US7432018B2 - Cylindrical alkaline storage battery - Google Patents

Cylindrical alkaline storage battery Download PDF

Info

Publication number
US7432018B2
US7432018B2 US10/909,363 US90936304A US7432018B2 US 7432018 B2 US7432018 B2 US 7432018B2 US 90936304 A US90936304 A US 90936304A US 7432018 B2 US7432018 B2 US 7432018B2
Authority
US
United States
Prior art keywords
electrode
negative
active material
core body
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/909,363
Other languages
English (en)
Other versions
US20050031939A1 (en
Inventor
Koji Taguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Assigned to SANYO ELECTRIC CO. LTD. reassignment SANYO ELECTRIC CO. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAGUCHI, KOJI
Publication of US20050031939A1 publication Critical patent/US20050031939A1/en
Application granted granted Critical
Publication of US7432018B2 publication Critical patent/US7432018B2/en
Assigned to FDK CORPORATION reassignment FDK CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANYO ELECTRIC CO., LTD.
Assigned to FDK CORPORATION reassignment FDK CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE EXHIBIT A, FILING DATE OF US PATENT 5660952 AND GRANT DATE OF US PATENT 7510806 PREVIOUSLY RECORDED ON REEL 024023 FRAME 0229. ASSIGNOR(S) HEREBY CONFIRMS THE 8/4/1995 (FILING DATE) FOR US PATENT 5660952 AND 3/31/2009(GRANT DATE) FOR US PATENT 7510806. Assignors: SANYO ELECTRIC CO., LTD.
Assigned to FDK CORPORATION reassignment FDK CORPORATION CHANGE OF ADDRESS Assignors: FDK CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/025Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a cylindrical alkaline storage battery suitable for increasing capacity thereof.
  • alkaline storage batteries there can be mentioned, for example, a nickel-cadmium rechargeable battery, a nickel-hydrogen rechargeable battery, etc., which contain different active materials.
  • these alkaline storage batteries there are cylindrical ones having a cylindrical outer can that accommodates therein an electrode group formed by strip-shaped negative and positive electrodes that are spirally wound, with a separator interposed therebetween.
  • the negative electrode is made larger in capacity than the positive electrode so as to reduce oxygen gas produced in overcharging, thereby preventing the inner pressure from increasing.
  • it is required to increase the amount of a positive-electrode active material. To meet this requirement, various proposals have been made.
  • a cylindrical alkaline storage battery is disclosed in Japanese Unexamined Patent Publication No. Hei 4-206474, in which that part of the negative electrode which forms the outermost circumference of the electrode group and which contributes little to battery reaction is made smaller in thickness than the other part. It is thought that the battery disclosed in Japanese Unexamined Patent Publication No. Hei 4-206474 is arranged to decrease the thickness of part of the negative electrode forming the outermost circumference of the electrode group, thus increasing the volumetric efficiency to achieve high capacity
  • the cylindrical alkaline storage battery disclosed in Japanese Unexamined Patent Publication No. Hei 4-206474 can produce cracks and/or splits in the thin part of the negative electrode which forms the outermost circumference of the electrode group.
  • An object of the invention is to provide a cylindrical alkaline storage battery suitable for increasing capacity thereof and arranged to prevent a short circuit and increase in internal resistance.
  • a cylindrical alkaline storage battery comprises an electrically-conductive cylindrical outer can and an electrode group accommodated in the outer can together with an alkaline electrolyte.
  • the electrode group is formed by rolling up together a positive electrode, a negative electrode placed outside the positive electrode and including a strip-shaped negative-electrode core body and an active material layer supported by the negative-electrode core body, and a separator inserted between the positive electrode and the negative electrode.
  • An outermost circumferential part of the electrode group is formed of the negative electrode and in contact with a circumferential wall of the outer can. The negative electrode extends beyond an outer end of the positive electrode in the circumferential direction of the electrode group.
  • the negative electrode comprises a main part forming an inside part of the electrode group, a thin part forming the outermost circumferential part of the electrode group which is smaller in the thickness of the active material layer and smaller in the amount of an active material contained in unit volume of the active material layer than the main part, and a boundary part formed between the main part and the thin part in which the thickness of the active material layer changes in a lengthwise direction of the negative-electrode core body.
  • the outer end of the positive electrode and the boundary part of the negative electrode are positioned at different positions in the circumferential direction of the electrode group.
  • the cylindrical alkaline storage battery according to the invention is suitable for increasing the battery capacity. Since the boundary part of the negative electrode and the outer end of the positive electrode are positioned at different positions in the circumferential direction of the electrode group, a reduction is achieved in the degree to which the thin part is bent at the positive electrode outer end when the electrode group is inserted into the outer can. Since the amount of the active material contained in unit volume of the active material layer is smaller in the thin part than in the main part, the thin part is made more flexible than the main part and is bent without producing cracks and/or splits when the electrode group is inserted.
  • this cylindrical alkaline storage battery can prevent increase in internal resistance due to cracks and/or splits in the thin part, and can also prevent heating during charging and discharging due to the increase in internal resistance. Further, a short circuit can be prevented that is produced by a part having a crack and/or a split piercing through the separator and coming in contact with the positive electrode.
  • the cylindrical alkaline storage battery according to the invention which is suitable for increasing the battery capacity and arranged to prevent a short circuit and increase in internal resistance is suitable as a power supply for transportation machines, machine tools, communication devices, electric/electronic apparatuses, toys, etc., and the industrial value thereof is great.
  • the amount of the active material contained in unit area of the active material layer in the thin part of the negative electrode is desirably in the range of 40% to 75% of the amount of the active material contained in unit area of the active material layer in the main part of the negative electrode.
  • the upper limit of the amount of the active material contained in unit area of the thin part is made less than 75% of the amount of the active material contained in unit area of the main part, thereby decreasing the thickness of the thin part, and the lower limit thereof is made greater than 40% of the amount of the active material contained in unit area of the main part, whereby the thin part is ensured to include an amount of the active material large enough to contribute to battery reaction with the positive electrode and reaction for reducing oxygen gas flowing to between the electrode group and the circumferential wall of the outer can.
  • this cylindrical alkaline storage battery is suitable for increasing the capacity thereof, and can prevent deterioration in its cycle characteristic.
  • the negative-electrode core body of the negative electrode is made of punching metal, and the active material layer of the negative electrode is supported on both sides (or outer and inner sides) of the negative-electrode core body.
  • the active material layer supported on the inner side of the negative-electrode core body is thicker than the active material layer supported on the outer side of the negative-electrode core body.
  • the active material layer supported on the inner side of the negative-electrode core body which faces the positive electrode through the separator and contributes to both the battery reaction with the positive electrode and the reaction reducing the oxygen gas, is made thicker than the active material layer supported on the outer side of the negative-electrode core body, which comes in contact with the outer can for the electrode group and contributes solely to the reaction reducing the oxygen gas flowing to between the electrode group and the outer can, whereby both high capacity and a good cycle characteristic of the storage battery can be achieved efficiently.
  • the length of the thin part of the negative electrode is in the range of 2.5 to 3.8 times the inside diameter of the outer can.
  • the cylindrical alkaline storage battery configured to position the outer end of the positive electrode and the boundary part of the negative electrode at different positions in the circumferential direction of the electrode group, when the boundary part of the negative electrode is located considerably way before the outer end of the positive electrode in the circumferential direction of the electrode group, the length over which the positive electrode extends on both sides of the thin part is fairly large, so that there is a risk that the amount of the active material contributing to the battery reaction with the positive electrode is too small.
  • the boundary part of the negative electrode when the boundary part of the negative electrode is located considerably way beyond the outer end of the positive electrode in the circumferential direction of the electrode group, the length over which the positive electrode does not extend outside the main part of the negative electrode is fairly large, resulting in a risk that the amount of the active material contributing to the battery reaction with the positive electrode is too large.
  • the length of the thin part is in the range of 2.5 to 3.8 times the inside diameter of the outer can, whereby the boundary part can be located in an appropriate circumferential position, while satisfying the requirement essential to the invention that the negative electrode (thin part) should extend beyond the outer end of the positive electrode in the circumferential direction of the electrode group.
  • the length over which the positive electrode extends on both sides of the thin part and the length over which the positive electrode does not extend outside the main part can be made short to reduce the risk of the amount of the active material being too small or too large.
  • both high capacity and a good cycle characteristic can be achieved more reliably in the storage battery.
  • an angle of inclination of the active material layer in the boundary part of the negative electrode is greater than 0 degree and less than 10 degrees.
  • this cylindrical alkaline storage battery can prevent increase in internal resistance due to cracks and/or splits in the boundary part, heating during charging and discharging due to the increase in internal resistance, and a short circuit produced by a part having a crack and/or a split piercing through the separator and coming in contact with the positive electrode.
  • the mass per unit area of the negative-electrode core body is larger in the boundary part of the negative electrode than in the main part of the negative electrode.
  • the negative-electrode core is strengthened in the boundary part to prevent cracks and/or splits from being produced in the boundary part when the electrode group is rolled up, by making the mass per unit area of the negative-electrode core body larger in the boundary part than in the main part and the thin part.
  • this cylindrical alkaline storage battery can more reliably prevent increase in internal resistance due to cracks and/or splits in the boundary part, heating during charging and discharging due to the increase in internal resistance, and a short circuit produced by a part having a crack and/or a split piercing through the separator and coming in contact with the positive electrode.
  • FIG. 1 is a perspective cutaway view of a cylindrical nickel-hydrogen rechargeable battery according to an embodiment of the invention
  • FIG. 2 is a transverse sectional view of the battery of FIG. 1 ,
  • FIG. 3 is a perspective view showing a negative electrode used in the battery of FIG. 1 in a developed state
  • FIG. 4 is a side view of the negative electrode shown in FIG. 3 .
  • FIG. 5 is a schematic diagram of an electrode group for explaining a circumferential positional relationship between a positive electrode outer end and a boundary part of a negative electrode
  • FIG. 6 is a schematic diagram of an electrode group for explaining circumferential positional relationship between a positive electrode outer end and a boundary part of a negative electrode
  • FIG. 7 is a plan view of a negative-electrode core body used in a cylindrical nickel-hydrogen rechargeable battery according to another embodiment of the invention.
  • FIG. 8 is a cross-sectional view of a negative-electrode core body used in a cylindrical nickel-hydrogen rechargeable battery according to still another embodiment of the invention.
  • battery A a cylindrical nickel-hydrogen rechargeable battery according to an embodiment of the invention
  • the battery A comprises an outer can 10 formed in the shape of a bottomed cylinder open at the top.
  • the outer can 10 has electrical conductivity, and functions as a negative-electrode terminal.
  • An electrically-conductive cover plate 14 is placed in the opening of the outer can 10 , with a ring-shaped insulating gasket 12 interposed therebetween.
  • the cover plate 14 has a gas release hole 16 in the center, and a valve body 18 of rubber is placed on the outer surface of the cover plate 14 so as to cover the gas release hole 16 . Further, a hat-shaped positive-electrode terminal 20 is fixed on the outer surface of the cover plate 14 to cover the valve body 18 . The positive-electrode terminal 20 presses the valve body 18 against the cover plate 14 .
  • the outer can 10 is normally closed air-tightly by means of the insulating gasket 12 , the cover plate 14 , and the valve body 18 .
  • the valve body 18 is compressed, so that the gas is released from the outer can 10 through the gas release hole 16 .
  • the cover plate 14 , the valve body 18 , and the positive-electrode terminal 20 constitute a safety valve.
  • the outer can 10 In the outer can 10 is held a columnar electrode group 22 with an alkaline electrolyte (not shown).
  • the outermost circumferential part of the electrode group 22 is in direct contact with the circumferential wall of the outer can 10 .
  • the electrode group 22 consists of a positive electrode 24 , a negative electrode 26 , and a separator 28 .
  • the alkaline electrolyte can be, for example, an aqueous sodium hydroxide solution, an aqueous lithium hydroxide solution, an aqueous potassium hydroxide solution, or a mixture of two or more of these aqueous solutions.
  • a positive-electrode lead 30 is provided between an end of the electrode group 22 and the cover plate 14 .
  • An end of the positive-electrode lead 30 is connected to the positive electrode 24 while the other end is connected to the cover plate 14 .
  • the positive electrode 24 is electrically connected to the positive-electrode terminal 20 by means of the positive-electrode lead 30 and the cover plate 14 .
  • a circular insulating piece 32 is provided between the cover plate 14 and the electrode group 22 , and the positive-electrode lead 30 extends through a slit formed in the insulating piece 32 .
  • a circular insulating piece 34 is further provided between the electrode group 22 and the bottom of the outer can 10 .
  • the positive electrode 24 and the negative electrode 26 are alternately overlapped in the direction of diameter of the electrode group 22 , with the separator 28 inserted therebetween.
  • the group electrode 22 there are prepared a positive electrode 24 , a negative electrode 26 , and a separator 28 each formed in the shape of a strip.
  • the positive electrode 24 , the negative electrode 26 , and the separator 28 are so laid that the negative electrode 26 is outside the positive electrode 24 with the separator 28 therebetween.
  • they are rolled up from one end, using a rolling core, so that the electrode group 22 is formed.
  • An end (inner end) 36 of the positive electrode 24 and an end (inner end) 38 of the negative electrode 26 are placed to the center side of the electrode group 22 , while the other ends (outer ends) 40 , 42 of the positive and negative electrodes 24 , 26 are placed to the circumference side of the electrode group 22 .
  • the negative electrode 26 which is longer than the positive electrode 24 , begins inside the positive electrode inner end 36 and extends beyond the positive electrode outer end 40 , describing a whirl, so that the positive electrode 24 is sandwiched from both sides through the separator 28 by the negative electrode 26 over the entire length of the positive electrode 24 .
  • the separator 28 does not extend outside the outermost circumferential part of the electrode group 22 .
  • the negative electrode 26 forms the outermost circumferential part of the electrode group 22 .
  • the negative electrode is electrically connected to the outer can 10 .
  • the negative electrode 26 extends beyond the positive electrode outer end 40 in the circumferential direction of the electrode group 22 by a length long enough to cover the outer side of the positive electrode outer end 40 through the separator 28 .
  • the negative electrode outer end 42 is positioned near and past the positive electrode outer end 40 in the circumferential direction of the electrode group 22 .
  • the material for the separator 28 can be, for example, nonwoven fabric of polyamide fiber, nonwoven fabric of polyolefin fiber such as polyethylene or polypropylene with a hydrophilic functional group added.
  • the positive electrode 24 includes a strip-shaped electrically-conductive positive-electrode core body, which supports a positive-electrode mixture.
  • the positive-electrode core body can be made of a foamed nickel base material having a porous structure, for example. In the case of using a foamed nickel base material, the positive-electrode mixture is held in communicating holes in the foamed nickel base material.
  • the positive-electrode mixture comprises a positive-electrode active material, an additive, and a binder, for example.
  • the positive-electrode active material is not limited to a particular one. It can be nickel hydroxide particles or nickel hydroxide particles into which cobalt, zinc, cadmium or the like is dissolved.
  • the additive can be a conductant agent of a cobalt compound, and the binder can be for example a hydrophilic or hydrophobic polymer.
  • the negative electrode 26 which is shown in a developed state in FIGS. 3 and 4 , includes a strip-shaped electrically-conductive negative-electrode core body 46 which supports a negative-electrode mixture.
  • the negative-electrode core body 46 is formed of a metal sheet having a plurality of through-holes across the thickness thereof. For example, punching metal, a sintered metal powder substrate, expanded metal, and a nickel net can be used for this metal sheet. Punching metal and a sintered metal powder substrate, which is made by shaping and then sintering metal powder, are particularly suitable for the negative-electrode core body 46 .
  • the negative-electrode core body 46 is omitted in FIGS. 1 and 2 .
  • the negative-electrode mixture comprises hydrogen-absorbing alloy particles capable of storing and releasing hydrogen and serving as a negative-electrode active material, and a binder.
  • the hydrogen-absorbing alloy is regarded as an active material.
  • the hydrogen-absorbing alloy particles are ones that can store hydrogen electrochemically produced in the alkaline electrolyte during charging the battery A and can easily release the stored hydrogen during discharging.
  • the hydrogen-absorbing alloy is not limited to a particular one, and can be for example an AB 5 type such as LaNi 5 or MmNi 5 (Mm represents misch metal).
  • the binder can be for example a hydrophilic or hydrophobic polymer. Further, a conductant agent such as carbon black or Ni powder may be added as necessary.
  • the battery A can be formed as a nickel-cadmium rechargeable battery, but nickel-hydrogen rechargeable battery is more suitable for increasing the battery capacity.
  • the negative-electrode mixture is filled in the through-holes in the negative-electrode core body 46 and the negative-electrode core body 46 is formed in the shape of a sheet, the negative-electrode mixture is spread in layer over both sides of the negative-electrode core body 46 , thereby forming active material layers (layers of the mixture) 48 and 50 , as shown in FIGS. 3 and 4 .
  • the thickness T 2 of the inner alloy layer 48 is almost constant from the negative electrode inner end 38 to the negative electrode outer end 42
  • the outer alloy layer 50 has a thickness varying between the negative electrode inner end 38 and the negative electrode outer end 42
  • the negative electrode 26 is divided into three sections in the lengthwise direction of the negative-electrode core body 46 . Specifically, it is divided into a main part 52 , a boundary part 54 , and a thin part 46 in this order in the direction from the negative electrode inner end 38 to the negative electrode outer end 42 (see FIGS. 3 to 6 ).
  • the main part 52 of the negative electrode 26 When rolled up, the main part 52 of the negative electrode 26 is positioned on the inside of the electrode group 22 , and the positive electrode 24 is disposed through the separator 28 on both sides of the main part 52 of the negative electrode 26 .
  • the thickness of the outer alloy layer 50 is almost the same as the thickness T 2 of the inner alloy layer 48 .
  • the boundary part 54 of the negative electrode 26 is formed between the main part 52 and the thin part 56 of the negative electrode 26 and has a thickness varying in the lengthwise direction of the negative-electrode core body 46 .
  • the boundary part 54 is positioned at a position different from that of the positive electrode outer end 40 in the circumferential direction of the electrode group 22 (see FIGS. 5 and 6 ).
  • the boundary part 54 has a length L, and the thickness of the outer alloy layer 50 in the boundary part 54 decreases from the main part 52 side toward the thin part 56 gradually at an almost constant rate of change from the thickness T 2 to the thickness T 1 .
  • the angle ⁇ of inclination is desirably in the range of 0° ⁇ 10°.
  • the thin part 56 forms the outermost circumferential part of the electrode group 22 , covers the outer side of the positive electrode outer end 40 through the separator 28 , and is in close contact with the circumferential wall of the outer can 10 .
  • the thickness T 1 of the outer alloy layer 50 in the thin part 56 is constant in the lengthwise direction of the negative-electrode core body 46 , and smaller than the thickness of the outer alloy layer 50 in the main part 52 or the thickness T 2 of the inner alloy layer 48 . In the thin part 56 , therefore, the inner alloy layer 48 is thicker than the outer alloy layer 50 .
  • the length Xd of the thin part 56 is in the range of 2.5 to 3.8 times the inside diameter d of the outer can 10 .
  • the battery A is arranged that the negative electrode outer end 42 (the outer end of the thin part 56 ) is located immediately outside the positive electrode outer end 40 .
  • the length Xd of the thin part 56 is in the above-mentioned desirable range so as to place the boundary part 54 in an appropriate circumferential position relative to the positive electrode outer end 40 , the length over which the positive electrode extends on both sides of the thin part can be made short, and the length over which the positive electrode does not extend outside the main part can also be made short. This reduces the risk of the amount of the active material being too small or too large due to the aforesaid basic arrangement, making it possible to increase and improve the capacity and the cycle characteristic of the battery A.
  • the thin part 56 is thinner than the main part 52 , and the amount of hydrogen-absorbing alloy particles contained in unit volume of the inner and outer alloy layers 48 , 50 is smaller in the thin part 56 than in the main part 52 , whereby the thin part 56 is made more flexible than the main part 52 .
  • the amount of hydrogen-absorbing alloy contained in unit area of the thin part 56 is in the range of 40% to 75% of the amount of hydrogen-absorbing alloy contained in unit area of the main part 52 .
  • the amount of hydrogen-absorbing alloy contained in the thin part 56 is in this desirable range, it is made possible to ensure an amount of hydrogen-absorbing alloy in the thin part large enough to contribute to battery reaction with the positive electrode, and large enough to contribute to reaction for reducing oxygen gas flowing to between the electrode group and the outer can, while decreasing the thickness of the thin part.
  • the battery A can be fabricated by using ordinary methods. An example of fabrication methods of the negative electrode 26 will be described below.
  • punching metal for the negative-electrode core body 46 there are prepared for example punching metal for the negative-electrode core body 46 , and a negative-electrode mixture paste.
  • the paste is applied on the punching metal, thin on a part forming the thin part 56 of the negative electrode and thick on a part forming the main part 52 , and dried.
  • the punching metal with the dried negative-electrode mixture thereon is passed through between a pair of mill rolls to compress it from both sides across the thickness thereof.
  • the pressing force exerted by rolls is variably controlled to be larger for the part forming the main part 52 than for the part forming the thin part 56 , so that the amount of hydrogen-absorbing alloy contained in unit value of the inner and outer alloy layers 48 , 50 will be smaller in the thin part 56 than in the main part 52 in the negative electrode 26 formed.
  • the punching metal rolled is cut to a predetermined size, so that the strip-shaped negative electrode 26 is obtained.
  • the angle ⁇ of inclination of the boundary part 54 can be adjusted by controlling the thickness of the paste applied, the pressing force, etc.
  • the battery A having the structure described above it is possible to increase the volume of the positive electrode 24 in a manner corresponding to the volume of the negative electrode 26 decreased by the provision of the thin part 56 that is thinner than the main part 52 .
  • the increase in volume of the positive electrode 24 brings increase in the amount of the positive-electrode active material contained in the battery A, resulting in increase in the capacity of the battery A.
  • the amount of hydrogen-absorbing alloy contained in unit volume of the inner and outer alloy layers 48 , 50 is made smaller in the thin part 56 than in the main part 52 , and the boundary part 54 and the positive electrode outer end 40 are positioned at different positions in the circumferential direction of the electrode group 22 , whereby production of cracks and/or splits in the thin part 56 is prevented, thus preventing increase in internal resistance, heating due to the increase in internal resistance, and production of a short circuit.
  • the thin part 56 of the negative electrode 26 and the separator 28 extend beyond the outer end 40 of the positive electrode 24 in the circumferential direction of the electrode group 22 .
  • the diameter of the electrode group 22 is largest in the direction connecting the positive electrode outer end 40 and the central axis of the electrode group 22 although the cross section of the electrode group 22 is nearly a circle.
  • the electrode group 22 When the electrode group 22 is inserted into the outer can 10 , the electrode group 22 is compressed most in this largest diameter direction by the rim or the circumferential wall of the outer can 10 . During the insertion of the electrode group 22 , therefore, the thin part 56 is compressed and bent at the step difference formed by the positive electrode outer end 40 .
  • the battery A is arranged that the amount of hydrogen-absorbing alloy contained in unit volume of the inner and outer alloy layers 48 , 50 is smaller in the thin part 56 than in the main part 52 , so that the thin part is made more flexible than the main part 52 . Hence, even if the positive electrode 24 is made thick to increase the capacity of the battery A, the thin part 56 is bent without producing cracks or splits when the electrode group 22 is inserted.
  • the presence of the boundary part 54 acts to increase the step difference for the thin part 56 at the positive electrode outer end 40 .
  • the boundary part 54 is positioned at substantially the same circumferential position as that of the positive electrode outer end 40 , the step difference for the thin part 56 increases by an amount by which the boundary part 54 is thinner than the main part 52 .
  • the thin part 56 is largely bent at the step difference, so that cracks and/or splits may be produced in the thin part 56 .
  • the battery A is arranged that the boundary part 54 and the positive electrode outer end 40 are positioned at different positions in the circumferential direction of the electrode group 22 , so that they do not overlap each other as viewed in such direction, thereby surely preventing production of cracks and/or splits in the thin part 56 that would be caused when the electrode group 22 is inserted.
  • the battery A which is capable of surely preventing the production of cracks and/or splits in the thin part 56 this way, can prevent the increase in internal resistance of the battery that would be caused when the electrical resistance of the negative electrode 26 increases due to the presence of cracks and/or splits, and can prevent part having a crack or a split from piercing through the separator 28 and coming in contact with the positive electrode 24 to produce a short circuit.
  • the amount of hydrogen-absorbing alloy contained in unit area of the thin part 56 is in the range of 40% to 75% of the amount of hydrogen-absorbing alloy contained in unit area of the main part 52 , it is possible to achieve both high capacity and a good cycle characteristic.
  • the capacity of the battery A can be increased by decreasing the thickness of the thin part 56 .
  • the thin part 56 not only contributes to battery reaction with the positive electrode 24 disposed inside the thin part, but also has a function of reducing oxygen gas flowing to between the electrode group 22 and the outer can 10 into water, to thereby prevent increase in the inner pressure of the battery.
  • the battery A is arranged that the amount of hydrogen-absorbing alloy contained in unit area of the thin part 56 is in the range of 40% to 75% of the amount of hydrogen-absorbing alloy contained in unit area of the main part 52 , to thereby ensure an amount of hydrogen-absorbing alloy large enough to contribute to battery reaction with the positive electrode and to reaction for reducing oxygen gas flowing to between the electrode group and the circumferential wall of the outer can, while decreasing the thickness of the thin part 56 , so as to achieve the increase in the capacity and prevent deterioration in the cycle characteristic due to decrease in the alkaline electrolyte caused by increase in the inner pressure.
  • the thickness of the inner alloy layer 48 facing the positive electrode 28 with the separator therebetween and contributing to both the battery reaction with the positive electrode and the reaction for reducing oxygen gas, is made larger than the thickness of the outer alloy layer 50 , which is separated from the inner alloy layer 48 by the negative-electrode core body 46 , brought in contact with the circumferential wall of the outer can 10 , and contributes solely to the reaction for reducing oxide gas flowing to between the electrode group 22 and circumferential wall of the outer can 10 .
  • the just-mentioned arrangement it is possible to achieve both high capacity and a good cycle characteristic efficiently.
  • the battery A is further arranged that the length Xd of the thin part 56 is in the range of 2.5 to 3.8 times the inside diameter d of the outer can 10 , whereby both high capacity and a good cycle characteristic of the battery A can more reliably be achieved.
  • the battery A is arranged that the positive electrode outer end 40 and the boundary part 54 of the negative electrode 26 do not overlap each other as viewed in the direction of diameter of the electrode group 22 , and thus the thin part 56 or the main part 52 is positioned inside the positive electrode outer end 40 . Therefore, the main portion 52 can sometimes have a part thereof for which the positive electrode 24 does not extend outside the main part 52 as schematically shown in FIG. 5 , and the thin part 56 can sometimes have a part thereof for which the positive electrode 24 extends on both sides of the thin part 56 as schematically shown in FIG. 6 .
  • the length Xd of the thin part 56 is so determined as to be in the range of 2.5 to 3.8 times the inside diameter d of the outer can 10 , to shorten the length over which the positive electrode extends on both sides of the thin part and the length over which the positive electrode does not extend outside the main part, thereby reducing the risk of the amount of hydrogen-absorbing alloy being too small or too large, so that both high capacity and a good cycle characteristic are achieved more reliably.
  • the separator 28 is omitted in FIGS. 5 and 6 .
  • the angle ⁇ of inclination of the boundary part 54 to the longitudinal direction of the negative electrode 26 is in the range of 0° ⁇ 10°. This helps prevent production of a short circuit and increase in internal resistance more reliably.
  • a locally concentrated stress can easily be produced when the boundary part 54 whose thickness varies is rolled up.
  • the boundary part 54 varying in thickness is liable to experience shortage of strength, as compared to the main part 52 and the thin part 56 that are constant in thickness.
  • the angle ⁇ of inclination is in the range of 0° ⁇ 10° to make the change in thickness gentle, thereby preventing concentration of stress in the boundary part 54 , shortage of strength in the boundary part 54 , and production of cracks and/or splits in the boundary part 54 that would be caused when the electrode group is rolled up.
  • the battery A therefore, not only in the thin part 56 but also in the boundary part 54 , the increase in the internal resistance due to cracks and/or splits is prevented, and a short circuit is prevented that is produced by a part having a crack and/or a split piercing through the separator 28 and coming in contact with the positive electrode 24 .
  • the thicknesses of both the inner and outer alloy layers 48 , 50 may be made smaller in the thin part 56 than in the main part 42 , instead of making only the outer alloy layer 50 smaller.
  • a material having a porous structure such as a foamed nickel material may be used for the negative-electrode core body 46 , instead of the sheet-shaped material having through-holes.
  • the hydrogen-absorbing alloy layer is supported by the negative-electrode core body in a state that the frame of the foamed nickel material spreads throughout the hydrogen-absorbing alloy layer in the form of a mesh-like network.
  • a negative-electrode core body may be used that has the boundary part 54 thereof reinforced by making the mass per unit area larger in the boundary part 54 than in the main part 52 and the thin part 56 . More specifically, a negative-electrode core body 60 may be used in which, as shown in FIG.
  • through-holes 58 are made smaller in number in the boundary part 54 than in the main part 52 and the thin part 56 so as to decrease the opening area of the through-holes 58
  • a negative-electrode core body 62 may be used in which, as shown in FIG. 8 , the thickness is made larger in the boundary part 54 than in the main part 52 and the thin part 56 .
  • a negative-electrode core body may be used in which the diameter of the through-holes is made smaller in the boundary part 54 than in the main part 52 and the thin part 56 .
  • Comparative Example 2 there were assembled 100 cylindrical nickel-hydrogen rechargeable batteries which were the same in structure as Example 1 except that the positive electrode outer end 40 and the boundary part 54 of the negative electrode 26 were positioned at the same circumferential position in the electrode group 22 .
  • Table 1 shows the thicknesses of the main part 42 and the thin part 56 of the negative electrode 26 , and shows the amount of hydrogen-absorbing alloy contained in unit volume of the inner and outer alloy layers 48 and 50 in the thin part 56 of the negative electrode 26 .
  • the amount is represented by a relative value to the amount of hydrogen-absorbing alloy contained in unit volume of the inner and outer alloy layers 48 and 50 in the main part 52 of the negative electrode 26 , which is assumed to be equal to 100.
  • Examples 1 to 5 in which the thickness is smaller in the thin part 56 than in the main part 52 and in which the amount of hydrogen-absorbing alloy contained in unit volume of the inner and outer alloy layers 48 , 50 is smaller in the thin part 56 than in the main part 52 , are better than Comparative Example 1 in which the amount of hydrogen-absorbing alloy contained in unit volume of the inner and outer alloy layers 48 , 50 in the thin part 56 and that in the main part 52 are the same.
  • Example 1 is better than Comparative Example 2 in which the positive electrode outer end 40 and the boundary part 54 of the negative electrode 26 are positioned at the same circumferential position in the electrode group 22 . This indicates that it is preferable to position the boundary part 54 of the negative electrode 26 and the positive electrode outer end 40 at different circumferential positions in the electrode group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
US10/909,363 2003-08-04 2004-08-03 Cylindrical alkaline storage battery Active 2026-12-28 US7432018B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003286321A JP4179943B2 (ja) 2003-08-04 2003-08-04 円筒型アルカリ蓄電池
JP2003-286321 2003-08-04

Publications (2)

Publication Number Publication Date
US20050031939A1 US20050031939A1 (en) 2005-02-10
US7432018B2 true US7432018B2 (en) 2008-10-07

Family

ID=34113949

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/909,363 Active 2026-12-28 US7432018B2 (en) 2003-08-04 2004-08-03 Cylindrical alkaline storage battery

Country Status (3)

Country Link
US (1) US7432018B2 (ja)
JP (1) JP4179943B2 (ja)
CN (1) CN1297031C (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090162739A1 (en) * 2007-12-25 2009-06-25 Lei Han Electrochemical storage cell
US20110117438A1 (en) * 2009-11-16 2011-05-19 Man-Seok Han Electrode assembly and rechargeable battery using the same
US20170092925A1 (en) * 2015-09-30 2017-03-30 Apple Inc. Wound battery cells with notches accommodating electrode connections
US10135097B2 (en) 2010-07-16 2018-11-20 Apple Inc. Construction of non-rectangular batteries
US10868290B2 (en) 2016-02-26 2020-12-15 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127762A1 (en) * 2004-12-15 2006-06-15 Gyenes Russell E Impact resistant electrochemical cell with tapered electrode and crumple zone
JP5096745B2 (ja) 2005-01-06 2012-12-12 パナソニック株式会社 ニッケル水素蓄電池用負極の製造方法
CN101984513B (zh) * 2010-05-28 2013-02-27 江苏赛尔电池有限公司 可充电电池的电池极片及制造方法
JP5660625B2 (ja) 2011-06-30 2015-01-28 Fdkトワイセル株式会社 負極板の製造方法
JP5822094B2 (ja) 2012-02-24 2015-11-24 株式会社Gsユアサ 電極板、巻回電極群及び円筒形電池
WO2014073113A1 (ja) * 2012-11-12 2014-05-15 トヨタ自動車株式会社 非水電解質二次電池
CN103618068B (zh) * 2013-11-13 2016-05-25 河南师范大学 锌镍电池负极片及其制备方法和使用该负极片的锌镍电池
CN104716279A (zh) * 2015-03-19 2015-06-17 苏州市职业大学 一种易取出型干电池
CN106571443A (zh) * 2015-10-11 2017-04-19 深圳市沃特玛电池有限公司 一种电池极片辊压装置及电池极片
JP6719101B2 (ja) * 2017-03-23 2020-07-08 パナソニックIpマネジメント株式会社 ニッケル水素電池及びその製造方法
JP6870743B2 (ja) * 2017-08-29 2021-05-12 株式会社村田製作所 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN117199152B (zh) * 2023-09-11 2024-06-04 淮安捷泰新能源科技有限公司 一种太阳能电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206474A (ja) 1990-11-30 1992-07-28 Hitachi Maxell Ltd アルカリ蓄電池
US5683834A (en) * 1994-09-07 1997-11-04 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US6051333A (en) 1995-11-08 2000-04-18 Hitachi Maxell, Ltd. Cell comprising spirally wound electrodes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973894B2 (ja) * 1995-05-09 1999-11-08 松下電器産業株式会社 円筒型電池
JP3768041B2 (ja) * 1999-03-19 2006-04-19 三洋電機株式会社 アルカリ蓄電池
JP2000285956A (ja) * 1999-03-30 2000-10-13 Sanyo Electric Co Ltd 円筒型アルカリ蓄電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206474A (ja) 1990-11-30 1992-07-28 Hitachi Maxell Ltd アルカリ蓄電池
US5683834A (en) * 1994-09-07 1997-11-04 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US6051333A (en) 1995-11-08 2000-04-18 Hitachi Maxell, Ltd. Cell comprising spirally wound electrodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chinese Office Action dated Feb. 10, 2006, issued in corresponding Chinese patent application No. 2004 100559182.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090162739A1 (en) * 2007-12-25 2009-06-25 Lei Han Electrochemical storage cell
US8865335B2 (en) * 2007-12-25 2014-10-21 Byd Co. Ltd. Electrochemical storage cell
US20110117438A1 (en) * 2009-11-16 2011-05-19 Man-Seok Han Electrode assembly and rechargeable battery using the same
US9269984B2 (en) * 2009-11-16 2016-02-23 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery using the same
US10135097B2 (en) 2010-07-16 2018-11-20 Apple Inc. Construction of non-rectangular batteries
US11024887B2 (en) 2010-07-16 2021-06-01 Apple Inc. Construction of non-rectangular batteries
US20170092925A1 (en) * 2015-09-30 2017-03-30 Apple Inc. Wound battery cells with notches accommodating electrode connections
US9929393B2 (en) * 2015-09-30 2018-03-27 Apple Inc. Wound battery cells with notches accommodating electrode connections
US10868290B2 (en) 2016-02-26 2020-12-15 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture
US11784302B2 (en) 2016-02-26 2023-10-10 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture

Also Published As

Publication number Publication date
CN1581558A (zh) 2005-02-16
JP2005056674A (ja) 2005-03-03
JP4179943B2 (ja) 2008-11-12
US20050031939A1 (en) 2005-02-10
CN1297031C (zh) 2007-01-24

Similar Documents

Publication Publication Date Title
US7432018B2 (en) Cylindrical alkaline storage battery
US8815451B2 (en) Negative-electrode plate and cylindrical cell including same
JP2002134161A (ja) 電池用渦巻状電極群及び電池
WO2017168963A1 (ja) ニッケル水素蓄電池
US7604900B2 (en) Cylindrical alkaline storage battery
US8309243B2 (en) Cylindrical alkaline storage battery
JP3527586B2 (ja) アルカリ蓄電池用ニッケル電極の製造法
EP1498977A1 (en) Alkaline storage battery
JP3846154B2 (ja) 電池缶及びその製造方法と電池
EP1039566B1 (en) Alkaline storage battery with two separators
US20200266404A1 (en) Alkaline secondary battery
JP5110889B2 (ja) ニッケル水素二次電池
US20150093619A1 (en) Battery and method for manufacturing battery
JP4359099B2 (ja) 円筒型アルカリ蓄電池
JP2005158654A (ja) 円筒型アルカリ蓄電池
JP2005056675A (ja) 円筒型アルカリ蓄電池
JP6719101B2 (ja) ニッケル水素電池及びその製造方法
JP3973115B2 (ja) 巻回構造の電極体を有する電池
JP3706166B2 (ja) ニッケル水素二次電池の製造方法
WO2021192978A1 (ja) アルカリ蓄電池
JP2005050771A (ja) 電池
CN117941130A (zh) 圆筒形电池
JP3504303B2 (ja) 円筒形アルカリ二次電池
JP2004063325A (ja) 円筒型蓄電池
JP2000138070A (ja) 円筒形アルカリ二次電池

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANYO ELECTRIC CO. LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAGUCHI, KOJI;REEL/FRAME:015651/0897

Effective date: 20040726

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: FDK CORPORATION,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANYO ELECTRIC CO., LTD.;REEL/FRAME:024023/0229

Effective date: 20100112

AS Assignment

Owner name: FDK CORPORATION,JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXHIBIT A, FILING DATE OF US PATENT 5660952 AND GRANT DATE OF US PATENT 7510806 PREVIOUSLY RECORDED ON REEL 024023 FRAME 0229. ASSIGNOR(S) HEREBY CONFIRMS THE 8/4/1995 (FILING DATE) FOR US PATENT 5660952 AND 3/31/2009(GRANT DATE) FOR US PATENT 7510806;ASSIGNOR:SANYO ELECTRIC CO., LTD.;REEL/FRAME:024114/0890

Effective date: 20100112

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: FDK CORPORATION, JAPAN

Free format text: CHANGE OF ADDRESS;ASSIGNOR:FDK CORPORATION;REEL/FRAME:037952/0896

Effective date: 20150316

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12