US7686495B2 - Light source unit, backlight unit and display apparatus having the same - Google Patents

Light source unit, backlight unit and display apparatus having the same Download PDF

Info

Publication number
US7686495B2
US7686495B2 US11/957,836 US95783607A US7686495B2 US 7686495 B2 US7686495 B2 US 7686495B2 US 95783607 A US95783607 A US 95783607A US 7686495 B2 US7686495 B2 US 7686495B2
Authority
US
United States
Prior art keywords
light
mixing member
source unit
light source
light mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/957,836
Other languages
English (en)
Other versions
US20080151142A1 (en
Inventor
Koya Noba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Assigned to CITIZEN ELECTRONICS CO., LTD. reassignment CITIZEN ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOBA, KOYA
Publication of US20080151142A1 publication Critical patent/US20080151142A1/en
Application granted granted Critical
Publication of US7686495B2 publication Critical patent/US7686495B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources

Definitions

  • the present invention relates to a light source unit that mixes a plurality of different colors of light from LED (light-emitting diode) light sources.
  • the present invention also relates to a backlight unit and a display apparatus that have the light source unit.
  • Liquid crystal displays are widely used as thin display apparatus in small-sized portable devices, such as mobile phones and digital cameras, and also in medium- to large-sized image and picture displaying devices such as projectors, notebook personal computers, and liquid crystal monitors. Owing to recent improvements in emission efficiency of LEDs, the application range of LED light sources is expanding rapidly. For example, there have been developed liquid crystal display apparatus that use LEDs emitting red (R), green (G) and blue (B) in place of white LEDs or cold-cathode fluorescent lamps that have heretofore been used as light sources of backlight units.
  • RGB red
  • G green
  • B blue
  • a backlight unit of such a display apparatus mixes different colors of light from LEDs emitting red (R), green (G) and blue (B) to produce white light in a lightguide plate and emits it from an exit surface of the lightguide plate.
  • Japanese Patent Application Publication No. 2005-183124 discloses, as shown in FIG. 16 , a light source unit 1 serving as an illuminating device that supplies light to a lightguide plate.
  • the light source unit 1 has a plurality of linear light sources 3 R, 3 G and 3 B emitting different colors of light, which are mounted on a mounting substrate 2 .
  • the linear light sources 3 R, 3 G and 3 B respectively have a plurality of red LEDs 3 r , a plurality of green LEDs 3 g , and a plurality of blue LEDs 3 b , which are spaced linearly in the width direction of an entrance surface of the lightguide plate.
  • the linear light sources 3 R, 3 G and 3 B are stacked in a height direction of the entrance surface.
  • the light source unit 1 is disposed in adjacent to the entrance surface of the lightguide plate, and scattering and reflecting patterns are provided on a surface of the lightguide plate that is opposite to an exit surface thereof, so that light entering the lightguide plate is scattered by the scattering and reflecting patterns before exiting through the exit surface of the lightguide plate.
  • the Japanese Patent Application Publication states that satisfactory white light free from color irregularity can be obtained from the exit surface of the lightguide plate.
  • LEDs have such directivity characteristics that the emission intensity is the strongest in the directly forward direction of the LED's light-emitting surface, and for light traveling obliquely from the light-emitting surface, the emission intensity becomes weaker as the angle from the directly forward direction increases. Therefore, in the linear light sources 3 R, 3 G and 3 B also, the intensity of light from the light-emitting surface of each light source is the strongest near where each light-emitting device is mounted and becomes weaker with the distance from the light-emitting device. Accordingly, it is deemed difficult to set such that the intensity of exiting light becomes uniform over the entire light-emitting surface.
  • the mounting positions of the LEDs 3 r , 3 g and 3 b are not configured such that light in the directly forward direction, which is strong in intensity, can properly undergo color mixing. Therefore, color irregularity is likely to occur near the entrance surface of the lightguide plate.
  • an area of the exit surface of the lightguide plate from which white light exits may appear as having color irregularity when viewed from an oblique direction. The main cause of the color irregularity is deemed to be due to the disagreement in directivity characteristics between the LEDs 3 r , 3 g and 3 b.
  • An object of the present invention is to provide a light source unit capable of obtaining white light with reduced color irregularity.
  • Another object of the present invention is to provide a backlight unit having the light source unit.
  • Still another object of the present invention is to provide a display apparatus having the light source unit.
  • the present invention provides a light source unit including a plurality of LEDs having different emission spectrum peak wavelengths.
  • the light source unit further includes a light mixing member having an entrance surface through which lights from the LEDs are received, an exit surface disposed opposite the entrance surface to allow the lights received through the entrance surface to exit therethrough, and anisotropic diffusing elements that diffuse the lights traveling from the entrance surface toward the exit surface so as to promote mixing of lights from the LEDs.
  • different colors of light i.e. lights having different emission spectrum peak wavelengths emitted from the plurality of LEDs are diffused in specific directions by the anisotropic diffusing elements of the light mixing member, whereby light mixing is promoted, and it is possible to obtain white light with reduced color irregularity.
  • the light source unit may be arranged as follows.
  • the light mixing member has a pair of mutually opposing side surfaces extending between the entrance surface and the exit surface.
  • the side surfaces have a height and a width.
  • the distance between the side surfaces is defined as a length of the light mixing member.
  • the height of the side surfaces is defined as a thickness of the light mixing member.
  • the width of the side surfaces is defined as a width of the light mixing member.
  • the anisotropic diffusing elements diffuse the light from the LEDs, which enter through the entrance surface, in a plane containing an axis of the light mixing member in the direction of the thickness thereof and an axis of the light mixing member in the direction of the width thereof.
  • LEDs have directivity characteristics that nearly 90% of the intensity of light therefrom falls in an angle range of about 50° from the directly forward direction.
  • centers of light-emitting surfaces of the LEDs in the light source unit of the present invention are configured to be in the same plane that is substantially perpendicular to the exit surface and substantially parallel to the direction of the thickness of the light mixing member.
  • the light mixing member As an example of the positional relationship between the light mixing member and the LEDs disposed in the same plane, let us assume an arrangement in which the light mixing member is installed such that the length and width directions of the light mixing member are parallel to a horizontal plane and the height direction thereof is in the vertical direction, and in which the LEDs are stacked such that the centers of their light-emitting surfaces are aligned on a vertical line.
  • the LEDs appear to be a plurality of LEDs stacked along a vertical line as seen from a sideward direction relative to the light mixing member, but they appear to be a single LED as seen from above or below the light mixing member.
  • the directivity characteristics of the LEDs as seen from a sideward direction relative to the light mixing member, although the light-emitting surface centers of the LEDs are at different positions on a vertical line, lights are propagated through the light mixing member while being diffused so as to diverge in the vertical direction by the anisotropic diffusing elements. Therefore, it is possible to ignore the fact that the LEDs are disposed at different positions.
  • the installation positions of the LEDs are superimposed on one another, and the directivity characteristics are also superimposed on one another and thus appear to be the same characteristics. Accordingly, lights from the LEDs are propagated through the light mixing member in the state of being superimposed on one another. Therefore, centers of light-emitting surface of the LEDs having different emission spectrum peak wavelengths are configured to be in the same plane that satisfies a predetermined positional relationship with the light mixing member. By so doing, the LEDs can be regarded as a single LED. This makes it possible to ignore the fact that the LEDs are mounted at various directional positions, which would otherwise exert an influence on the color mixing action.
  • the anisotropic diffusing elements may be provided on at least the entrance surface. With this arrangement, lights from the LEDs are diffused by the anisotropic diffusing elements at the same time as they enter the light mixing member. Accordingly, it is possible to obtain white light with further reduced color irregularity.
  • the light source unit may be arranged as follows.
  • the anisotropic diffusing elements comprise a plurality of substantially parallel elongated projections or recesses.
  • the striped projections or recesses are provided substantially parallel to an axis of the light mixing member in the direction of the length thereof.
  • the anisotropic diffusing elements may comprise a plurality of mutually parallel striped projections or recesses provided at an angle of inclination to an axis of the light mixing member in the direction of the length thereof.
  • the anisotropic diffusing elements may include first anisotropic diffusing elements comprising a plurality of mutually parallel elongated projections or recesses provided at a first angle to the axis of the light mixing member in the direction of the length thereof, and second anisotropic diffusing elements comprising a plurality of mutually parallel elongated projections or recesses provided at a second angle to the axis of the light mixing member in the direction of the length thereof.
  • the first and second anisotropic diffusing elements intersect each other.
  • lights can be diffused not only in the thickness and width directions of the light color member but also in the length direction thereof.
  • a light source unit is formed by arranging a plurality of light-emitting diode sets each comprising red, green and blue LEDs, mixing of different colors of light emitted from mutually adjacent LED sets is promoted, so that it is possible to obtain white light with further reduced color irregularity.
  • the anisotropic diffusing elements may be provided in the form of continuous or discontinuous lines. If the anisotropic diffusing elements are provided in the form of continuous lines, all lights that are incident on the surface of each anisotropic diffusing element are diffused regularly. If the anisotropic diffusing elements are provided in the form of discontinuous lines, each line comprises portions where an anisotropic diffusing element is present and portions where it is not. Therefore, non-diffused rectilinearly propagated light emerges from where no anisotropic diffusing element is present. Accordingly, the anisotropic diffusing elements can also be utilized to control the degree of color mixing. It is also possible to produce diffusion in the length direction by utilizing the portions where no anisotropic diffusing element is present.
  • the projections or recesses constituting the anisotropic diffusing elements may have a substantially semicircular or triangular cross-section.
  • substantially semicircular cross-section as used herein is defined as having a curved configuration such as a circular or elliptical configuration.
  • a substantially semicircular curved surface is advantageous as follows. Light rays incident on a substantially semicircular curved surface at different positions have different angles of incidence. Consequently, the angle of refraction and hence direction of the diffusion also differ according to the light incident position. Accordingly, it is possible to diffuse light over a wide range and to obtain white light with reduced color irregularity. Similarly, projections or recesses of triangular cross-section can diffuse light over a wide range and obtain white light with reduced color irregularity.
  • a substantially semicircular or triangular cross-section is a relatively simple configuration. Therefore, it is easy to make a mold used to injection-mold the light mixing member, and moldability can be improved.
  • the anisotropic diffusing elements enable adjustment of the area of light diffusion. If the anisotropic diffusing elements have a substantially semicircular cross-section, for example, the diffusion area can be adjusted by changing the curvature radius of the curved surfaces of the anisotropic diffusing elements. In the case of anisotropic diffusing elements having a triangular cross-section, the diffusion area can be adjusted by intermingling a plurality of triangular cross-sectional configurations having different apex angles. Adjusting the diffusion area in this way enables control of the amount of light emitted from the exit surface of the light mixing member and the degree of color mixing of the light. It is also possible to diffuse lights for color mixing independently of the size or the like of the light mixing member and in conformity to the shape of the light mixing member. Thus, white light with reduced color irregularity can be obtained.
  • the light mixing member may be a substantially rectangular parallelepiped.
  • substantially rectangular parallelepiped as used herein includes a rectangular parallelepiped configuration partly having inclined surfaces. Because such a substantially rectangular parallelepiped is a simple configuration, it is easy to make a mold used to mold the light mixing member, and the molding process can be performed easily. Therefore, the productivity of the light mixing member increases.
  • the light color member may have reflecting members on the outer peripheral surfaces thereof except at least the exit surface.
  • the LEDs may have emission spectrum peak wavelengths in red, green and blue regions, respectively.
  • red, green and blue LEDs are turned on simultaneously, white light is obtained by color mixing.
  • dark red and dark green tones which have heretofore been difficult to produce with light sources using white LEDs or cold-cathode fluorescent lamps.
  • the color reproduction range of color images displayed on a display apparatus can be expanded.
  • the LEDs may include a whitish LED comprising a blue LED element coated with a fluorescent substance.
  • a whitish LED comprising a blue LED element coated with a fluorescent substance.
  • the present invention provides an edge-light type backlight unit having at least a lightguide plate and a light source, wherein light from the light source is received through an entrance surface of the lightguide plate, and the received light is propagated through the lightguide plate to exit through an exit surface thereof.
  • the above-described light source unit is provided near the entrance surface of the lightguide plate.
  • the entrance surface of the lightguide plate may be provided with a plurality of elongated projections or recesses that diffuse light received from the light source unit in a length direction of the lightguide plate that is defined by a direction substantially parallel to the exit surface of the lightguide plate and substantially perpendicular to an axis of the lightguide plate in a light propagation direction.
  • light received from the light source unit can be diffused also in the length direction of the lightguide plate.
  • the light source unit is formed by arranging a plurality of LED sets each comprising red, green and blue LEDs, mixing of different colors of light emitted from mutually adjacent LED sets occurs by diffusion in the length direction of the lightguide plate caused by the projections or the recesses.
  • white light with reduced color irregularity can be obtained.
  • the exit surface of the light source unit and the entrance surface of the lightguide plate may be placed in close contact with each other.
  • the arrangement in which the light mixing member and the lightguide plate are placed in close contact with each other enables an improvement in the light utilization efficiency of the backlight unit and makes it possible to realize a brighter backlight unit.
  • the light mixing member of the light source unit is preferably formed from a material having a refractive index smaller than that of a material used to form the lightguide plate.
  • the present invention provides a display apparatus having the above-described backlight unit at the back of a liquid crystal display panel. It is possible according to the present invention to obtain a display apparatus free from visually recognizable color irregularity and having a widened color reproduction range. In addition, because the backlight unit can be reduced in thickness, the thickness of the display apparatus can also be reduced correspondingly.
  • centers of light-emitting surfaces of the LEDs are configured to be in the same plane that is substantially perpendicular to the exit surface and substantially parallel to the thickness direction of the light mixing member. Therefore, light emitted from the center of the light-emitting surface of each LED, which has a strong emission intensity, can be diffused effectively. Thus, white light with further reduced color irregularity can be obtained.
  • FIG. 1 is a perspective view of a light source unit according to an embodiment of the present invention.
  • FIG. 2 is a side view of the light source unit as seen from the direction of the arrow II in FIG. 1 .
  • FIG. 3 is a side view of a light mixing member of the light source unit as seen from the direction of the arrow III in FIG. 1 .
  • FIG. 4 is a schematic view illustrating the positional arrangement of LEDs in FIG. 1 .
  • FIG. 5 is a schematic view illustrating the action of anisotropic diffusing elements in FIG. 1 .
  • FIG. 6 is a schematic view illustrating the action of the light source unit in FIG. 1 .
  • FIG. 7 a is a schematic view showing an alternative configuration of the anisotropic diffusing elements in which parallel rows of anisotropic diffusing elements are at an angle of inclination to an axis of the light mixing member in the length direction thereof.
  • FIG. 7 b is a schematic view showing another alternative configuration of the anisotropic diffusing elements in which two sets of parallel rows of anisotropic diffusing elements intersect each other.
  • FIG. 8 a is a schematic view showing an anisotropic diffusing element configuration in which anisotropic diffusing elements in the form of discontinuous lines are dash-shaped recesses.
  • FIG. 8 b is a schematic view showing another anisotropic diffusing element configuration in which anisotropic diffusing elements in the form of discontinuous lines are dot-shaped recesses.
  • FIG. 9 a is a side view showing one example of other alternative arrangements of LEDs in which R, G and B LEDs are disposed in series in a direction perpendicular to an entrance surface of the light mixing member.
  • FIG. 9 b is a side view showing an arrangement of LEDs in which R, G and B LEDs are disposed in a stair-like fashion in front of the entrance surface of the light mixing member.
  • FIG. 9 c is a side view showing an arrangement of LEDs in which R and B LEDs are disposed slightly away from the entrance surface of the light mixing member, while a G LED is disposed in closer proximity to the entrance surface.
  • FIG. 9 d is a side view showing an arrangement of LEDs in which R, G and B LEDs are positioned in conformity to the configuration of the light mixing member.
  • FIG. 10 is a fragmentary sectional view of an essential part of a light source unit according to another embodiment of the present invention.
  • FIG. 11 is a schematic view illustrating the action of anisotropic diffusing elements provided on a top surface of a light mixing member in FIG. 10 .
  • FIG. 12 is a fragmentary sectional view of an essential part of a light source unit according to a further embodiment of the present invention.
  • FIG. 13 is a fragmentary sectional view of an essential part of a light source unit according to a still further embodiment of the present invention.
  • FIG. 14 is a side view of a display apparatus according to a still further embodiment of the present invention.
  • FIG. 15 is a perspective view of a lightguide plate in FIG. 14 .
  • FIG. 16 is a perspective view showing the arrangement of linear light sources of a light source unit disclosed in a related conventional art.
  • a light source unit 20 in this embodiment has a plurality of LED sets 25 and a light mixing member 21 that mixes different colors of light i.e., lights having different emission spectrum peak wavelengths from the LED sets 25 entering through an entrance surface 21 a and that emits the color-mixed light from an exit surface 21 b .
  • the light mixing member 21 in this embodiment is of a substantially rectangular parallelepiped configuration and has an entrance surface 21 a , an exit surface 21 b opposite to the entrance surface 21 a , side surfaces 21 e and 21 f , a top surface 21 c , and a bottom surface 21 d . It should be noted that the light mixing member 21 in this embodiment is formed by using a transparent resin, e.g.
  • the light source unit 20 has two LED sets 25 mounted on a mounting substrate 24 .
  • Each LED set 25 comprises an R LED 25 R, a G LED 25 G and a B LED 25 B, as shown by being encircled with the ovals A 1 and A 2 in FIG. 1 .
  • the length direction l of the light mixing member 21 is the longitudinal direction of the top surface 21 c or the bottom surface 21 d .
  • the thickness direction t of the light mixing member 21 is the direction of the height of the side surface 21 e or the side surface 21 f , i.e. the direction of the distance between the top surface 21 c and the bottom surface 21 d .
  • the width direction w of the light mixing member 21 is the direction of the width of the side surface 21 e or the side surface 21 f , i.e. the direction of the distance between the entrance surface 21 a and the exit surface 21 b.
  • the entrance surface 21 a is provided with anisotropic diffusing elements 22 that diffuse incident light from the LEDs 25 R, 25 G and 25 B in specific directions to effect color mixing.
  • the diffusion in specific directions is diffusion in a plane containing an axis of the light mixing member 21 in the thickness direction t and an axis thereof in the width direction w, i.e. diffusion in the thickness direction t as viewed from the exit surface 21 b side.
  • the anisotropic diffusing elements 22 comprise, as shown in FIG. 3 , a plurality of striped recesses 22 a formed on the entrance surface 21 a substantially parallel to the length direction l of the light mixing member 21 .
  • the recesses 22 a are sufficiently fine relative to the area of the LED's light-emitting surface.
  • the recesses 22 a have a substantially semicircular cross-section.
  • the most favorable effect can be obtained with gently curved cross-sectional configurations such as semicircular and semielliptical configurations.
  • the cross-sectional configuration of the recesses 22 a is defined as being “substantially semicircular”, including such gently curved configurations.
  • the anisotropic diffusing elements 22 comprise recesses 22 a having a substantially semicircular cross-section, the anisotropic diffusing elements 22 may be in the form of projections or recesses that produce a diffusing action by refraction of light.
  • the anisotropic diffusing elements 22 may comprise projections each having a substantially semicircular cross-section or may comprise recesses or projections each having a triangular cross-section.
  • the light mixing member 21 is formed by injection molding process.
  • the substantially semicircular or triangular cross-section is a simple configuration, it is easy to make a mold used to injection-mold the light mixing member 21 , and the injection molding process can be performed easily.
  • FIG. 4 is a schematic view illustrating the arrangement of LEDs in FIG. 1 .
  • LEDs have directivity characteristics that nearly 90% of the intensity of light therefrom falls in an angle range of about 50 degrees around the directly forward direction.
  • the LEDs 25 R, 25 G and 25 B are arranged such that the centers Rc, Gc and Bc of their light-emitting surfaces are in the same plane 200 .
  • the plane 200 is substantially perpendicular to the exit surface 21 b of the light mixing member 21 and substantially parallel to the thickness direction t of the light mixing member 21 .
  • the LEDs are arranged in the order of the B LED 25 B, the G LED 25 G and the R LED 25 R from the bottom surface 21 d toward the top surface 21 c .
  • the order in which the LEDs are arranged may be different between the LED sets 25 . If the LED arrangement order differs for each LED set 25 , color mixing is further promoted.
  • the plane 200 is a hypothetic plane provided for the sake of easier explanation. In actuality, such a plane is not provided.
  • the light mixing member 21 is a substantially rectangular parallelepiped, and the entrance surface 21 a and the exit surface 21 b are provided opposite each other. Therefore, the plane 200 and the anisotropic diffusing elements 22 are substantially perpendicular to each other.
  • FIG. 5 is a schematic view illustrating the action of the anisotropic diffusing elements 22 in FIG. 1 .
  • FIG. 6 is a schematic view illustrating the operation of the light source unit 20 in FIG. 1 .
  • FIG. 5 is an enlarged view of a part of the anisotropic diffusing elements 22 provided on the light mixing member 21 .
  • Lights emitted from the LED sets 25 are incident on the interface 21 g of each recess 22 a constituting the anisotropic diffusing elements 22 from various directions.
  • the following explanation will be made with regard to light rays P 1 , P 2 , P 3 and P 4 , by way of example.
  • the light rays P 1 , P 2 , P 3 and P 4 are incident on the interface 21 g at different angles of incidence and therefore refracted at different angles of refraction when entering the inside of the light mixing member 21 .
  • the recess 22 a is semicircular in cross-section, refraction at the interface 21 g causes the light rays P 1 , P 2 , P 3 and P 4 to travel while being diffused in the thickness direction t of the light mixing member 21 , as shown by the arrows.
  • Such a diffusing action also takes place at projections having a substantially semicircular cross-section or at recesses or projections having a triangular cross-section.
  • a substantially semicircular curved surface enables adjustment of the area of diffusion in the thickness direction t of the light mixing member 21 by changing the curvature radius of the curved surface. For example, if the curvature radius is increased, the diffusion area narrows, whereas if the curvature radius is decreased, the diffusion area widens.
  • the diffusion area can be adjusted by intermingling a plurality of triangular cross-sectional configurations having different apex angles. Adjusting the diffusion area in this way enables control of the amount of light emitted from the exit surface 21 b and the degree of color mixing of the light. It is also possible to diffuse lights independently of the size or the like of the light mixing member 21 and in conformity to the shape of the light mixing member 21 .
  • the diffusing action takes place at the interfaces 21 g of all the recesses 22 a constituting the anisotropic diffusing elements 22 .
  • lights emitted from the LEDs 25 R, 25 G and 25 B which emit different colors of light, are diffused in the thickness direction t of the light mixing member 21 by refraction at the interfaces 21 g of the recesses 22 a and propagated through the light mixing member 21 while undergoing reflection or the like.
  • the different colors of light from the LEDs 25 R, 25 G and 25 B are mixed together into white light of good color balance as shown in the hatched region E, and the white light exits through the exit surface 21 b .
  • the entrance surface 21 a is provided with the anisotropic diffusing elements 22 , diffusion occurs rapidly, resulting in a minimal region F where occurrence of color irregularity appears clearly.
  • white light of good color balance and with reduced color irregularity can be obtained from the exit surface 21 b.
  • the LEDs 25 R, 25 G and 25 B of each LED set 25 are stacked and the centers Rc, Gc and Bc of their light-emitting surfaces are configured to align on a vertical line. Because the LEDs 25 R, 25 G and 25 B are stacked vertically, they appear to be a plurality of LEDs stacked along a vertical line as seen from a sideward direction relative to the light mixing member 21 , but they appear to be a single LED as seen from above or below the light mixing member 21 .
  • the directivity characteristics of the LEDs as seen from a sideward direction relative to the light mixing member 21 , although the light-emitting surface centers of the LEDs 25 R, 25 G and 25 B are at different positions on a vertical line, lights are propagated through the light mixing member 21 while being diffused so as to diverge in the vertical direction by the anisotropic diffusing elements 22 . Therefore, it is possible to ignore the fact that the LEDs are disposed at different positions.
  • the installation positions of the LEDs are superimposed on one another, and the directivity characteristics are also superimposed on one another and thus appear to be the same characteristics. Therefore, the different colors of light from the LEDs 25 R, 25 G and 25 B are propagated through the light mixing member 21 in the state of being superimposed on one another.
  • each of the LEDs 25 R, 25 G and 25 B which has a strong emission intensity, can be diffused to mix together, thereby enabling the LEDs 25 R, 25 G and 25 B to be regarded as a single LED.
  • FIGS. 7 a to 8 b show other forms of the light source unit according to the present invention that can provide white light with reduced color irregularity.
  • These alternative forms of the light source unit differ from the above in the configuration of the anisotropic diffusing elements 22 .
  • FIG. 7 a shows an alternative configuration of the anisotropic diffusing elements 22 in which parallel rows of anisotropic diffusing elements are at an angle of inclination to the axis of the light mixing member 21 in the length direction l.
  • FIG. 7 b shows another alternative configuration of the anisotropic diffusing elements 22 in which there are two sets of parallel rows of anisotropic diffusing elements that are different from each other in the angle of inclination to the axis of the light mixing member 21 in the length direction l. The two sets of parallel rows of anisotropic diffusing elements intersect each other.
  • FIGS. 8 a and 8 b are schematic views showing other alternative configurations of the anisotropic diffusing elements 22 in which the anisotropic diffusing elements are in the form of discontinuous lines.
  • FIG. 8 a shows anisotropic diffusing elements comprising discontinuous striped recesses.
  • FIG. 8 b shows anisotropic diffusing elements comprising dot-shaped recesses.
  • the anisotropic diffusing elements may have any of various cross-sectional configurations.
  • the anisotropic diffusing elements are not limited to recesses but may be projections.
  • the anisotropic diffusing elements 22 are a plurality of parallel striped recesses provided at an angle ⁇ of inclination to the length direction 1 of the light mixing member 21 .
  • the anisotropic diffusing elements 22 having an inclination to the length direction l of the light mixing member 21 diffuse light not only in the thickness direction t of the light mixing member 21 but also in the length direction l thereof.
  • the angle ⁇ is small, the greater part of light is diffused in the thickness direction t of the light mixing member 21 .
  • the LED sets 25 are arranged as shown in FIG.
  • the purpose of the present invention is to mix different colors of light from the LEDs 25 R, 25 G and 25 B having different emission spectrum peak wavelengths; therefore, the angle ⁇ is preferably larger than 0° and not larger than 45°.
  • the anisotropic diffusing elements 22 may include two anisotropic diffusing elements 22 A and 22 B each comprising a plurality of parallel elongated recesses provided at an angle of inclination to the length direction 1 of the light mixing member 21 .
  • the anisotropic diffusing elements 22 A and 22 B are provided to intersect each other.
  • the anisotropic diffusing elements 22 A have an inclination angle ⁇ .
  • the anisotropic diffusing elements 22 B have an inclination angle ⁇ .
  • the angle ⁇ and the angle ⁇ may be either the same or different.
  • the anisotropic diffusing elements 22 in the form of discontinuous lines shown in FIGS. 8 a and 8 b comprise parallel rows of elongated recess patterns.
  • each recess pattern comprises dash-shaped recesses.
  • FIG. 8 a non-recessed regions between the dash-shaped recesses in each row are provided regularly, they may be provided irregularly.
  • the anisotropic diffusing elements 22 shown in FIG. 8 b comprise dot-shaped recesses provided with a slight gap between each pair of adjacent recesses.
  • the dot-shaped recesses have a semicircular cross-sectional configuration.
  • the anisotropic diffusing elements 22 can diffuse light in both the thickness direction t and length direction l of the light mixing member 21 .
  • each recess pattern comprises recessed regions and non-recessed regions. Therefore, non-diffused rectilinearly propagated light is obtained at the non-recessed regions. Accordingly, the anisotropic diffusing elements 22 can also be utilized to control the degree of color mixing. By controlling the extent of discontinuity of the recess patterns, it is possible to adjust the balance of colors and hence possible to obtain white light with reduced color irregularity. It should be noted that the anisotropic diffusing elements 22 in the form of discontinuous lines are also applicable to the light mixing members 21 shown in FIGS. 7 a and 7 b.
  • FIG. 9 a shows an arrangement in which the R, G and B LEDs 25 R, 25 G and 25 B are disposed in series in a direction perpendicular to the entrance surface 21 a of the light mixing member 21 .
  • FIG. 9 b shows an arrangement in which the R, G and B LEDs 25 R, 25 G and 25 B are disposed in a stair-like fashion in front of the entrance surface 21 a of the light mixing member 21 .
  • FIG. 9 c shows an arrangement in which the R and B LEDs 25 R and 25 B are disposed slightly away from the entrance surface 21 a of the light mixing member 21 , while the G LED 25 G is disposed in close proximity to the entrance surface 21 a .
  • FIG. 9 d shows an arrangement in which the R, G and B LEDs 25 R, 25 G and 25 B are positioned in conformity to the configuration of the light mixing member 21 . It should be noted that FIGS. 9 a to 9 d are side views of the light source unit 20 as seen from the side surface 21 e.
  • the LEDs 25 R, 25 G and 25 B emit light toward a reflecting member (not shown) provided obliquely at a position directly above the LEDs 25 R, 25 G and 25 B so that reflected light from the reflecting member is incident on the entrance surface 21 a of the light mixing member 21 .
  • This arrangement is advantageous in that the light mixing member 21 can be reduced in thickness.
  • the distance between each LED and the entrance surface 21 a of the color mixing member 21 differs according to the light intensity directivity characteristics of each LED. Therefore, this arrangement can be selected as a scheme to adjust the light intensity directivity characteristics.
  • the arrangement shown in FIG. 9 c also takes into consideration the light intensity directivity characteristics of each LED.
  • the light mixing member 21 has three entrance surfaces 21 a , and the LEDs 25 R, 25 G and 25 B are respectively disposed near the three entrance surfaces 21 a .
  • Each entrance surface 21 a is provided with anisotropic diffusing elements 22 . Therefore, color mixing readily occurs near the entrance surfaces 21 a.
  • each LED set comprises three different kinds of LEDs, i.e. LEDs 25 R, 25 G and 25 B, it should be noted that arrangements similar to the above can be employed also in the case of LED sets each comprising two or more different kinds of LEDs. For example, a green (G) LED may be added to use a total of four LEDs to constitute each LED set.
  • G green
  • a combination of a whitish LED comprising a blue LED element coated with a fluorescent substance and a red LED is usable to constitute each LED set. It is preferable to properly select one of the foregoing LED arrangements in accordance with the desired specifications.
  • the configuration of the light mixing member 21 is not necessarily limited to a substantially rectangular parallelepiped, but various other configurations can be adopted.
  • the light mixing member 21 may have a configuration in which mutually opposing side surfaces are substantially semicircular, or a configuration in which the corners of the entrance surface are cut off as shown in FIG. 9 d .
  • the light mixing member 21 may also have a pentagonal or triangular configuration.
  • the configuration of the light mixing member 21 may be such that the size in the length direction l is smaller than the size in the thickness direction t.
  • the light mixing member 21 is used with the same specifications as the above.
  • the anisotropic diffusing elements 22 are provided on the entrance surface 21 a of the light mixing member 21 , they may also be provided on a surface other than the entrance surface 21 a , for example, on the exit surface 21 b . If the anisotropic diffusing elements 22 are provided on the exit surface 21 b , the different colors of exiting light mix together outside the exit surface 21 b . Thus, color mixing can be performed even more effectively. It also becomes easier for light to exit the light mixing member 21 .
  • the anisotropic diffusing elements 22 may also be provided on the top surface 21 c or the bottom surface 21 d . In this case, diffusion occurs in the width direction w of the light mixing member 21 .
  • the anisotropic diffusing elements 22 may also be provided on the side surface 21 e or 21 f.
  • the anisotropic diffusing elements 22 are provided on the entrance surface 21 a of the light mixing member 21 . If the anisotropic diffusing elements 22 are provided on an outer peripheral surface of the light mixing member 21 , it becomes easier to form the light mixing member 21 , advantageously.
  • the anisotropic diffusing element 22 may be provided inside the light mixing member 21 .
  • the light mixing member 21 may be provided therein with a plurality of hollow portions where diffusion of light occurs, e.g. circular or semicircular tubular hollow portions.
  • a light source unit 50 has an LED set 25 mounted on a mounting substrate 24 , a light mixing member 51 that mixes different colors of light emitted from the LED set 25 , and reflecting members 57 provided at the outer periphery of the LED set 25 and the light mixing member 51 .
  • the light mixing member 51 is of a substantially rectangular parallelepiped configuration and has anisotropic diffusing elements 52 respectively provided on an entrance surface 51 a , an exit surface 51 b , a top surface 51 c and a bottom surface 51 d thereof.
  • the configuration of the anisotropic diffusing elements 52 is similar to that of the anisotropic diffusing elements 22 in the foregoing embodiment.
  • Light rays P 1 , P 2 , P 3 and P 4 represent only a part of light propagating through the light mixing member 51 . As shown in FIG. 11 , the light rays P 1 , P 2 and P 3 are diffused in the width direction w of the light mixing member 51 by the anisotropic diffusing elements 52 formed on the entrance surface 51 a .
  • the diffused rays P 1 , P 2 and P 3 are incident on the interface 51 g of an anisotropic diffusing element 52 provided on the top surface 51 c at different angles.
  • the light rays P 1 , P 2 and P 3 incident on the interface 51 g at angles not smaller than the critical angle are reflected and diffused in the width direction w of the light mixing member 51 .
  • the light rays P 1 , P 2 and P 3 are diffused in different directions because they are incident on the interface 51 g at different angles.
  • the light ray P 4 incident on the interface 51 g at an angle smaller than the critical angle exits the light mixing member 51 and is reflected by the reflecting member 57 to reenter the light mixing member 51 .
  • all the light except that which is perpendicularly incident on the interface 51 g is refracted when exiting the light mixing member 51 .
  • the light is similarly refracted. Because refraction occurs when the light exits or enters the light mixing member 51 , the diffusion in the width direction w of the light mixing member 51 is promoted.
  • the light rays P 1 , P 2 , P 3 and P 4 are propagated toward the exit surface 51 b while repeating the above-described diffusion.
  • those which are incident on the recesses of the exit surface 51 b at angles larger than the critical angle are reflected and further diffused by the anisotropic diffusing elements 52 .
  • light rays incident on the recesses of the exit surface 51 b at angles smaller than the critical angle are allowed to exit as white light of good color balance and with reduced color irregularity as a result of undergoing sufficient color mixing through diffusion by the light mixing member 51 .
  • the exit surface 51 b is also provided with the anisotropic diffusing elements 52 , the amount of light emitted from the light source unit 50 increases. Thus, the light utilization efficiency can be increased.
  • FIG. 12 is a fragmentary sectional view of an essential part of a light source unit 60 according to another embodiment of the present invention.
  • the LED light source in this embodiment uses LEDs having the same specifications as those of the LEDs in the foregoing embodiments. Therefore, the LEDs in this embodiment are denoted by the same reference numerals as used in the foregoing embodiments, and redundant explanation is omitted.
  • the LEDs of an LED set 25 are arranged as shown in FIG. 9 a .
  • Anisotropic diffusing elements 62 are formed only on the following three surfaces of a light mixing member 61 : an entrance surface 61 a , a top surface 61 c , and a bottom surface 61 d . Further, a reflecting member 67 - 3 is provided.
  • a mounting substrate 24 on which the LEDs 25 R, 25 G and 25 B of the LED set 25 are mounted is disposed in substantially the same plane as the bottom surface 61 d of the light mixing member 61 and the LED set 25 is configured to emit light upward.
  • the reflecting member 67 - 3 extends curvedly from an end of a reflecting member 67 - 1 that is closer to the LED set 25 to an end of a reflecting member 67 - 2 that is closer to the entrance surface 61 a so as to cover the LED set 25 and the entrance surface 61 a with an air layer interposed therebetween.
  • the configuration of the anisotropic diffusing elements 62 is similar to that of those in the foregoing embodiments.
  • the operation of the light source unit 60 will be explained below. Diffusion effected by the anisotropic diffusing elements 62 is similar to that explained above. Therefore, redundant explanation is omitted. As shown by the arrows in the figure, many of light rays emitted from the LED set 25 are incident on the entrance surface 61 a of the light mixing member 61 after being reflected by the reflecting member 67 - 3 . Because the reflecting member 67 - 3 has a curved surface, light rays reflected by the reflecting member 67 - 3 travel in various directions. Thus, diffusion of light occurs. The rest of light rays from the LED set 25 are directly incident on the entrance surface 61 a .
  • the light rays from the LED set 25 are incident on the entrance surface 61 a at angles thereto as compared, for example, to the embodiment shown in FIG. 10 , the light rays are diffused in the light mixing member 61 . Accordingly, white light with further reduced color irregularity can be obtained from an exit surface 61 b of the optical color mixing member 61 .
  • the light source unit 60 enables the light mixing member 61 to be reduced in thickness because the LEDs 25 R, 25 G and 25 B of the LED set 25 are arranged in substantially the same plane as the bottom surface 61 d of the light mixing member 61 . Further, the thickness of the light source unit 60 itself can be reduced to the same level as a common lightguide plate using a white LED light source. It is also possible to use large-sized LEDs which emits a large amount of light.
  • the reflecting members 67 - 1 , 67 - 2 and 67 - 3 which are provided as separate members in this embodiment, may be integrally formed as a single member.
  • the light source unit 70 differs from the above-described light source units 20 , 50 and 60 in the use of an LED set 75 comprising a whitish LED ( 75 By) and a red (R) LED ( 75 R) mounted on a mounting substrate 74 .
  • the light source unit 70 includes an LED set 75 , a light mixing member 71 that diffuses light from the LED set 75 to emit white light with reduced color irregularity, and reflecting members 77 that reflect light exiting through surfaces of the light mixing member 71 other than an exit surface 71 b back into the light mixing member 71 .
  • the light mixing member 71 has anisotropic diffusing elements 72 provided only on the following three surfaces thereof: an entrance surface 71 a , a top surface 71 c , and a bottom surface 71 d.
  • the whitish LED 75 By of the LED set 75 is formed by packaging a blue light-emitting diode element coated with a transparent resin having a yellow (YAG: yttrium aluminum garnet) fluorescent substance dispersed therein.
  • YAG yttrium aluminum garnet
  • the fluorescent particles are excited to emit yellow light by a part of blue light emitted from the blue light-emitting diode, and whitish light is obtained from the packaged LED light source.
  • the red (R) LED 75 R is similar to the red (R) LED 25 R, which emits red light, as has been explained in the foregoing embodiments.
  • whitish light from the whitish LED 75 By is mixed with red light from the LED 75 R to obtain light including an emission wavelength in the red region. Because a red light component is added to whitish light emitted from the LED light source, the color reproduction range of color images displayed on a liquid crystal display panel can be expanded, as compared to the conventional light source comprising only a whitish LED. In addition, the thickness of the light mixing member 71 can be reduced because only two different kinds of LEDs are needed. It is also possible to reduce the number of man-hours needed to assemble the light source unit 70 . It should be noted that reflection by the reflecting members 77 and the color mixing action to obtain white light with reduced color irregularity are the same as in the foregoing embodiments.
  • the main constituent components may be housed in a casing or the like to form an easy-to-handle light source unit.
  • the housed light source unit facilitates transportation and assembling into a backlight unit.
  • FIGS. 14 and 15 a display apparatus 90 having a backlight unit with a light source unit according to the present invention will be explained with reference to FIGS. 14 and 15 .
  • the display apparatus 90 has, as shown in FIG. 14 , a backlight unit 80 at the back of a liquid crystal display panel 86 .
  • a transmissive liquid crystal display panel is used as the liquid crystal display panel 86 .
  • the liquid crystal display panel 86 in this embodiment is an active-matrix liquid crystal display panel using TFTs (thin film transistors) to form pixels.
  • the TFT pixels are provided with color filters of red (R), green (G) and blue (B).
  • R red
  • G green
  • B blue
  • the backlight unit 80 comprises a lightguide plate 81 , a reflecting member 83 provided underneath the lightguide plate 81 , a stack of a diffusing sheet 84 and two prism sheets 85 - 1 and 85 - 2 provided directly above the lightguide plate 81 , and a light source unit 50 disposed near a side surface of the lightguide plate 81 .
  • the light source unit 50 is the same as the light source unit 50 shown in FIG. 10 . Therefore, the constituent components of the light source unit 50 are denoted by the same reference numerals as used in FIG. 10 . The following is an explanation of the constituent components of the backlight unit 80 .
  • the reflecting member 83 for example, a sheet-shaped reflecting member having a high reflectivity is used.
  • the reflecting member 83 can reflect light passing through a bottom surface 81 d of the lightguide plate 81 back into the lightguide plate 81 .
  • the reflecting member 83 has the function of increasing the light utilization efficiency and also has the function of diffusing light in the lightguide plate 81 because light reflected by the reflecting member 83 is refracted when reentering the lightguide plate 81 . It should be noted that a reflecting member having a diffusing action is also usable as the reflecting member 83 .
  • the diffusing sheet 84 can diffuse light exiting the lightguide plate 81 over a wide range to make uniform the color tone and intensity of the exiting light.
  • suitably usable diffusing sheets are resin sheet having a diffusing layer containing resin particles or the like, and a resin sheet having a finely rugged surface.
  • the two prism sheets 85 - 1 and 85 - 2 each have a multiplicity of prisms of triangular cross-section arranged in series such that the ridges of the prisms form parallel rows.
  • the prism sheets 85 - 1 and 85 - 2 are disposed so that their respective prism ridges perpendicularly intersect each other in plan view.
  • the prism sheets 85 - 1 and 85 - 2 arranged in this way increase the amount of light emitted in the vertical direction, thereby enabling the liquid crystal display panel 86 to be illuminated brightly.
  • the lightguide plate 81 is, as shown in FIG. 15 , an edge-light type lightguide plate in a flat plate shape of quadrilateral cross-section.
  • the lightguide plate 81 has an entrance surface 81 a through which light emitted from the light source unit 50 enters the lightguide plate 81 , an exit surface 81 c through which light exits the lightguide plate 81 , and a bottom surface 81 d facing opposite the exit surface 81 c .
  • the bottom surface 81 d is formed with prisms or other reflecting elements (not shown) to reflect light entering through the entrance surface 81 a toward the exit surface 81 c and also to guide the light toward the inner side of the lightguide plate 81 .
  • the lightguide plate 81 is formed by injection molding process or the like using a transparent resin, e.g. an acrylic resin, or a polycarbonate resin.
  • the entrance surface 81 a of the lightguide plate 81 is provided with the second anisotropic diffusing elements 82 that diffuse light in the length direction (K) of the lightguide plate 81 .
  • the double-pointed arrows X shown by the alternate long and short dash line indicate the light propagation direction, i.e. the axis of a direction in which light entering through the entrance surface 81 a propagates toward the surface facing opposite the entrance surface 81 a .
  • a direction that is parallel to the exit surface 81 c and perpendicular to the light propagation direction (X) is defined as the length direction (K) of the lightguide plate 81 and indicated by the double-pointed arrows and alternate long and two short dashes line. Further, a direction that is perpendicular to both the length direction (K) and light propagation direction (X) of the lightguide plate 81 is defined as the thickness direction T of the lightguide plate 81 and indicated by the double-pointed arrows.
  • the second anisotropic diffusing elements 82 comprise a plurality of recesses of semicircular cross-section formed to extend in the thickness direction t of the lightguide plate 81 .
  • light incident on the recesses can be diffused in the length direction (K) of the lightguide plate 81 .
  • a plurality of LED sets 25 of the light source unit 50 provided near the entrance surface 81 a of the lightguide plate 81 are spaced from each other in the length direction (K) of the lightguide plate 81 .
  • the LED sets 25 are disposed near the entrance surface of the light mixing member 51 at such an interval that light from mutually adjacent LED sets 25 mix together. In this embodiment, two LED sets 25 are provided.
  • White light with reduced color irregularity obtained as a result of undergoing color mixing by the light source unit 50 exits through the exit surface 51 b of the light mixing member 51 and enters the lightguide plate 81 through the entrance surface 81 a .
  • the light is further subjected to color mixing by refraction when exiting the light mixing member 51 and refraction when entering the lightguide plate 81 . Consequently, white light with further reduced color irregularity can be obtained from the exit surface 81 c of the lightguide plate 81 .
  • diffusion in the length direction (K) of the lightguide plate 81 is promoted by the second anisotropic diffusing elements 82 on the entrance surface 81 a of the lightguide plate 81 . Accordingly, further color mixing occurs in the lightguide plate 81 , and white light with further reduced color irregularity is obtained.
  • reflected light from the reflecting elements provided on the bottom surface 81 d of the lightguide plate 81 and reflected light from the reflecting member 83 mix with the light propagating through the lightguide plate 81 .
  • the diffusion is promoted, and the amount of light satisfying the exit conditions for light to exit through the exit surface 81 c increases.
  • the amount of light exiting through the exit surface 81 c also increases. Accordingly, a uniform amount of light exits from a region of the exit surface 81 c near the entrance surface 81 a of the lightguide plate 81 in the same way as from the other region of the exit surface 81 c .
  • white light with reduced color irregularity is emitted from the lightguide plate 81 .
  • color irregularity occurs owing to the fact that, near the entrance surface of the lightguide plate, color mixing is not sufficiently performed and the amount of exiting light is small.
  • backlight unit 80 such problems are solved, and color irregularity is reduced.
  • the exit surface of the light mixing member 51 is also provided with anisotropic diffusing elements 52 , light mixing is also performed at the exit surface.
  • the improvement of the luminance uniformity of the backlight unit 80 and color mixing are further promoted.
  • the white light exiting through the exit surface 81 c of the lightguide plate 81 is further diffused by the diffusing sheet 84 and passed through the prism sheets 85 - 1 and 85 - 2 to increase the amount of light traveling in the vertical direction.
  • the diffusing sheet 84 passes through the prism sheets 85 - 1 and 85 - 2 to increase the amount of light traveling in the vertical direction.
  • substantially no color irregularity is visible in a color image obtained from the display apparatus 90 .
  • the color reproduction range can be expanded, and it becomes possible to display dark red and dark green, which have heretofore been difficult to produce with conventional image display systems.
  • the backlight unit having the above-described structure can eliminate color irregularity without requiring its lightguide plate, diffusing sheet and prism sheets to be so large as in the conventional backlight units. Accordingly, the material cost can be reduced advantageously.
  • the light source unit 50 in this embodiment uses LED sets 25 comprising three different kinds of LEDs, i.e. R, G and B LEDs
  • the light source unit 70 comprising two different kinds of LEDs, i.e. a whitish LED and a red light-emitting LED, as in the embodiment shown in FIG. 13 .
  • a light source unit comprising two different kinds of LEDs enables the thickness thereof to be slightly reduced.
  • the lightguide plate can also be reduced in thickness. Therefore, the backlight unit itself can be reduced in thickness.
  • the light source unit 60 comprising three different kinds of LEDs arranged planarly as in the embodiment shown in FIG. 12 In this case also, the thickness of the light source unit can be reduced.
  • the lightguide plate can be reduced in thickness
  • the backlight unit can be reduced in thickness.
  • a backlight unit using a light source unit comprising three different kinds of LEDs arranged planarly it is possible to use large-sized LEDs and hence possible to provide illumination of high luminance.
  • the light source unit is replaceable.
  • a light source unit having LED sets 25 of R, G and B LEDs arranged planarly can be used in place of the white LED light source.
  • the replaceable light source unit makes it possible to obtain a backlight unit capable of improving the display image quality simply by replacing the LED light source with the light source unit without changing the lightguide plate and the reflecting and diffusing sheets provided at the lower and upper sides of the lightguide plate in the conventional backlight unit. If the light source is unitized, it is easy to assemble the backlight unit and hence possible to reduce the number of man-hours needed in the assembling process.
  • the light mixing member of the light source unit and the lightguide plate are disposed with an air layer interposed therebetween, the light mixing member and the lightguide plate may be disposed in close contact with each other.
  • a photocurable resin or other transparent resin is used between the lightguide plate and the light mixing member.
  • the lightguide plate is formed by using a transparent resin, e.g. an acrylic or polycarbonate resin, and the light mixing member is also formed by using a similar resin material.
  • These transparent resins lack in flexibility. Therefore, it is difficult to stick the two members fast to each other simply by pressing them against each other. For this reason, the lightguide plate and the light mixing member are brought close to each other with a transparent resin having fluidity sealed therebetween, and the resin is set in this state with no air layer present between the two members, thereby sticking them fast to each other.
  • the backlight unit wherein the light mixing member and the lightguide plate are placed in close contact with each other, light emitted from the light source unit enters the lightguide plate through a short distance without passing through an air layer. Therefore, the loss of light is reduced, and it is possible to take an increased amount of light through the entrance surface of the lightguide plate. Consequently, the light utilization efficiency of the backlight unit improves, and it is possible to realize a brighter backlight unit.
  • the material of the light mixing member has a smaller refractive index than that of the material of the lightguide plate.
  • the lightguide plate is formed by using a polycarbonate resin having a refractive index of 1.58, and the light mixing member is formed by using an acrylic resin having a refractive index of 1.49.
  • light emitted from the LED light source passes through an air layer having a refractive index of 1 and enters the light mixing member having a refractive index of 1.49.
  • the light from the light source is propagated from a substance of a low refractive index to a substance of a high refractive index, the light is not influenced by the critical angle for reflection at the interface between the two substances.
  • a transparent resin used between the lightguide plate and the light mixing member should have a refractive index intermediate between those of the lightguide plate and the light mixing member, i.e. a refractive index of about 1.54.
  • Light from the LED light source is propagated through the light mixing member, the transparent resin and the lightguide plate in the order mentioned. That is, the light is propagated from a substance of a low refractive index to a substance of a high refractive index. Therefore, the light is not influenced by the critical angle for reflection at each interface. Accordingly, light traveling in all directions toward the entrance surface of the lightguide plate is allowed to exit the light source unit. Thus, the amount of light entering the lightguide plate through the entrance surface increases, and a brighter backlight unit can be realized. In this case also, white light with reduced color irregularity is obtained by the light source unit. Therefore, white light with reduced color irregularity is emitted from the lightguide plate.
  • a transparent resin used between the lightguide plate and the light mixing member may be an adhesive capable of mechanical fixing or may be a paste-shaped adhesive having no adhesiveness. It is also possible to form the light mixing member by a transparent resin used between the lightguide plate and the light mixing member. In this case, a transparent resin having a refractive index smaller than that of the lightguide plate is used. Light emitted from the LED light source propagates through the air layer, the light mixing member and the lightguide plate in the order mentioned, i.e. from a substance of a low refractive index to a substance of a high refractive index. Therefore, the light is not influenced by the critical angle for reflection at each interface.
  • An appropriate one of the positional arrangements of the backlight unit and the light source unit may be selected according to the necessity degree of color mixing. Differences between the positional arrangements of the backlight unit and the light source unit will be explained below.
  • the light source unit is ideal because it emits light in a specific divergence angle range.
  • light exiting the backlight unit after entering the lightguide plate is well color-mixed light.
  • the light source unit should be disposed in close proximity to the lightguide plate with an air layer provided therebetween, and thus, color mixing can be performed even more effectively in the light source unit.
  • the lightguide plate and the light source unit are disposed in close contact with each other, the amount of light taken from the light source unit into the lightguide plate increases, and the light utilization efficiency of the backlight unit increases.
  • the restriction on the angle of emergence of light from the light source unit decreases, and hence it becomes easy for light to exit the light source unit. Accordingly, it may become impossible to ignore the fact that the LEDs are mounted at different positions. In other words, the color mixing effect is reduced.
  • anisotropic diffusing elements are provided on a plurality of surfaces of the light mixing member, or the anisotropic diffusing elements are adjusted so that light is diffused in a wide range of directions, thereby allowing color mixing to be carried out through a short distance. By so doing, white light with reduced color irregularity can be obtained as exiting light.
  • the light source unit should be disposed in close contact with the lightguide plate without an air layer interposed therebetween. This arrangement provides a high light utilization effect.
  • the backlight unit and the display apparatus each have one light source unit on one side thereof.
  • two light source units of the present invention may be respectively provided at both sides thereof.
  • a thin lightguide plate By changing the positional arrangement of a plurality of LEDs, it becomes possible to use a thin lightguide plate. That is, a lightguide plate of a conventional backlight unit using white LEDs can be used as it is.
  • the light source unit and backlight unit of the present invention can also be used as the light source unit and backlight unit of a projector having an image projection function.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Led Device Packages (AREA)
US11/957,836 2006-12-18 2007-12-17 Light source unit, backlight unit and display apparatus having the same Expired - Fee Related US7686495B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006339764A JP2008153057A (ja) 2006-12-18 2006-12-18 光源ユニット、バックライトユニット及び表示装置
JPJP2006-339764 2006-12-18
JP2006-339764 2006-12-18

Publications (2)

Publication Number Publication Date
US20080151142A1 US20080151142A1 (en) 2008-06-26
US7686495B2 true US7686495B2 (en) 2010-03-30

Family

ID=39542243

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/957,836 Expired - Fee Related US7686495B2 (en) 2006-12-18 2007-12-17 Light source unit, backlight unit and display apparatus having the same

Country Status (3)

Country Link
US (1) US7686495B2 (ja)
JP (1) JP2008153057A (ja)
DE (1) DE102007060665A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053996A1 (en) * 2008-08-28 2010-03-04 Tong Zhang Light guide with reflectance enhancement and lighting system including the same
US20110267841A1 (en) * 2010-04-29 2011-11-03 Myung-Woon Lee Display apparatus
US20120057367A1 (en) * 2010-09-02 2012-03-08 Jun Seok Park Backlight unit
US8419252B2 (en) * 2010-07-05 2013-04-16 Wintek Corporation Cylindrical light guide with light adustable film on light entering surface thereof
US20130135557A1 (en) * 2011-11-25 2013-05-30 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight module and liquid crystal display
US20140169025A1 (en) * 2012-12-15 2014-06-19 Lumenetix, Inc. System and method for mixing and guiding light emitted from light emitting diodes to a light pipe for emission in a linear configuration
US20170350793A1 (en) * 2014-12-22 2017-12-07 Pirelli Tyre S.P.A. Method and apparatus for checking tyres in a production line
US10697762B2 (en) 2014-12-22 2020-06-30 Pirelli Tyre S.P.A. Apparatus for controlling tyres in a production line

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201030284A (en) * 2008-10-30 2010-08-16 Zeon Corp Light source device and liquid cristal display device
WO2010060029A1 (en) * 2008-11-24 2010-05-27 3M Innovative Properties Company Input edge coupler
US20110222311A1 (en) * 2008-11-24 2011-09-15 Kinder Brian A Web Converting Methods for Forming Light Guides and the Light Guides Formed Therefrom
JP2011040279A (ja) * 2009-08-11 2011-02-24 Sony Corp 面状照明装置
WO2011115351A1 (en) * 2010-03-15 2011-09-22 Lg Electronics Inc. Backlight unit and display apparatus including the same
CN101922660A (zh) * 2010-07-23 2010-12-22 深圳市华星光电技术有限公司 背光模块及显示装置
US8622601B2 (en) 2010-07-23 2014-01-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight module and display apparatus
CN102478181A (zh) * 2010-11-25 2012-05-30 瀚宇彩晶股份有限公司 背光模组及显示装置
KR20130030666A (ko) * 2011-09-19 2013-03-27 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조방법
WO2013060351A1 (de) * 2011-10-24 2013-05-02 Osram Ag Beleuchtungseinrichtung mit einer optischen anordnung zur farbmischung von lichtquellen
CN103363440A (zh) * 2012-04-03 2013-10-23 元太科技工业股份有限公司 前光模块及其光源调制装置
US20140362092A1 (en) * 2013-06-07 2014-12-11 Pixtronix, Inc. Light emitting diode (led) backlight with reduced hotspot formation
CN104459867A (zh) * 2013-09-23 2015-03-25 纬创资通股份有限公司 导光板及背光模块
JP6576173B2 (ja) 2014-09-10 2019-09-18 シチズン電子株式会社 面状ライトユニット、led素子及び導光板
KR20160067447A (ko) * 2014-12-04 2016-06-14 삼성전자주식회사 디스플레이 장치
US10241256B2 (en) * 2015-05-13 2019-03-26 Corning Incorporatedf Light guides with reduced hot spots and methods for making the same
KR102404940B1 (ko) * 2015-06-15 2022-06-08 삼성디스플레이 주식회사 표시 장치
CN106568029B (zh) * 2015-10-09 2020-10-30 瑞仪光电(苏州)有限公司 背光模组及显示装置
JP2018045778A (ja) * 2016-09-12 2018-03-22 株式会社ジャパンディスプレイ 照明装置
JP2018186024A (ja) * 2017-04-27 2018-11-22 日立化成株式会社 光混色照明装置
CN109212655B (zh) * 2017-06-30 2020-01-24 京东方科技集团股份有限公司 背光源及其制造方法、显示装置
KR102050407B1 (ko) * 2017-12-29 2019-12-02 한국광기술원 수직 적층형 다중 파장 발광 소자
DE102019124073A1 (de) * 2019-09-09 2021-03-11 Lisa Dräxlmaier GmbH Beleuchtungsvorrichtung mit lichtleiter sowie fahrzeug und verfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353920A (ja) 1998-06-05 1999-12-24 Citizen Electronics Co Ltd 多色発光型面状光源ユニット
US20030184990A1 (en) * 2002-03-26 2003-10-02 Chia-Feng Lin Light-guiding plate module of high reliability
JP2005129271A (ja) 2002-11-29 2005-05-19 Fujitsu Ltd リフレクタ及び照明装置及び導光板及び表示装置
JP2005183124A (ja) 2003-12-18 2005-07-07 Matsushita Electric Ind Co Ltd 面状光源および液晶表示装置
US6991358B2 (en) * 2002-12-04 2006-01-31 Advanced Display Inc. Planar light source unit and display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3064224B2 (ja) * 1995-11-27 2000-07-12 松下電工株式会社 照明装置
JP4000704B2 (ja) * 1999-02-26 2007-10-31 オムロン株式会社 導光板
JP2002133932A (ja) * 2000-10-20 2002-05-10 Casio Comput Co Ltd 光源素子
US7229198B2 (en) * 2003-06-16 2007-06-12 Mitsubishi Denki Kabushiki Kaisha Planar light source device and display device using the same
TWI254821B (en) * 2004-10-01 2006-05-11 Delta Electronics Inc Backlight module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353920A (ja) 1998-06-05 1999-12-24 Citizen Electronics Co Ltd 多色発光型面状光源ユニット
US20030184990A1 (en) * 2002-03-26 2003-10-02 Chia-Feng Lin Light-guiding plate module of high reliability
JP2005129271A (ja) 2002-11-29 2005-05-19 Fujitsu Ltd リフレクタ及び照明装置及び導光板及び表示装置
US6974241B2 (en) 2002-11-29 2005-12-13 Fujitsu Limited Light-guiding plate, lighting device and display device
US6991358B2 (en) * 2002-12-04 2006-01-31 Advanced Display Inc. Planar light source unit and display device
JP2005183124A (ja) 2003-12-18 2005-07-07 Matsushita Electric Ind Co Ltd 面状光源および液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Noba, U.S. Patent application entitled "Mobile Phone", U.S. Appl. No. 11/731,804, filed Mar. 30, 2007.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7980748B2 (en) * 2008-08-28 2011-07-19 Sharp Kabushiki Kaisha Lighting system including light guide with reflective micro structures on edge surfaces
US20100053996A1 (en) * 2008-08-28 2010-03-04 Tong Zhang Light guide with reflectance enhancement and lighting system including the same
US20110267841A1 (en) * 2010-04-29 2011-11-03 Myung-Woon Lee Display apparatus
US8419252B2 (en) * 2010-07-05 2013-04-16 Wintek Corporation Cylindrical light guide with light adustable film on light entering surface thereof
US8506151B2 (en) * 2010-09-02 2013-08-13 Lg Innotek Co., Ltd. Backlight unit
US20120057367A1 (en) * 2010-09-02 2012-03-08 Jun Seok Park Backlight unit
US20130135557A1 (en) * 2011-11-25 2013-05-30 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight module and liquid crystal display
US8970807B2 (en) * 2011-11-25 2015-03-03 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight module and liquid crystal display
US20150109819A1 (en) * 2011-11-25 2015-04-23 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight module and liquid crystal display
US20140169025A1 (en) * 2012-12-15 2014-06-19 Lumenetix, Inc. System and method for mixing and guiding light emitted from light emitting diodes to a light pipe for emission in a linear configuration
US20170350793A1 (en) * 2014-12-22 2017-12-07 Pirelli Tyre S.P.A. Method and apparatus for checking tyres in a production line
US10697857B2 (en) * 2014-12-22 2020-06-30 Pirelli Tyre S.P.A. Method and apparatus for checking tyres in a production line
US10697762B2 (en) 2014-12-22 2020-06-30 Pirelli Tyre S.P.A. Apparatus for controlling tyres in a production line

Also Published As

Publication number Publication date
JP2008153057A (ja) 2008-07-03
US20080151142A1 (en) 2008-06-26
DE102007060665A1 (de) 2008-09-11

Similar Documents

Publication Publication Date Title
US7686495B2 (en) Light source unit, backlight unit and display apparatus having the same
US7566148B2 (en) Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
JP3931070B2 (ja) 面状光源装置及びこれを備えた液晶表示装置
JP4153776B2 (ja) 面状光源装置および該装置を用いた液晶表示装置
US7532800B2 (en) Light guide unit
US7658515B2 (en) Optical package, optical lens and backlight assembly having the same
US8684588B2 (en) Light guide elements for display device
US8029180B2 (en) Light unit, backlight, frontlight, and display device
US7476015B2 (en) Backlight apparatus and liquid crystal display apparatus
US8154688B2 (en) Planar light-emitting device and liquid crystal display apparatus
US20060067079A1 (en) Side emitting device, backlight unit using the same as light source and liquid crystal display employing the backlight unit
EP1617239A1 (en) Surface light source device, illumination unit and light flux control member
US9360613B2 (en) Planar light source apparatus and display apparatus using same
US20080002429A1 (en) Backlight unit and display device with the backlight unit
US20120013811A1 (en) Lighting device, display device and television receiver
US20060092663A1 (en) Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
US20060238881A1 (en) Optical lens, optical package having the same, backlight assembly having the same and display device having the same
US20120126261A1 (en) Lens, light-emitting module, light-emitting element package, illumination device, display device, and television receiver
US20060077692A1 (en) Backlight unit and liquid crystal display apparatus employing the same
US8251565B2 (en) Illumination device and display device
US20130163283A1 (en) Light guide, light source unit, illuminating device, and display device
JP2004199967A (ja) 面状光源装置、液晶表示装置及び表示装置
US8462293B2 (en) Illuminating device and liquid crystal display device
US20110109840A1 (en) Light guide unit, surface light source device and liquid crystal display device
US20120212975A1 (en) Light guide unit, illumination device and display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITIZEN ELECTRONICS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOBA, KOYA;REEL/FRAME:020287/0457

Effective date: 20071019

Owner name: CITIZEN ELECTRONICS CO., LTD.,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOBA, KOYA;REEL/FRAME:020287/0457

Effective date: 20071019

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.)

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180330