 忠弘 大見 | マイクロ波プラズマプロセス装置及びプラズマプロセス制御方法 |
KR100428511B1 (ko) * | 2002-05-27 | 2004-04-29 | 삼성전자주식회사 | 전자레인지 및 그 제어 방법 |
-
2004
- 2004-12-23 FR FR0413818A patent/FR2880235B1/fr not_active Expired - Fee Related
-
2005
- 2005-12-21 WO PCT/FR2005/003223 patent/WO2006070107A1/fr active Application Filing
- 2005-12-21 US US11/722,722 patent/US7928339B2/en not_active Expired - Fee Related
- 2005-12-21 AU AU2005321172A patent/AU2005321172B2/en not_active Ceased
- 2005-12-21 JP JP2007547570A patent/JP5107052B2/ja not_active Expired - Fee Related
- 2005-12-21 CA CA2594004A patent/CA2594004C/fr not_active Expired - Fee Related
- 2005-12-21 ES ES05850568.6T patent/ES2532261T3/es active Active
- 2005-12-21 BR BRPI0519220-0A patent/BRPI0519220B1/pt not_active IP Right Cessation
- 2005-12-21 DK DK05850568T patent/DK1829438T3/en active
- 2005-12-21 KR KR1020077016980A patent/KR20070107681A/ko not_active Application Discontinuation
- 2005-12-21 RU RU2007123086/06A patent/RU2388195C2/ru not_active IP Right Cessation
- 2005-12-21 CN CN2005800444872A patent/CN101147431B/zh not_active Expired - Fee Related
- 2005-12-21 EP EP05850568.6A patent/EP1829438B1/fr not_active Not-in-force
- 2005-12-22 TW TW094145885A patent/TWI389710B/zh not_active IP Right Cessation
-
2007
- 2007-06-12 IL IL183864A patent/IL183864A/en not_active IP Right Cessation
-
2008
- 2008-07-15 HK HK08107797.2A patent/HK1117327A1/xx not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4317976A (en) | 1978-06-28 | 1982-03-02 | Tokyo Shibaura Denki Kabushiki Kaisha | High frequency heating apparatus |
US4849595A (en) | 1985-06-17 | 1989-07-18 | Robertshaw Controls Company | Electrically operated control device and system for a microwave oven |
US5325020A (en) | 1990-09-28 | 1994-06-28 | Abtox, Inc. | Circular waveguide plasma microwave sterilizer apparatus |
JPH06104079A (ja) | 1992-09-16 | 1994-04-15 | Sanyo Electric Co Ltd | 高周波加熱装置 |
US6445596B1 (en) | 1999-06-15 | 2002-09-03 | Matsushita Electric Industrial Co., Ltd. | Magnetron drive power supply |
Non-Patent Citations (1)
Title |
---|
Patent Abstract of Japan vol. 018, No. 372 (E-1577)m Jul. 13, 1994. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10763814B2 (en) | 2016-08-09 | 2020-09-01 | John Bean Technologies Corporation | Radio frequency processing apparatus and method |
US11489507B2 (en) | 2016-08-09 | 2022-11-01 | John Bean Technologies Corporation | Radio frequency processing apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
HK1117327A1 (en) | 2009-01-09 |
EP1829438B1 (fr) | 2014-12-17 |
JP5107052B2 (ja) | 2012-12-26 |
IL183864A (en) | 2013-11-28 |
EP1829438A1 (fr) | 2007-09-05 |
CA2594004A1 (fr) | 2006-07-06 |
AU2005321172B2 (en) | 2011-04-28 |
WO2006070107A1 (fr) | 2006-07-06 |
ES2532261T3 (es) | 2015-03-25 |
IL183864A0 (en) | 2007-10-31 |
FR2880235A1 (fr) | 2006-06-30 |
DK1829438T3 (en) | 2015-03-02 |
KR20070107681A (ko) | 2007-11-07 |
RU2388195C2 (ru) | 2010-04-27 |
CA2594004C (fr) | 2017-03-14 |
CN101147431A (zh) | 2008-03-19 |
CN101147431B (zh) | 2011-09-14 |
FR2880235B1 (fr) | 2007-03-30 |
WO2006070107A8 (fr) | 2007-08-16 |
BRPI0519220A2 (pt) | 2009-01-06 |
RU2007123086A (ru) | 2009-01-27 |
JP2008525952A (ja) | 2008-07-17 |
TWI389710B (zh) | 2013-03-21 |
US20090035196A1 (en) | 2009-02-05 |
TW200628177A (en) | 2006-08-16 |
AU2005321172A1 (en) | 2006-07-06 |
BRPI0519220B1 (pt) | 2017-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150115797A1 (en) | High-frequency power supply device and ignition voltage selection method | |
US6433458B2 (en) | Method and unit for driving piezoelectric transformer used for controlling luminance of cold-cathode tube | |
EP0636285A1 (fr) | Stabilisateur pour systeme de traitement au plasma hf a alimentation en courant a mode de commutation. | |
US7928339B2 (en) | Device for gaseous plasma sterilization | |
HU213125B (en) | Circuit arrangement for operating low-pressure mercury vapour discharge lamp by means of high-frequency current | |
US2487092A (en) | Flickerless operation of electric lighting elements | |
WO1992002110A1 (fr) | Appareil de chauffage a haute frequence utilisant une alimentation en courant du type a commutation pour magnetron | |
KR20080021537A (ko) | 전원 디바이스 및 고주파 회로 시스템 | |
US5128593A (en) | Power supply for gas-filled lamps | |
Nehmadi et al. | Magnetic pulse compression for a copper vapour laser | |
US6677717B2 (en) | Power supply apparatus of lighting system using microwave | |
EP0315696A1 (fr) | Oscillateur laser | |
JP4122994B2 (ja) | パルス発生装置 | |
KR200394680Y1 (ko) | 섬광 램프 점등용 충전 회로 | |
Chen et al. | Relativistic magnetron research | |
KR100662213B1 (ko) | 섬광 램프 점등용 충전 회로 | |
JPS62225164A (ja) | マグネトロン駆動用電源 | |
JP2013132140A (ja) | 圧電トランス駆動装置 | |
JP3814977B2 (ja) | 無電極放電灯点灯装置 | |
Kurucu | A new design of excitation mechanism to be exploited by modern rf excited co2 lasers | |
RU2204875C2 (ru) | Способ возбуждения газового лазера импульсно-периодическим вч-напряжением | |
KR101117178B1 (ko) | 플래시램프 점등용 충전장치 | |
Schitz et al. | Effective excitation of DBD lamp with a long feedline | |
SU1427547A1 (ru) | Термокомпенсированный кварцевый автогенератор | |
Olivares et al. | Evaluation of Luminous Efficacy of Fluorescent Lamps Using Short Pulsed Dielectric Barrier Discharge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SOCIETE POUR LA CONCEPTION DES APPLICATIONS DES TE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REGERE, PASCAL;RICARD, ANDRE;COUSTY, SARAH;REEL/FRAME:020414/0355 Effective date: 20070811 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230419 |