US6391532B1 - Photographic paper containing calcium carbonate - Google Patents
Photographic paper containing calcium carbonate Download PDFInfo
- Publication number
- US6391532B1 US6391532B1 US09/545,213 US54521300A US6391532B1 US 6391532 B1 US6391532 B1 US 6391532B1 US 54521300 A US54521300 A US 54521300A US 6391532 B1 US6391532 B1 US 6391532B1
- Authority
- US
- United States
- Prior art keywords
- paper
- calcium carbonate
- photographic
- dye
- preferred
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 title claims abstract description 107
- 229910000019 calcium carbonate Inorganic materials 0.000 title claims abstract description 51
- 239000000835 fiber Substances 0.000 claims abstract description 43
- 230000003746 surface roughness Effects 0.000 claims abstract description 16
- -1 silver halide Chemical class 0.000 claims description 178
- 229910052709 silver Inorganic materials 0.000 claims description 78
- 239000004332 silver Substances 0.000 claims description 78
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 46
- 229920000642 polymer Polymers 0.000 claims description 22
- 229920000728 polyester Polymers 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 11
- 239000011347 resin Substances 0.000 claims description 11
- 229920000098 polyolefin Polymers 0.000 claims description 10
- 230000003595 spectral effect Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000004078 waterproofing Methods 0.000 claims description 7
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 229920000573 polyethylene Polymers 0.000 claims description 5
- 239000004408 titanium dioxide Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 239000000123 paper Substances 0.000 description 181
- 239000010410 layer Substances 0.000 description 52
- 239000000975 dye Substances 0.000 description 50
- 238000003384 imaging method Methods 0.000 description 47
- 235000010216 calcium carbonate Nutrition 0.000 description 43
- 239000003446 ligand Substances 0.000 description 43
- 238000000034 method Methods 0.000 description 40
- 239000002019 doping agent Substances 0.000 description 39
- 125000001424 substituent group Chemical group 0.000 description 37
- 239000002585 base Substances 0.000 description 35
- 239000000839 emulsion Substances 0.000 description 35
- 229920002678 cellulose Polymers 0.000 description 33
- 239000001913 cellulose Substances 0.000 description 33
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 30
- 125000004432 carbon atom Chemical group C* 0.000 description 26
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 25
- 125000000217 alkyl group Chemical group 0.000 description 25
- 239000003795 chemical substances by application Substances 0.000 description 22
- 239000000945 filler Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 21
- 125000003118 aryl group Chemical group 0.000 description 19
- 239000000203 mixture Substances 0.000 description 17
- 238000007639 printing Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 230000006872 improvement Effects 0.000 description 16
- 230000009467 reduction Effects 0.000 description 15
- 125000003545 alkoxy group Chemical group 0.000 description 13
- 238000003490 calendering Methods 0.000 description 13
- 239000013078 crystal Substances 0.000 description 13
- 125000000623 heterocyclic group Chemical group 0.000 description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 13
- 230000005855 radiation Effects 0.000 description 13
- 230000008901 benefit Effects 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- 239000000976 ink Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 239000003963 antioxidant agent Substances 0.000 description 11
- 235000006708 antioxidants Nutrition 0.000 description 11
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 11
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 125000004093 cyano group Chemical group *C#N 0.000 description 9
- 229910052736 halogen Inorganic materials 0.000 description 9
- 229910052741 iridium Inorganic materials 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 238000007670 refining Methods 0.000 description 9
- 125000004104 aryloxy group Chemical group 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000011160 research Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 6
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 6
- 125000000129 anionic group Chemical group 0.000 description 6
- 125000001309 chloro group Chemical group Cl* 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 6
- 229930182817 methionine Natural products 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 150000003557 thiazoles Chemical class 0.000 description 6
- 239000001043 yellow dye Substances 0.000 description 6
- RLYUNPNLXMSXAX-UHFFFAOYSA-N 5-methylthiazole Chemical compound CC1=CN=CS1 RLYUNPNLXMSXAX-UHFFFAOYSA-N 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000013110 organic ligand Substances 0.000 description 5
- 239000001301 oxygen Chemical group 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 125000000547 substituted alkyl group Chemical group 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910052717 sulfur Chemical group 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 206010070834 Sensitisation Diseases 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000004423 acyloxy group Chemical group 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 125000005115 alkyl carbamoyl group Chemical group 0.000 description 4
- 125000005422 alkyl sulfonamido group Chemical group 0.000 description 4
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 4
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229920005672 polyolefin resin Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000008313 sensitization Effects 0.000 description 4
- 238000004513 sizing Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 239000011593 sulfur Chemical group 0.000 description 4
- 241001479434 Agfa Species 0.000 description 3
- 229920003043 Cellulose fiber Polymers 0.000 description 3
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 description 3
- 125000005278 alkyl sulfonyloxy group Chemical group 0.000 description 3
- 125000005116 aryl carbamoyl group Chemical group 0.000 description 3
- 125000005421 aryl sulfonamido group Chemical group 0.000 description 3
- 125000005279 aryl sulfonyloxy group Chemical group 0.000 description 3
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000011121 hardwood Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- AJDUTMFFZHIJEM-UHFFFAOYSA-N n-(9,10-dioxoanthracen-1-yl)-4-[4-[[4-[4-[(9,10-dioxoanthracen-1-yl)carbamoyl]phenyl]phenyl]diazenyl]phenyl]benzamide Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2NC(=O)C(C=C1)=CC=C1C(C=C1)=CC=C1N=NC(C=C1)=CC=C1C(C=C1)=CC=C1C(=O)NC1=CC=CC2=C1C(=O)C1=CC=CC=C1C2=O AJDUTMFFZHIJEM-UHFFFAOYSA-N 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- RKMGAJGJIURJSJ-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidine Chemical compound CC1(C)CCCC(C)(C)N1 RKMGAJGJIURJSJ-UHFFFAOYSA-N 0.000 description 2
- GTOOAPLRWMOITA-UHFFFAOYSA-N 2-(4-amino-n-ethyl-3-methylanilino)ethyl hydrogen sulfate Chemical compound OS(=O)(=O)OCCN(CC)C1=CC=C(N)C(C)=C1 GTOOAPLRWMOITA-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229910021639 Iridium tetrachloride Inorganic materials 0.000 description 2
- BXUURYQQDJGIGA-UHFFFAOYSA-N N1C=NN2N=CC=C21 Chemical compound N1C=NN2N=CC=C21 BXUURYQQDJGIGA-UHFFFAOYSA-N 0.000 description 2
- UDFSJHJKINSRFV-UHFFFAOYSA-N N1N=CN2N=CC=C21 Chemical compound N1N=CN2N=CC=C21 UDFSJHJKINSRFV-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000012963 UV stabilizer Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- HOLVRJRSWZOAJU-UHFFFAOYSA-N [Ag].ICl Chemical compound [Ag].ICl HOLVRJRSWZOAJU-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 125000005162 aryl oxy carbonyl amino group Chemical group 0.000 description 2
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 2
- 150000003851 azoles Chemical class 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010893 electron trap Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000004773 frontier orbital Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 150000002443 hydroxylamines Chemical class 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 125000006678 phenoxycarbonyl group Chemical group 0.000 description 2
- 108091008695 photoreceptors Proteins 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 2
- 230000005070 ripening Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000011122 softwood Substances 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 238000007651 thermal printing Methods 0.000 description 2
- 125000004149 thio group Chemical group *S* 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- AYLDJQABCMPYEN-UHFFFAOYSA-N (4-azaniumylphenyl)-diethylazanium;sulfate Chemical compound OS(O)(=O)=O.CCN(CC)C1=CC=C(N)C=C1 AYLDJQABCMPYEN-UHFFFAOYSA-N 0.000 description 1
- TXVWTOBHDDIASC-UHFFFAOYSA-N 1,2-diphenylethene-1,2-diamine Chemical compound C=1C=CC=CC=1C(N)=C(N)C1=CC=CC=C1 TXVWTOBHDDIASC-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- JAAIPIWKKXCNOC-UHFFFAOYSA-N 1h-tetrazol-1-ium-5-thiolate Chemical compound SC1=NN=NN1 JAAIPIWKKXCNOC-UHFFFAOYSA-N 0.000 description 1
- WMVJWKURWRGJCI-UHFFFAOYSA-N 2,4-bis(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC=C(O)C(C(C)(C)CC)=C1 WMVJWKURWRGJCI-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- KRXBXCNTGQFLEN-UHFFFAOYSA-N 2-[(1,3-dihydroxy-4-phenylbutan-2-yl)-hydroxyamino]-4-phenylbutane-1,3-diol Chemical compound C=1C=CC=CC=1CC(O)C(CO)N(O)C(CO)C(O)CC1=CC=CC=C1 KRXBXCNTGQFLEN-UHFFFAOYSA-N 0.000 description 1
- CLTJWARXZZUZLT-UHFFFAOYSA-N 2-[4-(2-ethylhydrazinyl)phenyl]ethanol;sulfuric acid Chemical compound OS(O)(=O)=O.CCNNC1=CC=C(CCO)C=C1 CLTJWARXZZUZLT-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical class NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical class C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000004189 3,4-dichlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(Cl)C([H])=C1* 0.000 description 1
- GIJYZWJXXKQHME-UHFFFAOYSA-N 3-[(2,3-dihydroxy-2-methylpropyl)-hydroxyamino]-2-methylpropane-1,2-diol Chemical compound OCC(O)(C)CN(O)CC(C)(O)CO GIJYZWJXXKQHME-UHFFFAOYSA-N 0.000 description 1
- IDLCGKHZBNSVKN-UHFFFAOYSA-N 3-[2,3-dihydroxypropyl(hydroxy)amino]propane-1,2-diol Chemical compound OCC(O)CN(O)CC(O)CO IDLCGKHZBNSVKN-UHFFFAOYSA-N 0.000 description 1
- 125000004801 4-cyanophenyl group Chemical group [H]C1=C([H])C(C#N)=C([H])C([H])=C1* 0.000 description 1
- 125000002373 5 membered heterocyclic group Chemical group 0.000 description 1
- 125000003341 7 membered heterocyclic group Chemical group 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KKUKTXOBAWVSHC-UHFFFAOYSA-N Dimethylphosphate Chemical compound COP(O)(=O)OC KKUKTXOBAWVSHC-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- CWNSVVHTTQBGQB-UHFFFAOYSA-N N,N-Diethyldodecanamide Chemical compound CCCCCCCCCCCC(=O)N(CC)CC CWNSVVHTTQBGQB-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 241001422033 Thestylus Species 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- GTVWRXDRKAHEAD-UHFFFAOYSA-N Tris(2-ethylhexyl) phosphate Chemical compound CCCCC(CC)COP(=O)(OCC(CC)CCCC)OCC(CC)CCCC GTVWRXDRKAHEAD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical class NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000005153 alkyl sulfamoyl group Chemical group 0.000 description 1
- 125000005360 alkyl sulfoxide group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229940051880 analgesics and antipyretics pyrazolones Drugs 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000005129 aryl carbonyl group Chemical group 0.000 description 1
- 125000005142 aryl oxy sulfonyl group Chemical group 0.000 description 1
- 125000005362 aryl sulfone group Chemical group 0.000 description 1
- 125000005361 aryl sulfoxide group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 125000000043 benzamido group Chemical group [H]N([*])C(=O)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- RXOSMIXKSDDLLA-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) 2-butyl-2-[(3,5-ditert-butylphenyl)-hydroxymethyl]propanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)C(C(=O)OC1CC(C)(C)N(C)C(C)(C)C1)(CCCC)C(O)C1=CC(C(C)(C)C)=CC(C(C)(C)C)=C1 RXOSMIXKSDDLLA-UHFFFAOYSA-N 0.000 description 1
- RSOILICUEWXSLA-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(C)C(C)(C)C1 RSOILICUEWXSLA-UHFFFAOYSA-N 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BBZNRJSNWGDPAZ-UHFFFAOYSA-J calcium 1,3,2lambda2-dioxaplumbetan-4-one carbonate Chemical compound [Ca++].[Pb++].[O-]C([O-])=O.[O-]C([O-])=O BBZNRJSNWGDPAZ-UHFFFAOYSA-J 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012822 chemical development Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- QQVHEQUEHCEAKS-UHFFFAOYSA-N diundecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCC QQVHEQUEHCEAKS-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 125000006343 heptafluoro propyl group Chemical group 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005844 heterocyclyloxy group Chemical group 0.000 description 1
- 125000004468 heterocyclylthio group Chemical group 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000006626 methoxycarbonylamino group Chemical group 0.000 description 1
- 125000006216 methylsulfinyl group Chemical group [H]C([H])([H])S(*)=O 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- MFARGUPPFBTESX-UHFFFAOYSA-N n,n-dibutyldodecanamide Chemical compound CCCCCCCCCCCC(=O)N(CCCC)CCCC MFARGUPPFBTESX-UHFFFAOYSA-N 0.000 description 1
- PHUSZTNVOIISNY-UHFFFAOYSA-N n-[2-(4-amino-3-methylanilino)ethyl]methanesulfonamide;sulfuric acid Chemical compound OS(O)(=O)=O.CC1=CC(NCCNS(C)(=O)=O)=CC=C1N PHUSZTNVOIISNY-UHFFFAOYSA-N 0.000 description 1
- KUWCVCMJPABJDI-UHFFFAOYSA-N n-[2-(4-amino-n-ethyl-3-methylanilino)ethyl]methanesulfonamide;sulfuric acid;dihydrate Chemical compound O.O.OS(O)(=O)=O.OS(O)(=O)=O.OS(O)(=O)=O.CS(=O)(=O)NCCN(CC)C1=CC=C(N)C(C)=C1.CS(=O)(=O)NCCN(CC)C1=CC=C(N)C(C)=C1 KUWCVCMJPABJDI-UHFFFAOYSA-N 0.000 description 1
- NJHNNLREFCWCRT-UHFFFAOYSA-N n-[2-(4-amino-n-ethyl-3-methylanilino)ethyl]methanesulfonamide;sulfuric acid;hydrate Chemical compound O.OS(O)(=O)=O.OS(O)(=O)=O.OS(O)(=O)=O.CS(=O)(=O)NCCN(CC)C1=CC=C(N)C(C)=C1.CS(=O)(=O)NCCN(CC)C1=CC=C(N)C(C)=C1 NJHNNLREFCWCRT-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- 150000004989 p-phenylenediamines Chemical class 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- RWPGFSMJFRPDDP-UHFFFAOYSA-L potassium metabisulfite Chemical compound [K+].[K+].[O-]S(=O)S([O-])(=O)=O RWPGFSMJFRPDDP-UHFFFAOYSA-L 0.000 description 1
- 229940043349 potassium metabisulfite Drugs 0.000 description 1
- 235000010263 potassium metabisulphite Nutrition 0.000 description 1
- BHZRJJOHZFYXTO-UHFFFAOYSA-L potassium sulfite Chemical compound [K+].[K+].[O-]S([O-])=O BHZRJJOHZFYXTO-UHFFFAOYSA-L 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002577 pseudohalo group Chemical group 0.000 description 1
- 150000003216 pyrazines Chemical class 0.000 description 1
- MCSKRVKAXABJLX-UHFFFAOYSA-N pyrazolo[3,4-d]triazole Chemical class N1=NN=C2N=NC=C21 MCSKRVKAXABJLX-UHFFFAOYSA-N 0.000 description 1
- GZTPJDLYPMPRDF-UHFFFAOYSA-N pyrrolo[3,2-c]pyrazole Chemical compound N1=NC2=CC=NC2=C1 GZTPJDLYPMPRDF-UHFFFAOYSA-N 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- CRDYSYOERSZTHZ-UHFFFAOYSA-M selenocyanate Chemical compound [Se-]C#N CRDYSYOERSZTHZ-UHFFFAOYSA-M 0.000 description 1
- 125000001824 selenocyanato group Chemical group *[Se]C#N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000008542 thermal sensitivity Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 150000003549 thiazolines Chemical class 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/775—Photosensitive materials characterised by the base or auxiliary layers the base being of paper
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
- D21H17/675—Oxides, hydroxides or carbonates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
- D21H17/68—Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/775—Photosensitive materials characterised by the base or auxiliary layers the base being of paper
- G03C1/79—Macromolecular coatings or impregnations therefor, e.g. varnishes
Definitions
- This invention relates to imaging materials.
- it relates to base materials for photographic papers.
- the base paper has applied thereto a layer of polyolefin resin, typically polyethylene.
- This layer serves to provide waterproofing to the paper and provides a smooth surface on which the photosensitive layers are formed.
- the formation of the smooth surface is controlled by both the roughness of the chill roll where the polyolefin resin is cast, the amount of resin applied to the base paper surface, and the roughness of the base paper. Since the addition of polyolefin resin to improve the surface adds significant cost to the product it would be desirable if a smoother base paper could be made to improve the gloss of photographic paper. Sheet properties such as smoothness may be improved through the addition of inorganic particulate filler materials to paper making furnishes.
- inorganic particulate fillers such as clay, TiO 2 , calcium carbonate and talc, improves sheet properties because the particles fill in the void spaces within the fiber mat resulting in a denser, brighter, smoother, and more opaque sheet.
- paper can also be made cheaper because the filler used is less expensive than cellulose fiber.
- the choice of filler is also limited because of it's impact on sheet properties or because of its undesired presence in processing steps.
- the filler material should not be photographically active or degrade the performance of the photographic element in which it is utilized.
- Another object of this invention is to provide an imaging material that is more opaque.
- a paper comprising between 2 and 8% calcium carbonate in a paper having a surface roughness average of between 0.10 and 0.44 ⁇ m, a fiber length of the individual fibers of said paper of between 0.4 and 0.6 mm, and a density of between 1.05 and 1.20 grams/cc.
- the invention provides an improved paper for imaging elements. It particularly provides an improved paper for imaging elements that are smoother, are more opaque, and are low cost.
- the invention has numerous advantages over prior practices in the art.
- the invention provides an imaging element that has a smoother surface, increasing the commercial value of the imaging element. By improving the smoothness of the paper, the contrast range of the paper in improved as the blacks appear blacker and the whites appear whiter. Further, the invention provides an imaging paper that is lower cost as the basis weight of the paper and the paper chemistry are reduced compared to traditional photographic paper bases. Another advantage is the improved knife-wear as this base paper is cut in both the cross and machine directions in imaging converting applications such as the slitting of wide rolls of imaging support, punching of imaging elements as in photographic processing equipment and chopping as in photographic finishing equipment. A further advantage is the reduction in imaging element curl over a wide range of relative humidity when compared to standard imaging element products. By improving the opacity of the paper, the amount of undesirable show through when images are viewed by consumers is reduced.
- top means the side or toward the side of a photographic member bearing the imaging layers.
- bottom means the side or toward the side of the photographic member opposite from the side bearing the photosensitive imaging layers or developed image.
- face side means the side opposite the side of cellulose paper formed on a Fourdriner wire.
- wire side means the side of cellulose paper formed adjacent to the Fourdriner wire.
- calcium carbonate is added to the paper fiber prior to the paper being formed on the Fourdriner wire.
- Calcium carbonate is preferred as it has been shown to lower cost as the basis weight of the paper and the paper chemistry are reduced compared to traditional high quality paper bases.
- Another advantage of the addition of the calcium carbonate is the improved knife-wear as the paper is cut in both the cross and machine directions. Examples include converting applications such as the slitting of wide rolls of imaging support, punching of imaging elements as in photographic processing equipment and chopping as in photographic finishing equipment.
- a paper comprising between 2 and 8% calcium carbonate in a paper having a surface roughness average of between 0.13 and 0.44 ⁇ m, a fiber length of the individual fibers of said paper of between 0.4 and 0.58 mm, and a density of between 1.05 and 1.20 grams/cc is preferred.
- This paper is preferred because it is smooth, strong and opaque providing a high quality cellulose paper for use in as a reflective imaging output media where smoothness, tear resistance and opacity are perceptually preferred by consumers.
- the calcium carbonate addition between 2 and 8% provides opacity to the high quality, smooth cellulose paper of the invention. Calcium carbonate addition less than 1% does not sufficiently improve the opacity of the paper. Calcium carbonate addition above, 10% is difficult to manufacture.
- the most preferred amount of calcium carbonate added to the cellulose paper is between 3 and 5 weight percent. Between 3 and 5% cost, manufacturing efficiency and opacity have been found to be optimum.
- Calcium carbonate as a filler presents many advantages. It is not photographically active. It is compatible with the use of optical brightening agents. It can be manufactured to exacting specifications in size, shape, and purity. It is of low cost. However, calcium carbonate decomposes at acidic pH's limiting its use severely. For example, the use of calcium carbonate as a filler is typically limited to alkaline paper-making operations since calcium carbonate is known to decompose to calcium hydroxide and carbon dioxide when exposed to the acidic pH of acid paper-making operations. In photographic paper, in particular, the paper is exposed to developer solutions that typically are of pH 3.0. Any calcium carbonate present in the paper that is exposed to the developer solution is decomposed causing calcium ions to exit the paper and enter the developer solution bath.
- the calcium carbonate used may be either precipitated or ground.
- Examples of CaCO 3 that are acceptable for addition to the cellulose paper of this invention include the family of precipitated calcium carbonates sold under the tradenames Albacar, Albalfil, and Albagloss by Specialty Minerals, Inc. and the family of ground calcium carbonates sold under the tradenames Omyafil and Omyapaque by Omya, Inc and, in particular, Albacar HO made by Specialty Minerals, Inc., Omyafil made by Omya, Inc.
- the smooth, strong paper of the invention may also contain TiO 2 .
- TiO 2 has been shown to improve the opacity of the paper and provide a high quality white appearance.
- TiO 2 and calcium carbonate may also be used in combination.
- the preferred ratio of calcium carbonate addition to TiO 2 addition is between 2:1 and 6:1. Below a 2:1 ratio, the manufacturing and cost advantages of calcium carbonate are reduced. Above a 7:1 ratio, little improvement in paper whiteness or opacity is observed to justify the additional expense of the TiO 2 .
- the most preferred ratio of calcium carbonate addition to TiO 2 addition is 4:1. At a 4:1 ratio, the opacity, cost and whiteness have been found to be optimized for silver halide imaging systems.
- the TiO 2 used may be either anatase or rutile type. Examples of TiO 2 that are acceptable for addition of cellulose paper are DuPont Chemical Co. R101 rutile TiO 2 and DuPont Chemical Co. R104 rutile TiO 2 .
- Other pigments to improve photographic responses may also be used in this invention, pigments such as talc, kaolin, CaCO 3 , BaSO 4 , ZnO, TiO 2 , ZnS, and MgCO 3 are useful and may be used alone or in combination with TiO 2 .
- suitable cellulose papers must not interact with the light sensitive emulsion layer.
- a photographic grade paper used in this invention must be “smooth” as to not interfere with the viewing of images.
- the surface roughness of cellulose paper or Ra is a measure of relatively finely spaced surface irregularities on the paper.
- the surface roughness measurement is a measure of the maximum allowable roughness height expressed in units of micrometers and by use of the symbol R a .
- long wave length surface roughness or orange peel is of interest.
- a 0.95 cm diameter probe is used to measure the surface roughness of the paper and thus bridges all fine roughness detail.
- the preferred surface roughness of the paper is between 0.13 and 0.44 micrometers. At surface roughness greater than 0.44 micrometers, little improvement in image quality is observed when compared to current photographic papers. A cellulose paper surface roughness less than 0.13 micrometers is difficult to manufacture and costly.
- the preferred basis weight of the cellulose paper of the invention is between 117.0 and 195.0 g/m 2 .
- a basis weight less than 117.0 g/m 2 yields a imaging support that does not have the required stiffness for transport through photofinishing equipment and digital printing hardware. Additionally, a basis weight less than 117.0 g/m 2 yields a imaging support that does not have the required stiffness for consumer acceptance.
- the imaging support stiffness while acceptable to consumers, exceeds the stiffness requirement for efficient photofinishing. Problems such as the inability to be chopped and incomplete punches are common with a cellulose paper that exceeds 195.0 g/m 2 in basis weight.
- the preferred fiber length of the paper of this invention is between 0.40 and 0.60 mm.
- Fiber Lengths are measured using a FS-200 Fiber Length Analyzer (Kajaani Automation Inc.). Fiber lengths less than 0.35 mm are difficult to achieve in manufacturing and as a result expensive. Because shorter fiber lengths generally result in an increase in paper modulus, paper fiber lengths less than 0.35 mm will result in a photographic paper this is very difficult to punch in photofinishing equipment. Paper fiber lengths greater than 0.62 mm do not show an improvement in surface smoothness.
- the preferred density of the cellulose paper of this invention is between 1.05 and 1.20 g/cc.
- a sheet density less than 1.05 g/cc would not provide the smooth surface preferred by consumers.
- a sheet density that is greater than 1.20 g/cc would be difficult to manufacture requiring expensive calendering and a loss in machine efficiency.
- the machine direction to cross direction modulus is critical to the quality of the imaging support as the modulus ratio is a controlling factor in imaging element curl and a balanced stiffness in both the machine and cross directions.
- the preferred machine direction to cross direction modulus ratio is between 1.4 and 1.9.
- a modulus ratio of less than 1.4 is difficult to manufacture since the cellulose fibers tend to align primarily with the stock flow exiting the paper machine head box. This flow is in the machine direction and is only counteracted slightly by fourdrinier parameters.
- a modulus ratio greater than 1.9 does not provide the desired curl and stiffness improvements to the laminated imaging support.
- a cellulose paper substantially free of dry strength resin and wet strength resin is preferred because the elimination of dry and wet strength resins reduces the cost of the cellulose paper and improves manufacturing efficiency.
- Dry strength and wet strength resins are commonly added to cellulose photographic paper to provide strength in the dry state and strength in the wet state as the paper is developed in wet processing chemistry during the photofinishing of consumer images.
- dry and wet strength resin are no longer needed as the strength of the paper is significantly improved when laminated with high strength biaxially oriented polymer sheets to the top and bottom of the cellulose paper.
- any pulps known in the art to provide image quality paper may be used in this invention.
- Bleached hardwood chemical kraft pulp is preferred as it provides brightness, a good starting surface and good formation while maintaining strength. In general, hardwood fibers are much shorter than softwood by approximately a 1:3 ratio.
- Pulp with a brightness less than 90% Brightness at 457 nm is preferred. Pulps with brightness of 90% or greater are commonly used in imaging supports because consumers typically prefer a white paper appearance.
- a cellulose paper less than 90% Brightness at 457 nm is preferred as the whiteness of the imaging support can be improved by laminating a microvoided biaxially oriented sheet to the cellulose paper of this invention.
- the reduction in brightness of the pulp allows for a reduction in the amount of bleaching required thus lowering the cost of the pulp and reducing the bleaching load on the environment.
- the use of calcium carbonate as a filler instead of TiO 2 permits the more efficient use of optical brightening agents since TiO 2 competes with optical brighteners for uv radiation incident upon the imaging element, preventing optical brighteners from contributing filly to the brightness of the imaging element. Calcium carbonate is advantaged since it does not exhibit this property.
- the cellulose paper of this invention can be made on a standard continuous Fourdrinier wire machine.
- the preferred specific net refining power (SNRP) of cutting is between 66 and 77 KW hrs/metric ton.
- a SNRP of less than 66 KW hrs/metric ton will provide an inadequate fiber length reduction resulting in a less smooth surface.
- a SNRP of greater than 77 KW hrs/metric ton after disc refining described above generates a stock slurry that is difficult to drain from the fourdrinier wire.
- Specific Net Refiner Power is calculated by the following formula:
- the steam application device Prior to calendering, the steam application device allows a considerable improvement in gloss and smoothness due to the heating up and moisturizing the paper of this invention before the pressure nip of the calendering rolls.
- An example of a commercially available system that allows for controlled steam moisturization of the surface of cellulose paper is the “Fluidex System” manufactured by Pagendarm Corp.
- a preferred steam application or steam shower apparatus is the STEAM-FOIL of Thermo Electron Web System Incorporated.
- the preferred moisture content by weight after applying the steam and calendering is between 7% and 9%. A moisture level less than 7% is more costly to manufacture since more fiber is needed to reach a final basis weight. At a moisture level greater than 10% the surface of the paper begins to degrade. After the steam foil rewetting of the paper surface, the paper is calendered before winding of the paper. The preferred temperature of the calender rolls is between 76° C. and 88° C. Lower temperatures result in a poor surface. Higher temperatures are unnecessary as they do not improve the paper surface and require more energy.
- a water resistant coating applied to the paper is preferred as the coating protects the cellulose paper from the wet development chemistry and improves the strength of the paper during the wet processing of the image layers.
- the preferred methods for providing a water resistant layer are melt cast polyolefin polymers, laminated polyolefin sheets and laminated polyester sheets.
- the pre-formed voided polymer sheet preferably is an oriented polymer because of the strength and toughness developed in the orientation process.
- Preferred polymers for the flexible substrate include polyolefins, polyester and nylon.
- Preferred polyolefms include polypropylene, polyethylene, polymethylpentene, polystyrene, polybutylene, and mixtures thereof.
- Polyolefin copolymers, including copolymers of propylene and ethylene such as hexene, butene, and octene are also useful.
- Polyolefins are preferred, as they are low in cost and have the desirable strength and toughness properties required for a pressure sensitive label.
- Oriented polymer sheet have been shown to improve the tear resistance of the base material, reduce the curl of the image element and are generally capable of providing improved image sharpness and brightness compared to melt cast polymers.
- Examples of preferred biaxially oriented polymer sheet are disclosed in U.S. Pat. Nos. 5,866,282; 5,853,965; 5,874,205; 5,888,643; 5,888,683; 5,902,720 and 5,935,690.
- the biaxially oriented sheets preferably laminated to cellulose paper, which are high in strength, have tear resistance greater than 150 N.
- the polymer layer preferably includes a stabilizing amount of hindered amine extruded on the top side of the imaging layer substrate.
- Hindered amine light stabilizers originate from 2,2,6,6-tetramethylpiperidine.
- the hindered amine should be added to the polymer layer at about 0.01-5% by weight of said resin layer in order to provide resistance to polymer degradation upon exposure to UV light.
- the preferred amount is at about 0.05-3% by weight. This provides excellent polymer stability and resistance to cracking and yellowing while keeping the expense of the hindered amine to a minimum.
- Suitable hindered amines with molecular weights of less than 2300 are Bis(2,2,6,6-letramethyl-4-piperidinyl)sebacate; Bis(1,2,2,6,6-pentamethyl-4-piperidinyl)sebacate and Bis(1,2,2,6,6-pentamethyl-4-piperidinyl)2-n-butyl-(3,5-di-tert-butyl-hydroxy-benzyl)malonate.
- Polyester polymers for the voided sheet of the invention are preferred as the mechanical modulus of polyester is higher than that of polyolefin polymers resulting in a stiffer, more durable image element. Further, it has been shown that higher amounts of white pigments can be added to polyester compared to polyolefin polymer, thus allowing additional improvements in image sharpness, whiteness and silver halide printing speed.
- Suitable dibasic acids useful for the preparation of polyesters include those containing from two to sixteen carbon atoms such as adipic acid, sebacic acid, isophthalic acid, terephthalic acid, and the like. Alkyl esters of acids such as those listed above can also be employed. Other alcohols and acids as well as polyesters prepared therefrom and the preparation of the polyesters are described in U.S. Pat. Nos. 2,720,503 and 2,901,466.
- Extrusion laminating is carried out by bringing together the biaxially oriented sheets of the invention and the base paper with application of an adhesive between them followed by their being pressed in a nip such as between two rollers.
- the adhesive may be applied to either the biaxially oriented sheets or the base paper prior to their being brought into the nip. In a preferred form the adhesive is applied into the nip simultaneously with the biaxially oriented sheets and the base paper.
- the adhesive may be any suitable material that does not have a harmful effect upon the photographic element.
- a preferred material is polyethylene that is melted at the time it is placed into the nip between the paper and the biaxially oriented sheet.
- a waterproof layer that has a spectral transmission of between 40 and 70% is preferred.
- a spectral transmission between 40% and 70% is preferred as the silver halide formed image can be utilized as a transmission display product.
- This addition of calcium carbonate to the paper has been shown to better reduce light scattering and unwanted absorption compared to prior art paper which utilize TiO 2 in the paper.
- the lamination process it is desirable to maintain control of the tension of the biaxially oriented sheet(s) in order to minimize curl in the resulting laminated support.
- high humidity applications >50% RH
- low humidity applications ⁇ 20% RH
- the face side of the paper is a smoother surface than the wire side. Lamination of the top sheet to the face side of the paper will generally yield a image with better gloss than lamination of the top sheet to the wire side of the paper.
- imaging element is a material that may be used as a imaging support for the transfer of images to the support by techniques such as ink jet printing, thermal dye transfer or electrophotographic printing as well as a support for silver halide images.
- photographic element is a material that utilizes photosensitive silver halide in the formation of images.
- the thermal dye image-receiving layer of the receiving elements of the invention may comprise, for example, a polycarbonate, a polyurethane, a polyester, polyvinyl chloride, poly(styrene-co-acrylonitrile), poly(caprolactone) or mixtures thereof
- the dye image-receiving layer may be present in any amount which is effective for the intended purpose.
- an overcoat layer may be further coated over the dye-receiving layer, such as described in U.S. Pat. No. 4,775,657 of Harrison et al.
- Dye-donor elements that are used with the dye-receiving element of the invention conventionally comprise a support having thereon a dye containing layer. Any dye can be used in the dye-donor employed in the invention provided it is transferable to the dye-receiving layer by the action of heat. Especially good results have been obtained with sublimable dyes.
- Dye donors applicable for use in the present invention are described, e.g., in U.S. Pat. Nos. 4,916,112; 4,927,803 and 5,023,228.
- dye-donor elements are used to form a dye transfer image.
- Such a process comprises image-wise-heating a dye-donor element and transferring a dye image to a dye-receiving element as described above to form the dye transfer image.
- a dye donor element which compromises a poly-(ethylene terephthalate) support coated with sequential repeating areas of cyan, magenta, and yellow dye, and the dye transfer steps are sequentially performed for each color to obtain a three-color dye transfer image.
- a monochrome dye transfer image is obtained.
- Thermal printing heads which can be used to transfer dye from dye-donor elements to receiving elements of the invention are available commercially. There can be employed, for example, a Fujitsu Thermal Head (FT-040 MCS001), a TDK Thermal Head F415 HH7-1089 or a Rohm Thermal Head KE 2008-F3. Alternatively, other known sources of energy for thermal dye transfer may be used, such as lasers as described in, for example, GB No. 2,083,726A.
- a thermal dye transfer assemblage of the invention comprises (a) a dye-donor element, and (b) a dye-receiving element as described above, the dye-receiving element being in a superposed relationship with the dye-donor element so that the dye layer of the donor element is in contact with the dye image-receiving layer of the receiving element.
- the above assemblage is formed on three occasions during the time when heat is applied by the thermal printing head. After the first dye is transferred, the elements are peeled apart. A second dye-donor element (or another area of the donor element with a different dye area) is then brought in register with the dye-receiving element and the process repeated. The third color is obtained in the same manner.
- the electrographic and electrophotographic processes and their individual steps have been well described in detail in many books and publications.
- the processes incorporate the basic steps of creating an electrostatic image, developing that image with charged, colored particles (toner), optionally transferring the resulting developed image to a secondary substrate, and fixing the image to the substrate.
- Toner charged, colored particles
- the first basic step, creation of an electrostatic image can be accomplished by a variety of methods.
- the electrophotographic process of copiers uses imagewise photodischarge, through analog or digital exposure, of a uniformly charged photoconductor.
- the photoconductor may be a single-use system, or it may be rechargeable and reimageable, like those based on selenium or organic photorecptors.
- One form of the electrophotographic process of copiers uses imagewise photodischarge, through analog or digital exposure, of a uniformly charged photoconductor.
- the photoconductor may be a single-use system, or it may be rechargeable and reimageable, like those based on selenium or organic photoreceptors.
- electrostatic images are created ionographically.
- the latent image is created on dielectric (charge-holding) medium, either paper or film. Voltage is applied to selected metal styli or writing nibs from an array of styli spaced across the width of the medium, causing a dielectric breakdown of the air between the selected styli and the medium. Ions are created, which form the latent image on the medium.
- Electrostatic images are developed with oppositely charged toner particles.
- the liquid developer is brought into direct contact with the electrostatic image.
- a flowing liquid is employed, to ensure that sufficient toner particles are available for development.
- the field created by the electrostatic image causes the charged particles, suspended in a nonconductive liquid, to move by electrophoresis.
- the charge of the latent electrostatic image is thus neutralized by the oppositely charged particles.
- the toned image is transferred to paper (or other substrate).
- the paper is charged electrostatically, with the polarity chosen to cause the toner particles to transfer to the paper.
- the toned image is fixed to the paper.
- residual liquid is removed from the paper by air-drying or heating. Upon evaporation of the solvent these toners form a film bonded to the paper.
- thermoplastic polymers are used as part of the particle. Heating both removes residual liquid and fixes the toner to paper.
- the dye receiving layer or DRL for ink jet imaging may be applied by any known methods. Such as solvent coating, or melt extrusion coating techniques.
- the DRL is coated over the tie layer (TL) at a thickness ranging from 0.1-10 ⁇ m, preferably 0.5-5 ⁇ m.
- TL tie layer
- the preferred DRL is a 0.1-10 micrometers DRL which is coated as an aqueous dispersion of 5 parts alumoxane and 5 parts poly (vinyl pyrrolidone).
- the DRL may also contain varying levels and sizes of matting agents for the purpose of controlling gloss, friction, and/or finger print resistance, surfactants to enhance surface uniformity and to adjust the surface tension of the dried coating, mordanting agents, anti-oxidants, UV absorbing compounds, light stabilizers, and the like.
- the ink-receiving elements as described above can be successfully used to achieve the objectives of the present invention, it may be desirable to overcoat the DRL for the purpose of enhancing the durability of the imaged element.
- Such overcoats may be applied to the DRL either before or after the element is imaged.
- the DRL can be overcoated with an inkpermeable layer through which inks freely pass. Layers of this type are described in U.S. Pat. Nos. 4,686,118; 5,027,131; and 5,102,717.
- an overcoat may be added after the element is imaged. Any of the known laminating films and equipment may be used for this purpose.
- inks used in the aforementioned imaging process are well known, and the ink formulations are often closely tied to the specific processes, i.e., continuous, piezoelectric, or thermal. Therefore, depending on the specific ink process, the inks may contain widely differing amounts and combinations of solvents, colorants, preservatives, surfactants, humectants, and the like.
- Inks preferred for use in combination with the image recording elements of the present invention are water-based, such as those currently sold for use in the Hewlett-Packard Desk Writer 560C printer. However, it is intended that alternative embodiments of the image-recording elements as described above, which may be formulated for use with inks which are specific to a given ink-recording process or to a given commercial vendor, fall within the scope of the present invention.
- Nacreous silver halide images are sometimes preferred as they provide both a nacreous appearance as well as photographic dye purity.
- This invention in one embodiment is directed to a silver halide photographic element capable of excellent performance when exposed by either an electronic printing method or a conventional optical printing method.
- An electronic printing method comprises subjecting a radiation sensitive silver halide emulsion layer of a recording element to actinic radiation of at least 10 ⁇ 4 ergs/cm 2 for up to 100 ⁇ seconds duration in a pixel-by-pixel mode wherein the silver halide emulsion layer is comprised of silver halide grains as described above.
- a conventional optical printing method comprises subjecting a radiation sensitive silver halide emulsion layer of a recording element to actinic radiation of at least 10 ⁇ 4 ergs/cm 2 for 10 ⁇ 3 to 300 seconds in an imagewise mode wherein the silver halide emulsion layer is comprised of silver halide grains as described above.
- This invention in a preferred embodiment utilizes a radiationsensitive emulsion comprised of silver halide grains (a) containing greater than 50 mole percent chloride, based on silver, (b) having greater than 50 percent of their surface area provided by ⁇ 100 ⁇ crystal faces, and (c) having a central portion accounting for from 95 to 99 percent of total silver and containing two dopants selected to satisfy each of the following class requirements: (i) a hexacoordination metal complex which satisfies the formula:
- n is zero, ⁇ 1, ⁇ 2, ⁇ 3 or ⁇ 4; M is a filled frontier orbital polyvalent metal ion, other than iridium; and L represents bridging ligands which can be independently selected, provided that least four of the ligands are anionic ligands, and at least one of the ligands is a cyano ligand or a ligand more electronegative than a cyano ligand; and (ii) an iridium coordination complex containing a thiazole or substituted thiazole ligand.
- This invention is directed towards a photographic recording element comprising a support and at least one light sensitive silver halide emulsion layer comprising silver halide grains as described above.
- the combination of dopants (i) and (ii) provides greater reduction in reciprocity law failure than can be achieved with either dopant alone. Further, unexpectedly, the combination of dopants (i) and (ii) achieve reductions in reciprocity law failure beyond the simple additive sum achieved when employing either dopant class by itself. It has not been reported or suggested prior to this invention that the combination of dopants (i) and (ii) provides greater reduction in reciprocity law failure, particularly for high intensity and short duration exposures.
- dopants (i) and (ii) further unexpectedly achieves high intensity reciprocity with iridium at relatively low levels, and both high and low intensity reciprocity improvements even while using conventional gelatino-peptizer (e.g., other than low methionine gelatino-peptizer).
- the advantages of the invention can be transformed into increased throughput of digital substantially artifact-free color print images while exposing each pixel sequentially in synchronism with the digital data from an image processor.
- the present invention represents an improvement on the electronic printing method.
- this invention in one embodiment is directed to an electronic printing method which comprises subjecting a radiation sensitive silver halide emulsion layer of a recording element. to actinic radiation of at least 10 ⁇ 4 ergs/cm 2 for up to 100 ⁇ seconds duration in a pixel-by-pixel mode.
- the present invention realizes an improvement in reciprocity failure by selection of the radiation sensitive silver halide emulsion layer. While certain embodiments of the invention are specifically directed towards electronic printing, use of the emulsions and elements of the invention is not limited to such specific embodiment, and it is specifically contemplated that the emulsions and elements of the invention are also well suited for conventional optical printing.
- gelatino-peptizer which comprises at least 50 weight percent of gelatin containing at least 30 micromoles of methionine per gram, as it is frequently desirable to limit the level of oxidized low methionine gelatin which may be used for cost and certain performance reasons.
- n is zero, ⁇ 1, ⁇ 2, ⁇ 3 or ⁇ 4;
- M is a filled frontier orbital polyvalent metal ion, other than iridium, preferably Fe +2 , Ru +2 , Os +2 , Co +3 , Rh +3 , Pd +4 or Pt +4 , more preferably an iron, ruthenium or osmium ion, and most preferably a ruthenium ion;
- L 6 represents six bridging ligands which can be independently selected, provided that least four of the ligands are anionic ligands and at least one (preferably at least 3 and optimally at least 4) of the ligands is a cyano ligand or a ligand more electronegative than a cyano ligand. Any remaining ligands can be selected from among various other bridging ligands, including aquo ligands, halide ligands (specifically, fluoride, chloride, bromide and iodide), cyanate ligands, thiocyanate ligands, selenocyanate ligands, tellurocyanate ligands, and azide ligands. Hexacoordinated transition metal complexes of class (i) which include six cyano ligands are specifically preferred.
- Class (i) dopant is preferably introduced into the high chloride grains after at least 50 (most preferably 75 and optimally 80) percent of the silver has been precipitated, but before precipitation of the central portion of the grains has been completed.
- class (i) dopant is introduced before 98 (most preferably 95 and optimally 90) percent of the silver has been precipitated.
- class (i) dopant is preferably present in an interior shell region that surrounds at least 50 (most preferably 75 and optimally 80) percent of the silver and, with the more centrally located silver, accounts the entire central portion (99 percent of the silver), most preferably accounts for 95 percent, and optimally accounts for 90 percent of the silver halide forming the high chloride grains.
- the class (i) dopant can be distributed throughout the interior shell region delimited above or can be added as one or more bands within the interior shell region.
- Class (i) dopant can be employed in any conventional useful concentration.
- a preferred concentration range is from 10 ⁇ 8 to 10 ⁇ 3 mole per silver mole, most preferably from 10 ⁇ 6 to 5 ⁇ 10 ⁇ 4 mole per silver mole.
- class (i) dopants When the class (i) dopants have a net negative charge, it is appreciated that they are associated with a counter ion when added to the reaction vessel during precipitation. The counter ion is of little importance, since it is ionically dissociated from the dopant in solution and is not incorporated within the grain. Common counter ions known to be fully compatible with silver chloride precipitation, such as ammonium and alkali metal ions, are contemplated. It is noted that the same comments apply to class (ii) dopants, otherwise described below.
- the class (ii) dopant is an iridium coordination complex containing at least one thiazole or substituted thiazole ligand.
- Careful scientific investigations have revealed Group VIII hexahalo coordination complexes to create deep electron traps, as illustrated R. S. Eachus, R. E. Graves and M. T. Olm J. Chem. Phys ., Vol. 69, pp. 4580-7 (1978) and Physica Status SolidiA , Vol. 57, 429-37 (1980) and R. S. Eachus and M. T. Olm Annu. Rep. Prog. Chem. Sect. C. Phys. Chem ., Vol. 83, 3, pp. 3-48 (1986).
- the class (ii) dopants employed in the practice of this invention are believed to create such deep electron traps.
- the thiazole ligands may be substituted with any photographically acceptable substituent which does not prevent incorporation of the dopant into the silver halide grain.
- Exemplary substituents include lower alkyl (e.g., alkyl groups containing 1-4 carbon atoms), and specifically methyl.
- a specific example of a substituted thiazole ligand which may be used in accordance with the invention is 5-methylthiazole.
- the class (ii) dopant preferably is an iridium coordination complex having ligands each of which are more electropositive than a cyano ligand. In a specifically preferred form the remaining non-thiazole or non-substituted-thiazole ligands of the coordination complexes forming class (ii) dopants are halide ligands.
- class (ii) dopants from among the coordination complexes containing organic ligands disclosed by Olm et al U.S. Pat. No. 5,360,712, Olm et al U.S. Pat. No. 5,457,021 and Kuromoto et al U.S. Pat. No. 5,462,849.
- n′ is zero, ⁇ 1, ⁇ 2, ⁇ 3 or ⁇ 4;
- L 1 6 represents six bridging ligands which can be independently selected, provided that at least four of the ligands are anionic ligands, each of the ligands is more electropositive than a cyano ligand, and at least one of the ligands comprises a thiazole or substituted thiazole ligand. In a specifically preferred form at least four of the ligands are halide ligands, such as chloride or bromide ligands.
- Class (ii) dopant is preferably introduced into the high chloride grains after at least 50 (most preferably 85 and optimally 90) percent of the silver has been precipitated, but before precipitation of the central portion of the grains has been completed.
- class (ii) dopant is introduced before 99 (most preferably 97 and optimally 95) percent of the silver has been precipitated.
- class (ii) dopant is preferably present in an interior shell region that surrounds at least 50 (most preferably 85 and optimally 90) percent of the silver and, with the more centrally located silver, accounts the entire central portion (99 percent of the silver), most preferably accounts for 97 percent, and optimally accounts for 95 percent of the silver halide forming the high chloride grains.
- the class (ii) dopant can be distributed throughout the interior shell region delimited above or can be added as one or more bands within the interior shell region.
- Class (ii) dopant can be employed in any conventional usefull concentration.
- a preferred concentration range is from 10 ⁇ 9 to 10 ⁇ 4 mole per silver mole.
- Iridium is most preferably employed in a concentration range of from 10 ⁇ 8 to 10 ⁇ 5 mole per silver mole.
- class (ii) dopants are the following:
- a class (ii) dopant in combination with an OsCl 5 (NO) dopant has been found to produce a preferred result.
- Emulsions demonstrating the advantages of the invention can be realized by modifying the precipitation of conventional high chloride silver halide grains having predominantly (>50%) ⁇ 100 ⁇ crystal faces by employing a combination of class (i) and (ii) dopants as described above.
- the silver halide grains precipitated contain greater than 50 mole percent chloride, based on silver.
- the grains Preferably contain at least 70 mole percent chloride and, optimally at least 90 mole percent chloride, based on silver.
- Iodide can be present in the grains up to its solubility limit, which is in silver iodochloride grains, under typical conditions of precipitation, about 11 mole percent, based on silver. It is preferred for most photographic applications to limit iodide to less than 5 mole percent iodide, most preferably less than 2 mole percent iodide, based on silver.
- Silver bromide and silver chloride are miscible in all proportions. Hence, any portion, up to 50 mole percent, of the total halide not accounted for chloride and iodide, can be bromide.
- bromide is typically limited to less than 10 mole percent based on silver and iodide is limited to less than 1 mole percent based on silver.
- high chloride grains are precipitated to form cubic grains—that is, grains having ⁇ 100 ⁇ major faces and edges of equal length.
- ripening effects usually round the edges and corners of the grains to some extent. However, except under extreme ripening conditions substantially more than 50 percent of total grain surface area is accounted for by ⁇ 100 ⁇ crystal faces.
- High chloride tetradecahedral grains are a common variant of cubic grains. These grains contain 6 ⁇ 100 ⁇ crystal faces and 8 ⁇ 111 ⁇ crystal faces. Tetradecahedral grains are within the contemplation of this invention to the extent that greater than 50 percent of total surface area is accounted for by ⁇ 100 ⁇ crystal faces.
- iodide is incorporated in overall concentrations of from 0.05 to 3.0 mole percent, based on silver, with the grains having a surface shell of greater than 50 ⁇ that is substantially free of iodide and a interior shell having a maximum iodide concentration that surrounds a core accounting for at least 50 percent of total silver.
- Such grain structures are illustrated by Chen et al EPO 0 718 679.
- the high chloride grains can take the form of tabular grains having ⁇ 100 ⁇ major faces.
- Preferred high chloride ⁇ 100 ⁇ tabular grain emulsions are those in which the tabular grains account for at least 70 (most preferably at least 90) percent of total grain projected area.
- Preferred high chloride ⁇ 100 ⁇ tabular grain emulsions have average aspect ratios of at least 5 (most preferably at least >8).
- Tabular grains typically have thicknesses of less than 0.3 ⁇ m, preferably less than 0.2 ⁇ m, and optimally less than 0.07 ⁇ m.
- High chloride ⁇ 100 ⁇ tabular grain emulsions and their preparation are disclosed by Maskasky U.S. Pat. Nos.
- silver halide typically less than 1 percent, based on total silver, can be introduced to facilitate chemical sensitization. It is also recognized that silver halide can be epitaxially deposited at selected sites on a host grain to increase its sensitivity. For example, high chloride ⁇ 100 ⁇ tabular grains with corner epitaxy are illustrated by Maskasky U.S. Pat. No. 5,275,930. For the purpose of providing a clear demarcation, the term “silver halide grain” is herein employed to include the silver necessary to form the grain up to the point that the final ⁇ 100 ⁇ crystal faces of the grain are formed.
- Silver halide later deposited that does not overlie the ⁇ 100 ⁇ crystal faces previously formed accounting for at least 50 percent of the grain surface area is excluded in determining total silver forming the silver halide grains.
- the silver forming selected site epitaxy is not part of the silver halide grains while silver halide that deposits and provides the final ⁇ 100 ⁇ crystal faces of the grains is included in the total silver forming the grains, even when it differs significantly in composition from the previously precipitated silver halide.
- Image dye-forming couplers may be included in the element such as couplers that form cyan dyes upon reaction with oxidized color developing agents which are described in such representative patents and publications as: U.S. Pat. Nos. 2,367,531; 2,423,730; 2,474,293; 2,772,162; 2,895,826; 3,002,836; 3,034,892; 3,041,236; 4,883,746 and “Farbkuppler-Eine Literature Ubersicht,” published in Agfa Mitannonen, Band III, pp. 156-175 (1961).
- couplers are phenols and naphthols that form cyan dyes on reaction with oxidized color developing agent.
- Typical cyan couplers are represented by the following formulas:
- R 1 , R 5 and R 8 each represents a hydrogen or a substituent
- R 2 represents a substituent
- R 3 , R 4 and R 7 each represents an electron attractive group having a Hammett's substituent constant ⁇ para of 0.2 or more and the sum of the ⁇ para values of R 3 and R 4 is 0.65 or more
- R 6 represents an electron attractive group having a Hammett's substituent constant ⁇ apara of 0.35 or more
- X represents a hydrogen or a coupling-off group
- Z 1 represents nonmetallic atoms necessary for forming a nitrogen-containing, six-membered, heterocyclic ring which has at least one dissociative group
- Z 2 represents —C(R 7 ) ⁇ and —N ⁇
- Z 3 and Z 4 each represents —C(R 8 ⁇ and —N ⁇ .
- an “NB coupler” is a dye-forming coupler which is capable of coupling with the developer 4-amino-3-methyl-N-ethyl-N-(2-methanesulfonamidoethyl) aniline sesquisulfate hydrate to form a dye for which the left bandwidth (LBW) of its absorption spectra upon “spin coating” of a 3% w/v solution of the dye in di-n-butyl sebacate solvent is at least 5 nm. less than the LBW for a 3% w/v solution of the same dye in acetonitrile.
- the LBW of the spectral curve for a dye is the distance between the left side of the spectral curve and the wavelength of maximum absorption measured at a density of half the maximum.
- the “spin coating” sample is prepared by first preparing a solution of the dye in di-n-butyl sebacate solvent (3% w/v). If the dye is insoluble, dissolution is achieved by the addition of some methylene chloride. The solution is filtered and 0.1-0.2ml is applied to a clear polyethylene terephthalate support (approximately 4 cm ⁇ 4 cm) and spun at 4,000 RPM using the Spin Coating equipment, Model No. EC101, available from Headway Research Inc., Garland Tex. The transmission spectra of the so prepared dye samples are then recorded.
- Preferred “NB couplers” form a dye which, in n-butyl sebacate, has a LBW of the absorption spectra upon “spin coating” which is at least 15 nm, preferably at least 25 nm, less than that of the same dye in a 3% solution (w/v) in acetonitrile.
- cyan dye-forming “NB coupler” useful in the invention has the formula (IA)
- R′ and R′′ are substituents selected such that the coupler is a “NB coupler”, as herein defined;
- Z is a hydrogen atom or a group which can be split off by the reaction of the coupler with an oxidized color developing agent.
- the coupler of formula (IA) is a 2,5-diamido phenolic cyan coupler wherein the substituents R′ and R′′ are preferably independently selected from unsubstituted or substituted alky, aryl, amino, alkoxy and heterocyclyl groups.
- the “NB coupler” has the formula (1):
- R′′ and R′′′ are independently selected from unsubstituted or substituted alkyl, aryl, amino, alkoxy and heterocyclyl groups and Z is as hereinbefore defined;
- R 1 and R 2 are independently hydrogen or an unsubstituted or substituted alkyl group
- R′′ is an alkyl, amino or aryl group, suitably a phenyl group.
- R′′′ is desirably an alkyl or aryl group or a 5-10 membered heterocyclic ring which contains one or more heteroatoms selected from nitrogen, oxygen and sulfur, which ring group is unsubstituted or substituted.
- the coupler of formula (I) is a 2,5-diamido phenol in which the 5-amido moiety is an amide of a carboxylic acid which is substituted in the alpha position by a particular sulfone (—SO2—) group, such as, for example, described in U.S. Pat. No. 5,686,235.
- the sulfone moiety is an unsubstituted or substituted alkylsulfone or a heterocyclyl sulfone or it is an arylsulfone, which is preferably substituted, in particular in the meta and/or para position.
- Couplers having these structures of formulae (I) or (IA) comprise cyan dye-forming “NB couplers” which form image dyes having very sharp-cutting dye hues on the short wavelength side of the absorption curves with absorption maxima ( ⁇ max ) which are shifted hypsochromically and are generally in the range of 620-645 nm, which is ideally suited for producing excellent color reproduction and high color saturation in color photographic papers.
- NB couplers which form image dyes having very sharp-cutting dye hues on the short wavelength side of the absorption curves with absorption maxima ( ⁇ max ) which are shifted hypsochromically and are generally in the range of 620-645 nm, which is ideally suited for producing excellent color reproduction and high color saturation in color photographic papers.
- R 1 and R 2 are independently hydrogen or an unsubstituted or substituted alkyl group, preferably having from 1 to 24 carbon atoms and in particular 1 to 10 carbon atoms, suitably a methyl, ethyl, n-propyl, isopropyl, butyl or decyl group or an alkyl group substituted with one or more fluoro, chloro or bromo atoms, such as a trifluoromethyl group.
- R 1 and R 2 are a hydrogen atom and if only one of R 1 and R 2 is a hydrogen atom then the other is preferably an alkyl group having 1 to 4 carbon atoms, more preferably one to three carbon atoms and desirably two carbon atoms.
- alkyl refers to an unsaturated or saturated straight or branched chain alkyl group, including alkenyl, and includes aralkyl and cyclic alkyl groups, including cycloalkenyl, having 3-8 carbon atoms and the term ‘aryl’ includes specifically fused aryl.
- R′′ is suitably an unsubstituted or substituted amino, alkyl or aryl group or a 5-10 membered heterocyclic ring which contains one or more heteroatoms selected from nitrogen, oxygen and sulfur, which ring is unsubstituted or substituted, but is more suitably an unsubstituted or substituted phenyl group.
- substituent groups for this aryl or heterocyclic ring include cyano, chloro, fluoro, bromo, iodo, alkyl- or aryl-carbonyl, alkyl- or aryl-oxycarbonyl, carbonamido, alkyl- or aryl-carbonamido, alkyl- or aryl-sulfonyl, alkyl- or aryl-sulfonyloxy, alkyl- or aryl-oxysulfonyl, alkyl- or aryl-sulfoxide, alkyl- or aryl-sulfamoyl, alkyl- or aryl-sulfonamido, aryl, alkyl, alkoxy, aryloxy, nitro, alkyl- or aryl-ureido and alkyl- or aryl-carbamoyl groups, any of which may be further substituted.
- Preferred groups are halogen, cyano, alkoxycarbonyl, alkylsulfamoyl, alkyl-sulfonamido, alkylsulfonyl, carbamoyl, alkylcarbamoyl or alkylcarbonamido.
- R′′ is a 4-chlorophenyl, 3,4-dichlorophenyl, 3,4difluorophenyl, 4-cyanophenyl, 3-chloro-4-cyanophenyl, pentafluorophenyl, or a 3- or 4-sulfonamidophenyl group.
- R′′′ when R′′′ is alkyl it may be unsubstituted or substituted with a substituent such as halogen or alkoxy.
- R′′′ when R′′′ is aryl or a heterocycle, it may be substituted. Desirably it is not substituted in the position alpha to the sulfonyl group.
- R′′′ when R′′′ is a phenyl group, it may be substituted in the meta and/or para positions with one to three substituents independently selected from the group consisting of halogen, and unsubstituted or substituted alkyl, alkoxy, aryloxy, acyloxy, acylamino, alkyl- or aryl-sulfonyloxy, alkyl- or aryl-sulfamoyl, alkyl- or aryl-sulfamoylamino, alkyl- or aryl-sulfonamido, alkyl- or aryl-ureido, alkyl- or aryl-oxycarbonyl, alkyl- or aryl-oxycarbonylamino and alkyl- or aryl-carbamoyl groups.
- each substituent may be an alkyl group such as methyl, t-butyl, heptyl, dodecyl, pentadecyl, octadecyl or 1,1,2,2-tetramethylpropyl; an alkoxy group such as methoxy, t-butoxy, octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy or octadecyloxy; an aryloxy group such as phenoxy, 4-t-butylphenoxy or 4-dodecyl-phenoxy; an alkyl- or aryl-acyloxy group such as acetoxy or dodecanoyloxy; an alkyl- or aryl-acylamino group such as acetamido, hexadecanamido or benzamido; an alkyl- or aryl-sulfonyloxy group such as methyl-sulf
- the above substituent groups have 1 to 30 carbon atoms, more preferably 8 to 20 aliphatic carbon atoms.
- a desirable substituent is an alkyl group of 12 to 18 aliphatic carbon atoms such as dodecyl, pentadecyl or octadecyl or an alkoxy group with 8 to 18 aliphatic carbon atoms such as dodecyloxy and hexadecyloxy or a halogen such as a meta or para chloro group, carboxy or sulfonamido. Any such groups may contain interrupting heteroatoms such as oxygen to form e.g. polyalkylene oxides.
- Z is a hydrogen atom or a group which can be split off by the reaction of the coupler with an oxidized color developing agent, known in the photographic art as a ‘coupling-off group’ and may preferably be hydrogen, chloro, fluoro, substituted aryloxy or mercaptotetrazole, more preferably hydrogen or chloro.
- Such groups can advantageously affect the layer in which the coupler is coated, or other layers in the photographic recording material, by performing, after release from the coupler, functions such as dye formation, dye hue adjustment, development acceleration or inhibition, bleach acceleration or inhibition, electron transfer facilitation, color correction, and the like.
- coupling-off groups include, for example, halogen, alkoxy, aryloxy, heterocyclyloxy, sulfonyloxy, acyloxy, acyl, heterocyclylsulfonamido, heterocyclylthio, benzothiazolyl, phosophonyloxy, alkylthio, arylthio, and arylazo.
- These coupling-off groups are described in the art, for example, in U.S. Pat. Nos. 2,455,169; 3,227,551; 3,432,521; 3,467,563; 3,617,291; 3,880,661; 4,052,212; and 4,134,766; and in U.K. Patent Nos. and published applications 1,466,728; 1,531,927; 1,533,039; 2,066,755A, and 2,017,704A. Halogen, alkoxy, and aryloxy groups are most suitable.
- Examples of specific coupling-off groups are —Cl, —F, —Br, —SCN, —OCH 3 , —OC 6 H 5 , —OCH 2 C( ⁇ O)NHCH 2 CH 2 OH, —OCH 2 C(O)NHCH 2 CH 2 OCH 3 , —OCH 2 C(O)NHCH 2 CH 2 OC( ⁇ O)OCH 3 , —P( ⁇ O)(OC 2 H 5 ) 2 , —SCH 2 CH 2 COOH,
- the coupling-off group is a chlorine atom, hydrogen atom or p-methoxyphenoxy group.
- the ballasting may be accomplished by providing hydrophobic substituent groups in one or more of the substituent groups.
- a ballast group is an organic radical of such size and configuration as to confer on the coupler molecule sufficient bulk and aqueous insolubility as to render the coupler substantially nondiffusible from the layer in which it is coated in a photographic element.
- the ballast will usually contain at least 8 carbon atoms and typically contains 10 to 30 carbon atoms. Suitable ballasting may also be accomplished by providing a plurality of groups which in combination meet these criteria.
- R 1 in formula (I) is a small alkyl group or hydrogen. Therefore, in these embodiments the ballast would be primarily located as part of the other groups. Furthermore, even if the coupling-off group Z contains a ballast it is often necessary to ballast the other substituents as well, since Z is eliminated from the molecule upon coupling; thus, the ballast is most advantageously provided as part of groups other than Z.
- Preferred couplers are IC-3, IC-7, IC-35, and IC-36 because of their suitably narrow left bandwidths.
- Couplers that form magenta dyes upon reaction with oxidized color developing agent are described in such representative patents and publications as: U.S. Pat. Nos. 2,311,082; 2,343,703; 2,369,489; 2,600,788; 2,908,573; 3,062,653; 3,152,896; 3,519,429; 3,758,309; and “Farbkuppler-eine Literature Ubersicht,” published in Agfa Mitannonen, Band III, pp. 126-156 (1961).
- couplers are pyrazolones, pyrazolotriazoles, or pyrazolobenzirnidazoles that form magenta dyes upon reaction with oxidized color developing agents.
- Especially preferred couplers are 1H-pyrazolo [5,1-c]-1,2,4-triazole and 1H-pyrazolo [1,5-b]-1,2,4-triazole.
- Examples of 1H-pyrazolo [5,1-c]-1,2,4-triazole couplers are described in U.K. Patent Nos. 1,247,493; 1,252,418; 1,398,979; U.S. Pat. Nos. 4,443,536; 4,514,490; 4,540,654; 4,590,153; 4,665,015; 4,822,730; 4,945,034; 5,017,465; and 5,023,170.
- 1H-pyrazolo [1,5-b]-1,2,4-triazoles can be found in European Patent applications 176,804; 177,765; U.S Pat. Nos. 4,659,652; 5,066,575; and 5,250,400.
- Typical pyrazoloazole and pyrazolone couplers are represented by the following formulas:
- R a and R b independently represent H or a substituent;
- R c is a substituent (preferably an aryl group);
- R d is a substituent (preferably an anilino, carbonamido, ureido, carbamoyl, alkoxy, aryloxycarbonyl, alkoxycarbonyl, or N-heterocyclic group);
- X is hydrogen or a coupling-off group; and
- Z a , Z b , and Z c are independently a substituted methine group, ⁇ N—, ⁇ C—, or —NH—, provided that one of either the Z a —Z b bond or the Z b—Z c bond is a double bond and the other is a single bond, and when the Z b—Z c bond is a carbon—carbon double bond, it may form part of an aromatic ring, and at least one of Z a , Z b , and Z c represents a methine group connected to
- Couplers that form yellow dyes upon reaction with oxidized color developing agent are described in such representative patents and publications as: U.S. Pat. Nos. 2,298,443; 2,407,210; 2,875,057; 3,048,194; 3,265,506; 3,447,928; 3,960,570; 4,022,620; 4,443,536; 4,910,126; and 5,340,703 and “Farbkuppler-eine Literature Ubersicht,” published in Agfa Mitannonen, Band III, pp. 112-126 (1961).
- Such couplers are typically open chain ketomethylene compounds.
- yellow couplers such as described in, for example, European Patent Application Nos.
- couplers which give yellow dyes that cut off sharply on the long wavelength side are particularly preferred (for example, see U.S. Pat. No. 5,360,713).
- Typical preferred yellow couplers are represented by the following formulas:
- R 1 , R 2 , Q 1 and Q 2 each represents a substituent;
- X is hydrogen or a coupling-off group;
- Y represents an aryl group or a heterocyclic group;
- Q3 represents an organic residue required to form a nitrogen-containing heterocyclic group together with the >N—;
- Q 4 represents nonmetallic atoms necessary to from a 3- to 5-membered hydrocarbon ring or a 3- to 5-membered heterocyclic ring which contains at least one hetero atom selected from N, O, S, and P in the ring.
- Q 1 and Q 2 each represents an alkyl group, an aryl group, or a heterocyclic group, and R 2 represents an aryl or tertiary alkyl group.
- Preferred yellow couplers can be of the following general structures:
- substituent groups which may be substituted on molecules herein include any groups, whether substituted or unsubstituted, which do not destroy properties necessary for photographic utility.
- group When the term “group” is applied to the identification of a substituent containing a substitutable hydrogen, it is intended to encompass not only the substituent's unsubstituted form, but also its form further substituted with any group or groups as herein mentioned.
- the group may be halogen or may be bonded to the remainder of the molecule by an atom of carbon, silicon, oxygen, nitrogen, phosphorous, or sulfur.
- the substituent may be, for example, halogen, such as chlorine, bromine or fluorine; nitro; hydroxyl; cyano; carboxyl; or groups which may be further substituted, such as alkyl, including straight or branched chain alkyl, such as methyl, trifluoromethyl, ethyl, 1-butyl, 3-(2,4-di-t-pentylphenoxy) propyl, and tetradecyl; alkenyl, such as ethylene, 2-butene; alkoxy, such as methoxy, ethoxy, propoxy, butoxy, 2-methoxyethoxy, sec-butoxy, hexyloxy, 2-ethylhexyloxy, tetradecyloxy, 2-(2,4-di-t-pentylphenoxy)ethoxy, and 2-dodecyloxyethoxy; aryl such as phenyl, 4-t-butylphenyl, 2,4,6-trimethylphen
- substituents may themselves be further substituted one or more times with the described substituent groups.
- the particular substituents used may be selected by those skilled in the art to attain the desired photographic properties for a specific application and can include, for example, hydrophobic groups, solubilizing groups, blocking groups, releasing or releasable groups, etc.
- the above groups and substituents thereof may include those having up to 48 carbon atoms, typically 1 to 36 carbon atoms and usually less than 24 carbon atoms, but greater numbers are possible depending on the particular substituents selected.
- ballast groups include alkyl, aryl, alkoxy, aryloxy, alkylthio, hydroxy, halogen, alkoxycarbonyl, aryloxcarbonyl, carboxy, acyl, acyloxy, amino, anilino, carbonamido, carbamoyl, alkylsulfonyl, arylsulfonyl, sulfonamido, and sulfamoyl groups wherein the substituents typically contain 1 to 42 carbon atoms. Such substituents can also be further substituted.
- Stabilizers and scavengers that can be used in these photographic elements, but are not limited to, the following.
- the dispersions used in photographic elements may also include ultraviolet (UV) stabilizers and so called liquid UV stabilizers such as described in U.S. Pat. Nos. 4,992,358; 4,975,360; and 4,587,346. Examples of UV stabilizers are shown below.
- the aqueous phase may include surfactants.
- Surfactant may be cationic, anionic, zwitterionic or non-ionic.
- Useful surfactants include, but are not limited to, the following:
- the invention employs recording elements which are constructed to contain at least three silver halide emulsion layer units.
- a suitable full color, multilayer format for a recording element used in the invention is represented by Structure I.
- red-sensitized, cyan dye image-forming silver halide emulsion unit is situated nearest the support; next in order is the green-sensitized, magenta dye image-forming unit, followed by the uppermost blue-sensitized, yellow dye image-forming unit.
- the image-forming units are separated from each other by hydrophilic colloid interlayers containing an oxidized developing agent scavenger to prevent color contamination.
- Each of such structures in accordance with the invention preferably would contain at least three silver halide emulsions comprised of high chloride grains having at least 50 percent of their surface area bounded by ⁇ 100 ⁇ crystal faces and containing dopants from classes (i) and (ii), as described above.
- each of the emulsion layer units contains emulsion satisfying these criteria.
- the recording elements comprising the radiation sensitive high chloride emulsion layers according to this invention can be conventionally optically printed, or in accordance with a particular embodiment of the invention can be image-wise exposed in a pixel-by-pixel mode using suitable high energy radiation sources typically employed in electronic printing methods.
- suitable actinic forms of energy encompass the ultraviolet, visible and infrared regions of the electromagnetic spectrum as well as electron-beam radiation and is conveniently supplied by beams from one or more light emitting diodes or lasers, including gaseous or solid state lasers. Exposures can be monochromatic, orthochromatic or panchromatic.
- exposure can be provided by laser or light emitting diode beams of appropriate spectral radiation, for example, infrared, red, green or blue wavelengths, to which such element is sensitive.
- Multicolor elements can be employed which produce cyan, magenta and yellow dyes as a function of exposure in separate portions of the electromagnetic spectrum, including at least two portions of the infrared region, as disclosed in the previously mentioned U.S. Pat. No. 4,619,892.
- Suitable exposures include those up to 2000 nm, preferably up to 1500 nm.
- Suitable light emitting diodes and commercially available laser sources are known and commercially available.
- Imagewise exposures at ambient, elevated or reduced temperatures and/or pressures can be employed within the useful response range of the recording element determined by conventional sensitometric techniques, as illustrated by T. H. James, The Theory of the Photographic Process , 4th Ed., Macmillan, 1977, Chapters 4, 6, 17, 18 and 23.
- anionic [MX x Y y L z ] hexacoordination complexes where M is a group 8 or 9 metal (preferably iron, ruthenium or iridium), X is halide or pseudohalide (preferably Cl, Br or CN) x is 3 to 5, Y is H 2 O, y is 0 or 1, L is a C—C, H—C or C—N—H organic ligand, and Z is 1 or 2, are surprisingly effective in reducing high intensity reciprocity failure (HIRF), low intensity reciprocity failure (LIRF) and thermal sensitivity variance and in in improving latent image keeping (LIK).
- HIRF high intensity reciprocity failure
- LIRF low intensity reciprocity failure
- LIK latent image keeping
- HIRF is a measure of the variance of photographic properties for equal exposures, but with exposure times ranging from 10 ⁇ 1 to 10 ⁇ 6 second.
- LIRF is a measure of the varinance of photographic properties for equal exposures, but with exposure times ranging from 10 ⁇ 1 to 100 seconds.
- C—C, H—C or C—N—H organic ligands are azoles and azines, either unsustituted or containing alkyl, alkoxy or halide substituents, where the alkyl moieties contain from 1 to 8 carbon atoms.
- Particularly preferred azoles and azines include thiazoles, thiazolines and pyrazines.
- the quantity or level of high energy actinic radiation provided to the recording medium by the exposure source is generally at least 10 ⁇ 4 ergs/cm 2 , typically in the range of about 10 ⁇ 4 ergs/cm 2 to 10 ⁇ 3 ergs/cm 2 and often from 10 ⁇ 3 ergs/cm 2 to 10 2 ergs/cm 2 .
- Exposure of the recording element in a pixel-by-pixel mode as known in the prior art persists for only a very short duration or time. Typical maximum exposure times are up to 100 ⁇ seconds, often up to 10 ⁇ seconds, and frequently up to only 0.5 ⁇ seconds. Single or multiple exposures of each pixel are contemplated.
- pixel density is subject to wide variation, as is obvious to those skilled in the art. The higher the pixel density, the sharper the images can be, but at the expense of equipment complexity. In general, pixel densities used in conventional electronic printing methods of the type described herein do not exceed 10 7 pixels/cm 2 and are typically in the range of about 10 4 to 10 6 pixels/cm 2 .
- An assessment of the technology of high-quality, continuous-tone, color electronic printing using silver halide photographic paper which discusses various features and components of the system, including exposure source, exposure time, exposure level and pixel density and other recording element characteristics is provided in Firth et al., A Continuous - Tone Laser Color Printer , Journal of Imaging Technology, Vol. 14, No.
- the recording elements can be processed in any convenient conventional manner to obtain a viewable image. Such processing is illustrated by Research Disclosure , Item 38957, cited above:
- a usefull developer for the inventive material is a homogeneous, single part developing agent.
- the homogeneous, single-part color developing concentrate is prepared using a critical sequence of steps:
- an aqueous solution of a suitable color developing agent is prepared.
- This color developing agent is generally in the form of a sulfate salt.
- Other components of the solution can include an antioxidant for the color developing agent, a suitable number of alkali metal ions (in an at least stoichiometric proportion to the sulfate ions) provided by an alkali metal base, and a photographically inactive water-miscible or water-soluble hydroxy-containing organic solvent.
- This solvent is present in the final concentrate at a concentration such that the weight ratio of water to the organic solvent is from about 15:85 to about 50:50.
- alkali metal ions and sulfate ions form a sulfate salt that is precipitated in the presence of the hydroxy-containing organic solvent.
- the precipitated sulfate salt can then be readily removed using any suitable liquid/solid phase separation technique (including filtration, centrifugation or decantation). If the antioxidant is a liquid organic compound, two phases may be formed and the precipitate may be removed by discarding the aqueous phase.
- the color developing concentrates of this invention include one or more color developing agents that are well known in the art that, in oxidized form, will react with dye forming color couplers in the processed materials.
- color developing agents include, but are not limited to, aminophenols, p-phenylenediamines (especially N,N-dialkyl-p-phenylenediamines) and others which are well known in the art, such as EP 0 434 097 A1 (published Jun. 26, 1991) and EP 0 530 921 A1 (published Mar. 10, 1993). It may be useful for the color developing agents to have one or more water-solubilizing groups as are known in the art. Further details of such materials are provided in Research Disclosure , publication 38957, pages 592-639 (September 1996).
- Research Disclosure is a publication of Kenneth Mason Publications Ltd., Dudley House, 12 North Street, Emsworth, Hampshire PO10 7DQ England (also available from Emsworth Design Inc., 121 West 19th Street, New York, N.Y. 10011). This reference will be referred to hereinafter as “ Research Disclosure”.
- Preferred color developing agents include, but are not limited to, N,N-diethyl p-phenylenediamine sulfate (KODAK Color Developing Agent CD-2), 4-amino-3-methyl-N-(2-methane sulfonamidoethyl)aniline sulfate, 4-(N-ethyl-N-p-hydroxyethylamino)-2-methylaniline sulfate (KODAK Color Developing Agent CD4), p-hydroxyethylethylaminoaniline sulfate, 4-(N-ethyl-N-2-methanesulfonylaminoethyl)-2-methylphenylenediamine sesquisulfate (KODAK Color Developing Agent CD-3), 4-(N-ethyl-N-2-methanesulfonylaminoethyl)-2-methylphenylenediamine sesquisulfate, and others readily apparent to one skilled in the art.
- one or more antioxidants are generally included in the color developing compositions.
- Either inorganic or organic antioxidants can be used.
- Many classes of useful antioxidants are known, including but not limited to, sulfites (such as sodium sulfite, potassium sulfite, sodium bisulfite and potassium metabisulfite), hydroxylamine (and derivatives thereof), hydrazines, hydrazides, amino acids, ascorbic acid (and derivatives thereof), hydroxamic acids, aminoketones, mono- and polysaccharides, mono- and polyamines, quaternary ammonium salts, nitroxy radicals, alcohols, and oximes.
- Also useful as antioxidants are 1,4-cyclohexadiones. Mixtures of compounds from the same or different classes of antioxidants can also be used if desired.
- antioxidants are hydroxylamine derivatives as described, for example, in U.S. Pat. Nos. 4,892,804; 4,876,174; 5,354,646; and 5,660,974, all noted above, and U.S. Pat. No. 5,646,327 (Burns et al). Many of these antioxidants are mono- and dialkylhydroxylamines having one or more substituents on one or both alkyl groups. Particularly useful alkyl substituents include sulfo, carboxy, amino, sulfonamido, carbonamido, hydroxy, and other solubilizing substituents.
- the noted hydroxylamine derivatives can be mono- or dialkylhydroxylamines having one or more hydroxy substituents on the one or more alkyl groups.
- Representative compounds of this type are described for example in U.S. Pat. No. 5,709,982 (Marrese et al), as having the structure I:
- R is hydrogen, a substituted or unsubstituted alkyl group of 1 to 10 carbon atoms, a substituted or unsubstituted hydroxyalkyl group of 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group of 5 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms in the aromatic nucleus.
- X 1 is —CR 2 (OH)CHR 1 — and X 2 is —CHR 1 CR 2 (OH)— wherein R 1 and R 2 are independently hydrogen, hydroxy, a substituted or unsubstituted alkyl group or 1 or 2 carbon atoms, a substituted or unsubstituted hydroxyalkyl group of 1 or 2 carbon atoms, or R 1 and R 2 together represent the carbon atoms necessary to complete a substituted or unsubstituted 5- to 8-membered saturated or unsaturated carbocyclic ring structure.
- Y is a substituted or unsubstituted alkylene group having at least 4 carbon atoms, and has an even number of carbon atoms, or Y is a substituted or unsubstituted divalent aliphatic group having an even total number of carbon and oxygen atoms in the chain, provided that the aliphatic group has a least 4 atoms in the chain.
- n, n and p are independently 0 or 1.
- each of m and n is 1, and p is 0.
- Specific di-substituted hydroxylamine antioxidants include, but are not limited to, N,N-bis(2,3-dihydroxypropyl)hydroxylamine, N,N-bis(2-methyl-2,3-dihydroxypropyl)hydroxylamine and N,N-bis(1-hydroxymethyl-2-hydroxy-3-phenylpropyl)hydroxylamine.
- the first compound is preferred.
- photographic grade cellulose papers were prepared utilizing two levels of calcium carbonate addition to the paper. Paper bases A1 and B1 that contained calcium carbonate were compared to a control photographic grade paper (C1) that contained no calcium carbonate. This example will demonstrate that cellulose papers containing calcium carbonate were superior to the control paper that contained no calcium carbonate for opacity and whiteness.
- Paper bases A1, B1, and C1 for this example were all formed as follows:
- Paper stocks were produced for the imaged support using a standard fourdrinier paper machine and a blend of mostly bleached hardwood Kraft fibers.
- the fiber ratio consisted primarily of bleached poplar (38%)and maple/beech (37%) with lesser amounts of birch (18%) and softwood (7%).
- Fiber length was reduced from 0.73 mm length weighted average as measured by a Kajaani FS-200 to the levels listed in Table 1 using high levels of conical refining and low levels of disc refining. Fiber Lengths from slurry generated in parts A1 and B1 were measured using a FS-200 Fiber Length Analyzer (Kajaani Automation Inc.).
- Neutral sizing chemical addenda utilized on a dry weight basis, included alkyl ketene dimer at 0.20% addition, cationic starch (1.0%), polyaminoamide epichlorhydrin (0.25%), polyacrylamide resin (0.09%), diaminostilbene optical brightener (0.20%) and sodium bicarbonate. Surface sizing using hydroxyethylated starch and sodium chloride was also employed but is not critical to the invention. In the 3 rd Dryer section, ratio drying was utilized to provide a moisture bias from the face side to the wire side of the sheet. The face side (emulsion side) of the sheet was then remoisturized with conditioned steam immediately prior calendering. Sheet temperatures were raised to between 76° C. and 93° C. just prior to and during calendering. Moisture levels after the calender were 7.0% to 9.0% by weight.
- Paper bases A1 and B1 and C1 differ from each other as follows:
- Paper base A1 was produced at a basis weight of 165 g/m 2 and thickness of 0.146 mm. It contains 4% CaCO 3 as the filler.
- Paper base B1 was produced at a basis weight of 167 g/m 2 and thickness of 0.148 mm. It contains 4% CaCO 3 and 1% TiO 2 as fillers.
- Paper base C1 was produced at a basis weight of 160 g/m 2 and thickness of 0.143 mm. It provides a comparison of a similar photographic paper base with no filler.
- the surface roughness of the emulsion side of each photographic base variation was measured by a Federal Profiler.
- the Federal Profiler instrument consists of a motorized drive nip which is tangent to the top surface of the base plate.
- the sample to be measured is placed on the base plate and fed through the nip.
- a micrometer assembly is suspended above the base plate.
- the end of the mic spindle provides a reference surface from which the sample thickness can be measured. This flat surface is 0.95 cm diameter and, thus, bridges all fine roughness detail on the upper surface of the sample.
- a moving hemispherical stylus of the gauge head Directly below the spindle, and nominally flush with the base plate surface, is a moving hemispherical stylus of the gauge head. This stylus responds to local surface variation as the sample is transported through the gauge.
- the stylus radius relates to the spatial content that can be sensed.
- the output of the gauge amplifier is digitized to 12 bits.
- the sample rate is 500 measurements per 2.5 cm.
- the roughness averages of 10 data points for each base variation is listed in Table 1.
- the surface roughness average reduction in the base paper resulted in a surface roughness average reduction in silver halide emulsion coated samples.
- the surface roughness average reduction in the imaging element resulted in significant perceptually preferred improvement in the gloss of the photographic paper. This result is significant in that the orange peel in photographic support C has been reduced well beyond what is currently capable with traditional photographic paper bases.
- An imaging paper base with a surface roughness between 0.10 and 0.30 micrometers has significant commercial value for consumers that prefer glossy images.
- the results from Table 1 demonstrate the advantages of using a calcium carbonate filler compared to control paper (C1) which contained no filler material.
- the opacity of cellulose papers A1 and B1 were approximately 2.0 opacity units higher than the control paper which contained no filler.
- An improvement of 2.0 opacity units is significant in that it significantly reduces the amount of back-side show through when photographs are viewed by consumers.
- the brightness of the invention papers (A1 and B1) was significantly improved over the control.
- a whiter paper improves the density minimum areas of an image and conveys a sense of quality as white paper is perceptually preferred over yellow paper by consumers.
- the surface smoothness of the invention was improved by 3 micrometers compared to the control. An improvement of 3 micrometers allows for a more glossy image and an improvement in contrast range of the image.
- the calcium carbonate filler utilized in papers A1 and B1 are lower in cost compared to prior art photographic papers that contain TiO 2 for a filler material.
- a fiber matrix is formed which makes it more difficult for the calcium carbonate to exit the fiber mass. This improved retention of calcium carbonate reduced leaching of calcium carbonate in photofinishing. Also, the improved retention of calcium carbonate lead to a reduction in dust levels during slitting of the paper.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Paper (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/545,213 US6391532B1 (en) | 2000-04-07 | 2000-04-07 | Photographic paper containing calcium carbonate |
DE60104760T DE60104760T2 (de) | 2000-04-07 | 2001-03-26 | Photographisches Papier, das Calciumcarbonat enthält |
EP01201110A EP1146390B1 (en) | 2000-04-07 | 2001-03-26 | Photographic paper containing calcium carbonate |
CN01116334.8A CN1317722A (zh) | 2000-04-07 | 2001-04-06 | 含有碳酸钙的相纸 |
JP2001110131A JP2001348800A (ja) | 2000-04-07 | 2001-04-09 | 炭酸カルシウムを含有している写真印画紙 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/545,213 US6391532B1 (en) | 2000-04-07 | 2000-04-07 | Photographic paper containing calcium carbonate |
Publications (1)
Publication Number | Publication Date |
---|---|
US6391532B1 true US6391532B1 (en) | 2002-05-21 |
Family
ID=24175309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/545,213 Expired - Fee Related US6391532B1 (en) | 2000-04-07 | 2000-04-07 | Photographic paper containing calcium carbonate |
Country Status (5)
Country | Link |
---|---|
US (1) | US6391532B1 (zh) |
EP (1) | EP1146390B1 (zh) |
JP (1) | JP2001348800A (zh) |
CN (1) | CN1317722A (zh) |
DE (1) | DE60104760T2 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030121630A1 (en) * | 2000-04-19 | 2003-07-03 | Zhirun Yuan | Inhibition of yellowing in papers |
US6589720B2 (en) * | 2001-10-29 | 2003-07-08 | Eastman Kodak Company | Crease resistant imaging element with coated paper base |
US20040149408A1 (en) * | 1999-09-08 | 2004-08-05 | Clariant Finance (Bvi) Limited | Surface finshing of paper or board, and agent for this purpose |
US20050032644A1 (en) * | 2003-06-17 | 2005-02-10 | Brelsford Gregg L. | Binder selection for coated photographic base stock |
US20050031805A1 (en) * | 2003-06-17 | 2005-02-10 | Fugitt Gary P. | Pigment selection for photographic base stock |
US20050028951A1 (en) * | 2003-06-17 | 2005-02-10 | Brelsford Gregg L. | Smooth base stock composed of nonstandard fibers |
US20050283995A1 (en) * | 2004-05-03 | 2005-12-29 | Hamel Robert G | Steam box |
US20060240201A1 (en) * | 2005-04-26 | 2006-10-26 | Konica Minolta Holdings, Inc. | Ink-jet recording medium and method of manufacturing the same |
US9821588B2 (en) | 2012-04-13 | 2017-11-21 | Hewlett-Packard Development Company, L.P. | Recording media |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006014183A1 (de) | 2006-03-24 | 2007-09-27 | Felix Schoeller Jr. Foto- Und Spezialpapiere Gmbh & Co. Kg | Schichtträger für Aufzeichnungsmaterialien |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3411908A (en) | 1964-03-10 | 1968-11-19 | Eastman Kodak Co | Photographic paper base |
US3630742A (en) | 1969-10-16 | 1971-12-28 | Eastman Kodak Co | Polymeric photographic supports |
US3730830A (en) * | 1971-11-24 | 1973-05-01 | Eastman Kodak Co | Process for making paper |
US3833380A (en) | 1965-04-12 | 1974-09-03 | Eastman Kodak Co | Novel photographic elements |
US3928037A (en) | 1973-05-16 | 1975-12-23 | Agfa Gevaert Nv | Titanium dioxide with aluminum oxide or aluminium oxide plus silicon dioxide precipitated thereon as pigment for diffusion transfer |
US5004644A (en) | 1987-06-20 | 1991-04-02 | Felix Schoeller Jr. Gmbh & Co. Kg | Support material for photographic coatings |
US5106655A (en) | 1989-01-27 | 1992-04-21 | Measurex Corporation | Cross-directional smoothness controller and method of using the same |
US5122232A (en) | 1990-10-05 | 1992-06-16 | Measurex Corporation | Multiple steam applicator controller |
US5145010A (en) | 1988-01-22 | 1992-09-08 | Sunds Defibrator Industries Aktiebolag | Method of making mechanical pulp |
US5252658A (en) | 1987-05-15 | 1993-10-12 | Felix Schoeller Jr Gmbh & Co. Kg | Pigment-containing premixture of titanium dioxide with olefin polymer |
US5711799A (en) * | 1996-03-13 | 1998-01-27 | Ecc International Inc. | Acid tolerant calcium carbonate composition and uses therefor |
US6017686A (en) | 1998-09-17 | 2000-01-25 | Eastman Kodak Company | Translucent display paper with biaxially oriented polyolefin sheets |
US6030742A (en) | 1998-11-23 | 2000-02-29 | Eastman Kodak Company | Superior photographic elements including biaxially oriented polyolefin sheets |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5276917A (en) * | 1975-12-23 | 1977-06-28 | Fuji Photo Film Co Ltd | Photographic support |
-
2000
- 2000-04-07 US US09/545,213 patent/US6391532B1/en not_active Expired - Fee Related
-
2001
- 2001-03-26 DE DE60104760T patent/DE60104760T2/de not_active Withdrawn - After Issue
- 2001-03-26 EP EP01201110A patent/EP1146390B1/en not_active Expired - Lifetime
- 2001-04-06 CN CN01116334.8A patent/CN1317722A/zh active Pending
- 2001-04-09 JP JP2001110131A patent/JP2001348800A/ja active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3411908A (en) | 1964-03-10 | 1968-11-19 | Eastman Kodak Co | Photographic paper base |
US3833380A (en) | 1965-04-12 | 1974-09-03 | Eastman Kodak Co | Novel photographic elements |
US3630742A (en) | 1969-10-16 | 1971-12-28 | Eastman Kodak Co | Polymeric photographic supports |
US3730830A (en) * | 1971-11-24 | 1973-05-01 | Eastman Kodak Co | Process for making paper |
US3928037A (en) | 1973-05-16 | 1975-12-23 | Agfa Gevaert Nv | Titanium dioxide with aluminum oxide or aluminium oxide plus silicon dioxide precipitated thereon as pigment for diffusion transfer |
US5252658A (en) | 1987-05-15 | 1993-10-12 | Felix Schoeller Jr Gmbh & Co. Kg | Pigment-containing premixture of titanium dioxide with olefin polymer |
US5004644A (en) | 1987-06-20 | 1991-04-02 | Felix Schoeller Jr. Gmbh & Co. Kg | Support material for photographic coatings |
US5145010A (en) | 1988-01-22 | 1992-09-08 | Sunds Defibrator Industries Aktiebolag | Method of making mechanical pulp |
US5106655A (en) | 1989-01-27 | 1992-04-21 | Measurex Corporation | Cross-directional smoothness controller and method of using the same |
US5122232A (en) | 1990-10-05 | 1992-06-16 | Measurex Corporation | Multiple steam applicator controller |
US5711799A (en) * | 1996-03-13 | 1998-01-27 | Ecc International Inc. | Acid tolerant calcium carbonate composition and uses therefor |
US6017686A (en) | 1998-09-17 | 2000-01-25 | Eastman Kodak Company | Translucent display paper with biaxially oriented polyolefin sheets |
US6030742A (en) | 1998-11-23 | 2000-02-29 | Eastman Kodak Company | Superior photographic elements including biaxially oriented polyolefin sheets |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040149408A1 (en) * | 1999-09-08 | 2004-08-05 | Clariant Finance (Bvi) Limited | Surface finshing of paper or board, and agent for this purpose |
US6872282B1 (en) * | 1999-09-08 | 2005-03-29 | Clariant Finance (Bvi) Limited | Surface finishing of paper or board |
US20050167064A1 (en) * | 1999-09-08 | 2005-08-04 | Clariant Finance (Bvi) Limited | Surface finishing of paper or board, and agent for this purpose |
US20030121630A1 (en) * | 2000-04-19 | 2003-07-03 | Zhirun Yuan | Inhibition of yellowing in papers |
US6589720B2 (en) * | 2001-10-29 | 2003-07-08 | Eastman Kodak Company | Crease resistant imaging element with coated paper base |
US20050032644A1 (en) * | 2003-06-17 | 2005-02-10 | Brelsford Gregg L. | Binder selection for coated photographic base stock |
US20050031805A1 (en) * | 2003-06-17 | 2005-02-10 | Fugitt Gary P. | Pigment selection for photographic base stock |
US20050028951A1 (en) * | 2003-06-17 | 2005-02-10 | Brelsford Gregg L. | Smooth base stock composed of nonstandard fibers |
US20050283995A1 (en) * | 2004-05-03 | 2005-12-29 | Hamel Robert G | Steam box |
US7634860B2 (en) * | 2004-05-03 | 2009-12-22 | Transphase Technology, Ltd. | Steam box |
US20060240201A1 (en) * | 2005-04-26 | 2006-10-26 | Konica Minolta Holdings, Inc. | Ink-jet recording medium and method of manufacturing the same |
US9821588B2 (en) | 2012-04-13 | 2017-11-21 | Hewlett-Packard Development Company, L.P. | Recording media |
Also Published As
Publication number | Publication date |
---|---|
JP2001348800A (ja) | 2001-12-21 |
CN1317722A (zh) | 2001-10-17 |
DE60104760D1 (de) | 2004-09-16 |
EP1146390A2 (en) | 2001-10-17 |
DE60104760T2 (de) | 2005-09-01 |
EP1146390B1 (en) | 2004-08-11 |
EP1146390A3 (en) | 2002-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6287743B1 (en) | Imaging material with smooth cellulose base | |
US6436604B1 (en) | Photographic label suitable for packaging | |
US7083885B2 (en) | Transparent invisible conductive grid | |
US6531258B1 (en) | Transparent label with enhanced sharpness | |
US6274284B1 (en) | Nacreous imaging material | |
US20040258857A1 (en) | Imaging media with high elastic modulus and improved long term stability | |
US7255912B2 (en) | Antistatic conductive grid pattern with integral logo | |
US6355403B1 (en) | Duplitized reflective members useful for album pages | |
US6329113B1 (en) | Imaging material with dimensional adjustment by heat | |
US6391532B1 (en) | Photographic paper containing calcium carbonate | |
US6296995B1 (en) | Digital photographic element with biaxially oriented polymer base | |
US6207362B1 (en) | Tough durable imaging cellulose base material | |
US6187523B1 (en) | Tough imaging member with voided polyester sheet | |
US6218059B1 (en) | Tough reflective image display material | |
US6692798B1 (en) | Kenaf imaging base and method of formation | |
US6326109B1 (en) | Two-sided imaging member | |
US6187501B1 (en) | Imaging member with tough binder layer | |
US6248483B1 (en) | Paper base transmission display material | |
US6291148B1 (en) | Biaxially oriented image element with sharpening agent | |
US6440548B1 (en) | Photographic base with oriented polyefin and opacifying layer | |
US6268116B1 (en) | Scavenger free photographic silver halide print media | |
US6312880B1 (en) | Color photographic silver halide print media | |
US6280916B1 (en) | Silver halide reflection support print media | |
EP1048978A1 (en) | Color paper with exceptional reciprocity performance | |
US6426178B1 (en) | Chromogenic black and white silver halide print material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUNDERRAJAN, SURESH;DAGAN, SANDRA J.;BOURDELAIS, ROBERT P.;AND OTHERS;REEL/FRAME:010747/0510 Effective date: 20000406 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: CITICORP NORTH AMERICA, INC., AS AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:028201/0420 Effective date: 20120215 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140521 |