US7065686B2 - Dual port RAM - Google Patents

Dual port RAM Download PDF

Info

Publication number
US7065686B2
US7065686B2 US10/173,826 US17382602A US7065686B2 US 7065686 B2 US7065686 B2 US 7065686B2 US 17382602 A US17382602 A US 17382602A US 7065686 B2 US7065686 B2 US 7065686B2
Authority
US
United States
Prior art keywords
test
self
signal
port
memory block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/173,826
Other versions
US20030140289A1 (en
Inventor
Nobuyuki Endo
Yuji Fujiki
Hiroki Goko
Fumihiro Wajima
Junichi Tamura
Ali Elhadri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Assigned to OKI ELECTRIC INDUSTRY CO., LTD. reassignment OKI ELECTRIC INDUSTRY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELHADRI, ALI, ENDO, NOBUYUKI, FUJIKI, YUJI, GOKO, HIROKI, TAMURA, JUNICHI, WAJIMA, FUMIHIRO
Publication of US20030140289A1 publication Critical patent/US20030140289A1/en
Application granted granted Critical
Publication of US7065686B2 publication Critical patent/US7065686B2/en
Assigned to OKI SEMICONDUCTOR CO., LTD. reassignment OKI SEMICONDUCTOR CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: OKI ELECTRIC INDUSTRY CO., LTD.
Assigned to Lapis Semiconductor Co., Ltd. reassignment Lapis Semiconductor Co., Ltd. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: OKI SEMICONDUCTOR CO., LTD
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/12015Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising clock generation or timing circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/14Implementation of control logic, e.g. test mode decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/16Multiple access memory array, e.g. addressing one storage element via at least two independent addressing line groups

Definitions

  • the present invention relates to a dual port RAM (random access memory) capable of writing or reading data to or from the same memory from two independent ports, and more particularly to its self-test function.
  • RAM random access memory
  • a dual port RAM has a memory block and two ports A and B. If a normal operation is specified by a mode signal MOD in the dual port RAM, the port A of the memory block is connected to a system bus of a first functional block and is given a first clock signal. The port B of the memory block is connected to a system bus of a second functional block B and is given a second clock signal. In addition, a self-test circuit connected to the memory block is disconnected by a selector.
  • the port A and the port B of the memory block are disconnected from the first and second functional blocks by the selector and then connected to the self-test circuit.
  • a first clock signal is supplied to the port A of the memory block and the self-test circuit.
  • a first clock signal is supplied to the port B of the memory block via a selector.
  • the self-test circuit tests data write/read processing to or from the memory block and then a test result is output.
  • data written from the port A is read from the port B for verification or conversely data written from the port B is read from the port A for verification. Since a single self-test circuit is used for controlling the port A and the port B of the memory block simultaneously, these ports A and B are given a common clock signal (the first clock signal) for the read/write processing.
  • the above dual port RAM has the following problem.
  • the self-test there is a need for supplying the same first clock signal as one for the port A to the port B. Therefore, the first and second clock signals are switched to each other by using the selector on a clock supplying path in the side of the port B. This causes a difference in timing between the first clock signal supplied to the port A and the first clock signal supplied to the port B, which disables a normal self-test particularly in a fast operation, thus causing a problem.
  • the dual port RAM is incapable of performing a self-test when the first and second clock signals at the port A and the port B are different from each other in speed.
  • the present invention has been provided. It is an object of the present invention to provide a dual port RAM capable of performing a self-test with clock signals having two different timings.
  • a dual port RAM comprising: an any-time readable/writable memory block in which an access can be made to the same storage area from independent first and second ports, a first test circuit for performing a test to the storage area of the memory block via the first port on the basis of a first clock signal, a second test circuit for performing a test to the storage area of the memory block via the second port on the basis of a second clock signal, and a control circuit for causing the first and second test circuits to test the memory block alternately.
  • FIG. 1 is a configurational diagram of a dual port RAM showing a first embodiment of the present invention
  • FIG. 2 is a signal waveform diagram showing a self-test operation in FIG. 1 ;
  • FIG. 3 is a dual port RAM showing a second embodiment of the present invention.
  • FIG. 4 is a signal waveform diagram showing a self-test operation in FIG. 3 .
  • FIG. 1 there is shown a configurational diagram of a dual port RAM showing a first embodiment of the present invention.
  • This dual port RAM has a memory block 1 having two ports A and B.
  • the port A of the memory block 1 is connected to a system bus 2 A in the side of a functional block A (not shown) via a selector 3 A and it is to be given a clock signal CKA.
  • the port B of the memory block 1 is connected to a system bus 2 B in the side of a functional block B (not shown) via a selector 3 B and it is to be given a clock signal CKB.
  • this dual port RAM has self-test circuits 10 A and 10 B for testing the memory block 1 .
  • the self-test circuit 10 A is given a clock signal CKA and is connected to the port A of the memory block 1 via the selector 3 A through a bus 11 A.
  • the self-test circuit 10 B is given a clock signal CKB and is connected to the port B of the memory block 1 via the selector 3 B through a bus 11 B.
  • the selectors 3 A and 3 B enable switching between a normal operation and a test operation by using a mode signal MOD given to a terminal S.
  • a connection is made between terminals X and Z, by which the port A and the port B of the memory block 1 are connected to the side of the functional blocks A and B, respectively.
  • a connection is made between terminal Y and Z of the selectors 3 A and 3 B, by which the port A and the port B of the memory block 1 are connected to the self-test circuits 10 A and 10 B via the buses 11 A and 11 B, respectively.
  • the self-test circuit 10 A tests the memory block via the port A in a given procedure when an enable signal EA is at level “H”. After a completion of the given test, a completion signal FA output from the self-test circuit 10 A sifts from level “L” to level “H” and then its test result RA is output. In the same manner, the self-test circuit 10 B tests the memory block 1 via the port B in a given procedure when an enable signal EB is at level “H”. After a completion of the given test, a completion signal FB output from the self-test circuit 10 B shifts from level “L” to level “H” and then its test result RB is output.
  • This dual port RAM has a test control circuit 20 for operating two self-test circuits 10 A and 10 B alternately.
  • the test control circuit 20 has an inverter 21 a to be given a completion signal FA from the side of the port A and the inverter 21 a is connected in its output to FFs 22 a , 23 a , 24 a , and 25 a having four stages.
  • Each clock terminal C of the FFs 22 a to 25 a is given a clock signal CKB from the side of the port B.
  • An output of the FF 25 a is connected to a first input of a two-input negative AND gate (hereinafter, referred to as NAND) 26 a and a second input of the NAND 26 a is given a completion signal FA.
  • NAND two-input negative AND gate
  • test control circuit 20 has an FF 27 a for holding a completion signal FB in the side of the port B at a rise of the clock signal CKB.
  • Outputs of the FF 27 a and the NAND 26 a are connected to first and second inputs of a three-input AND gate (hereinafter, referred to as AND) 28 a and a third input of the AND 28 a is given a start signal SA.
  • the enable signal EA is output from an output of the AND 28 a and given to the self-test circuit 10 A.
  • this test control circuit 20 has an inverter 21 b to be given the completion signal FB from the side of the port B and an output of the inverter 21 b is connected to FFs 22 b , 23 b , 24 b , and 25 b having four stages.
  • Each clock terminal C of the FFs 22 b to 25 b is given a clock signal CK from the side of the port A.
  • An output of the FF 25 b is connected to a first input of a two-input NAND 26 b and a second input of the NAND 26 b is given a completion signal FB.
  • test control circuit 20 has an FF 27 b for holding a completion signal FA in the side of the port A at a rise of the clock signal CKA.
  • Outputs of the FF 27 b and the NAND 26 b are connected to first and second inputs of a three-input AND 28 b and a third input of the AND 28 b is given a start signal SB.
  • the enable signal EB is output from an output of the AND 28 b and given to the self-test circuit 10 B.
  • FIG. 2 there is shown a signal waveform diagram showing a self-test operation in FIG. 1 .
  • the operation in FIG. 1 will be described by referring to FIG. 2 .
  • the selectors 3 A and 3 B are switched to the side of the terminal X with a mode signal MOD, by which the port A of the memory block 1 is connected to the system bus 2 A of the functional block A and is given a clock signal CKA.
  • the port B of the memory block 1 is connected to the system bus 2 B of the functional block B and is given a clock signal CKB.
  • the memory block 1 is disconnected from the self-test circuits 10 A and 10 B by the selectors 3 A and 3 B.
  • the selectors 3 A and 3 B are switched to the side of the terminal Y with a mode signal MOD, by which the port A and the port B of the memory block 1 are disconnected from the functional blocks A and B by the selectors 3 A and 3 B and then connected to the self-test circuits 10 A and 10 B.
  • the port A of the memory block 1 and the self-test circuit 10 A are given a clock signal CKA and the port B and the self-test circuit 10 B are given a clock signal CKB.
  • an access change from the port A to the port B occurs between the phase 1 and the phase 2 and between the phase 4 and the phase 5.
  • An access change from the port B to the port A occurs between the phase 2 and the phase 3 and between the phase 5 and the phase 1 of the next address.
  • a start signal SA at level “H” and a start signal SB at level “L” are given, first, by which the self-test circuit 10 B is forcibly halted and the self-test circuit 10 A starts to operate. After starting the operation of the self-test circuit 10 A, the start signal SB is set to level “H”.
  • the completion signal FA shifts from level “L” to level “H”. This causes a signal S 21 A output from the inverter 21 a to shift from “H” to “L”. Additionally, a signal S 26 A output from the NAND 26 a also shifts to “L”, by which an enable signal EA output from the AND 28 a shifts to “L”.
  • a signal S 27 B output from the FF 27 b shifts from “L” to “H” at a rise of the clock signal CKA at time t 2 , by which an enable signal EB output from the AND 28 b shifts to “H”.
  • the signal S 25 A output from the FF 25 a shifts from “H” to “L” with the fourth rise of the clock signal CKB after time t 1 . This causes the signal S 26 A of the NAND 26 a to return to “H”.
  • the signal S 27 A of the FF 27 a is at “L” and therefore the enable signal EA remains at “L”.
  • the signal S 25 B output from the FF 25 b shifts from “L” to “H” with the fourth rise of the clock signal CKA after time t 3 .
  • the completion signal FB is at “L” and therefore a signal S 26 B output from the NAND 26 b remains at “H” and the enable signal EB is kept to be at “H”.
  • the completion signal FB shifts from “L” to “H”. This causes the signal S 21 B of the inverter 21 b to shift from “H” to “L”. In addition, the signal S 26 B of the NAND 26 b also shifts to “L”, by which the enable signal EB shifts to “L”.
  • the signal S 27 A of the FF 27 a shifts from “L” to “H” with a rise of the clock signal CKB at time t 8 , by which the enable signal EA shifts to “H”.
  • test control circuit 20 controls the self-test circuits 10 A and 10 B to perform the test operation alternately with the same repetition.
  • the dual port RAM has the self-test circuits 10 A and 10 B operating with the clock signals CKA and CKB of the port A and the port B and the test control circuit 20 for controlling the self-test circuits 10 A and 10 B so as to operate alternately.
  • This enables a self-test of the memory block 1 with the clock signals CKA and CKB having two different timings, advantageously.
  • FIG. 3 there is shown a configurational diagram of a dual port RAM showing a second embodiment of the present invention.
  • the same elements as in FIG. 1 are designated by the same reference numerals.
  • This dual port RAM has a set/reset-type FF 30 instead of the test control circuit 20 of the dual port RAM in FIG. 1 .
  • the FF 30 retains data having level “H” and outputs signals at “H” and “L” to output terminals Q and /Q when a pulse having level “H” is applied to a set terminal S and it retains data having “L” and outputs signals at “L” and “H” to the output terminals Q and /Q when a pulse having “H” is applied to a reset terminal R. Furthermore, the FF 30 has a preset terminal PS and a clear terminal CL so as to set retained data to “H” by applying a pulse at “H” to the preset terminal PS and so as to reset the retained data to “L” by applying a pulse at “H” to the clear terminal CL.
  • the set terminal S of the FF 30 is given the completion signal FA of the self-test circuit 10 A and the reset terminal R is given the completion signal FB of the self-test circuit 10 B.
  • the enable signal EB is output from the output terminal Q to the self-test circuit 10 B and the enable signal EA is output from the output terminal /Q to the self-test circuit 10 A.
  • the clear terminal CL and the preset terminal PS are given start signals SA and SB, respectively. Other components are the same as in FIG. 1 .
  • FIG. 4 there is shown a signal waveform diagram showing a self-test operation in FIG. 3 .
  • the self-test operation in FIG. 3 will be described by referring to FIG. 4 .
  • a supply of the start signal SA at the start of the self-test clears the FF 30 , by which the enable signal EB output from the output terminal Q to the self-test circuit 10 B shifts to “L” and the enable signal EA output from the output terminal /Q to the self-test circuit 10 A shifts to “H”. This causes the self-test circuit 10 A to perform the self-test of the memory block 1 via the port A on the basis of the clock signal CKA.
  • the self-test circuit 10 A After a completion of the operation of the self-test circuit 10 A, the self-test circuit 10 A outputs a pulse of the completion signal FA. This causes the FF 30 to be set, by which the enable signal EB output from the output terminal Q to the self-test circuit 10 B shifts to “H” and the enable signal EA output from the output terminal /Q to the self-test circuit 10 A shifts to “L”.
  • the self-test circuit 10 B When the enable signal EB shifts to “H” the self-test circuit 10 B starts to operate at a timing of the next rise of the clock signal CKB. Then, the self-test circuit 10 B performs a self-test of the memory block 1 via the port B on the basis of the clock signal CKB.
  • the self-test circuit 10 B After a completion of the operation of the self-test circuit 10 B, the self-test circuit 10 B outputs a pulse of the completion signal FB. This causes the FF 30 to be reset, by which the enable signal EB output from the output terminal Q to the self-test circuit 10 B shifts to “L” and the enable signal EA output from the output terminal /Q to the self-test circuit 10 A shifts to “H”.
  • the self-test circuits 10 A and 10 B are controlled to perform test operations alternately by the same repetition.
  • the dual port RAM according to the second embodiment has the self-test circuits 10 A and 10 B operating with the clock signals CKA and CKB of the port A and the port B and the FF 30 for controlling the self-test circuits 10 A and 10 B so as to operate alternately.
  • the circuitry of the test control circuit 20 shown in FIG. 1 is not limited to one shown there.
  • the number of stages for the FFs 22 a to 25 a can be set to an appropriate one according to a frequency or the like of the clock signals CKA and CKB.
  • a delay circuit or the like can be used instead of the FFs 22 a to 25 a .
  • the FF 30 in FIG. 3 has a preset function for initially starting one of the self-test circuits 10 A and 10 B, it is also possible to use a different circuit to start the self-test circuit 10 A or 10 B.
  • the present invention comprises a first test circuit for performing a test to a storage area of a memory block via a first port on the basis of a first clock signal, a second test circuit for performing a test to the storage area of the memory block via the second port on the basis of a second clock signal, and a control circuit for causing the first and second test circuits to test the memory block alternately.
  • the first test circuit starts a test operation on the basis of a first enable signal and outputs a first completion signal when the test operation completes and the second test circuit starts the test operation on the basis of a second enable signal and outputs a second completion signal when the test operation completes.
  • the control circuit outputs the second enable signal on the basis of the first completion signal while halting the first enable signal and outputs the first enable signal on the basis of the second completion signal while halting the second enable signal. This causes the two test circuits to test the storage area of the memory block alternately, thereby enabling the test with clock signals having two different timings without problems.

Abstract

A dual port RAM includes an any-time readable/writable memory block in which an access can be made to the same storage area from independent first and second ports. In addition, the RAM includes a first test circuit for performing a test to the storage area of the memory block via the first port on the basis of a first clock signal, and a second test circuit for performing a test to the storage area of the memory block via the second port on the basis of a second clock signal. A control circuit of the RAM causes the first and second test circuits to test the memory block in an alternating manner.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a dual port RAM (random access memory) capable of writing or reading data to or from the same memory from two independent ports, and more particularly to its self-test function.
2. Related Background Art
A dual port RAM has a memory block and two ports A and B. If a normal operation is specified by a mode signal MOD in the dual port RAM, the port A of the memory block is connected to a system bus of a first functional block and is given a first clock signal. The port B of the memory block is connected to a system bus of a second functional block B and is given a second clock signal. In addition, a self-test circuit connected to the memory block is disconnected by a selector.
On the other hand, if a test operation is specified by a mode signal, the port A and the port B of the memory block are disconnected from the first and second functional blocks by the selector and then connected to the self-test circuit. A first clock signal is supplied to the port A of the memory block and the self-test circuit. Furthermore, a first clock signal is supplied to the port B of the memory block via a selector.
If a test start signal is given to the self-test circuit in this condition, the self-test circuit tests data write/read processing to or from the memory block and then a test result is output. In this self test, data written from the port A is read from the port B for verification or conversely data written from the port B is read from the port A for verification. Since a single self-test circuit is used for controlling the port A and the port B of the memory block simultaneously, these ports A and B are given a common clock signal (the first clock signal) for the read/write processing.
The above dual port RAM, however, has the following problem. In the self-test, there is a need for supplying the same first clock signal as one for the port A to the port B. Therefore, the first and second clock signals are switched to each other by using the selector on a clock supplying path in the side of the port B. This causes a difference in timing between the first clock signal supplied to the port A and the first clock signal supplied to the port B, which disables a normal self-test particularly in a fast operation, thus causing a problem.
Furthermore, there is a problem that the dual port RAM is incapable of performing a self-test when the first and second clock signals at the port A and the port B are different from each other in speed.
SUMMARY OF THE INVENTION
To solve the above problems of the conventional art, the present invention has been provided. It is an object of the present invention to provide a dual port RAM capable of performing a self-test with clock signals having two different timings.
According to one aspect of the present invention, there is provided a dual port RAM, comprising: an any-time readable/writable memory block in which an access can be made to the same storage area from independent first and second ports, a first test circuit for performing a test to the storage area of the memory block via the first port on the basis of a first clock signal, a second test circuit for performing a test to the storage area of the memory block via the second port on the basis of a second clock signal, and a control circuit for causing the first and second test circuits to test the memory block alternately.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a configurational diagram of a dual port RAM showing a first embodiment of the present invention;
FIG. 2 is a signal waveform diagram showing a self-test operation in FIG. 1;
FIG. 3 is a dual port RAM showing a second embodiment of the present invention; and
FIG. 4 is a signal waveform diagram showing a self-test operation in FIG. 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to FIG. 1, there is shown a configurational diagram of a dual port RAM showing a first embodiment of the present invention.
This dual port RAM has a memory block 1 having two ports A and B. The port A of the memory block 1 is connected to a system bus 2A in the side of a functional block A (not shown) via a selector 3A and it is to be given a clock signal CKA. In addition, the port B of the memory block 1 is connected to a system bus 2B in the side of a functional block B (not shown) via a selector 3B and it is to be given a clock signal CKB.
Furthermore, this dual port RAM has self- test circuits 10A and 10B for testing the memory block 1. The self-test circuit 10A is given a clock signal CKA and is connected to the port A of the memory block 1 via the selector 3A through a bus 11A. The self-test circuit 10B is given a clock signal CKB and is connected to the port B of the memory block 1 via the selector 3B through a bus 11B.
The selectors 3A and 3B enable switching between a normal operation and a test operation by using a mode signal MOD given to a terminal S. In the normal operation, a connection is made between terminals X and Z, by which the port A and the port B of the memory block 1 are connected to the side of the functional blocks A and B, respectively. In the test operation, a connection is made between terminal Y and Z of the selectors 3A and 3B, by which the port A and the port B of the memory block 1 are connected to the self- test circuits 10A and 10B via the buses 11A and 11B, respectively.
The self-test circuit 10A tests the memory block via the port A in a given procedure when an enable signal EA is at level “H”. After a completion of the given test, a completion signal FA output from the self-test circuit 10A sifts from level “L” to level “H” and then its test result RA is output. In the same manner, the self-test circuit 10B tests the memory block 1 via the port B in a given procedure when an enable signal EB is at level “H”. After a completion of the given test, a completion signal FB output from the self-test circuit 10B shifts from level “L” to level “H” and then its test result RB is output.
This dual port RAM has a test control circuit 20 for operating two self- test circuits 10A and 10B alternately.
The test control circuit 20 has an inverter 21 a to be given a completion signal FA from the side of the port A and the inverter 21 a is connected in its output to FFs 22 a, 23 a, 24 a, and 25 a having four stages. Each clock terminal C of the FFs 22 a to 25 a is given a clock signal CKB from the side of the port B. An output of the FF 25 a is connected to a first input of a two-input negative AND gate (hereinafter, referred to as NAND) 26 a and a second input of the NAND 26 a is given a completion signal FA.
In addition, the test control circuit 20 has an FF 27 a for holding a completion signal FB in the side of the port B at a rise of the clock signal CKB. Outputs of the FF 27 a and the NAND 26 a are connected to first and second inputs of a three-input AND gate (hereinafter, referred to as AND) 28 a and a third input of the AND 28 a is given a start signal SA. The enable signal EA is output from an output of the AND 28 a and given to the self-test circuit 10A.
Furthermore, this test control circuit 20 has an inverter 21 b to be given the completion signal FB from the side of the port B and an output of the inverter 21 b is connected to FFs 22 b, 23 b, 24 b, and 25 b having four stages. Each clock terminal C of the FFs 22 b to 25 b is given a clock signal CK from the side of the port A. An output of the FF 25 b is connected to a first input of a two-input NAND 26 b and a second input of the NAND 26 b is given a completion signal FB.
In addition, the test control circuit 20 has an FF 27 b for holding a completion signal FA in the side of the port A at a rise of the clock signal CKA. Outputs of the FF 27 b and the NAND 26 b are connected to first and second inputs of a three-input AND 28 b and a third input of the AND 28 b is given a start signal SB. The enable signal EB is output from an output of the AND 28 b and given to the self-test circuit 10B.
Referring to FIG. 2, there is shown a signal waveform diagram showing a self-test operation in FIG. 1. Hereinafter, the operation in FIG. 1 will be described by referring to FIG. 2.
In the normal operation, the selectors 3A and 3B are switched to the side of the terminal X with a mode signal MOD, by which the port A of the memory block 1 is connected to the system bus 2A of the functional block A and is given a clock signal CKA. In addition, the port B of the memory block 1 is connected to the system bus 2B of the functional block B and is given a clock signal CKB. The memory block 1 is disconnected from the self- test circuits 10A and 10B by the selectors 3A and 3B.
In the self-test operation, the selectors 3A and 3B are switched to the side of the terminal Y with a mode signal MOD, by which the port A and the port B of the memory block 1 are disconnected from the functional blocks A and B by the selectors 3A and 3B and then connected to the self- test circuits 10A and 10B. In addition, the port A of the memory block 1 and the self-test circuit 10A are given a clock signal CKA and the port B and the self-test circuit 10B are given a clock signal CKB.
At this point, it is assumed that a test of the memory block 1 is repeated sequentially at addresses within a given range in the following procedure, for example:
  • Phase 1: Reading data from the port A and comparing it with an expected value
  • Phase 2: Reading data from the port B and comparing it with an expected value
  • Phase 3: Writing data from the port A
  • Phase 4: Reading data from the port A and comparing it with an expected value
  • Phase 5: Reading data from the port B and comparing it with an expected value
In this case, an access change from the port A to the port B occurs between the phase 1 and the phase 2 and between the phase 4 and the phase 5. An access change from the port B to the port A occurs between the phase 2 and the phase 3 and between the phase 5 and the phase 1 of the next address.
For example, a start signal SA at level “H” and a start signal SB at level “L” are given, first, by which the self-test circuit 10B is forcibly halted and the self-test circuit 10A starts to operate. After starting the operation of the self-test circuit 10A, the start signal SB is set to level “H”.
When the test of the self-test circuit 10A in the side of the port A terminates at time t1 in FIG. 2, the completion signal FA shifts from level “L” to level “H”. This causes a signal S21A output from the inverter 21 a to shift from “H” to “L”. Additionally, a signal S26A output from the NAND 26 a also shifts to “L”, by which an enable signal EA output from the AND 28 a shifts to “L”.
After that, a signal S27B output from the FF 27 b shifts from “L” to “H” at a rise of the clock signal CKA at time t2, by which an enable signal EB output from the AND 28 b shifts to “H”.
When the clock signal CKB in the side of the port B rises at time t3, an operation of the self-test circuit 10B starts and the completion signal FB shifts from “H” to “L”. This causes a signal S21B output from the inverter 21 b to shift from “L” to “H”.
With the next rise of the clock signal CKB at time t4, a signal S27A output from the FF 27 a shifts from “H” to “L”.
At time t5, the signal S25A output from the FF 25 a shifts from “H” to “L” with the fourth rise of the clock signal CKB after time t1. This causes the signal S26A of the NAND 26 a to return to “H”. The signal S27A of the FF 27 a, however, is at “L” and therefore the enable signal EA remains at “L”.
At time t6, the signal S25B output from the FF 25 b shifts from “L” to “H” with the fourth rise of the clock signal CKA after time t3. At this point, the completion signal FB is at “L” and therefore a signal S26B output from the NAND 26 b remains at “H” and the enable signal EB is kept to be at “H”.
When the test of the self-test circuit 10B in the side of the port B terminates at time t7, the completion signal FB shifts from “L” to “H”. This causes the signal S21B of the inverter 21 b to shift from “H” to “L”. In addition, the signal S26B of the NAND 26 b also shifts to “L”, by which the enable signal EB shifts to “L”.
After that, the signal S27A of the FF 27 a shifts from “L” to “H” with a rise of the clock signal CKB at time t8, by which the enable signal EA shifts to “H”.
When the clock signal CKA in the side of the port A rises at time t9, the operation of the self-test circuit 10A starts and the completion signal FA shifts from “H” to “L”. This causes the signal S21A of the inverter 21 a to shift from to “H”.
With the next rise of the clock signal CKA at time t10, the signal S27B of the FF 27 b shifts from “H” to “L”.
Thereafter, the test control circuit 20 controls the self- test circuits 10A and 10B to perform the test operation alternately with the same repetition.
As set forth hereinabove, the dual port RAM according to the first embodiment has the self- test circuits 10A and 10B operating with the clock signals CKA and CKB of the port A and the port B and the test control circuit 20 for controlling the self- test circuits 10A and 10B so as to operate alternately. This enables a self-test of the memory block 1 with the clock signals CKA and CKB having two different timings, advantageously.
Referring to FIG. 3, there is shown a configurational diagram of a dual port RAM showing a second embodiment of the present invention. The same elements as in FIG. 1 are designated by the same reference numerals.
This dual port RAM has a set/reset-type FF 30 instead of the test control circuit 20 of the dual port RAM in FIG. 1.
The FF 30 retains data having level “H” and outputs signals at “H” and “L” to output terminals Q and /Q when a pulse having level “H” is applied to a set terminal S and it retains data having “L” and outputs signals at “L” and “H” to the output terminals Q and /Q when a pulse having “H” is applied to a reset terminal R. Furthermore, the FF 30 has a preset terminal PS and a clear terminal CL so as to set retained data to “H” by applying a pulse at “H” to the preset terminal PS and so as to reset the retained data to “L” by applying a pulse at “H” to the clear terminal CL.
The set terminal S of the FF 30 is given the completion signal FA of the self-test circuit 10A and the reset terminal R is given the completion signal FB of the self-test circuit 10B. The enable signal EB is output from the output terminal Q to the self-test circuit 10B and the enable signal EA is output from the output terminal /Q to the self-test circuit 10A. Furthermore, the clear terminal CL and the preset terminal PS are given start signals SA and SB, respectively. Other components are the same as in FIG. 1.
Referring to FIG. 4, there is shown a signal waveform diagram showing a self-test operation in FIG. 3. Hereinafter, the self-test operation in FIG. 3 will be described by referring to FIG. 4.
A supply of the start signal SA at the start of the self-test clears the FF 30, by which the enable signal EB output from the output terminal Q to the self-test circuit 10B shifts to “L” and the enable signal EA output from the output terminal /Q to the self-test circuit 10A shifts to “H”. This causes the self-test circuit 10A to perform the self-test of the memory block 1 via the port A on the basis of the clock signal CKA.
After a completion of the operation of the self-test circuit 10A, the self-test circuit 10A outputs a pulse of the completion signal FA. This causes the FF 30 to be set, by which the enable signal EB output from the output terminal Q to the self-test circuit 10B shifts to “H” and the enable signal EA output from the output terminal /Q to the self-test circuit 10A shifts to “L”.
When the enable signal EB shifts to “H” the self-test circuit 10B starts to operate at a timing of the next rise of the clock signal CKB. Then, the self-test circuit 10B performs a self-test of the memory block 1 via the port B on the basis of the clock signal CKB.
After a completion of the operation of the self-test circuit 10B, the self-test circuit 10B outputs a pulse of the completion signal FB. This causes the FF 30 to be reset, by which the enable signal EB output from the output terminal Q to the self-test circuit 10B shifts to “L” and the enable signal EA output from the output terminal /Q to the self-test circuit 10A shifts to “H”.
Thereafter, the self- test circuits 10A and 10B are controlled to perform test operations alternately by the same repetition.
As set forth hereinabove, the dual port RAM according to the second embodiment has the self- test circuits 10A and 10B operating with the clock signals CKA and CKB of the port A and the port B and the FF 30 for controlling the self- test circuits 10A and 10B so as to operate alternately. This simplifies a circuitry advantageously in addition to the same advantage as for the first embodiment.
The present invention is not limited to the above embodiments, but various modifications are possible. There is the following modification, for example:
(a) The circuitry of the test control circuit 20 shown in FIG. 1 is not limited to one shown there. For example, the number of stages for the FFs 22 a to 25 a can be set to an appropriate one according to a frequency or the like of the clock signals CKA and CKB. In addition, a delay circuit or the like can be used instead of the FFs 22 a to 25 a.
(b) Though the FF 30 in FIG. 3 has a preset function for initially starting one of the self- test circuits 10A and 10B, it is also possible to use a different circuit to start the self- test circuit 10A or 10B.
As set forth hereinabove in detail, the present invention comprises a first test circuit for performing a test to a storage area of a memory block via a first port on the basis of a first clock signal, a second test circuit for performing a test to the storage area of the memory block via the second port on the basis of a second clock signal, and a control circuit for causing the first and second test circuits to test the memory block alternately. This enables a self-test of the memory block via the first and second ports with clock signals having two different timings.
Furthermore, according to the present invention, the first test circuit starts a test operation on the basis of a first enable signal and outputs a first completion signal when the test operation completes and the second test circuit starts the test operation on the basis of a second enable signal and outputs a second completion signal when the test operation completes. Furthermore, the control circuit outputs the second enable signal on the basis of the first completion signal while halting the first enable signal and outputs the first enable signal on the basis of the second completion signal while halting the second enable signal. This causes the two test circuits to test the storage area of the memory block alternately, thereby enabling the test with clock signals having two different timings without problems.

Claims (2)

1. A dual port RAM, comprising:
an any-time readable/writable memory block in which an access can be made to a same storage area from independent first and second ports;
a first self-test circuit for performing a test to the storage area of said memory block via said first port on the basis of a first clock signal;
a second self-test circuit for performing a test to the storage area of said memory block via said second port on the basis of a second clock signal; and
a control circuit for causing said first and second self-test circuits to test said memory block alternately,
wherein the first and second self-test circuits are connected to different lines to receive different clock signals respectively,
wherein said first self-test circuit starts a test operation on the basis of a first enable signal and outputs a first completion signal when the test operation of said first self-test circuit is complete, and said first enable signal is stopped by said first completion signal,
wherein said second self-test circuit starts a test operation on the basis of a second enable signal and outputs a second completion signal when the test operation of said second self-test circuit is complete, and said second enable signal is stopped by said second completion signal, and
wherein said control circuit outputs said second enable signal on the basis of said first completion signal while halting said first enable signal, and outputs the first enable signal on the basis of said second completion signal while halting said second enable signal.
2. The dual-port RAM according to claim 1, wherein said control circuit is a set/reset-type flip-flop.
US10/173,826 2002-01-23 2002-06-19 Dual port RAM Expired - Fee Related US7065686B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP014707/2002 2002-01-23
JP2002014707A JP3854159B2 (en) 2002-01-23 2002-01-23 Dual port RAM

Publications (2)

Publication Number Publication Date
US20030140289A1 US20030140289A1 (en) 2003-07-24
US7065686B2 true US7065686B2 (en) 2006-06-20

Family

ID=19191899

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/173,826 Expired - Fee Related US7065686B2 (en) 2002-01-23 2002-06-19 Dual port RAM

Country Status (2)

Country Link
US (1) US7065686B2 (en)
JP (1) JP3854159B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080112241A1 (en) * 2006-11-10 2008-05-15 Kabushiki Kaisha Toshiba Integrated circuit device
US20090245005A1 (en) * 2008-03-31 2009-10-01 Jin Ming Kam Recovery of existing sram capacity from fused-out blocks

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060127390A (en) 2003-11-26 2006-12-12 주식회사 아도반테스토 Testing apparatus
US7237167B2 (en) 2004-02-06 2007-06-26 Advantest Corporation Testing apparatus
JP5086577B2 (en) * 2006-07-28 2012-11-28 株式会社日立超エル・エス・アイ・システムズ Semiconductor device
KR20080105512A (en) 2007-05-31 2008-12-04 삼성전자주식회사 Test system and test method for semiconductor device
JP5101222B2 (en) * 2007-09-10 2012-12-19 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device
CN107451017B (en) * 2016-05-31 2021-05-07 中车株洲电力机车研究所有限公司 Reliability test method and system for double-port memory
CN111124769A (en) * 2019-10-31 2020-05-08 中国空间技术研究院 Embedded TDP RAM module test circuit and test method
CN111341376B (en) * 2020-03-11 2022-06-24 展讯通信(上海)有限公司 SRAM (static random Access memory) timing sequence test circuit and test method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104663A (en) * 1999-01-06 2000-08-15 Virage Logic Corp. Memory array with a simultaneous read or simultaneous write ports
US6269036B1 (en) * 1999-11-12 2001-07-31 Virage Logic Corporation System and method for testing multiple port memory devices
US20030120974A1 (en) * 2000-09-14 2003-06-26 Cadence Design Systems, Inc. Programable multi-port memory bist with compact microcode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104663A (en) * 1999-01-06 2000-08-15 Virage Logic Corp. Memory array with a simultaneous read or simultaneous write ports
US6269036B1 (en) * 1999-11-12 2001-07-31 Virage Logic Corporation System and method for testing multiple port memory devices
US20030120974A1 (en) * 2000-09-14 2003-06-26 Cadence Design Systems, Inc. Programable multi-port memory bist with compact microcode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Wang et al., "A Built-In Self-Test and Self-Diagnosis Scheme for Heterogeneous SRAM Clusters", Nov. 19-21, 2001, 10th Asian IEEE Test Symposium 2001, pp. 103-108. *
Wu et al., "Shadow Write and Read for At-Speed BIST of TDM SRAMs", Oct. 30-Nov. 1, 2001, IEEE International Test Conference 2001, pp. 985-994. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080112241A1 (en) * 2006-11-10 2008-05-15 Kabushiki Kaisha Toshiba Integrated circuit device
US7783942B2 (en) 2006-11-10 2010-08-24 Kabushiki Kaisha Toshiba Integrated circuit device with built-in self test (BIST) circuit
US20090245005A1 (en) * 2008-03-31 2009-10-01 Jin Ming Kam Recovery of existing sram capacity from fused-out blocks
US7791974B2 (en) * 2008-03-31 2010-09-07 Intel Corporation Recovery of existing SRAM capacity from fused-out blocks

Also Published As

Publication number Publication date
US20030140289A1 (en) 2003-07-24
JP2003217299A (en) 2003-07-31
JP3854159B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
US7586337B2 (en) Circuit for switching between two clock signals independently of the frequency of the clock signals
US7239576B2 (en) Memory device and method of controlling the same
US20050278490A1 (en) Memory access control apparatus and method of controlling memory access
KR100330072B1 (en) Semiconductor memory device
US7065686B2 (en) Dual port RAM
JP2009048674A (en) Semiconductor integrated circuit
KR940005203B1 (en) Semiconductor integrated circuit
US4908796A (en) Registered outputs for a memory device
KR20050076285A (en) Method for data sampling for ues in semiconductor memory device and circuits thereof
US5339320A (en) Architecture of circuitry for generating test mode signals
KR100276504B1 (en) Failure-data storage system
GB2454776A (en) Generating a second clock signal from a first clock signal based upon a delayed control signal
US5751644A (en) Data transition detect write control
KR0167869B1 (en) Dynamic semiconductor memory
KR100404230B1 (en) Circuit for Controling Test Mode in Semiconductor Memory Device
JPS6349811B2 (en)
JPH0391195A (en) Memory circuit
JPH0637351Y2 (en) Logistic pattern Energy generator
JPH0411959B2 (en)
JPH02306500A (en) Test circuit for semiconductor memory
JPS63138600A (en) Auxiliary circuit for ram test
JPH03214275A (en) Semiconductor integrated circuit
JPH09311160A (en) Integrated circuit
JPS5947265B2 (en) pattern generator
JPS63293785A (en) Semiconductor memory device

Legal Events

Date Code Title Description
AS Assignment

Owner name: OKI ELECTRIC INDUSTRY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ENDO, NOBUYUKI;FUJIKI, YUJI;GOKO, HIROKI;AND OTHERS;REEL/FRAME:013026/0560

Effective date: 20020520

AS Assignment

Owner name: OKI SEMICONDUCTOR CO., LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:OKI ELECTRIC INDUSTRY CO., LTD.;REEL/FRAME:022052/0540

Effective date: 20081001

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
AS Assignment

Owner name: LAPIS SEMICONDUCTOR CO., LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:OKI SEMICONDUCTOR CO., LTD;REEL/FRAME:032495/0483

Effective date: 20111003

LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140620

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180620