US6894747B2 - Manufacturing method for reflector, reflector, and liquid crystal display - Google Patents

Manufacturing method for reflector, reflector, and liquid crystal display Download PDF

Info

Publication number
US6894747B2
US6894747B2 US10/227,952 US22795202A US6894747B2 US 6894747 B2 US6894747 B2 US 6894747B2 US 22795202 A US22795202 A US 22795202A US 6894747 B2 US6894747 B2 US 6894747B2
Authority
US
United States
Prior art keywords
insulating layer
laser beam
undulation
reflector
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/227,952
Other versions
US20030048399A1 (en
Inventor
Hiroshi Okumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianma Japan Ltd
Original Assignee
NEC LCD Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC LCD Technologies Ltd filed Critical NEC LCD Technologies Ltd
Assigned to NEC CORPORATION reassignment NEC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OKUMURA, HIROSHI
Publication of US20030048399A1 publication Critical patent/US20030048399A1/en
Assigned to NEC LCD TECHNOLOGIES, LTD. reassignment NEC LCD TECHNOLOGIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEC CORPORATION
Priority to US10/942,885 priority Critical patent/US20050032261A1/en
Application granted granted Critical
Publication of US6894747B2 publication Critical patent/US6894747B2/en
Assigned to NLT TECHNOLOGIES, LTD. reassignment NLT TECHNOLOGIES, LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NEC LCD TECHNOLOGIES, LTD.
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/94Laser ablative material removal

Definitions

  • the present invention relates to a reflector having good reflecting characteristics and a liquid crystal display, which is equipped with the reflector and has good display characteristics, and a method of manufacturing them.
  • the reflection type liquid crystal display having a reflector provided in its inside which reflects incidental light to provide a display light.
  • the reflection type liquid crystal display does not need a backlight as a light source. Therefore, the reflection type liquid crystal display has advantages, such as achieving lower power consumption and a thinner size, over a transmission type liquid crystal display. With those features, the reflection type liquid crystal display is used in a portable terminal or the like.
  • a so-called transflective type liquid crystal display which has the capabilities of both the reflection type and the transmission type is also used in a portable phone or the like.
  • a liquid crystal display which has an undulation shape formed on the surface of a reflection electrode to improve the visibility has been developed.
  • the reflection electrode when having an undulated surface rather than a flat one, reflects incidental light in multiple directions. That is, forming an undulation shape on the surface of the reflection electrode may improve the display characteristics, such as a wider view angle.
  • a method of forming an undulation shape on the surface of an insulating film has been exploited.
  • a photosensitive resin film is formed first, which is exposed using an exposure mask and then developed, to form discontinued protruding patterns. Thereafter, the surface of the film is melted by heat treatment, thereby being formed a gentler shape. Then, an organic insulating film is formed on the resin film, being etched for a contact hole thereafter. Finally, a reflection electrode is formed on the insulating film. The undulation shape that is originated from the resin film and the insulating film is formed on the surface of the obtained reflection electrode.
  • the undulation of the insulating film is formed with approximately a constant height, that is, the height of the undulation has substantially two values, because all of the protrusion of the resin film have substantially same height (thickness) value.
  • the height of the undulation means the difference between the height levels (depths) of the top portion and the bottom portion of the undulation in the normal direction of the reflector.
  • the height of the undulation was so set as to have three values at most. Therefore, the undulation shape of the conventional reflector had relatively high regularity and was rather monotonous.
  • the high regularity of the undulation shape does not provide a good reflecting characteristics and display characteristics. Therefore, the conventional reflector, which was restricted in the number of available values of the height of the undulation of the insulating film, did not have sufficiently improved display characteristics.
  • the above method of forming an undulation on an insulating film requires relatively many steps, that is, formation of two organic films (the resin film and the insulation film), and exposure and development. Further, the undulation formed by using the photolithography technique has a sharp shape, thus requiring a following heat treatment step to make the surface shape gentler. Therefore, the conventional method that uses the photolithography technique has a shortcoming of involving a relatively large number of steps.
  • the conventional reflector had problems such that the undulation shape of the reflection electrode, particularly, the height, had a relatively high regularity so that a sufficiently high reflecting characteristics may not be achieved. Further, the manufacturing method for this reflector had such a problem as to require a relatively large number of steps.
  • a manufacturing method for a reflector according to a first aspect of the present invention comprising the steps of:
  • said laser beam may be irradiated on said insulating layer via a mask having a predetermined transmittance distribution.
  • said laser beam incident to said mask may have a flat profile.
  • scanning irradiation may be performed with said laser beam which has a spot shape.
  • said laser beam may be irradiated with a pulse shape.
  • said undulation in said ablation step, may be so formed as to have four or more height levels.
  • a switching element may be provided under said insulating layer, and
  • a flat portion may be formed together with said undulation on said insulating layer
  • the above manufacturing method may further comprise a step of annealing said insulating layer after said ablation step.
  • liquid crystal display having the reflector as recited above.
  • FIG. 1 shows the cross-sectional structure of a liquid crystal display according to a first embodiment of the invention
  • FIGS. 2A through 2D show manufacturing steps for a reflector according to the embodiment
  • FIG. 3 depicts the structure of an optical processing system
  • FIG. 4 shows the profile of a flat top type laser beam
  • FIG. 5 shows the profile of a laser beam which has passed a mask
  • FIG. 6 shows the profile of a spot-shaped laser beam
  • FIG. 7 illustrates the cross-sectional structure of a reflector according to a third embodiment of the invention.
  • FIGS. 8A through 8D show manufacturing steps for the reflector as shown in FIG. 7 ;
  • FIG. 9 shows the profile of a laser beam which is irradiated.
  • a liquid crystal display according to the first embodiment of the invention is an active matrix type liquid crystal display which has switching elements, such as thin film transistors (TFTs), pixel by pixel.
  • switching elements such as thin film transistors (TFTs)
  • FIG. 1 is a cross-sectional view of a unit pixel area of a liquid crystal display 10 according to the embodiment.
  • the reflection type liquid crystal display 10 has a lower substrate 11 which constitutes a reflector, an opposite substrate 12 so arranged as to face the lower substrate 11 and a liquid crystal layer 13 sandwiched between the lower substrate 11 and the opposite substrate 12 .
  • the lower substrate 11 has an insulative substrate 14 , an insulating protection film 15 , TFTs 16 , a passivation film 17 , an organic insulating layer 18 and a reflection electrode 19 .
  • the insulating protection film 15 of an inorganic or organic insulation material is deposited on the insulative substrate 14 .
  • the TFTs 16 that function as switching elements are formed on the insulating protection film 15 .
  • Each TFT 16 has a gate electrode 20 formed on the insulative substrate 14 , a semiconductor layer 21 which overlies the gate electrode 20 with the insulating protection film 15 in between, a drain electrode 22 and a source electrode 23 .
  • the drain electrode 22 and source electrode 23 are respectively connected to the unillustrated drain region and source region of the semiconductor layer 21 .
  • the passivation film 17 is comprised of an insulating film, such as, for example, a silicon-based film.
  • the passivation film 17 is provided in such a way as to cover each TFT 16 , excluding a portion where a contact hole 18 a to be discussed later is to be formed.
  • the organic insulating layer 18 is formed on the passivation film 17 .
  • the organic insulating layer 18 is comprised of an organic material, which is easily burned out and sublimated by laser ablation to be discussed later.
  • the “laser ablation” is a phenomenon such that as a laser beam of a predetermined range of wavelength is irradiated on an organic material having an absorption band in a predetermined wavelength range, the chemical bonds in the organic material are broken so that the irradiated surface layer is evaporated (removed).
  • the organic insulating layer 18 is formed of the organic material that may absorb a laser beam of the wavelength used in ablation.
  • the following description will be given of a case where the organic insulating layer 18 is formed of a polyimide resin.
  • the contact hole 18 a Formed in the organic insulating layer 18 is the contact hole 18 a through the bottom of which the source electrode 23 is exposed.
  • An undulation 18 b is formed in the surface of the organic insulating layer 18 .
  • the undulation 18 b and the contact hole 18 a are formed by laser ablation as will be discussed later.
  • the undulation 18 b of the organic insulating layer 18 is formed in such a way that its height takes multiple values.
  • the “height” of the undulation 18 b is the height of the top portion or the bottom portion with a predetermined position in the normal direction of the reflector as a reference. In this embodiment, the position of the organic insulating layer 18 (the thickness of the organic insulating layer 18 ) before the formation of the undulation 18 b is taken as the reference.
  • the undulation 18 b of the organic insulating layer 18 has multiple heights, particularly, four or more height values, within a predetermined range.
  • the height of the undulation 18 b has four or more values of heights within a range of, for example, 0.04 ⁇ m to 2.1 ⁇ m.
  • the reflection electrode 19 is formed of metal, such as aluminum or chromium, with a predetermined thickness on the organic insulating layer 18 including the contact hole 18 a .
  • the reflection electrode 19 is connected to the source electrode 23 of the TFT 16 via the contact hole 18 a , and serves as a pixel electrode and light reflecting layer.
  • the undulation shape Formed in the surface of the reflection electrode 19 is an undulation shape which is originated from the undulation 18 b on the surface of the organic insulating layer 18 .
  • the undulation formed on the reflection electrode 19 is likewise formed to have multiple stages and has a low regularity. Therefore, light to be reflected by the reflection electrode 19 has a high scattering characteristics, which provides the lower substrate 11 with a high reflecting characteristics and, thereby provides the liquid crystal display 10 having the lower substrate 11 with good display characteristics.
  • the opposite substrate 12 has a color filter 30 and a transparent electrode 31 laminated in order on one surface of a transparent insulative substrate 29 .
  • a sheet polarizer 32 is formed on the other surface of the insulative substrate 29 .
  • the liquid crystal layer 13 is formed by using a liquid crystal of an TN (Twisted Nematic) type, an STN (Super Twisted Nematic) type, a single sheet polarizer type, a GH (Guest-Host) type, a PDLC (Polymer Dispersed Liquid Crystal) type, a cholesteric type or the like. A predetermined orientations given to the liquid crystal layer 13 .
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • GH Guard-Host
  • PDLC Polymer Dispersed Liquid Crystal
  • the incidental light is scattered and reflected by the undulation.
  • the reflected light passes through the liquid crystal layer 13 , the transparent electrode 31 , the color filter 30 , the insulative substrate 29 and the sheet polarizer 32 , and returns to the outside as display light.
  • FIGS. 2A through 2D illustrate manufacturing steps.
  • each TFT 16 as a switching element is formed on the insulative substrate 14 . That is, the gate electrode 20 is formed on the insulative substrate 14 and the insulating protection film 15 covering the gate electrode 20 is then formed. Next, the semiconductor layer 21 having an unillustrated drain region and source region is formed on the insulating protection film 15 by etching, impurity doping, etc. Then, the drain electrode 22 and the source electrode 23 , which respectively contact the drain region and the source region, are formed on the insulating protection film 15 . Further, the passivation film 17 is formed on the TFT 16 and is patterned to have a resultant structure as shown in FIG. 2 A.
  • polyimide is coated on the surface of the resultant structure and baked, thus forming the flat polyimide film 35 with a thickness of, for example, 3 ⁇ m (FIG. 2 B). Baking is carried out, for example, at a temperature of 90° C. for ten minutes.
  • FIG. 3 depicts the structure of an optical processing system 40 which is used in laser ablation.
  • the optical processing system 40 shown in FIG. 3 comprises a light source 41 , a shaping section 42 and a mask 43 .
  • the light source 41 emits a pulse-shaped laser beam, e.g., a KrF excimer laser beam (wavelength of 248 nm).
  • the laser beam is irradiated with a predetermined number of pulses and such an intensity as to be able to ensure a good ablation profile.
  • the laser beam is irradiated with such intensity that the energy density irradiated onto the portion of the polyimide film 35 where the contact hole 18 a is to be formed is 300 mJ/cm 2 .
  • the shaping section 42 comprises a flyeye lens, a cylindrical lens, a mirror and so forth, and shapes the pattern of the laser beam to a flat top type profile as shown in FIG. 4 .
  • the shaped laser beam is irradiated toward the polyimide film 35 as a target, e.g., approximately perpendicularly.
  • the mask 43 is located between the shaping section 42 and an object to be irradiated, so that the laser beam coming out of the shaping section 42 is irradiated via the mask 43 onto the polyimide film 35 , the irradiation target.
  • the surface portion of the polyimide film 35 that has been irradiated with the laser beam is vanished (removed) by ablation.
  • the mask 43 is comprised of a so-called dielectric mask which can adjust the light transmittance to the desired one. That is the mask 43 is comprised by forming a dielectric film (not shown) patterned to a predetermined shape on a transparent substrate of quartz or the like.
  • the dielectric film is comprised of a film of, for example, SiO 2 , Al 2 O 3 , HfO 2 , YF 3 , MgF 2 , LaF 3 , ThF 4 or the like or the lamination of those films, and is formed on the substrate by the ordinary film deposition method.
  • the dielectric film is provided like islands in the substrate surface in a predetermined shape using the ordinary patterning method.
  • the dielectric film has, for example, approximately a planar shape.
  • the islands of the dielectric film are formed in predetermined thickness to realize the desired light transmittance. Setting each of the material and thickness of the dielectric film in the mask surface in predetermined distributions can achieve the desired light intensity (energy density) distribution in the irradiation surface.
  • the degree of ablation differs in proportion with the level of the energy density, so that the dielectric film can be removed at different depths. Specifically, while no dielectric film is provided in an area corresponding to the contact hole 18 a , the dielectric film is provided to a predetermined thickness on an area corresponding to the portion where the undulation 18 b is to be formed. Irradiating the laser beam via the thus formed mask 43 can form the contact hole 18 a and the undulation 18 b in and on the polyimide film 35 . The depth of ablation can also be adjusted by the number of pulses of the laser beam to be irradiated.
  • the laser beam passes the mask 43 to be shaped into a profile as shown in, for example, FIG. 5 from the one shown in FIG. 4 . Irradiating the shaped laser beam as illustrated can form the contact hole 18 a and the undulation 18 b as shown in FIG. 1 in and on the polyimide film 35 .
  • the laser beam which is irradiated onto the portion where the contact hole 18 a is to be formed is not attenuated by the dielectric film and has a flat shape.
  • the energy density of the laser beam is set to such a value as to be able to adequately shape the polyimide film 35 of a predetermined thickness.
  • the energy density of the flat portion corresponding to the portion where the contact hole 18 a is to be formed is, for example, 300 mJ/cm 2 .
  • the profile of the energy density corresponding to the portion where the undulation 18 b is to be formed shows multiple peak values, at least four peak values (maximum values or minimum values), within the aforementioned range.
  • the peak values lie in the range of, for example, 60 mJ/cm 2 to 200 mJ/cm 2 .
  • the irradiation of the laser beam whose profile has such multiple peak values forms the undulation 18 b having bottom portions and top portions corresponding to the peak values in the polyimide film 35 .
  • the undulation 18 b to be formed has four or more heights.
  • the organic insulating layer 18 having the multi-stage undulation 18 b as shown in FIG. 2C is formed.
  • Patterning using ablation provides a gentler shape as compared with patterning using the ordinary photolithography technique. Unlike the case of using the photolithography technique, therefore, annealing is not essential. If necessary, however, annealing may be performed at a temperature of 250° C. for one hour to make the undulation 18 b on the surface gentler.
  • an aluminum film for example, is formed on the organic insulating layer 18 and is then patterned to form the reflection electrode 19 as a reflection pixel electrode (FIG. 2 D).
  • the lower substrate 11 as the reflector can be fabricated in the above-described manner.
  • An unillustrated spacer is placed between the thus formed lower substrate 11 and the opposite substrate 12 which has the color filter 30 , etc. laminated on the insulative substrate 14 and the liquid crystal 13 is filled and sealed in the space (cell) formed by the spacer. Then, the sheet polarizer 32 is attached by adhesion or the like, thereby yielding the reflection type liquid crystal display 10 shown in FIG. 1 .
  • the polyimide film 35 is processed directly by laser ablation, it is possible to manufacture the reflector and the liquid crystal display in substantially fewer steps. That is, in the case of using the ordinary photolithography technique, there is needed such steps, as the formation of a resist film and an organic film thereon, exposure and development, whereas in the case of using ablation, the organic insulating layer 18 having the contact hole 18 a and the undulation 18 b can be formed in at lest one step.
  • the undulation 18 b has a sharp shape, which requires annealing.
  • the surface of the undulation 18 b is relatively gentle. Therefore, annealing should not necessarily be performed, thus allowing the organic insulating layer 18 to be formed in much fewer steps.
  • the first embodiment uses a so-called dielectric mask having a dielectric film.
  • the mask 43 is not limited to this type, and may be of any type as long as it can control the light transmittance as desired.
  • the contact hole 18 a and the undulation 18 b are formed at the same time in the ablation step, they may be formed in separate steps using different masks.
  • the laser beam used in the second embodiment has a spot-like profile which shows a Gaussian distribution as shown in FIG. 6 .
  • the energy density of the laser beam at the top portion of the spot-like profile is set within a predetermined range.
  • the spot-like laser beam is irradiated on a target (substrate) using an apparatus similar to the one used in the first embodiment.
  • the substrate is placed on, for example, an X-Y stage and is movable on a plane.
  • the substrate is intermittently moved in a predetermined pattern.
  • the laser beam is irradiated in a predetermined number of pulses in synchronism with the movement of the substrate.
  • Another structure may be used which irradiates a scanning laser beam with the target substrate fixed.
  • the acrylic resin in the irradiated portion is burned out and sublimated by ablation.
  • the energy density and the number of pulses of the laser beam to be irradiated are adjusted for each predetermined region.
  • the irradiation while changing the laser beam intensity can form the contact hole 18 a and the undulation 18 b having multiple stages of depths in and on the organic insulating layer 18 .
  • FIG. 7 illustrates the structure of a reflector (lower substrate 11 ) according to the third embodiment.
  • the reflector according to the third embodiment is used in a so-called transflective type liquid crystal display that has the functions of both the reflection type and the transflective type.
  • a reflector 11 As shown in FIG. 7 , a reflector 11 according to the third embodiment has a reflection area 50 and a transmission area 51 .
  • a reflection electrode 19 is formed on the reflection area 50 of the organic insulating layer 18 . There is formed a multi-stage undulation in the surface of the reflection area 50 .
  • a transparent electrode 52 of ITO Indium Tin Oxide
  • ITO Indium Tin Oxide
  • the surface of the organic insulating layer 18 in the transmission area 51 is formed nearly flat. So is the transparent electrode 52 .
  • the transparent electrode 52 contacts the reflection electrode 19 to be electrically connected thereto.
  • a structure in which an insulating film which separates the transparent electrode 52 from the reflection electrode 19 is provided and the transparent electrode 52 and the reflection electrode 19 are connected to each other via the contact hole 18 a may be employed instead.
  • the liquid crystal display 10 equipped with the reflector that has the reflection electrode 19 and the transparent electrode 52 functions as a so-called transflective type liquid crystal display that has the functions of both the reflection type and the transflective type.
  • the reflector 11 shown in FIG. 7 can be manufactured in the same method as used for the first embodiment. This method will be discussed below with reference to FIGS. 8A to 8 D.
  • a substrate having the TFTs 16 as shown in FIG. 8A is prepared.
  • the polyimide film 35 is formed to a thickness of, for example, 2 ⁇ m on the substrate as shown in FIG. 8 B.
  • the polyimide film 35 is formed by baking at 110° C., ten minutes.
  • a laser beam having a profile as shown in FIG. 9 is irradiated.
  • the energy density of the laser beam is set to a range of, for example, 30 to 250 mJ/cm 2 and the number of irradiation pulses is, for example, 10.
  • the profile of the laser beam that has passed the mask 43 has a flat steady energy portion and an undulated portion.
  • the irradiation of the laser beam whose profile has an undulated portion and a flat portion forms an undulated portion and a flat portion as shown in FIG. 8C on the polyimide film 35 .
  • a thin chromium film is formed on the organic insulating layer 18 , then patterning as shown in FIG. 8D is performed to remove the thin chromium film on the flat portion.
  • the transparent electrode 52 of ITO or the like is formed on the exposed flat portion of the organic insulating layer 18 . This completes the reflector shown in FIG. 7 .
  • the third embodiment provides the reflector that has the reflection electrode 19 having a multi-stage undulation and the flat transparent electrode 52 .
  • the undulated portion and flat portion of the organic insulating layer 18 where the transparent electrode 52 and the reflection electrode 19 are to be formed respectively can be formed in a single step by laser ablation.
  • the reflector shown in FIG. 7 and the transflective type liquid crystal display 10 equipped with the reflector can be manufactured in a substantially reduced number of steps.
  • the organic insulating layer 18 is formed of polyimide or acrylic resin.
  • the organic insulating layer 18 can be formed of a resin which has a predetermined light absorbing range, such as a polyimide resin, epoxy resin, acrylic resin, cyclic olefin or novolak resin.
  • the laser ablation process can be carried out by selecting a laser beam in use in accordance with the type of the organic material used for the organic insulating layer 18 .
  • Available laser beam is ultraviolet light beam of, for example, ArF laser (193 nm), KrF laser (248 nm), Xecl laser (308 nm) or XeF laser (351 nm), or infrared light beam of, for example, a YAG (Yttrium Aluminum Garnet) laser (1.065 ⁇ m) or carbon-dioxide laser (10.6 ⁇ m).
  • the invention can be similarly adapted to a reflector and a liquid crystal display which use staggered structure TFTs or so-called channel protection type TFTs.
  • the invention is not limited to this particular type but can also be adapted to an active matrix type liquid crystal display which uses other switching elements, such as MIM (Metal-Insulator-Metal) elements, diodes or varistors, or a passive matrix type liquid crystal display which does not use switching elements.
  • MIM Metal-Insulator-Metal

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Laser Beam Processing (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A flat organic insulating layer is formed on a substrate provided with thin film transistors by coating and baking. Next, a pulse-shaped laser beam is irradiated on the organic insulating layer and a contact hole and an undulation are formed in and on the organic insulating layer by ablation. The undulation is formed in such a way as to have four or more height levels.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a reflector having good reflecting characteristics and a liquid crystal display, which is equipped with the reflector and has good display characteristics, and a method of manufacturing them.
2. Description of the Related Art
There is known a reflection type liquid crystal display having a reflector provided in its inside which reflects incidental light to provide a display light. The reflection type liquid crystal display does not need a backlight as a light source. Therefore, the reflection type liquid crystal display has advantages, such as achieving lower power consumption and a thinner size, over a transmission type liquid crystal display. With those features, the reflection type liquid crystal display is used in a portable terminal or the like. A so-called transflective type liquid crystal display which has the capabilities of both the reflection type and the transmission type is also used in a portable phone or the like. Although the following discussion will describe the problems of the reflection type liquid crystal display, the transflective type liquid crystal display has similar problems.
The reflection type liquid crystal display has a liquid crystal filled in a liquid crystal cell, a switching element for driving the liquid crystal and a reflector provided inside or outside the liquid crystal cell. The reflection type liquid crystal display is, for example, an active matrix type liquid crystal display that uses switching elements, such as thin film transistors.
As a reflection type liquid crystal display, a liquid crystal display which has an undulation shape formed on the surface of a reflection electrode to improve the visibility has been developed. The reflection electrode, when having an undulated surface rather than a flat one, reflects incidental light in multiple directions. That is, forming an undulation shape on the surface of the reflection electrode may improve the display characteristics, such as a wider view angle.
While the undulation shape of the reflection electrode may increase the scattering characteristics of reflected light, there is a case where the interference of the reflected light causes darkening of the screen when the undulation shape has high regularity. To suppress the interference of light, therefore, it is desirable to form the undulation shape having as low regularity as possible.
As one method for providing an undulation shape on the surface of the reflection electrode, a method of forming an undulation shape on the surface of an insulating film has been exploited. In this method, a photosensitive resin film is formed first, which is exposed using an exposure mask and then developed, to form discontinued protruding patterns. Thereafter, the surface of the film is melted by heat treatment, thereby being formed a gentler shape. Then, an organic insulating film is formed on the resin film, being etched for a contact hole thereafter. Finally, a reflection electrode is formed on the insulating film. The undulation shape that is originated from the resin film and the insulating film is formed on the surface of the obtained reflection electrode.
According to the above-described method of forming the undulation shape, the undulation of the insulating film is formed with approximately a constant height, that is, the height of the undulation has substantially two values, because all of the protrusion of the resin film have substantially same height (thickness) value. Here, the height of the undulation means the difference between the height levels (depths) of the top portion and the bottom portion of the undulation in the normal direction of the reflector.
There is developed another method using so-called halftone mask, which method is described in Unexamined Japanese Patent Application KOKAI Publication No. 2000-250025. According to the method, the resin film is patterned using the halftone mask, which has different transmittance in its masking area, so that the protrusions are formed with different height values. However, the number of the height values are substantially two, therefore, the height of the undulation formed on the insulation film has three values.
As explained above, conventionally, the height of the undulation was so set as to have three values at most. Therefore, the undulation shape of the conventional reflector had relatively high regularity and was rather monotonous.
The high regularity of the undulation shape does not provide a good reflecting characteristics and display characteristics. Therefore, the conventional reflector, which was restricted in the number of available values of the height of the undulation of the insulating film, did not have sufficiently improved display characteristics.
Moreover, the above method of forming an undulation on an insulating film requires relatively many steps, that is, formation of two organic films (the resin film and the insulation film), and exposure and development. Further, the undulation formed by using the photolithography technique has a sharp shape, thus requiring a following heat treatment step to make the surface shape gentler. Therefore, the conventional method that uses the photolithography technique has a shortcoming of involving a relatively large number of steps.
As explained above, the conventional reflector had problems such that the undulation shape of the reflection electrode, particularly, the height, had a relatively high regularity so that a sufficiently high reflecting characteristics may not be achieved. Further, the manufacturing method for this reflector had such a problem as to require a relatively large number of steps.
SUMMARY OF THE INVENTION
In view of the above circumstances, it is an object of the present invention to provide a reflector and a liquid crystal display, which have a good reflecting characteristic, and a method of manufacturing the reflector.
It is another object of the present invention to provide a reflector and a liquid crystal display, which can be manufactured in substantially fewer steps, and a method of manufacturing the reflector.
To achieve the above objects, a manufacturing method for a reflector according to a first aspect of the present invention comprising the steps of:
    • forming an insulating layer;
    • irradiating said insulating layer with a laser beam to thereby form an undulation on a surface of said insulating layer by ablation; and
    • forming an electrode on said insulating layer.
In this case, in said ablation step, said laser beam may be irradiated on said insulating layer with a predetermined intensity distribution.
In this case, said laser beam may be irradiated on said insulating layer via a mask having a predetermined transmittance distribution.
In this case, said laser beam incident to said mask may have a flat profile.
In this case, scanning irradiation may be performed with said laser beam which has a spot shape.
In this case, in said ablation step, said laser beam may be irradiated with a pulse shape.
In this case, in said ablation step, said undulation may be so formed as to have four or more height levels.
In this case, a switching element may be provided under said insulating layer, and
    • a contact hole through a bottom of which one end of said switching element may be exposed is formed in said ablation step.
In this case, in said ablation step, a flat portion may be formed together with said undulation on said insulating layer, and
    • the method may further comprise a step of forming a transparent electrode on said flat portion.
The above manufacturing method may further comprise a step of annealing said insulating layer after said ablation step.
To achieve the above objects, a reflector according to a second aspect of the present invention comprising:
    • an insulating layer provided on a substrate and having an multi-stage undulation with at least four height levels on a surface; and
    • an electrode provided on said insulating layer.
To achieve the above objects, a liquid crystal display according to a third aspect of the present invention having the reflector as recited above.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the cross-sectional structure of a liquid crystal display according to a first embodiment of the invention;
FIGS. 2A through 2D show manufacturing steps for a reflector according to the embodiment;
FIG. 3 depicts the structure of an optical processing system;
FIG. 4 shows the profile of a flat top type laser beam;
FIG. 5 shows the profile of a laser beam which has passed a mask;
FIG. 6 shows the profile of a spot-shaped laser beam;
FIG. 7 illustrates the cross-sectional structure of a reflector according to a third embodiment of the invention;
FIGS. 8A through 8D show manufacturing steps for the reflector as shown in FIG. 7; and
FIG. 9 shows the profile of a laser beam which is irradiated.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Preferred embodiments of the invention will now be described with reference to the accompanying drawings. The following will describe one embodiment of the invention, which is to be considered as illustrative and not restrictive.
First Embodiment
A liquid crystal display according to the first embodiment of the invention is an active matrix type liquid crystal display which has switching elements, such as thin film transistors (TFTs), pixel by pixel.
FIG. 1 is a cross-sectional view of a unit pixel area of a liquid crystal display 10 according to the embodiment. As shown in FIG. 1, the reflection type liquid crystal display 10 has a lower substrate 11 which constitutes a reflector, an opposite substrate 12 so arranged as to face the lower substrate 11 and a liquid crystal layer 13 sandwiched between the lower substrate 11 and the opposite substrate 12.
The lower substrate 11 has an insulative substrate 14, an insulating protection film 15, TFTs 16, a passivation film 17, an organic insulating layer 18 and a reflection electrode 19.
The insulating protection film 15 of an inorganic or organic insulation material is deposited on the insulative substrate 14. The TFTs 16 that function as switching elements are formed on the insulating protection film 15.
Each TFT 16 has a gate electrode 20 formed on the insulative substrate 14, a semiconductor layer 21 which overlies the gate electrode 20 with the insulating protection film 15 in between, a drain electrode 22 and a source electrode 23. The drain electrode 22 and source electrode 23 are respectively connected to the unillustrated drain region and source region of the semiconductor layer 21.
The passivation film 17 is comprised of an insulating film, such as, for example, a silicon-based film. The passivation film 17 is provided in such a way as to cover each TFT 16, excluding a portion where a contact hole 18 a to be discussed later is to be formed.
The organic insulating layer 18 is formed on the passivation film 17. The organic insulating layer 18 is comprised of an organic material, which is easily burned out and sublimated by laser ablation to be discussed later.
The “laser ablation” is a phenomenon such that as a laser beam of a predetermined range of wavelength is irradiated on an organic material having an absorption band in a predetermined wavelength range, the chemical bonds in the organic material are broken so that the irradiated surface layer is evaporated (removed).
That is, the organic insulating layer 18 is formed of the organic material that may absorb a laser beam of the wavelength used in ablation. The following description will be given of a case where the organic insulating layer 18 is formed of a polyimide resin.
Formed in the organic insulating layer 18 is the contact hole 18 a through the bottom of which the source electrode 23 is exposed. An undulation 18 b is formed in the surface of the organic insulating layer 18. The undulation 18 b and the contact hole 18 a are formed by laser ablation as will be discussed later.
The undulation 18 b of the organic insulating layer 18 is formed in such a way that its height takes multiple values. The “height” of the undulation 18 b is the height of the top portion or the bottom portion with a predetermined position in the normal direction of the reflector as a reference. In this embodiment, the position of the organic insulating layer 18 (the thickness of the organic insulating layer 18) before the formation of the undulation 18 b is taken as the reference.
As shown in FIG. 1, the undulation 18 b of the organic insulating layer 18 has multiple heights, particularly, four or more height values, within a predetermined range. In case where the organic insulating layer 18 is formed 3 μm thick, for example, the height of the undulation 18 b has four or more values of heights within a range of, for example, 0.04 μm to 2.1 μm.
The reflection electrode 19 is formed of metal, such as aluminum or chromium, with a predetermined thickness on the organic insulating layer 18 including the contact hole 18 a. The reflection electrode 19 is connected to the source electrode 23 of the TFT 16 via the contact hole 18 a, and serves as a pixel electrode and light reflecting layer.
Formed in the surface of the reflection electrode 19 is an undulation shape which is originated from the undulation 18 b on the surface of the organic insulating layer 18. As the undulation 18 b of the organic insulating layer 18 has multiple height values and is formed to have multiple stages, the undulation formed on the reflection electrode 19 is likewise formed to have multiple stages and has a low regularity. Therefore, light to be reflected by the reflection electrode 19 has a high scattering characteristics, which provides the lower substrate 11 with a high reflecting characteristics and, thereby provides the liquid crystal display 10 having the lower substrate 11 with good display characteristics.
The opposite substrate 12 has a color filter 30 and a transparent electrode 31 laminated in order on one surface of a transparent insulative substrate 29. A sheet polarizer 32 is formed on the other surface of the insulative substrate 29.
The liquid crystal layer 13 is formed by using a liquid crystal of an TN (Twisted Nematic) type, an STN (Super Twisted Nematic) type, a single sheet polarizer type, a GH (Guest-Host) type, a PDLC (Polymer Dispersed Liquid Crystal) type, a cholesteric type or the like. A predetermined orientations given to the liquid crystal layer 13.
The operation of the liquid crystal display 10 with the above-described structure will be described below.
In white mode, light incident to the display surface passes through the insulative substrate 29, the color filter 30, the transparent electrode 31 and liquid crystal layer 13 and reaches the surface of the reflection electrode 19.
As the undulation is formed on the reflection electrode 19, the incidental light is scattered and reflected by the undulation. The reflected light passes through the liquid crystal layer 13, the transparent electrode 31, the color filter 30, the insulative substrate 29 and the sheet polarizer 32, and returns to the outside as display light.
In black mode, on the other hand, while the incidental light is likewise reflected at the reflection electrode 19 as in white mode, it is blocked by the sheet polarizer 32 and is not therefore output to the outside. The light ON/OFF operation of the liquid crystal display 10 is carried out this way.
A description will now be given of a manufacturing method for the reflector (lower substrate 11) of the liquid crystal display. FIGS. 2A through 2D illustrate manufacturing steps.
First, each TFT 16 as a switching element is formed on the insulative substrate 14. That is, the gate electrode 20 is formed on the insulative substrate 14 and the insulating protection film 15 covering the gate electrode 20 is then formed. Next, the semiconductor layer 21 having an unillustrated drain region and source region is formed on the insulating protection film 15 by etching, impurity doping, etc. Then, the drain electrode 22 and the source electrode 23, which respectively contact the drain region and the source region, are formed on the insulating protection film 15. Further, the passivation film 17 is formed on the TFT 16 and is patterned to have a resultant structure as shown in FIG. 2A.
Next, polyimide is coated on the surface of the resultant structure and baked, thus forming the flat polyimide film 35 with a thickness of, for example, 3 μm (FIG. 2B). Baking is carried out, for example, at a temperature of 90° C. for ten minutes.
Subsequently, laser ablation is performed on the polyimide film 35 to form the organic insulating layer 18 having the contact hole 18 a and the undulation 18 b as shown in FIG. 2C.
FIG. 3 depicts the structure of an optical processing system 40 which is used in laser ablation. The optical processing system 40 shown in FIG. 3 comprises a light source 41, a shaping section 42 and a mask 43.
The light source 41 emits a pulse-shaped laser beam, e.g., a KrF excimer laser beam (wavelength of 248 nm). The laser beam is irradiated with a predetermined number of pulses and such an intensity as to be able to ensure a good ablation profile. For example, the laser beam is irradiated with such intensity that the energy density irradiated onto the portion of the polyimide film 35 where the contact hole 18 a is to be formed is 300 mJ/cm2.
The shaping section 42 comprises a flyeye lens, a cylindrical lens, a mirror and so forth, and shapes the pattern of the laser beam to a flat top type profile as shown in FIG. 4. The shaped laser beam is irradiated toward the polyimide film 35 as a target, e.g., approximately perpendicularly.
The mask 43 is located between the shaping section 42 and an object to be irradiated, so that the laser beam coming out of the shaping section 42 is irradiated via the mask 43 onto the polyimide film 35, the irradiation target. The surface portion of the polyimide film 35 that has been irradiated with the laser beam is vanished (removed) by ablation.
The mask 43 is comprised of a so-called dielectric mask which can adjust the light transmittance to the desired one. That is the mask 43 is comprised by forming a dielectric film (not shown) patterned to a predetermined shape on a transparent substrate of quartz or the like.
The dielectric film is comprised of a film of, for example, SiO2, Al2O3, HfO2, YF3, MgF2, LaF3, ThF4 or the like or the lamination of those films, and is formed on the substrate by the ordinary film deposition method. The dielectric film is provided like islands in the substrate surface in a predetermined shape using the ordinary patterning method. The dielectric film has, for example, approximately a planar shape. The islands of the dielectric film are formed in predetermined thickness to realize the desired light transmittance. Setting each of the material and thickness of the dielectric film in the mask surface in predetermined distributions can achieve the desired light intensity (energy density) distribution in the irradiation surface.
The degree of ablation differs in proportion with the level of the energy density, so that the dielectric film can be removed at different depths. Specifically, while no dielectric film is provided in an area corresponding to the contact hole 18 a, the dielectric film is provided to a predetermined thickness on an area corresponding to the portion where the undulation 18 b is to be formed. Irradiating the laser beam via the thus formed mask 43 can form the contact hole 18 a and the undulation 18 b in and on the polyimide film 35. The depth of ablation can also be adjusted by the number of pulses of the laser beam to be irradiated.
The laser beam passes the mask 43 to be shaped into a profile as shown in, for example, FIG. 5 from the one shown in FIG. 4. Irradiating the shaped laser beam as illustrated can form the contact hole 18 a and the undulation 18 b as shown in FIG. 1 in and on the polyimide film 35.
In the profile shown in FIG. 5, the laser beam which is irradiated onto the portion where the contact hole 18 a is to be formed is not attenuated by the dielectric film and has a flat shape. As mentioned above, the energy density of the laser beam is set to such a value as to be able to adequately shape the polyimide film 35 of a predetermined thickness. The energy density of the flat portion corresponding to the portion where the contact hole 18 a is to be formed is, for example, 300 mJ/cm2.
On the other hand, the profile of the energy density corresponding to the portion where the undulation 18 b is to be formed shows multiple peak values, at least four peak values (maximum values or minimum values), within the aforementioned range. The peak values lie in the range of, for example, 60 mJ/cm2 to 200 mJ/cm2.
The irradiation of the laser beam whose profile has such multiple peak values forms the undulation 18 b having bottom portions and top portions corresponding to the peak values in the polyimide film 35. As the profile has four or more peak values, the undulation 18 b to be formed has four or more heights.
Irradiating the laser beam with a predetermined intensity distribution onto the polyimide film 35 via the mask 43 in the above-described manner, the organic insulating layer 18 having the multi-stage undulation 18 b as shown in FIG. 2C is formed.
Patterning using ablation provides a gentler shape as compared with patterning using the ordinary photolithography technique. Unlike the case of using the photolithography technique, therefore, annealing is not essential. If necessary, however, annealing may be performed at a temperature of 250° C. for one hour to make the undulation 18 b on the surface gentler.
After the formation of the organic insulating layer 18, an aluminum film, for example, is formed on the organic insulating layer 18 and is then patterned to form the reflection electrode 19 as a reflection pixel electrode (FIG. 2D). The lower substrate 11 as the reflector can be fabricated in the above-described manner.
An unillustrated spacer is placed between the thus formed lower substrate 11 and the opposite substrate 12 which has the color filter 30, etc. laminated on the insulative substrate 14 and the liquid crystal 13 is filled and sealed in the space (cell) formed by the spacer. Then, the sheet polarizer 32 is attached by adhesion or the like, thereby yielding the reflection type liquid crystal display 10 shown in FIG. 1.
According to the embodiment, as described above, the multi-stage undulation 18 b having at least four heights is formed on the organic insulating layer 18 by laser ablation. The multi-stage undulation 18 b of the organic insulating layer 18 form an undulated surface with a lower regularity on the overlying reflection electrode 19. This realizes the reflector and the liquid crystal display 10, which have a high light scattering characteristics and excellent display characteristics.
The multi-stage undulation 18 b of the organic insulating layer 18 is formed by irradiating a laser beam on the organic film via the mask 43 which has a predetermined transmittance distribution. The transmittance distribution of the mask 43 can be set arbitrarily and the height of the undulation 18 b can easily set to multiple stages by adjusting the transmittance distribution and the number of irradiation pulses.
As the polyimide film 35 is processed directly by laser ablation, it is possible to manufacture the reflector and the liquid crystal display in substantially fewer steps. That is, in the case of using the ordinary photolithography technique, there is needed such steps, as the formation of a resist film and an organic film thereon, exposure and development, whereas in the case of using ablation, the organic insulating layer 18 having the contact hole 18 a and the undulation 18 b can be formed in at lest one step.
Further, in the photolithography process, the undulation 18 b has a sharp shape, which requires annealing. In the ablation method, however, the surface of the undulation 18 b is relatively gentle. Therefore, annealing should not necessarily be performed, thus allowing the organic insulating layer 18 to be formed in much fewer steps.
The first embodiment uses a so-called dielectric mask having a dielectric film. However, the mask 43 is not limited to this type, and may be of any type as long as it can control the light transmittance as desired.
Although the contact hole 18 a and the undulation 18 b are formed at the same time in the ablation step, they may be formed in separate steps using different masks.
Second Embodiment
A description will now be given of a method of manufacturing a reflector according to the second embodiment. To make understanding the second embodiment easier, same reference symbols are given to those components which are the same as the corresponding components of the first embodiment and their descriptions will be omitted.
In the second embodiment, unlike the first embodiment, the mask 43 is not used and scanning irradiation is performed with a laser beam having a spot-like shape to form the undulation 18 b, etc. on the organic insulating layer 18. The following will discuss the manufacturing method according to the second embodiment.
It is to be noted that in the embodiment to be discussed below, the organic insulating layer 18 is formed of acrylic resin to a thickness of 3 μm by baking at 150° C. for one hour.
The laser beam used in the second embodiment has a spot-like profile which shows a Gaussian distribution as shown in FIG. 6. The energy density of the laser beam at the top portion of the spot-like profile is set within a predetermined range.
The spot-like laser beam is irradiated on a target (substrate) using an apparatus similar to the one used in the first embodiment. The substrate is placed on, for example, an X-Y stage and is movable on a plane. At the time of laser processing, the substrate is intermittently moved in a predetermined pattern. The laser beam is irradiated in a predetermined number of pulses in synchronism with the movement of the substrate. Another structure may be used which irradiates a scanning laser beam with the target substrate fixed.
On the surface of the acrylic resin film irradiated with the laser beam, the acrylic resin in the irradiated portion is burned out and sublimated by ablation. The energy density and the number of pulses of the laser beam to be irradiated are adjusted for each predetermined region. The irradiation while changing the laser beam intensity can form the contact hole 18 a and the undulation 18 b having multiple stages of depths in and on the organic insulating layer 18.
In the embodiment which ablates acrylic resin, for example, an XeCl excimer laser beam (wavelength of 308 nm) whose profile has a diameter of 5 μmø at a half-width can be used. In this case, the multi-stage undulation 18 b having four or more height values as shown in FIG. 2C can be formed on the surface of the acrylic resin film by irradiating a predetermined number of pulses of the laser beam with multiple values such that the energy density at the top portion of the profile lies within a range of, for example, 40 to 190 mJ/cm2. Further, the contact hole 18 a can be formed by irradiating, for example, eight pulses of the laser beam that has an energy density of 300 mJ/cm2 at the top portion of the profile.
According to the second embodiment, as described above, the multi-stage undulation 18 b and the contact hole 18 a can be formed on and in the organic film by irradiating a predetermined number of pulses of a spot-like laser beam while relatively moving the laser beam in a predetermined pattern. Apparently, the second embodiment can provide the same advantages as the first embodiment.
Although the substrate as a target is moved in the second embodiment, the irradiation port for the laser beam may be moved instead.
Third Embodiment
A description will now be given of the third embodiment with reference to the accompanying drawings. To make understanding the second embodiment easier, same reference symbols are given to those components which are the same as the corresponding components in FIG. 1 and their descriptions will be omitted.
FIG. 7 illustrates the structure of a reflector (lower substrate 11) according to the third embodiment. The reflector according to the third embodiment is used in a so-called transflective type liquid crystal display that has the functions of both the reflection type and the transflective type.
As shown in FIG. 7, a reflector 11 according to the third embodiment has a reflection area 50 and a transmission area 51.
A reflection electrode 19 is formed on the reflection area 50 of the organic insulating layer 18. There is formed a multi-stage undulation in the surface of the reflection area 50.
A transparent electrode 52 of ITO (Indium Tin Oxide) is formed on the organic insulating layer 18 in the transmission area 51. The surface of the organic insulating layer 18 in the transmission area 51 is formed nearly flat. So is the transparent electrode 52. The transparent electrode 52 contacts the reflection electrode 19 to be electrically connected thereto. A structure in which an insulating film which separates the transparent electrode 52 from the reflection electrode 19 is provided and the transparent electrode 52 and the reflection electrode 19 are connected to each other via the contact hole 18 a may be employed instead.
The liquid crystal display 10 equipped with the reflector that has the reflection electrode 19 and the transparent electrode 52 functions as a so-called transflective type liquid crystal display that has the functions of both the reflection type and the transflective type.
The reflector 11 shown in FIG. 7 can be manufactured in the same method as used for the first embodiment. This method will be discussed below with reference to FIGS. 8A to 8D.
First, a substrate having the TFTs 16 as shown in FIG. 8A is prepared. Next, the polyimide film 35 is formed to a thickness of, for example, 2 μm on the substrate as shown in FIG. 8B. For example, the polyimide film 35 is formed by baking at 110° C., ten minutes.
Then, the polyimide film 35 is subjected to laser processing to form the organic insulating layer 18 having a shape as shown in FIG. 8C as per the first embodiment.
In the third embodiment, a laser beam having a profile as shown in FIG. 9 is irradiated. The energy density of the laser beam is set to a range of, for example, 30 to 250 mJ/cm2 and the number of irradiation pulses is, for example, 10.
As shown in FIG. 9, the profile of the laser beam that has passed the mask 43 has a flat steady energy portion and an undulated portion. The irradiation of the laser beam whose profile has an undulated portion and a flat portion forms an undulated portion and a flat portion as shown in FIG. 8C on the polyimide film 35.
Next, for example, a thin chromium film is formed on the organic insulating layer 18, then patterning as shown in FIG. 8D is performed to remove the thin chromium film on the flat portion. The transparent electrode 52 of ITO or the like is formed on the exposed flat portion of the organic insulating layer 18. This completes the reflector shown in FIG. 7.
As described above, the third embodiment provides the reflector that has the reflection electrode 19 having a multi-stage undulation and the flat transparent electrode 52. The undulated portion and flat portion of the organic insulating layer 18 where the transparent electrode 52 and the reflection electrode 19 are to be formed respectively can be formed in a single step by laser ablation. The reflector shown in FIG. 7 and the transflective type liquid crystal display 10 equipped with the reflector can be manufactured in a substantially reduced number of steps.
In the first to third embodiments, the organic insulating layer 18 is formed of polyimide or acrylic resin. However, the organic insulating layer 18 can be formed of a resin which has a predetermined light absorbing range, such as a polyimide resin, epoxy resin, acrylic resin, cyclic olefin or novolak resin.
The laser ablation process can be carried out by selecting a laser beam in use in accordance with the type of the organic material used for the organic insulating layer 18. Available laser beam is ultraviolet light beam of, for example, ArF laser (193 nm), KrF laser (248 nm), Xecl laser (308 nm) or XeF laser (351 nm), or infrared light beam of, for example, a YAG (Yttrium Aluminum Garnet) laser (1.065 μm) or carbon-dioxide laser (10.6 μm).
The invention can be similarly adapted to a reflector and a liquid crystal display which use staggered structure TFTs or so-called channel protection type TFTs.
Although the TFTs 16 are used as switching elements, the invention is not limited to this particular type but can also be adapted to an active matrix type liquid crystal display which uses other switching elements, such as MIM (Metal-Insulator-Metal) elements, diodes or varistors, or a passive matrix type liquid crystal display which does not use switching elements.
Various embodiments and changes may be made thereunto without departing from the broad spirit and scope of the invention. The above-described embodiments are intended to illustrate the present invention, not to limit the scope of the present invention. The scope of the present invention is shown by the attached claims rather than the embodiments. Various modifications made within the meaning of an equivalent of the claims of the invention and within the claims are to be regarded to be in the scope of the present invention.
The invention is based on Japanese Patent Application No. 2001-264445 filed on Aug. 31, 2001 and this application includes the specification, the claims, the drawings and the abstract of the basic application. What is disclosed in the Japanese patent application is entirely incorporated in this specification by reference.

Claims (9)

1. A manufacturing method for making a reflector, comprising the steps of:
forming an insulating layer using an organic material having an absorption band in a predetermined wavelength range;
forming protrusions on the insulating layer by ablation by irradiating a laser beam of a predetermined range of wavelengths on the insulating layer to break chemical bonds in the organic material and evaporate the surface of the insulating layer; and
forming an electrode on the insulating layer.
2. The method of claim 1, wherein the laser beam is irradiated through a mask that has plural different transmittance levels for the laser beam and the ablation forms in the insulating layer plural valleys separated by peaks, the peaks having at least four different heights.
3. The manufacturing method according to claim 1, wherein scanning irradiation is performed with said laser beam which has a spot shape.
4. The manufacturing method according to claim 1, wherein in said ablation step, said laser beam is irradiated with a pulse shape.
5. The manufacturing method according to claim 1, further comprising the steps of forming a switching element under said insulating layer, and
forming a contact hole through a bottom of which one end of said switching element is exposed.
6. The manufacturing method according to claim 1, further comprising the steps of forming a flat portion on said insulating layer, and
forming a transparent electrode on said flat portion.
7. The manufacturing method according to claim 1, further comprising a step of annealing said insulating layer after said irradiating step.
8. The method of claim 2, wherein the valleys have at least four different heights that are different from the heights of the peaks.
9. The manufacturing method according to claim 2, wherein said laser beam incident to said mask has a flat profile.
US10/227,952 2001-08-31 2002-08-27 Manufacturing method for reflector, reflector, and liquid crystal display Expired - Lifetime US6894747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/942,885 US20050032261A1 (en) 2001-08-31 2004-09-17 Manufacturing method for reflector, reflector, and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001264445A JP5181317B2 (en) 2001-08-31 2001-08-31 Reflective liquid crystal display device and manufacturing method thereof
JP2001-264445 2001-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/942,885 Division US20050032261A1 (en) 2001-08-31 2004-09-17 Manufacturing method for reflector, reflector, and liquid crystal display

Publications (2)

Publication Number Publication Date
US20030048399A1 US20030048399A1 (en) 2003-03-13
US6894747B2 true US6894747B2 (en) 2005-05-17

Family

ID=19091041

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/227,952 Expired - Lifetime US6894747B2 (en) 2001-08-31 2002-08-27 Manufacturing method for reflector, reflector, and liquid crystal display
US10/942,885 Abandoned US20050032261A1 (en) 2001-08-31 2004-09-17 Manufacturing method for reflector, reflector, and liquid crystal display

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/942,885 Abandoned US20050032261A1 (en) 2001-08-31 2004-09-17 Manufacturing method for reflector, reflector, and liquid crystal display

Country Status (5)

Country Link
US (2) US6894747B2 (en)
JP (1) JP5181317B2 (en)
KR (1) KR100567504B1 (en)
CN (1) CN1178100C (en)
TW (1) TW581919B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040189896A1 (en) * 2003-03-27 2004-09-30 Cho Jin Hui Method for manufacturing transflective thin film transistor (TFT) liquid crystal display (LCD)
US20070205439A1 (en) * 2006-03-06 2007-09-06 Canon Kabushiki Kaisha Image pickup apparatus and image pickup system
US20070212802A1 (en) * 2006-02-21 2007-09-13 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing light emitting diode package
US20070262312A1 (en) * 2006-05-11 2007-11-15 Au Optronics Corp. Thin film transistor array substrate structures and fabrication method thereof
US20070269937A1 (en) * 2006-05-18 2007-11-22 Han-Tu Lin Thin-film transistor and fabrication method thereof
US20080006865A1 (en) * 2006-05-11 2008-01-10 Au Optronics Corp. Thin film transistor array substrate structures and fabrication method thereof
US20080136988A1 (en) * 2001-10-22 2008-06-12 Yong-Ho Yang Liquid crystal display for enhancing reflection and method of manufacturing the same
US20080252201A1 (en) * 2007-04-10 2008-10-16 Pearce Glenn T Electrical connection in oled devices
US20130243970A1 (en) * 2009-12-28 2013-09-19 Fujikura Ltd. Mold and manufacturing method therefor
US10325985B2 (en) * 2014-07-22 2019-06-18 Flexenable Limited Protecting transistor elements against degrading species
US10365472B1 (en) * 2015-12-29 2019-07-30 Amazon Technologies, Inc. Electrowetting display device having increased viewing performance

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840538B1 (en) * 2002-03-19 2008-06-23 엘지디스플레이 주식회사 Fabricating method for reflective liquid crystal display device
KR100737895B1 (en) * 2002-09-18 2007-07-10 삼성전자주식회사 Reflective type liquid crystal display and transmissive and reflective type liquid crystal display and method of manufacturing the same
KR100936905B1 (en) * 2002-12-13 2010-01-15 삼성전자주식회사 Liquid crystal display apparatus and methode for manufacturing thereof
GB0229222D0 (en) * 2002-12-14 2003-01-22 Koninkl Philips Electronics Nv Manufacture of thin film transistor and displays,and photomasks therefor
JP3753141B2 (en) * 2002-12-25 2006-03-08 セイコーエプソン株式会社 Liquid crystal display device and electronic device
KR100919184B1 (en) * 2002-12-30 2009-09-28 엘지디스플레이 주식회사 Fabricating Method Of Array Substrate For Liquid Crystal Display Device
KR101112547B1 (en) * 2005-01-18 2012-03-13 삼성전자주식회사 Thin film transistor array panel and manufacturing method thereof
JP4480599B2 (en) * 2005-02-14 2010-06-16 Nec液晶テクノロジー株式会社 Reflector, method for manufacturing the same, and liquid crystal display device
KR100629359B1 (en) * 2005-08-09 2006-10-02 삼성전자주식회사 Methods of fabricating a semiconductor device using a photo-sensitive polyimide layer and semiconductor devices fabricated thereby
KR20070035234A (en) * 2005-09-27 2007-03-30 삼성전자주식회사 Method and apparatus for manufacturing display substrate
JP2007096202A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Integrated circuit and manufacturing method therefor
CN101030586B (en) * 2006-06-05 2010-07-14 友达光电股份有限公司 Thin-film transistor array base-plate structure and its production
TWI412079B (en) * 2006-07-28 2013-10-11 Semiconductor Energy Lab Method for manufacturing display device
US7943287B2 (en) * 2006-07-28 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
WO2008023630A1 (en) * 2006-08-24 2008-02-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US8563431B2 (en) * 2006-08-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8148259B2 (en) 2006-08-30 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2008073711A (en) * 2006-09-20 2008-04-03 Disco Abrasive Syst Ltd Machining method of via hole
JP5013367B2 (en) * 2007-01-17 2012-08-29 Nltテクノロジー株式会社 Liquid crystal display device and method of manufacturing liquid crystal display device
KR101386173B1 (en) * 2007-04-26 2014-04-29 삼성디스플레이 주식회사 Method for manufacturing lens forming master and method for thin film transistor substrate using the same
KR100850519B1 (en) * 2007-06-28 2008-08-05 주식회사 에스앤에스텍 Process method of gray tone blankmask
JP6014490B2 (en) * 2012-12-27 2016-10-25 三星ダイヤモンド工業株式会社 Cutting method and device
KR102025086B1 (en) * 2013-10-14 2019-09-25 엘지디스플레이 주식회사 Display Device and Method of manufacturing the same

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431272A (en) * 1980-05-08 1984-02-14 Kabushiki Kaisha Suwa Seikosha Liquid crystal display device
US4456336A (en) * 1981-10-06 1984-06-26 Minnesota Mining And Manufacturing Company High brightness internal reflector for liquid crystal displays and its method of fabrication
EP0462439A1 (en) 1990-06-21 1991-12-27 Xerox Corporation Plywood suppression in photosensitive imaging members
US5460980A (en) * 1993-09-27 1995-10-24 Minnesota Mining And Manufacturing Company Process for forming a phosphor
US5691792A (en) * 1993-01-29 1997-11-25 Sharp Kabushiki Kaisha Method for producing a liquid crystal display apparatus by irradiating an aligning film with light to reduce pretilt angles of liquid crystal molecules thereof
US5864381A (en) * 1996-07-10 1999-01-26 Sandia Corporation Automated pupil remapping with binary optics
US5936688A (en) * 1996-02-27 1999-08-10 Sharp Kabushiki Kaisha Reflector, method for fabricating the same and reflective liquid crystal display device incorporating the same
US5973843A (en) * 1997-12-22 1999-10-26 Nakamura; Hisakazu Reflector method for producing reflector and reflection type liquid crystal display
JP2000250025A (en) 1999-02-25 2000-09-14 Advanced Display Inc Reflection type liquid crystal display device, its production and mask for production of reflection type liquid crystal display device
KR20000057022A (en) 1999-02-12 2000-09-15 모리시타 요이찌 Liquid crystal device and manufacturing method thereof
US6163353A (en) * 1998-12-03 2000-12-19 Industrial Technology Research Institute Method for fabricating a reflective liquid crystal display panel having a reflector with an inclined surface and devices made
US20010004513A1 (en) * 1999-04-09 2001-06-21 Wei-Chih Chang Method for forming a diffusive-type light reflector
JP2001194662A (en) 2000-01-14 2001-07-19 Nec Corp Reflection type liquid crystal display device and its manufacturing method
US6291146B1 (en) * 1999-04-09 2001-09-18 Industrial Technology Research Institute Method for reforming a reflection-type light diffuser
US20010055089A1 (en) * 2000-06-06 2001-12-27 U.S. Philips Corporation Liquid crystal display device and method of manufacturing such
US20020089628A1 (en) * 2000-11-11 2002-07-11 Jang Yong-Kyu Reflection type liquid crystal display and a method for manufacturing the same
US6429919B1 (en) * 1997-07-29 2002-08-06 Alps Electric Co., Ltd. Reflector having pits and projection on a surface thereof, manufacturing method for the same, and reflection-type liquid crystal display device employing the reflector
US6458612B1 (en) * 2000-09-19 2002-10-01 United Epitaxy Company, Inc. Method of fabricating high efficiency light-emitting diode with a transparent substrate
US20020140886A1 (en) * 2001-01-25 2002-10-03 Fujitsu Limited Reflection type liquid crystal display device and manufacturing method thereof
US6501522B2 (en) * 2000-09-13 2002-12-31 Au Optronics Corporation Method of fabricating a reflective type LCD
US6525792B1 (en) * 1998-06-19 2003-02-25 Sony Corporation Diffusing reflector and manufacture of the same and reflection type display apparatus
US20030038907A1 (en) * 2001-08-22 2003-02-27 Nec Corporation Liquid crystal display
US6534336B1 (en) * 1999-05-21 2003-03-18 Canon Kabushiki Kaisha Production method of photoelectric conversion device, and photoelectric conversion device produced by the method
US6544809B2 (en) * 1999-12-28 2003-04-08 Lg. Philips Lcd Co. Ltd. Method of manufacturing an array substrate for use in a reflective liquid crystal display device
US6563557B2 (en) * 1998-03-19 2003-05-13 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device including a stack of plurality of resin film and method for fabricating the same
US6562644B2 (en) * 2000-08-08 2003-05-13 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate, method of manufacturing the semiconductor substrate, semiconductor device and pattern forming method
US6583938B1 (en) * 1999-10-02 2003-06-24 Sharp Kabushiki Kaisha Optical device and projection display
US6583840B1 (en) * 1999-05-26 2003-06-24 Matsushita Electric Industrial Co., Ltd. Liquid crystal display element with comb electrodes having reflective projections and producing method thereof
US6597421B1 (en) * 1999-12-22 2003-07-22 Matsushita Electric Industrial Co., Ltd. Reflective liquid crystal display element and image display device using the same
US6600534B1 (en) * 1997-12-24 2003-07-29 Sharp Kabushiki Kaisha Reflective liquid crystal display device
US6606139B2 (en) * 2001-04-19 2003-08-12 Alps Electric Co., Ltd. Liquid crystal display device with improved viewing angle property and portable electronic apparatus using the same
US6618107B1 (en) * 1999-09-06 2003-09-09 Sharp Kabushiki Kaisha Reflection-type color liquid crystal display device and manufacturing method thereof
US6621543B2 (en) * 2000-01-06 2003-09-16 Lg.Philips Lcd Co., Ltd. Transflective liquid crystal display device
US20030189746A1 (en) * 2000-06-08 2003-10-09 Marc Vernackt System, method and article of manufacture for improved laser direct imaging a printed circuit board utilizing a mode locked laser and scophony operation
US20030214717A1 (en) * 2002-05-16 2003-11-20 Eastman Kodak Company Light diffuser with colored variable diffusion

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245742A (en) * 1989-03-17 1990-10-01 Matsushita Electric Ind Co Ltd Reflection type liquid crystal display device
JP2825713B2 (en) * 1991-09-10 1998-11-18 シャープ株式会社 Reflective liquid crystal display device and method of manufacturing the same
JP2990046B2 (en) * 1995-08-16 1999-12-13 日本電気株式会社 Reflective liquid crystal display device and method of manufacturing the same
JP3491467B2 (en) * 1996-10-25 2004-01-26 松下電工株式会社 Light diffusion plate and method of manufacturing the same
JP3339334B2 (en) * 1996-12-05 2002-10-28 松下電器産業株式会社 Reflective liquid crystal display
JP2955277B2 (en) * 1997-07-28 1999-10-04 シャープ株式会社 Liquid crystal display
JP2000122094A (en) * 1998-10-20 2000-04-28 Sharp Corp Reflection type liquid crystal display device
JP4239258B2 (en) * 1998-11-11 2009-03-18 凸版印刷株式会社 Manufacturing method of reflective electrode
JP2000193807A (en) * 1998-12-25 2000-07-14 Asahi Glass Co Ltd Diffuse reflection plate, manufacture thereof, and reflection type display element

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431272A (en) * 1980-05-08 1984-02-14 Kabushiki Kaisha Suwa Seikosha Liquid crystal display device
US4456336A (en) * 1981-10-06 1984-06-26 Minnesota Mining And Manufacturing Company High brightness internal reflector for liquid crystal displays and its method of fabrication
EP0462439A1 (en) 1990-06-21 1991-12-27 Xerox Corporation Plywood suppression in photosensitive imaging members
US5691792A (en) * 1993-01-29 1997-11-25 Sharp Kabushiki Kaisha Method for producing a liquid crystal display apparatus by irradiating an aligning film with light to reduce pretilt angles of liquid crystal molecules thereof
US5460980A (en) * 1993-09-27 1995-10-24 Minnesota Mining And Manufacturing Company Process for forming a phosphor
US5936688A (en) * 1996-02-27 1999-08-10 Sharp Kabushiki Kaisha Reflector, method for fabricating the same and reflective liquid crystal display device incorporating the same
US5864381A (en) * 1996-07-10 1999-01-26 Sandia Corporation Automated pupil remapping with binary optics
US6429919B1 (en) * 1997-07-29 2002-08-06 Alps Electric Co., Ltd. Reflector having pits and projection on a surface thereof, manufacturing method for the same, and reflection-type liquid crystal display device employing the reflector
US5973843A (en) * 1997-12-22 1999-10-26 Nakamura; Hisakazu Reflector method for producing reflector and reflection type liquid crystal display
US6600534B1 (en) * 1997-12-24 2003-07-29 Sharp Kabushiki Kaisha Reflective liquid crystal display device
US6563557B2 (en) * 1998-03-19 2003-05-13 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device including a stack of plurality of resin film and method for fabricating the same
US6525792B1 (en) * 1998-06-19 2003-02-25 Sony Corporation Diffusing reflector and manufacture of the same and reflection type display apparatus
US6163353A (en) * 1998-12-03 2000-12-19 Industrial Technology Research Institute Method for fabricating a reflective liquid crystal display panel having a reflector with an inclined surface and devices made
KR20000057022A (en) 1999-02-12 2000-09-15 모리시타 요이찌 Liquid crystal device and manufacturing method thereof
JP2000250025A (en) 1999-02-25 2000-09-14 Advanced Display Inc Reflection type liquid crystal display device, its production and mask for production of reflection type liquid crystal display device
US20010004513A1 (en) * 1999-04-09 2001-06-21 Wei-Chih Chang Method for forming a diffusive-type light reflector
US6291146B1 (en) * 1999-04-09 2001-09-18 Industrial Technology Research Institute Method for reforming a reflection-type light diffuser
US6534336B1 (en) * 1999-05-21 2003-03-18 Canon Kabushiki Kaisha Production method of photoelectric conversion device, and photoelectric conversion device produced by the method
US6583840B1 (en) * 1999-05-26 2003-06-24 Matsushita Electric Industrial Co., Ltd. Liquid crystal display element with comb electrodes having reflective projections and producing method thereof
US6618107B1 (en) * 1999-09-06 2003-09-09 Sharp Kabushiki Kaisha Reflection-type color liquid crystal display device and manufacturing method thereof
US6583938B1 (en) * 1999-10-02 2003-06-24 Sharp Kabushiki Kaisha Optical device and projection display
US6597421B1 (en) * 1999-12-22 2003-07-22 Matsushita Electric Industrial Co., Ltd. Reflective liquid crystal display element and image display device using the same
US6544809B2 (en) * 1999-12-28 2003-04-08 Lg. Philips Lcd Co. Ltd. Method of manufacturing an array substrate for use in a reflective liquid crystal display device
US6621543B2 (en) * 2000-01-06 2003-09-16 Lg.Philips Lcd Co., Ltd. Transflective liquid crystal display device
JP2001194662A (en) 2000-01-14 2001-07-19 Nec Corp Reflection type liquid crystal display device and its manufacturing method
US20040070709A1 (en) * 2000-01-14 2004-04-15 Hiroshi Kanou Liquid crystal display apparatus with protective insulating film for switching element and production method thereof
US20010055089A1 (en) * 2000-06-06 2001-12-27 U.S. Philips Corporation Liquid crystal display device and method of manufacturing such
US20030189746A1 (en) * 2000-06-08 2003-10-09 Marc Vernackt System, method and article of manufacture for improved laser direct imaging a printed circuit board utilizing a mode locked laser and scophony operation
US6562644B2 (en) * 2000-08-08 2003-05-13 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate, method of manufacturing the semiconductor substrate, semiconductor device and pattern forming method
US6501522B2 (en) * 2000-09-13 2002-12-31 Au Optronics Corporation Method of fabricating a reflective type LCD
US6458612B1 (en) * 2000-09-19 2002-10-01 United Epitaxy Company, Inc. Method of fabricating high efficiency light-emitting diode with a transparent substrate
US20020089628A1 (en) * 2000-11-11 2002-07-11 Jang Yong-Kyu Reflection type liquid crystal display and a method for manufacturing the same
US20020140886A1 (en) * 2001-01-25 2002-10-03 Fujitsu Limited Reflection type liquid crystal display device and manufacturing method thereof
US6606139B2 (en) * 2001-04-19 2003-08-12 Alps Electric Co., Ltd. Liquid crystal display device with improved viewing angle property and portable electronic apparatus using the same
US20030038907A1 (en) * 2001-08-22 2003-02-27 Nec Corporation Liquid crystal display
US20030214717A1 (en) * 2002-05-16 2003-11-20 Eastman Kodak Company Light diffuser with colored variable diffusion

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7609342B2 (en) * 2001-10-22 2009-10-27 Samsung Electronics Co., Ltd. Liquid crystal display for enhancing reflection and method of manufacturing the same
US20080136988A1 (en) * 2001-10-22 2008-06-12 Yong-Ho Yang Liquid crystal display for enhancing reflection and method of manufacturing the same
US20040189896A1 (en) * 2003-03-27 2004-09-30 Cho Jin Hui Method for manufacturing transflective thin film transistor (TFT) liquid crystal display (LCD)
US20070212802A1 (en) * 2006-02-21 2007-09-13 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing light emitting diode package
US20070205439A1 (en) * 2006-03-06 2007-09-06 Canon Kabushiki Kaisha Image pickup apparatus and image pickup system
US20080006865A1 (en) * 2006-05-11 2008-01-10 Au Optronics Corp. Thin film transistor array substrate structures and fabrication method thereof
US7834960B2 (en) 2006-05-11 2010-11-16 Au Optronics Corp. Thin film transistor array substrate structures
US20100140625A1 (en) * 2006-05-11 2010-06-10 Au Optronics Corp. Thin film transistor array substrate structures and fabrication method thereof
US7688419B2 (en) 2006-05-11 2010-03-30 Au Optronics Corp. Thin film transistor array substrate structures and fabrication method thereof
US20070262312A1 (en) * 2006-05-11 2007-11-15 Au Optronics Corp. Thin film transistor array substrate structures and fabrication method thereof
US20080258146A1 (en) * 2006-05-18 2008-10-23 Han-Tu Lin Thin-film transistor and fabrication method thereof
US7679088B2 (en) 2006-05-18 2010-03-16 Au Optronics Corp. Thin-film transistor and fabrication method thereof
US7413940B2 (en) 2006-05-18 2008-08-19 Au Optronics Corp. Thin-film transistor and fabrication method thereof
US20070269937A1 (en) * 2006-05-18 2007-11-22 Han-Tu Lin Thin-film transistor and fabrication method thereof
US20080252201A1 (en) * 2007-04-10 2008-10-16 Pearce Glenn T Electrical connection in oled devices
US7919352B2 (en) * 2007-04-10 2011-04-05 Global Oled Technology Llc Electrical connection in OLED devices
US20110121720A1 (en) * 2007-04-10 2011-05-26 Pearce Glenn T Electrical connection in oled devices
US20130243970A1 (en) * 2009-12-28 2013-09-19 Fujikura Ltd. Mold and manufacturing method therefor
US8894892B2 (en) * 2009-12-28 2014-11-25 Fujikura Ltd. Mold and manufacturing method therefor
US10325985B2 (en) * 2014-07-22 2019-06-18 Flexenable Limited Protecting transistor elements against degrading species
GB2555734B (en) * 2014-07-22 2020-08-19 Flexenable Ltd Protecting transistor elements against degrading species
US10365472B1 (en) * 2015-12-29 2019-07-30 Amazon Technologies, Inc. Electrowetting display device having increased viewing performance

Also Published As

Publication number Publication date
KR20030019201A (en) 2003-03-06
US20030048399A1 (en) 2003-03-13
CN1178100C (en) 2004-12-01
TW581919B (en) 2004-04-01
KR100567504B1 (en) 2006-04-03
JP2003075826A (en) 2003-03-12
US20050032261A1 (en) 2005-02-10
CN1403861A (en) 2003-03-19
JP5181317B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
US6894747B2 (en) Manufacturing method for reflector, reflector, and liquid crystal display
KR100780980B1 (en) Reflective liquid crystal display apparatus and production method thereof
US7522254B2 (en) Liquid crystal display device and method of fabricating the same
KR100548095B1 (en) Method of manufacturing semitransparent display device and semitransparent display device
KR100557499B1 (en) Method of forming a pattern, liquid crystal display device and fabricating method of liquid crystal display device using thereof
JP4019080B2 (en) Manufacturing method of liquid crystal display device
KR100486185B1 (en) Pattern formation method and method for manufacturing reflective type liquid crystal display device using the same
KR100978367B1 (en) A Method for Manufacturing of Embossing Pattern
JP2000338524A (en) Reflection type liquid crystal display device and its production
KR100268010B1 (en) Reflector of reflective-type liquid crystal display device and method of making the same
JP4273697B2 (en) Manufacturing method of liquid crystal display device
KR100386861B1 (en) A reflective LCD and method for fabricating of the same
KR100983704B1 (en) Liquid crystal display device and method for fabricating thereof
JP4224975B2 (en) Method for forming pixel electrode of liquid crystal display device
KR100745412B1 (en) Reflecting plate of liquid crystal display device and fabricating method thereof
JP3655917B2 (en) Liquid crystal display
JPH10319435A (en) Active matrix type liquid crystal display device and its production
JP2003209254A (en) Semiconductor device and its manufacturing method
JP2002122884A (en) Liquid crystal display device and its manufacturing method
JP2005049901A (en) Reflection type liquid crystal display unit and its manufacturing method
KR20010094354A (en) Virture mask equipment of using slv

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OKUMURA, HIROSHI;REEL/FRAME:013229/0832

Effective date: 20020819

AS Assignment

Owner name: NEC LCD TECHNOLOGIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:013649/0947

Effective date: 20030401

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: NLT TECHNOLOGIES, LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:NEC LCD TECHNOLOGIES, LTD.;REEL/FRAME:027188/0890

Effective date: 20110701

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12