US6528515B1 - Combination therapy to treat hepatitis B virus - Google Patents

Combination therapy to treat hepatitis B virus Download PDF

Info

Publication number
US6528515B1
US6528515B1 US09/432,247 US43224799A US6528515B1 US 6528515 B1 US6528515 B1 US 6528515B1 US 43224799 A US43224799 A US 43224799A US 6528515 B1 US6528515 B1 US 6528515B1
Authority
US
United States
Prior art keywords
ftc
hbv
pharmaceutically acceptable
combination
hepatitis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/432,247
Other languages
English (en)
Inventor
Phillip A. Furman
George R. Painter, III
David W. Barry
Franck Rousseau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Sciences Inc
Original Assignee
Triangle Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Triangle Pharmaceuticals Inc filed Critical Triangle Pharmaceuticals Inc
Priority to US09/432,247 priority Critical patent/US6528515B1/en
Priority to US10/374,363 priority patent/US7572800B2/en
Application granted granted Critical
Publication of US6528515B1 publication Critical patent/US6528515B1/en
Assigned to GILEAD SCIENCES, INC. reassignment GILEAD SCIENCES, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: TRIANGLE PHARMACEUTICALS, INC.
Priority to US12/483,800 priority patent/US20090247487A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • This invention is in the area of methods for the treatment of hepatitis B virus (also referred to as “HBV”) that includes administering to a host in need thereof, an effective combination of nucleosides which have known anti-hepatitis B activity.
  • HBV hepatitis B virus
  • HBV is second only to tobacco as a cause of human cancer.
  • the mechanism by which HBV induces cancer is unknown, although it is postulated that it may directly trigger tumor development, or indirectly trigger tumor development through chronic inflammation, cirrhosis, and cell regeneration associated with the infection.
  • Hepatitis B virus has reached epidemic levels worldwide. After a two to three month incubation period in which the host is unaware of the infection, HBV infection can lead to acute hepatitis and liver damage, that causes abdominal pain, jaundice, and elevated blood levels of certain enzymes. HBV can cause fulminant hepatitis, a rapidly progressive, often fatal form of the disease in which massive sections of the liver are destroyed.
  • Chronic infections can lead to chronic persistent hepatitis.
  • Patients infected with chronic persistent HBV are most common in developing countries. By mid-1991, there were approximately 225 million chronic carriers of HBV in Asia alone, and worldwide, almost 300 million carriers. Chronic persistent hepatitis can cause fatigue, cirrhosis of the liver, and hepatocellular carcinoma, a primary liver cancer.
  • HBV infection In western industrialized countries, high risk groups for HBV infection include those in contact with HBV carriers or their blood samples.
  • the epidemiology of HBV is very similar to that of acquired immune deficiency syndrome (AIDS), which accounts for why HBV infection is common among patients with AIDS or AIDS related complex.
  • AIDS acquired immune deficiency syndrome
  • HBV is more contagious than HIV.
  • FTC ⁇ 2-Hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane
  • Penciclovir (2-amino-1,9-dihydro-9-[4-hydroxy-3-(hydroxymethyl)butyl]-6H-purin-6-one; PCV) has established activity against hepatitis B. See U.S. Pat. Nos. 5,075,445 and 5,684,153.
  • Adefovir (9-[2-(phosphonomethoxy)ethyl]adenine, also referred to as PMEA or [[2(6-amino-9H-purin-9-yl)ethoxy]methylphosphonic acid), also has established activity against hepatitis B. See for example U.S. Pat. Nos. 5,641,763 and 5,142,051.
  • L-FDDC (5-fluoro-3′-thia-2′,3′-dideoxycytidine) for the treatment of hepatitis B virus in WO 92/18517.
  • the 5′-triphosphates of 3′-deoxy-3′-fluoro- ⁇ -L-thymidine ( ⁇ -L-FTTP), 2′,3′-dideoxy-3′-fluoro- ⁇ -L-cytidine ( ⁇ -L-FdCTP), and 2′,3′-dideoxy-3′-fluoro- ⁇ -L-5-methylcytidine ( ⁇ -L-FMethCTP) were disclosed as effective inhibitors of HBV DNA polymerases.
  • HBV drug-resistant variants of HBV can emerge after prolonged treatment with an antiviral agent. Drug resistance most typically occurs by mutation of a gene that encodes for an enzyme used in the viral lifecycle, and most typically in the case of HBV, DNA polymerase. Recently, it has been demonstrated that the efficacy of a drug against HBV infection can be augmented by administering the compound in combination with a second, and perhaps third, antiviral compound that induces a different mutation from that caused by the principle drug. Alternatively, the pharmacokinetics, biodistribution, or other parameter of the drug can be altered by such combination therapy. In general, combination therapy induces multiple simultaneous stresses on the virus.
  • L-FMAU can be administered in combination with FTC, 3TC, carbovir, acyclovir, interferon, AZT, DDI (2′,3′-dideoxyinosine), DDC (2′,3′-dideoxycytidine), L-DDC, L-F-DDC, and D4T.
  • U.S. Pat. No. 5,684,010 discloses a method for the treatment of hepatitis B that includes administering in combination or alternation a compound of the formula:
  • R is NH 2 , OH, or Cl, with FTC, 3TC, carbovir, or interferon.
  • WO 98/23285 discloses a method for the treatment or prophylaxis of hepatitis B virus infections in a human or animal patient which comprises administering to the patient effective or prophylactic amounts of penciclovir (or a bioprecursor thereof such as famciclovir) and alpha-interferon.
  • a method for treating HBV infection and related conditions in humans comprising administering a synergistically effective amount of ⁇ -2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (FTC), preferably substantially in the form of the ( ⁇ )-optical isomer, or a pharmaceutically acceptable salt, ester or prodrug thereof with Penciclovir (2-amino-1,9-dihydro-9-[4-hydroxy-3-(hydroxymethyl)butyl]-6H-purin-6-one, also referred to as “PCV”). Famciclovir, or any other bioprecursor of Penciclovir, can be used in place of Penciclovir in any embodiment of this invention.
  • Another preferred embodiment of the present invention is a method for treating HBV infection and related conditions in humans, comprising administering in combination or alternation a synergistically effective amount of ⁇ -2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (FTC), preferably substantially in the form of the ( ⁇ )-optical isomer, or a pharmaceutically acceptable salt, ester or prodrug thereof, with 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA, also referred to below as Bis-POM-PMEA or BP-PMEA), or a pharmaceutically acceptable salt, ester or prodrug thereof, optionally in a pharmaceutically acceptable carrier.
  • FTC ⁇ -2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane
  • FTC ⁇ -2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathi
  • a method for treating HBV infection and related conditions in humans comprising administering in combination or alternation a synergistically effective amount of 2′-fluoro-5-methyl- ⁇ -L-arabinofuranolyluridine (L-FMAU), or a pharmaceutically acceptable salt, ester or prodrug thereof, with a compound of the formula:
  • DAPD ⁇ -D-(2R,4R)-2-amino-9-[(2-hydroxymethyl)-1,3-dioxolan-4-yl]purine
  • a method for treating HBV infection and related conditions in humans comprising administering a synergistically effective combination or alternation amount of 2′-fluoro-5-methyl- ⁇ -L-arabinofuranolyluridine (L-FMAU), or a pharmaceutically acceptable salt, ester or prodrug thereof, with Penciclovir, or a pharmaceutically acceptable salt, ester or prodrug thereof, optionally in a pharmaceutically acceptable carrier.
  • L-FMAU 2′-fluoro-5-methyl- ⁇ -L-arabinofuranolyluridine
  • Penciclovir or a pharmaceutically acceptable salt, ester or prodrug thereof, optionally in a pharmaceutically acceptable carrier.
  • a method for treating HBV infection and related conditions in humans comprising administering a synergistically effective amount of 2′-fluoro-5-methyl- ⁇ -L-arabinofuranolyluridine (L-FMAU), or a pharmaceutically acceptable salt, ester or prodrug thereof, with 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA), or a pharmaceutically acceptable salt, ester or prodrug thereof, optionally in a pharmaceutically acceptable carrier.
  • L-FMAU 2′-fluoro-5-methyl- ⁇ -L-arabinofuranolyluridine
  • PMEA 9-[2-(phosphonomethoxy)ethyl]adenine
  • Another preferred embodiment of the present invention comprises a method for treating HBV infection and related conditions in humans, comprising administering a synergistically effective amount of a compound of the formula:
  • R is NH 2 , OH, H, or Cl (collectively referred to herein as the DAPD compounds), preferably, ⁇ -D-(2R,4R)-2-amino-9-[(2-hydroxymethyl)-1,3-dioxolan-4-yl]purine (DAPD), which is preferably administered in substantially pure form, or a pharmaceutically acceptable salt, ester or prodrug thereof, with PMEA, or a pharmaceutically acceptable salt, ester or prodrug thereof, optionally in a pharmaceutically acceptable carrier.
  • DAPD ⁇ -D-(2R,4R)-2-amino-9-[(2-hydroxymethyl)-1,3-dioxolan-4-yl]purine
  • isolated enantiomer refers to a nucleoside composition that includes approximately 95% to 100%, or more preferably, over 97% of a single enantiomer of that nucleoside.
  • substantially pure form or substantially free of its opposite enantiomer refers to a nucleoside composition of one enantiomer that includes no more than about 5% of the other enantiomer, more preferably no more than about 2%, and most preferably less than about 1% is present.
  • synergistic combination of compounds or their pharmaceutically acceptable esters or salts are also useful in the prevention and treatment of HBV infections and other related conditions such as anti-HBV antibody positive and HBV-positive conditions, chronic liver inflammation caused by HBV, cirrhosis, acute hepatitis, fulminant hepatitis, chronic persistent hepatitis, and fatigue.
  • These synergistic formulations can also be used prophylactically to prevent or retard the progression of clinical illness in individuals who are anti-HBV antibody or HBV antigen positive or who have been exposed to HBV.
  • the active compound can be converted into a pharmaceutically acceptable ester by reaction with an appropriate esterifying agents, for example, an acid halide or anhydride.
  • the compound or its pharmaceutically acceptable derivative can be converted into a pharmaceutically acceptable salt thereof in a conventional manner, for example, by treatment with an appropriate base.
  • the ester or salt of the compound can be converted into the parent compound, for example, by hydrolysis.
  • synergistic combination refers to a combination of drugs which produces a synergistic effect in vivo, or alternatively in vitro as measured according to the methods described herein.
  • the active compounds disclosed herein are therapeutic nucleosides or cyclic or acyclic nucleoside analogs with known activity against hepatitis B. It has been discovered that certain combinations of nucleosides provide an advantage over monotherapy, or over other combinations. Not all combinations of the known anti-HBV drugs provide a benefit; it is often the case that drugs act antagonistically.
  • the active compound can be administered as any derivative that upon administration to the recipient, is capable of providing directly or indirectly, the parent compound, or that exhibits activity itself.
  • Nonlimiting examples are the pharmaceutically acceptable salts (alternatively referred to as “physiologically acceptable salts”), and the 5′ and N 4 cytosinyl or N 6 -adeninyl acylated (esterified) derivatives of the active compound (alternatively referred to as “physiologically active derivatives”).
  • the acyl group is a carboxylic acid ester in which the non-carbonyl moiety of the ester group is selected from straight, branched, or cyclic alkyl or lower alkyl, alkoxyalkyl including methoxymethyl, aralkyl including benzyl, aryloxyalkyl such as phenoxymethyl, aryl including phenyl optionally substituted with halogen, C 1 to C 4 alkyl or C 1 to C 4 alkoxy, or is a sulfonate ester such as alkyl or aralkyl sulphonyl including methanesulfonyl, phosphate, including but not limited to mono, di or triphosphate ester, trityl or monomethoxytrityl, substituted benzyl, trialkylsilyl (e.g., dimethyl-5-butylsilyl) or diphenylmethylsilyl.
  • Aryl groups in the esters optionally comprise a pheny
  • Modifications of the active compound, and especially at the N 4 cytosinyl or N 6 adeninyl and 5′-O positions, can affect the bioavailability and rate of metabolism of the active species, thus providing control over the delivery of the active species. Further, the modifications can affect that antiviral activity of the compound, in some cases increasing the activity over the parent compound. This can easily be assessed by preparing the derivative and testing its antiviral activity according to the methods described herein, or other methods known to those skilled in the art.
  • any of the anti-hepatitis B agents described herein can be administered as a prodrug to increase the activity, bioavailability, stability or otherwise alter the properties of the nucleoside.
  • a number of hydroxyl-bound prodrug ligands are known. In general, alkylation, acylation or other lipophilic modification of the hydroxy, mono, di or triphosphate of the nucleoside will increase the stability of the nucleotide.
  • substituent groups that can replace one or more hydrogens on the hydroxyl or phosphate moiety are alkyl, aryl, steroids, carbohydrates, including sugars, 1,2-diacylglycerol and alcohols. Many are described in R. Jones and N. Bischofberger, Antiviral Research , 27 (1995) 1-17. Any of these can be used in combination with the disclosed nucleosides to achieve a desired effect.
  • Nonlimiting examples of U.S. patents that disclose suitable lipophilic substituents that can be covalently incorporated into the nucleoside, preferably at the 5′-OH of the nucleoside or hydroxyl of the acyclic nucleoside analogs include U.S. Pat. Nos. 5,149,794 (Sep. 22, 1992, Yatvin, et al.); U.S. Pat. No. 5,194,654 (Mar. 16, 1993, Hostetler, et al.); U.S. Pat. No. 5,223,263 (Jun. 29, 1993, Hostetler, et al.); U.S. Pat. No. 5,256,641 (Oct.
  • the therapeutic nucleosides used in the synergistic compositions of the present invention and processes for preparing them are known in the art.
  • ⁇ -2-Hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (FTC), and its enantiomers can be prepared by the methods disclosed in U.S. Pat. Nos. 5,204,466, 5,700,937, 5,728,575 and 5,827,727, all of which are incorporated by reference.
  • L-FMAU 2′-Fluoro-5-methyl- ⁇ -L-arabinofuranolyluridine
  • Pencyclovir can be prepared by the methods disclosed in U.S. Pat. Nos. 5,075,445 and 5,684,153.
  • PMEA can be prepared by the methods disclosed in U.S. Pat. Nos. 5,641,763 and 5,142,051.
  • Mono, di, and triphosphate derivatives of the active nucleosides can be prepared as described according to published methods.
  • the monophosphate can be prepared according to the procedure of Imai, et al., J. Org. Chem ., 34(6), 1547-1550 (June 1969).
  • the diphosphate can be prepared according to the procedure of Davisson, et al., J. Org. Chem ., 52(9), 1794-1801 (1987).
  • the triphosphate can be prepared according to the procedure of Hoard, et al., J. Am. Chem. Soc ., 87(8), 1785-1788 (1965).
  • HBV drug-resistant variants of HBV can emerge after prolonged treatment with an antiviral agent. Drug resistance most typically occurs by mutation of a gene that encodes for an enzyme used in the viral lifecycle, and most typically in the case of HBV, DNA polymerase. Recently, it has been demonstrated that the efficacy of a drug against HBV infection can be prolonged, augmented, or restored by administering the compound in combination or alternation with a second, and perhaps third, antiviral compound that induces a different mutation from that caused by the principle drug. Alternatively, the pharmacokinetics, biodistribution, or other parameter of the drug can be altered by such combination therapy. In general, combination therapy induces multiple simultaneous stresses on the virus.
  • Test compounds DAPD, DXG, (-)- ⁇ -FTC, L-FMAU DMVI assay controls: Untreated cells, 3TC (lamivudine), penciclovir (PCV)
  • HBV virion DNA Due to the inherent variations in the levels of both intracellular and extracellular HBV DNA, only depressions greater than 3.0-fold for HBV virion DNA from the average levels for these HBV DNA forms in untreated cells are generally considered to be statistically significant [P ⁇ 0.05] (Korba and Gerin, Antiviral Res. 19: 55-70, 1992). Typical values for extracellular HBV virion DNA in untreated cells range from 80 to 150 pg/ml culture medium (average of approximately 92 pg/ml).
  • Toxicity analyses were performed in order to access whether any observed antiviral effects are due to a general effect on cell viability.
  • the method used was uptake of neutral red dye, a standard and widely used assay for cell viability in a variety of virus-host systems, including HSV and HIV. Details of the procedure are provided in the toxicity table legends.
  • Test compounds were received as solid material at room temperature in good package condition. Test compounds were solubilized in 100% tissue culture grade DMSO (Sigma, Corp.) at 100 mM (DAPD, FTC, L-FMAU) or 50 mM (DXG). Daily aliquots of test compounds were made in individual tubes and stored at ⁇ 20° C. On each day of treatment, daily aliquots of the test compounds were suspended into culture medium at room temperature, and immediately added to the cell cultures.
  • Toxicity analysis were performed in 96-well flat bottomed tissue culture plates.
  • Cells for the toxicity analyses were cultured and treated with test compounds with the same schedule and under identical culture conditions as used for the antiviral evaluations. Each compound was tested at 4 concentrations, each in triplicate cultures. Uptake of neutral red dye was used to determine the relative level of toxicity 24 hours following the last treatment.
  • the absorbance of internalized dye at 510 nM (A 510 ) was used for the quantative analysis. Values are presented as a percentage of the average A 510 values ( ⁇ standard deviations) in 9 separate cultures of untreated cells maintained on the same 96-well plate as the test compounds.
  • Combination treatments were conducted using the primary analysis format except that 6 serial 3-fold dilutions were used for each drug combination and a total of 8 separate cultures were used for each dilution of the combinations.
  • Compounds were mixed at molar ratios designed to give approximately equipotent antiviral effects based on the EC 90 values. Three different molar ratios were used for each combination to allow for variability in the estimates of relative potency. These molar ratios were maintained throughout the dilution series.
  • the corresponding monotherapies were conducted in parallel to the combination treatments using the standard primary assay format.
  • the SI, EC 50 , EC 90 , and CC 50 values reported for the combination treatments are those of the first compound listed for the combination mixture.
  • the concentrations and SI, EC 50 , EC 90 , and CC 50 values of the second compound in the mixture can be calculated using the molar ratio designated for that particular mixture. Further details on the design of combination analyses as conducted for this report can be found in B E Korba (1996) Antiviral Res . 29:49.
  • the experimental design was limited by either/or the toxicity of the more toxic compound in the mixture or the stock concentrations (e.g. related to the total volume of DMSO that could be added to the cultures without inducing toxicity due to DMSO and not the test compounds).
  • HBV DNA remained constant in the untreated cells over the challenge period.
  • the positive treatment controls 3TC (lamivudine) [(( ⁇ ) ⁇ ,L,2′,3′-dideoxy-3′ thiacytidine] and penciclovir [PCV] (both purchased from Moraveck Biochemicals, La Brea, Calif.), induced significant depressions of HBV DNA replication at the concentrations used.
  • TEST COMPOUNDS Test compound DAPD, FTC, DXG, and L-FMAU induced significant and selective depressions in extracellular (virion) HBV DNA levels produced by 2.2.15 cells.
  • the antiviral activity of DAPD was enhanced by co-treatment with FTC.
  • the antiviral activity of DAPD was synergistic at a 3:1 or a 1:1 molar ratio at all but the highest concentrations tested. As the relative concentration of FTC increased, the co-operative effects of the two agents decreased. At the 1:3 molar ratio, the two agents appeared to be antagonistic.
  • DAPD and PCV appeared to be antagonistic at all three molar ratios and at all concentrations.
  • DAPD and L-FMAU appeared to be antagonistic.
  • 1:3 molar ratio approximately equipotent potencies based on the EC 90 's
  • the interactions of the two agents were more complex.
  • DAPD and L-FMAU exhibited moderately synergistic to additive interactions at lower concentrations which progressed to increasingly more antagonistic interactions at higher concentrations. Subsequent testing, however, indicated that DAPD is synergistic with L-FMAU.
  • the antiviral activity of L-FMAU was enhanced by co-treatment with FTC.
  • the antiviral activity of DAPD and FTC was moderately synergistic at a 3:1 or a 10:1 molar ratio at all but the highest concentrations tested. As the relative concentration of FTC increased, the cooperative effects of the two agents decreased. At the 1:1 molar ratio, the two agents appeared to be antagonistic.
  • the antiviral activity of L-FMAU was also enhanced by co-treatment with PCV.
  • the antiviral activity of DAPD and PCV was weakly synergistic at a 1:1 or a 1:3 molar ratio at all concentrations tested. As the relative concentration of PCV increased, the co-operative effects of the two agents decreased. At the 1:10 molar ratio, the two agents appeared to be antagonistic.
  • Test compounds were received as solid material at room temperature in good package condition. Test compounds were solubilized in 100% tissue culture grade DMSO (Sigma, Corp.) at 100 mM. Daily aliquots of test compounds were made in individual tubes and stored at ⁇ 20° C.
  • TEST COMPOUNDS Test compound FTC induced significant and selective depressions in extracellular (virion) HBV DNA levels produced by 2.2.15 cells.
  • the antiviral activity of FTC was enhanced by co-treatment with PCV.
  • the antiviral activity of the combination therapy was synergistic at all molar ratios tested. As the relative concentration of PCV increased, the cooperative effects of the two agents decreased.
  • Test compounds provided: PMEA, (-)- ⁇ -FTC, DAPD, L-FMAU DMVI assay controls: Untreated cells, 3TC (lamivudine)
  • test compounds except for bis-POM-PMEA were received as powdered material on dry ice in good package condition and stored at ⁇ 20° C.
  • Test compound bis-POM-PMEA was received as a 100 mM solution in DMSO.
  • Daily aliquots of test compounds were made in individual tubes and stored at ⁇ 20° C.
  • On each day of treatment, daily aliquots of the test compounds were suspended into culture medium at room temperature, and immediately added to the cell cultures.
  • test compounds induced significant and selective depressions in extracellular (virion) HBV DNA levels produced by 2.215 cells.
  • potencies of test compounds ( ⁇ )- ⁇ -FTC, DAPD and L-FMAU were lower than that observed in earlier analyses. This was most apparent for DAPD and L-FMAU.
  • BP-PMEA+DAPD The mixture of BP-PMEA and DAPD produced an anti-HBV activity that was moderately to weakly synergistic at lower relative concentrations of DAPD and moderately to strongly antagonistic at higher relative concentrations of DAPD.
  • the potency of the mixtures also decreased as the relative proportion of DAPD increased. Relatively more synergistic interactions were observe at the lower concentrations of the different mixtures.
  • BP-PMEA+L-FMAU The mixture of BP-PMEA and L-FMAU produced an anti-HBV activity that was moderately synergistic at lower relative concentrations of L-FMAU and additive to weakly antagonistic at higher relative concentrations of L-FMAU.
  • the potency of the mixtures was lowest at the highest relative concentration L-FMAU (1:1 molar ratio). The most favorable overall interactions were observed at the 3:1 molar ratio of the two compounds. Relatively more synergistic interactions were observed at the lower concentrations of different mixtures.
  • Humans suffering from any of the diseases described herein arising out of HBV infection can be treated by administering to the patient an effective amount of identified synergistic anti-HBV agents in a combination or independent dosage form for combination or alternation therapy, optionally in a pharmaceutically acceptable carrier or diluent.
  • the active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid or solid form.
  • the active compounds are included in the pharmaceutically acceptable carriers or diluents in amounts sufficient to deliver to a patient a therapeutically effective amount of compound to inhibit viral replication in vivo, especially HBV replication, without causing serious toxic effects in the patient treated.
  • inhibitory amount is meant an amount of active ingredient sufficient to exert an inhibitory effect as measured by, for example, an assay such as the ones described herein.
  • a preferred dose of the compound for all the above-mentioned conditions will be in the range from about 1 to 50 mg/kg, preferably 1 to 20 mg/kg, of body weight per day, more generally 0.1 to about 100 mg per kilogram body weight of the recipient per day.
  • the effective dosage range of the pharmaceutically acceptable derivatives can be calculated based on the weight of the parent nucleoside to be delivered. If the derivative exhibits activity in itself, the effective dosage can be estimated as above using the weight of the derivative, or by other means known to those skilled in the art.
  • the compound is conveniently administered in unit or any suitable dosage form, including but not limited to one containing 7 to 3000 mg, preferably 70 to 1400 mg of active ingredient per unit dosage form.
  • An oral dosage of 50-1000 mg is usually convenient, more typically 50-300 mg.
  • the active ingredient should be administered to achieve peak plasma concentrations of the active compound of from about 0.2 to 70 ⁇ M, preferably about 1.0 to 10 ⁇ M. This may be achieved, for example, by the intravenous injection of a 0.1 to 5% solution of the active ingredient, optionally in saline, or administered as a bolus of the active ingredient.
  • the concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
  • the active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
  • Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets.
  • the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
  • the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
  • a binder such as microcrystalline cellulose, gum tragacanth or gelatin
  • an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
  • a lubricant such as magnesium stearate or Sterotes
  • a glidant such as colloidal silicon dioxide
  • the compound can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like.
  • a syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
  • the compound or a pharmaceutically acceptable derivative or salt thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, antiinflammatories, protease inhibitors, or other nucleoside or nonnucleoside antiviral agents, as discussed in more detail above.
  • Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; cheating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • the parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • preferred carriers are physiological saline or phosphate buffered saline (PBS).
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • a controlled release formulation including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation.
  • Liposomal suspensions are also preferred as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container.
  • appropriate lipid(s) such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol
  • aqueous solution of the active compound or its monophosphate, diphosphate, and/or triiphosphate derivatives is then introduced into the container.
  • the container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Plural Heterocyclic Compounds (AREA)
US09/432,247 1998-11-02 1999-11-02 Combination therapy to treat hepatitis B virus Expired - Lifetime US6528515B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/432,247 US6528515B1 (en) 1998-11-02 1999-11-02 Combination therapy to treat hepatitis B virus
US10/374,363 US7572800B2 (en) 1998-11-02 2003-02-25 Combination therapy to treat hepatitis B virus
US12/483,800 US20090247487A1 (en) 1998-11-02 2009-06-12 Combination Therapy to Treat Hepatitis B Virus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10666498P 1998-11-02 1998-11-02
US09/432,247 US6528515B1 (en) 1998-11-02 1999-11-02 Combination therapy to treat hepatitis B virus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/374,363 Continuation US7572800B2 (en) 1998-11-02 2003-02-25 Combination therapy to treat hepatitis B virus

Publications (1)

Publication Number Publication Date
US6528515B1 true US6528515B1 (en) 2003-03-04

Family

ID=22312611

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/432,247 Expired - Lifetime US6528515B1 (en) 1998-11-02 1999-11-02 Combination therapy to treat hepatitis B virus
US10/374,363 Expired - Fee Related US7572800B2 (en) 1998-11-02 2003-02-25 Combination therapy to treat hepatitis B virus
US12/483,800 Abandoned US20090247487A1 (en) 1998-11-02 2009-06-12 Combination Therapy to Treat Hepatitis B Virus

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/374,363 Expired - Fee Related US7572800B2 (en) 1998-11-02 2003-02-25 Combination therapy to treat hepatitis B virus
US12/483,800 Abandoned US20090247487A1 (en) 1998-11-02 2009-06-12 Combination Therapy to Treat Hepatitis B Virus

Country Status (16)

Country Link
US (3) US6528515B1 (ko)
EP (3) EP1124562B1 (ko)
JP (2) JP2002528508A (ko)
KR (1) KR100632520B1 (ko)
CN (3) CN1891221A (ko)
AT (3) ATE408410T1 (ko)
AU (1) AU1810600A (ko)
CY (2) CY1108635T1 (ko)
DE (3) DE69939604D1 (ko)
DK (2) DK1380303T3 (ko)
ES (3) ES2338642T3 (ko)
HK (1) HK1062146A1 (ko)
ID (1) ID29471A (ko)
IL (3) IL142910A0 (ko)
PT (2) PT1382343E (ko)
WO (1) WO2000025797A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050196379A1 (en) * 2002-07-15 2005-09-08 Furman Philip A. Combination therapies with L-FMAU for the treatment of hepatitis B virus infection
US20090247487A1 (en) * 1998-11-02 2009-10-01 Gilead Sciences, Inc. Combination Therapy to Treat Hepatitis B Virus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2345099T3 (es) * 2002-06-19 2010-09-15 Fideline Feromonas tranquilizantes aviarias para disminuir el estres, la ansiedad y la agresividad.
AU2004206827A1 (en) * 2003-01-14 2004-08-05 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
TWI471145B (zh) 2005-06-13 2015-02-01 Bristol Myers Squibb & Gilead Sciences Llc 單一式藥學劑量型
TWI375560B (en) 2005-06-13 2012-11-01 Gilead Sciences Inc Composition comprising dry granulated emtricitabine and tenofovir df and method for making the same
KR20100127180A (ko) * 2009-05-25 2010-12-03 부광약품 주식회사 클레부딘 및 아데포비어 디피복실을 함유하는 만성 b형 간염 치료용 조성물
SG185545A1 (en) * 2010-05-18 2012-12-28 Bukwang Pharm Co Ltd Composition for treating chronic hepatitis b, containing clevudine and adefovir dipivoxil
MX2013006127A (es) 2010-12-10 2013-09-26 Sigmapharm Lab Llc Composiciones sumamente estables de analogos nucleotidicoas oralmente activos o profarmacos analogos nucleotidicos oralmente activos.
WO2016180691A1 (en) * 2015-05-08 2016-11-17 F. Hoffmann-La Roche Ag Novel oxathiolane carboxylic acids and derivatives for the treatment and prophylaxis of virus infection
CN105943547B (zh) * 2016-05-23 2018-01-19 北京慧宝源生物技术股份有限公司 抗hbv的药物组合物及其应用

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141927A2 (en) 1983-08-18 1985-05-22 Beecham Group Plc Antiviral guanine derivatives
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
EP0253412A2 (en) 1986-07-18 1988-01-20 Ceskoslovenska akademie ved N-Phosphonylmethoxyalkyl derivatives of pyrimidine and purine bases, methods for their preparation and pharmaceutical compositions therefrom with antiviral activity
WO1989002733A1 (en) 1987-09-22 1989-04-06 The Regents Of The University Of California Liposomal nucleoside analogues for treating aids
WO1990000555A1 (en) 1988-07-07 1990-01-25 Vical, Inc. Lipid derivatives of antiviral nucleosides, liposomal incorporation and method of use
EP0382526A2 (en) 1989-02-08 1990-08-16 Biochem Pharma Inc Substituted -1,3-oxathiolanes with antiviral properties
WO1991017159A1 (en) 1990-05-02 1991-11-14 Iaf Biochem International Inc. 1,3-oxathiolane nucleoside analogues
WO1991016920A1 (en) 1990-05-07 1991-11-14 Vical, Inc. Lipid prodrugs of salicylate and nonsteroidal anti-inflammatory drugs
WO1991018914A1 (en) 1990-05-29 1991-12-12 Vical, Inc. Synthesis of glycerol di- and triphosphate derivatives
WO1991019721A1 (en) 1990-06-13 1991-12-26 Arnold Glazier Phosphorous produgs
EP0494119A1 (en) 1991-01-03 1992-07-08 Biochem Pharma Inc. Use of 1,3-oxathiolane nucleoside analogues in the treatment of hepatitis B
US5149794A (en) 1990-11-01 1992-09-22 State Of Oregon Covalent lipid-drug conjugates for drug targeting
WO1992018517A1 (en) 1991-04-17 1992-10-29 Yale University Method of treating or preventing hepatitis b virus
EP0515144A1 (en) 1991-05-20 1992-11-25 Biochem Pharma Inc. 1,3-Oxathiolanes useful in the treatment of hepatitis
US5179104A (en) 1990-12-05 1993-01-12 University Of Georgia Research Foundation, Inc. Process for the preparation of enantiomerically pure β-D-(-)-dioxolane-nucleosides
WO1993000910A1 (en) 1991-07-12 1993-01-21 Vical, Inc. Antiviral liponucleosides: treatment of hepatitis b
US5194654A (en) 1989-11-22 1993-03-16 Vical, Inc. Lipid derivatives of phosphonoacids for liposomal incorporation and method of use
US5204466A (en) 1990-02-01 1993-04-20 Emory University Method and compositions for the synthesis of bch-189 and related compounds
US5234913A (en) 1991-03-06 1993-08-10 Burroughs Wellcome Co. Antiviral nucleoside combination
US5256641A (en) 1990-11-01 1993-10-26 State Of Oregon Covalent polar lipid-peptide conjugates for immunological targeting
WO1994009793A1 (en) 1992-10-28 1994-05-11 Emory University ENANTIOMERICALLY PURE β-D-DIOXOLANE NUCLEOSIDES WITH SELECTIVE ANTI-HEPATITIS B VIRUS ACTIVITY
WO1994026273A1 (en) 1993-05-12 1994-11-24 Hostetler Karl Y Acyclovir derivatives for topical use
US5411947A (en) 1989-06-28 1995-05-02 Vestar, Inc. Method of converting a drug to an orally available form by covalently bonding a lipid to the drug
WO1995020595A1 (en) 1994-01-28 1995-08-03 University Of Georgia Research Foundation, Inc. L-nucleosides for the treatment of hepatitis b-virus and epstein-bar virus
US5463092A (en) 1989-11-22 1995-10-31 Vestar, Inc. Lipid derivatives of phosphonacids for liposomal incorporation and method of use
US5538975A (en) 1991-08-01 1996-07-23 Biochem Pharma, Inc. 1,3-oxathiolane nucleoside compounds and compositions
US5543391A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Covalent microparticle-drug conjugates for biological targeting
US5543389A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University, A Non Profit Organization Covalent polar lipid-peptide conjugates for use in salves
US5554728A (en) 1991-07-23 1996-09-10 Nexstar Pharmaceuticals, Inc. Lipid conjugates of therapeutic peptides and protease inhibitors
US5674849A (en) 1990-10-24 1997-10-07 Allelix Biopharmaceuticals Inc. Anti-viral compositions
US5684153A (en) 1984-08-16 1997-11-04 Beecham Group Plc Process for the preparation of purine derivatives
US5700937A (en) 1990-02-01 1997-12-23 Emory University Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US5728575A (en) 1990-02-01 1998-03-17 Emory University Method of resolution of 1,3-oxathiolane nucleoside enantiomers
US5756478A (en) 1995-03-16 1998-05-26 Yale University Method for reducing toxicity of D-nucleoside analogs with L-nucleosides
WO1998023285A1 (en) 1996-11-29 1998-06-04 Smithkline Beecham Plc Use of a combination of penciclovir and alpha-interferon in the manufacture of a medicament for the treatment of hepatitis b
US5767122A (en) 1990-12-05 1998-06-16 Emory University Enantiomerically pure β-d-dioxolane nucleosides
US5808040A (en) 1995-01-30 1998-09-15 Yale University L-nucleosides incorporated into polymeric structure for stabilization of oligonucleotides
US5914331A (en) 1990-02-01 1999-06-22 Emory University Antiviral activity and resolution of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane
US6071922A (en) * 1997-03-19 2000-06-06 Emory University Synthesis, anti-human immunodeficiency virus, and anti-hepatitis B virus activities of 1,3-oxaselenolane nucleosides
US6177435B1 (en) 1992-05-13 2001-01-23 Glaxo Wellcome Inc. Therapeutic combinations

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8904855D0 (en) * 1989-03-03 1989-04-12 Beecham Group Plc Pharmaceutical treatment
US5674869A (en) * 1990-07-07 1997-10-07 Beecham Group Plc Pharmaceutical treatment
US5696277A (en) 1994-11-15 1997-12-09 Karl Y. Hostetler Antiviral prodrugs
US5703058A (en) * 1995-01-27 1997-12-30 Emory University Compositions containing 5-fluoro-2',3'-didehydro-2',3'-dideoxycytidine or a mono-, di-, or triphosphate thereof and a second antiviral agent
CN1891221A (zh) * 1998-11-02 2007-01-10 三角药物公司 对乙型肝炎病毒的联合治疗

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
EP0141927A2 (en) 1983-08-18 1985-05-22 Beecham Group Plc Antiviral guanine derivatives
US5075445A (en) 1983-08-18 1991-12-24 Beecham Group P.L.C. Guanine derivatives
US5684153A (en) 1984-08-16 1997-11-04 Beecham Group Plc Process for the preparation of purine derivatives
EP0253412A2 (en) 1986-07-18 1988-01-20 Ceskoslovenska akademie ved N-Phosphonylmethoxyalkyl derivatives of pyrimidine and purine bases, methods for their preparation and pharmaceutical compositions therefrom with antiviral activity
US5142051A (en) 1986-07-18 1992-08-25 Ceskoslovenska Akademie Ved N-phosphonylmethoxyalkyl derivatives of pyrimidine and purine bases and a therapeutical composition therefrom with antiviral activity
US5641763A (en) 1986-07-18 1997-06-24 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic N-phosphonylmethoxyalkyl derivatives of pyrimdine and purine bases and a therapeutical composition therefrom with antiviral activity
WO1989002733A1 (en) 1987-09-22 1989-04-06 The Regents Of The University Of California Liposomal nucleoside analogues for treating aids
WO1990000555A1 (en) 1988-07-07 1990-01-25 Vical, Inc. Lipid derivatives of antiviral nucleosides, liposomal incorporation and method of use
US5223263A (en) 1988-07-07 1993-06-29 Vical, Inc. Liponucleotide-containing liposomes
EP0711771A2 (en) 1989-02-08 1996-05-15 Biochem Pharma Inc. Substituted-1,3-oxathiolanes with antiviral properties
EP0382526A2 (en) 1989-02-08 1990-08-16 Biochem Pharma Inc Substituted -1,3-oxathiolanes with antiviral properties
US5411947A (en) 1989-06-28 1995-05-02 Vestar, Inc. Method of converting a drug to an orally available form by covalently bonding a lipid to the drug
US5463092A (en) 1989-11-22 1995-10-31 Vestar, Inc. Lipid derivatives of phosphonacids for liposomal incorporation and method of use
US5194654A (en) 1989-11-22 1993-03-16 Vical, Inc. Lipid derivatives of phosphonoacids for liposomal incorporation and method of use
US5728575A (en) 1990-02-01 1998-03-17 Emory University Method of resolution of 1,3-oxathiolane nucleoside enantiomers
US5914331A (en) 1990-02-01 1999-06-22 Emory University Antiviral activity and resolution of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane
US5700937A (en) 1990-02-01 1997-12-23 Emory University Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US5814639A (en) 1990-02-01 1998-09-29 Emory University Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US5204466A (en) 1990-02-01 1993-04-20 Emory University Method and compositions for the synthesis of bch-189 and related compounds
US5827727A (en) 1990-02-01 1998-10-27 Emory University Method of resolution of 1,3-oxathiolane nucleoside enantiomers
US5539116A (en) 1990-02-01 1996-07-23 Emory University Method and compositions for the synthesis of BCH-189 and related compounds
WO1991017159A1 (en) 1990-05-02 1991-11-14 Iaf Biochem International Inc. 1,3-oxathiolane nucleoside analogues
WO1991016920A1 (en) 1990-05-07 1991-11-14 Vical, Inc. Lipid prodrugs of salicylate and nonsteroidal anti-inflammatory drugs
WO1991018914A1 (en) 1990-05-29 1991-12-12 Vical, Inc. Synthesis of glycerol di- and triphosphate derivatives
WO1991019721A1 (en) 1990-06-13 1991-12-26 Arnold Glazier Phosphorous produgs
US5674849A (en) 1990-10-24 1997-10-07 Allelix Biopharmaceuticals Inc. Anti-viral compositions
US5256641A (en) 1990-11-01 1993-10-26 State Of Oregon Covalent polar lipid-peptide conjugates for immunological targeting
US5149794A (en) 1990-11-01 1992-09-22 State Of Oregon Covalent lipid-drug conjugates for drug targeting
US5543389A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University, A Non Profit Organization Covalent polar lipid-peptide conjugates for use in salves
US5543390A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Covalent microparticle-drug conjugates for biological targeting
US5543391A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Covalent microparticle-drug conjugates for biological targeting
US5444063A (en) 1990-12-05 1995-08-22 Emory University Enantiomerically pure β-D-dioxolane nucleosides with selective anti-Hepatitis B virus activity
US5767122A (en) 1990-12-05 1998-06-16 Emory University Enantiomerically pure β-d-dioxolane nucleosides
US5179104A (en) 1990-12-05 1993-01-12 University Of Georgia Research Foundation, Inc. Process for the preparation of enantiomerically pure β-D-(-)-dioxolane-nucleosides
US5684010A (en) 1990-12-05 1997-11-04 Emory University Enantiomerically pure β-D-dioxolane nucleosides with selective anti-hepatitis B virus activity
EP0494119A1 (en) 1991-01-03 1992-07-08 Biochem Pharma Inc. Use of 1,3-oxathiolane nucleoside analogues in the treatment of hepatitis B
US5234913A (en) 1991-03-06 1993-08-10 Burroughs Wellcome Co. Antiviral nucleoside combination
WO1992018517A1 (en) 1991-04-17 1992-10-29 Yale University Method of treating or preventing hepatitis b virus
US5486520A (en) 1991-05-20 1996-01-23 Biochempharma, Inc. 1,3-oxathiolanes useful in the treatment of hepatitis
EP0515144A1 (en) 1991-05-20 1992-11-25 Biochem Pharma Inc. 1,3-Oxathiolanes useful in the treatment of hepatitis
WO1993000910A1 (en) 1991-07-12 1993-01-21 Vical, Inc. Antiviral liponucleosides: treatment of hepatitis b
US5554728A (en) 1991-07-23 1996-09-10 Nexstar Pharmaceuticals, Inc. Lipid conjugates of therapeutic peptides and protease inhibitors
US5618820A (en) 1991-08-01 1997-04-08 Biochem Pharma, Inc. 1,3-oxathiolane nucleoside analogues and methods for using same
US5538975A (en) 1991-08-01 1996-07-23 Biochem Pharma, Inc. 1,3-oxathiolane nucleoside compounds and compositions
US6177435B1 (en) 1992-05-13 2001-01-23 Glaxo Wellcome Inc. Therapeutic combinations
WO1994009793A1 (en) 1992-10-28 1994-05-11 Emory University ENANTIOMERICALLY PURE β-D-DIOXOLANE NUCLEOSIDES WITH SELECTIVE ANTI-HEPATITIS B VIRUS ACTIVITY
WO1994026273A1 (en) 1993-05-12 1994-11-24 Hostetler Karl Y Acyclovir derivatives for topical use
US5565438A (en) 1994-01-28 1996-10-15 University Of Ga Research Foundation L-nucleosides for the treatment of epstein-bar virus
US5567688A (en) 1994-01-28 1996-10-22 Univ. Of Ga Research Foundation L-nucleosides for the treatment of hepatitis B-virus
WO1995020595A1 (en) 1994-01-28 1995-08-03 University Of Georgia Research Foundation, Inc. L-nucleosides for the treatment of hepatitis b-virus and epstein-bar virus
US5587362A (en) 1994-01-28 1996-12-24 Univ. Of Ga Research Foundation L-nucleosides
US5808040A (en) 1995-01-30 1998-09-15 Yale University L-nucleosides incorporated into polymeric structure for stabilization of oligonucleotides
US5756478A (en) 1995-03-16 1998-05-26 Yale University Method for reducing toxicity of D-nucleoside analogs with L-nucleosides
US5869461A (en) 1995-03-16 1999-02-09 Yale University Reducing toxicity of L-nucleosides with D-nucleosides
WO1998023285A1 (en) 1996-11-29 1998-06-04 Smithkline Beecham Plc Use of a combination of penciclovir and alpha-interferon in the manufacture of a medicament for the treatment of hepatitis b
US6071922A (en) * 1997-03-19 2000-06-06 Emory University Synthesis, anti-human immunodeficiency virus, and anti-hepatitis B virus activities of 1,3-oxaselenolane nucleosides

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
Chang, et al., "Deoxycytidine Deaminase-resistant Stereosomer Is the Active Form of (�)-2',3'-Dideoxy-3'-thiacytidine in the Inhibition of Hepatitis B Virus Replication", Journal of Biological Chemistry, vol. 267(20), 13938-13942 (1992).
Chang, et al., "Deoxycytidine Deaminase-resistant Stereosomer Is the Active Form of (±)-2′,3′-Dideoxy-3′-thiacytidine in the Inhibition of Hepatitis B Virus Replication", Journal of Biological Chemistry, vol. 267(20), 13938-13942 (1992).
Davisson, et al., "Synthesis of Nucleotide 5′-Diphosphates from 5′-0-Tosyl Nucleosides", J. Orig. Chem 52(9), 1794-1801 (1987).
Davisson, et al., "Synthesis of Nucleotide 5'-Diphosphates from 5'-0-Tosyl Nucleosides", J. Orig. Chem 52(9), 1794-1801 (1987).
Furman, et al., "The Anti-Hepatitis B Virus Activities, Cytotoxicities, and Anabolic Profiles of the (-) and (+) Enantiomers of cis-5-Fluoro-1-[2-(Hydroxymethyl)-1,3-oxathiolane-5-yl] Cytosine" Antimicrobial Agents and Chemotherapy, Dec. 1992, p. 2686-2692.
Furman, et al., "The Anti-Hepatitis B Virus Activities, Cytotoxicities, and Anabolic Profiles of the (−) and (+) Enantiomers of cis-5-Fluoro-1-[2-(Hydroxymethyl)-1,3-oxathiolane-5-yl] Cytosine" Antimicrobial Agents and Chemotherapy, Dec. 1992, p. 2686-2692.
Hoard, et al., "Conversion of Mono- and Oligodeoxyribonucleotides to 5′-Triphosphates", J. Am. Chem. Soc., 87(8), 1785-1788 (1965).
Hoard, et al., "Conversion of Mono- and Oligodeoxyribonucleotides to 5'-Triphosphates", J. Am. Chem. Soc., 87(8), 1785-1788 (1965).
Imai, et al., "Studies on Phosphorylation, IV. Selective Phosphorylation of the Primary Hydroxyl Group in Nucleosides", J. Org. Chem., 34(6), 1547-1550 (Jun. 1969).
Korba and Gerin, "Use of a standardized cell culture assay activities of nucleoside analogs against hepatitis B virus replication", Antiviral Res. 19: 55-70 (1992).
Korba, "In vitro evaluation of combination therapies against hepatitis B virus replication", Antiviral Res. 29: 49-51 (1996).
Medline Abstract, AN 96300556, 1996, Korba et al.* *
Medline Abstract, AN 97271965, 1997, Kruger et al.* *
Migyoung, L "Dioxolane Cytosine Nucleosides as Anti-Hepatitis B Agents" Bioorganic & Medicinal C Chemistry Letters, 5, 17 pp 2011-2014, 1995.
R. Jones and N. Bischofberger, "Minireview: nucleotide prodrugs", Antiviral Research, 27 (1995) 1-17.
Von Janta-Lipinski et al., "Newly Synthesized L-Enantiomers of 3′Fluoro-Modified B-2′-Deoxyribonucleoside 5′-Triphosphates Inhibit Hepatitis B DNA Polymerases But Not the Five Cellular DNA Polymerases a, B, v, d, and e Nor HIV-1 Reverse Transcriptase", J. Med. Chem., 1998, 41,2040-2046.
Von Janta-Lipinski et al., "Newly Synthesized L-Enantiomers of 3'Fluoro-Modified B-2'-Deoxyribonucleoside 5'-Triphosphates Inhibit Hepatitis B DNA Polymerases But Not the Five Cellular DNA Polymerases a, B, v, d, and e Nor HIV-1 Reverse Transcriptase", J. Med. Chem., 1998, 41,2040-2046.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090247487A1 (en) * 1998-11-02 2009-10-01 Gilead Sciences, Inc. Combination Therapy to Treat Hepatitis B Virus
US20050196379A1 (en) * 2002-07-15 2005-09-08 Furman Philip A. Combination therapies with L-FMAU for the treatment of hepatitis B virus infection

Also Published As

Publication number Publication date
JP2002528508A (ja) 2002-09-03
EP1380303B1 (en) 2008-09-17
DK1382343T3 (da) 2010-04-26
DE69923338D1 (de) 2005-02-24
ATE287268T1 (de) 2005-02-15
DE69942042D1 (de) 2010-04-01
DE69923338T2 (de) 2006-04-06
CY1108635T1 (el) 2014-04-09
CN1173705C (zh) 2004-11-03
DE69939604D1 (de) 2008-10-30
JP2011079840A (ja) 2011-04-21
ATE457734T1 (de) 2010-03-15
EP1382343A1 (en) 2004-01-21
CN1891221A (zh) 2007-01-10
PT1380303E (pt) 2008-11-03
EP1124562A1 (en) 2001-08-22
IL142910A0 (en) 2002-04-21
CN1666742A (zh) 2005-09-14
CN1329497A (zh) 2002-01-02
ID29471A (id) 2001-08-30
WO2000025797A1 (en) 2000-05-11
CY1110629T1 (el) 2015-04-29
PT1382343E (pt) 2010-03-10
EP1124562B1 (en) 2005-01-19
DK1380303T3 (da) 2008-12-01
ATE408410T1 (de) 2008-10-15
KR100632520B1 (ko) 2006-10-09
ES2237189T3 (es) 2005-07-16
US7572800B2 (en) 2009-08-11
AU1810600A (en) 2000-05-22
IL193148A (en) 2011-09-27
EP1382343B1 (en) 2010-02-17
IL142910A (en) 2009-06-15
KR20010082282A (ko) 2001-08-29
US20090247487A1 (en) 2009-10-01
HK1062146A1 (en) 2004-10-21
ES2338642T3 (es) 2010-05-11
IL193148A0 (en) 2009-02-11
EP1380303A1 (en) 2004-01-14
US20030158150A1 (en) 2003-08-21
ES2314157T3 (es) 2009-03-16

Similar Documents

Publication Publication Date Title
US20090247487A1 (en) Combination Therapy to Treat Hepatitis B Virus
US6245749B1 (en) Nucleosides with anti-hepatitis B virus activity
EP0666749B1 (en) ENANTIOMERICALLY PURE beta-D-DIOXOLANE NUCLEOSIDES WITH SELECTIVE ANTI-HEPATITIS B VIRUS ACTIVITY
US6525033B1 (en) Nucleosides with anti-hepatitis B virus activity
US20080293668A1 (en) [5-carboxamido or 5-fluoro]-[2',3'-unsaturated or 3'-modified]-pyrimidine nucleosides
ZA200210100B (en) Methods for treating hepatitis delta virus infection with beta-L-2' deoxy-nucleosides.
US9849143B2 (en) Broad spectrum antiviral and methods of use
CN114259492A (zh) 硝唑尼特在治疗乙肝中的应用
US20050113321A1 (en) DAPD combination therapy with inosine monophosphate dehydrogenase inhibitor
US11945833B2 (en) Prodrugs of L-BHDU and methods of treating viral infections

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: GILEAD SCIENCES, INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:TRIANGLE PHARMACEUTICALS, INC.;REEL/FRAME:014287/0567

Effective date: 20031212

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11