US20050028951A1 - Smooth base stock composed of nonstandard fibers - Google Patents

Smooth base stock composed of nonstandard fibers Download PDF

Info

Publication number
US20050028951A1
US20050028951A1 US10/870,693 US87069304A US2005028951A1 US 20050028951 A1 US20050028951 A1 US 20050028951A1 US 87069304 A US87069304 A US 87069304A US 2005028951 A1 US2005028951 A1 US 2005028951A1
Authority
US
United States
Prior art keywords
base stock
fibers
accordance
pigment
support material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/870,693
Inventor
Gregg Brelsford
David Cason
Dean Johnson
Stephen Petro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bank of New York Mellon Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/870,693 priority Critical patent/US20050028951A1/en
Application filed by Individual filed Critical Individual
Assigned to MEADWESTVACO CORPORATION reassignment MEADWESTVACO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHNSON, DEAN R., PETRO, STEPHEN C., BRELSFORD, GREGG L., CASON, DAVID B.
Publication of US20050028951A1 publication Critical patent/US20050028951A1/en
Assigned to CHILLICOTHE PAPER INC. reassignment CHILLICOTHE PAPER INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEADWESTVACO CORPORATION
Assigned to THE BANK OF NEW YORK, AS PRIORITY LIEN COLLATERAL TRUSTEE reassignment THE BANK OF NEW YORK, AS PRIORITY LIEN COLLATERAL TRUSTEE SECURITY AGREEMENT Assignors: CHILLICOTHE PAPER INC.
Assigned to THE BANK OF NEW YORK, AS PARITY LIEN COLLATERAL TRUSTEE reassignment THE BANK OF NEW YORK, AS PARITY LIEN COLLATERAL TRUSTEE SECURITY AGREEMENT Assignors: CHILLICOTHE PAPER INC.
Assigned to NEWPAGE CORPORATION, CHILLICOTHE PAPER INC., ESCANABA PAPER COMPANY, WICKLIFFE PAPER COMPANY, RUMFORD FALLS POWER COMPANY, RUMFORD COGENERATION, INC., MEADWESTVACO ENERGY SERVICES LLC (TO BE NAMED NEWPAGE ENERGY SERVICES LLC), MEADWESTVACO MARYLAND, INC. (TO BE NAMED LUKE PAPER COMPANY), MEADWESTVACO OXFORD CORPORATION (TO BE NAMED RUMFORD PAPER COMPANY), UPLAND RESOURCES, INC. reassignment NEWPAGE CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE
Assigned to ESCANABA PAPER COMPANY, NEWPAGE HOLDING CORPORATION, WICKLIFFE PAPER COMPANY, MEADWESTVACO MARYLAND, INC. (TO BE NAMED LUKE PAPER COMPANY), RUMFORD COGENERATION, INC., MEADWESTVACO OXFORD CORPORATION (TO BE NAMED RUMFORD PAPER COMPANY), UPLAND RESOURCES, INC., CHILLICOTHE PAPER INC., MEADWESTVACO ENERGY SERVICES LLC (TO BE NAMED NEWPAGE ENERGY SERVICES LLC), RUMFORD FALLS POWER COMPANY, NEWPAGE CORPORATION reassignment ESCANABA PAPER COMPANY RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE
Assigned to THE BANK OF NEW YORK, AS AGENT reassignment THE BANK OF NEW YORK, AS AGENT CORRECTIVE ASSIGNMENT TO VOID IN PART THE RELEASE RECORDED AT REEL 17492 FRAME 305 Assignors: CHILLICOTHE PAPER INC., NEWPAGE CORPORATION
Assigned to THE BANK OF NEW YORK, AS AGENT reassignment THE BANK OF NEW YORK, AS AGENT CORRECTIVE ASSIGNMENT TO VOID IN PART THE RELEASE RECORDED AT REEL 17492 FRAME 745 Assignors: CHILLICOTHE PAPER INC., NEWPAGE CORPORATION
Assigned to CHILLICOTHE PAPER INC. reassignment CHILLICOTHE PAPER INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE BANK OF NEW YORK, AS PRIORITY LIEN COLLATERAL TRUSTEE
Assigned to THE BANK OF NEW YORK, AS PRIORITY LIEN COLLATERAL TRUSTEE reassignment THE BANK OF NEW YORK, AS PRIORITY LIEN COLLATERAL TRUSTEE SECURITY AGREEMENT Assignors: NEWPAGE CORPORATION
Assigned to THE BANK OF NEW YORK, AS PARITY LIEN COLLATERAL TRUSTEE reassignment THE BANK OF NEW YORK, AS PARITY LIEN COLLATERAL TRUSTEE SECURITY AGREEMENT Assignors: NEWPAGE CORPORATION
Assigned to THE BANK OF NEW YORK MELLON, AS PARITY LIEN COLLATERAL TRUSTEE reassignment THE BANK OF NEW YORK MELLON, AS PARITY LIEN COLLATERAL TRUSTEE AMENDMENT TO PATENT SECURITY AGREEMENT (TO REFLECT NAME CHANGE OF RECEIVING PARTY) Assignors: NEWPAGE CORPORATION
Assigned to THE BANK OF NEW YORK MELLON, AS PRIORITY LIEN COLLATERAL TRUSTEE reassignment THE BANK OF NEW YORK MELLON, AS PRIORITY LIEN COLLATERAL TRUSTEE AMENDMENT TO PATENT SECURITY AGREEMENT (TO REFLECT NAME CHANGE OF RECEIVING PARTY) Assignors: NEWPAGE CORPORATION
Assigned to NEWPAGE CORPORATION, NEWPAGE WISCONSIN SYSTEM INC. reassignment NEWPAGE CORPORATION, NEWPAGE WISCONSIN SYSTEM INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF NEW YORK MELLON
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/775Photosensitive materials characterised by the base or auxiliary layers the base being of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/502Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
    • B41M5/504Backcoats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/502Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
    • B41M5/506Intermediate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5218Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5254Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/72Coated paper characterised by the paper substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • B41M5/426Intermediate, backcoat, or covering layers characterised by inorganic compounds, e.g. metals, metal salts, metal complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • B41M5/44Intermediate, backcoat, or covering layers characterised by the macromolecular compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/16Pure paper, i.e. paper lacking or having low content of contaminants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/775Photosensitive materials characterised by the base or auxiliary layers the base being of paper
    • G03C1/79Macromolecular coatings or impregnations therefor, e.g. varnishes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/91Photosensitive materials characterised by the base or auxiliary layers characterised by subbing layers or subbing means
    • G03C1/93Macromolecular substances therefor

Definitions

  • the present invention relates to smooth base stock for high quality imaging, and, more particularly, to smooth base stock composed of nonstandard fibers.
  • Obtaining photo quality prints by conventional silver halide photography, ink jet printing, dye sublimation, thermal dye transfer, or other like methods is dependent upon the smoothness of the base stock forming the base material for such printing papers.
  • the base stock is typically comprised of cellulose fibers, upon the top and/or bottom side of which polyolefin or polyester films may be extruded or laminated.
  • An imaging coating is applied on top of the poly film on one or both sides. Examples of imaging coatings include photosensitive emulsions, water or pigment-based ink receptive layers, thermal dye-recording layers, or other specialty coatings appropriate for a given imaging method.
  • the smoothness of the base stock determines the appearance and surface uniformity of the final image.
  • Fibers can be thought of as hollow tubes with a characteristic length and cell wall thickness.
  • Fiber length and fiber wall thickness contribute to smoothness.
  • Softwood fibers are significantly longer than hardwood fibers; therefore, hardwood fibers are preferred when smoothness is a desired property.
  • Shorter fibers also contribute to better formation due to a lower tendency to flocculate and by their ability to pack together more tightly.
  • Fiber cell wall thickness will influence the compressibility or ability of fibers to flatten during drying and when compressed during densification. Fibers with thick cell walls are stiffer and resist collapse whereas fibers with thin cell walls are easily compressed and produce a dense, well-formed base stock.
  • Hardwood fibers with a thin cell wall also provide more fibers per gram, further contributing to formation and smoothness.
  • base stocks used for photographic quality papers typically are comprised of fibers that are short and/or have thin fiber cell walls.
  • the desired fiber length-weighted average as measured by a Kajaani fiber analyzer, has been described to be between 0.4 to 0.58 mm (U.S. Pat. Nos. 6,391,532, 6,364,997, and 6,107,014), equal to or less than 0.5 mm (U.S. Pat. Nos. 5,250,496 and 5,288,690) or a length between 0.4 to 0.9 mm (JP-A-61-69649).
  • the present invention provides a smooth base stock for high quality imaging.
  • the base stock is characterized in that it utilizes nonstandard fibers yet provides the smoothness and other physical properties required for high quality imaging.
  • the base stock of the present invention comprises fibers having a length weighted average of greater than 0.9 mm and the base stock has a roughness of from about 1.2 micron Ra to about 1.5 micron Ra.
  • the base stock is composed of fibers having a population below about 10 ⁇ 10 6 fibers per gram. According to certain aspects of the invention, the base stock in accordance with the present invention exhibits the desired smoothness and yet is substantially free of filler pigments.
  • the support material further comprises a polyolefin or polyester coating layer disposed between the base stock and the image forming or image receptive coating layer on one or both sides of the support material.
  • nonstandard fibers refers to fibers that are not typically used for producing smooth, photo-quality papers. More specifically, nonstandard fibers are those having an unrefined average fiber length of greater than about 1.0 mm.
  • average fiber length refers to the length weighted average fiber length as determined with a suitable fiber length analysis instrument such as a Kajaani Model FS-200 fiber analyzer.
  • population refers to the number of fibers per gram.
  • Base stock for papers that produce high quality images require exceptionally smooth surfaces.
  • Fiber used in the manufacture of these papers is generally natural cellulose fiber, but synthetic fiber may also be used.
  • the base stock can be produced on a Fourdrinier or cylinder paper machine. Achieving the desired level of smoothness is dependent on fiber characteristics, fiber treatment, and method of base stock densification.
  • the base stock of the present invention can include various additives as typically used in producing base stocks.
  • chemicals may be added to impart water resistance, wet or dry strength, and to achieve color and brightness targets, depending upon the final product application.
  • sizing agents, dry and wet strengthening agents, fillers, pH adjusters, pigments, dyes and fluorescent brighteners may be added.
  • the additives and amounts needed to obtain a base stock having the desired properties are known to those skilled in the art.
  • Fiber content analysis of a conventional photographic base stock gave the following wood species results: 34% eucalyptus, 24% maple, 23% aspen, 12% birch, 5% beech, and 2% ash. Unrefined fiber lengths of these species are presented.
  • the Eucalyptus family provides the shortest hardwood fiber available with an average fiber length as low as 0.65 mm. Maple is about 0.9 mm and aspen is about 1.0 mm. Other hardwood fiber species are greater than 1.0 mm in length.
  • Cell wall thickness of eucalyptus, maple, aspen, and birch is in the range of 3 to 4 micrometers.
  • Fiber content analysis for a base stock sample in accordance with a specific embodiment of the present invention gave the following wood species: 72% oak, 10% yellow poplar, 9% gum, 4% maple, the remainder being small amounts of other various hardwood species. Analysis of other samples of base stock in accordance with this aspect of the invention gave results that varied somewhat for percentages of species fibers present, but the predominant specie in all samples was oak, and the four species listed above comprised no less than 83% and generally more than 90% of the fiber in accordance with these embodiments of the invention. Unrefined fiber lengths are: oak is 1.25 mm, yellow poplar is 1.9 mm, and gum is 1.85 mm. Averaged fiber cell wall thickness for oak, yellow poplar, and gum is approximately 6.0 microns.
  • the fiber composition of the invention base stock is significantly different from the fiber composition described in the prior art as being essential for producing a smooth base stock necessary for photo quality images.
  • the present invention is directed to a base stock exhibiting the desired smoothness even though the fibers used are relatively long and typically considered as unsuitable for photo-quality paper.
  • the ability to use longer fibers is advantageous from a cost perspective as the longer fibers typically are less expensive than the short fibers used with conventional photo-quality papers.
  • Fiber population is another measure of fiber properties indicative of the differences between fibers used in conventional base stocks for high image quality imaging and the fibers used in the present invention.
  • the population of conventional fibers typically is greater than about 10 ⁇ 10 6 fibers per gram.
  • the population for the majority of fibers used in the base stock of the present invention is less than about 10 ⁇ 10 6 fibers per gram, typically less than about 7 ⁇ 10 6 fibers per gram.
  • Base stock in accordance with certain aspects of the present invention includes at least 50% fibers having a population less than about 10 ⁇ 10 6 fibers per gram and more particularly at least 80% fibers having a population less than about 10 ⁇ 10 6 fibers per gram based on the total fiber content.
  • one important step relates to the refining process.
  • the fibers are refined prior to being pumped to the paper machine head box and formed into a paper web.
  • fibers that have been previously treated in the pulping and bleaching stages are passed through refiners where the fibers experience a high degree of shear to further change the characteristics of the fiber.
  • Refining can alter the characteristics of the fiber by increasing fiber surface area by fillibrating and by reducing fiber length.
  • specially designed refiners are used to reduce fiber length by employing a cutting action.
  • the cutting refining step may be eliminated.
  • the refining treatment in accordance with certain aspects of the present invention results in base stock composed of a fiber mixture having a length-weighted average greater than about 0.9 mm.
  • the ability to provide a base stock having the desired smoothness while eliminating a refining step typically utilized in the prior art is another advantage obtained in accordance with certain aspects of the present invention.
  • the base stock of the present invention can also be provided with a pigment coating to improve smoothness of the base stock, particularly for base stock used for imaging.
  • the pigment coating may include a binder present in the pigment coating composition at from about 8 to about 30% by weight of the dry coating.
  • the pigment to binder ratio may range from about 100:15 to about 100:40, more particularly from about 100:20 to about 100:30.
  • the pigment coating composition of the present invention may include binders and pigments typically used in pigment coatings as would be known to those skilled in the art.
  • pigments that may be included in the pigment composition include, but are not limited to, calcium carbonate pigments, clay, titanium dioxide, aluminum silicate, magnesium silicate, magnesium carbonate, zinc oxide, talc, satin white, barium sulfate, calcium silicate, zinc hydroxide, etc.
  • binders examples include, but are not limited to, styrene-butadiene polymers, acrylic polymers, styrene-acrylic polymers, vinyl acetate and ethylenevinyl acetate polymers.
  • a coated paper having a pigment coating containing from about 20 to about 30% of an acrylic binder, from about 40 to about 80% of aragonite precipitated calcium carbonate and from about 15 to about 25% hollow sphere polystyrene pigment by weight based on the dry pigment coating.
  • the base stock of the present invention may be used in any image forming system in which a smooth base sheet is required to provide a high quality image.
  • it may be used in conjunction with photosensitive emulsions, water or pigment-based ink receptive layers, thermal dye-recording layers, or other specialty coatings appropriate for a given imaging method.
  • a base stock produced in accordance with the present invention can be converted into photographic products or used to produce photographic ink jet products.
  • the pigment coating as described herein may be applied to the uncoated base stock using any conventional coating devices, such as a gate roll coater, a bill blade coater, an air knife coater, and the like.
  • the pigment coating will typically be applied to provide a coat weight of from about 4 to about 15 lb/3300 ft 2 , more particularly from about 8 to 10 lb/3300 ft 2 .
  • final smoothness of the base paper (or coated paper) is generally achieved by subjecting the web (or coated paper) to various smoothing operations.
  • One particularly useful method involves a densification process known as calendering, during which a paper web is passed between nips formed by multiple rolls stacked upon one another, creating pressure to compress the paper and make it smoother.
  • the compression step is accomplished with a stack of four or more metallic rolls (U.S. Pat. No. 5,060,565). In such a stack, the nip load and compression force increase in each successive nip from the top down due to the weight of the rolls and whatever additional load force is applied.
  • the smoothing operation involves passing the paper web through a plurality of nips in a calender stack wherein the first nips are formed by polymeric covered rolls adjacent to metallic rolls and the last two nips are formed by pairs of adjacent metallic rolls. Therefore, the fine scale smoothness is improved initially with the large and medium scale smoothness improved in the last two nips.
  • a means is employed to control nip pressures so calender roll weight and loading pressure are not the only factors in determining individual nip loads.
  • the described calendering sequence allows a high level of smoothness without a blackening effect that can occur when paper is calendered through multiple metallic nips.
  • Coated paper in accordance with the certain aspects of the present invention is advantageous due to the improvement in smoothness obtained using the described fibers and pigment coating composition.
  • Smoother papers provide images of higher quality in most image forming operations. Smoothness of photobase paper is particularly important for generating high quality images.
  • the surface roughness or Ra of the base stock or coated paper is a measure of relatively finely spaced surface irregularities on the paper. Ra represents the center line roughness of the base stock or finished paper. The surface roughness measurement provides an indication of the maximum variations over the surface of the paper. Lower Ra values indicate smoother base stock or coated paper.
  • the base stock is subjected to a smoothing operation to provide a base stock having a roughness of from about 1.2 micron Ra to about 1.5 micron Ra.
  • Calender loads typically range from about 1000 pli to about 1500 pli to produce base stock having the desired smoothness.
  • Ra represents the center line roughness of the base stock or finished paper. Ra is preferably 3.0 microns or less, more preferably 2.0 micron or less and most preferably 1.5 micron or less.
  • the base stock (or coated paper) is further coated with a polymeric resin layer on one or both sides of the base stock (or coated paper).
  • the polymer film is typically applied to the base stock by an extruding or laminating process although any method of coating the polymeric film to the base stock to provide a smooth surface can be used.
  • One or more coating layers of polymer can be applied to the base stock (or coated paper).
  • the polymers useful in accordance with this aspect of the invention are not particularly limited provided the polymer is capable of being extruded, laminated or coated onto the paper base stock.
  • Polyolefin resins typically are used in producing a photographic support to which a photosensitive emulsion is applied.
  • Polyolefin resins useful in forming the polyolefin resin layer include homopolymers of olefins such as low density polyethylene, high density polyethylene, polypropylene, polybutene, polypentene, copolymers of two or more olefins and mixtures thereof. Polymers of various densities and melt indices can be used. Polyester resins or films may also be used in producing a photographic support.
  • the polymer resin layer may also include other additives such as pigments, amides, metal salts of aliphatic acids, antioxidants, brighteners, ultraviolet absorbers, etc. Titanium dioxide is frequently added to the polymer resin layer to improve sharpness and image resolution.
  • U.S. Pat. No. 4,994,357 to Uno et al. describes various polyolefin coating compositions and the use of the compositions in producing photographic supports.
  • the polymer layer may be applied to provide a dry coat weight of from about 5 to about 30 lb/3300 ft 2 , more particularly from about 15 to about 25 lb/3300 ft 2 .
  • the polymer layer can be extruded as a single layer or co-extruded as a multi-layer.
  • Base stock samples in accordance with particular embodiments of the invention were tested using a laser based UBM surface smoothness apparatus.
  • Roughness of typical photographic base stock and the invention base stock samples both measured in a range of 1.3 to 1.4 micron Ra.
  • Another surface measurement method using a stylus probe was also used.
  • the stylus method separates roughness components by size into three categories or length scales: R 1 , R 2 , and R 3 .
  • R 1 represents the largest scale roughness and R 3 the smallest “fine” scale roughness. For each roughness scale, a smaller R-value represents a smoother base paper.
  • Example 1 (Standard Photo Base Stock - Comparative) Fiber length, mm Cell Wall Population, Species Percent (unrefined) Thickness, ⁇ m Fibers per gram Eucalyptus 34 0.65 ⁇ 4 20 ⁇ 10 6 Maple 24 0.85 4.05 12.8 ⁇ 10 6 Aspen 23 1.05 3.20 11.9 ⁇ 10 6 Birch 12 1.51 3.75 7.6 ⁇ 10 6 Beech 5 1.16 5.60 7.6 ⁇ 10 6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)

Abstract

A smooth base stock useful in various applications, but particularly useful in high quality imaging, comprising nonstandard fibers is disclosed. The base stock fibers have a fiber length weighted average of greater than about 0.9 mm and the base stock has a roughness of less than about 2.0 micron Ra.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 60/479,119, filed Jun. 17, 2003, which is related to U.S. Provisional Application No. 60/479,118, entitled “BINDER SELECTION FOR COATED PHOTOGRAPHIC BASE STOCK” and U.S. Provisional Application No. 60/478,991, entitled “PIGMENT SELECTION FOR COATED PHOTOGRAPHIC BASE STOCK.” The disclosures of these provisional applications are hereby incorporated by reference.
  • This application is related to contemporaneously filed U.S. application Ser. No. ______, entitled “BINDER SELECTION FOR COATED PHOTOGRAPHIC BASE STOCK” and U.S. application Ser. No. ______, entitled “PIGMENT SELECTION FOR COATED PHOTOGRAPHIC BASE STOCK.” The disclosures of these applications are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to smooth base stock for high quality imaging, and, more particularly, to smooth base stock composed of nonstandard fibers.
  • Obtaining photo quality prints by conventional silver halide photography, ink jet printing, dye sublimation, thermal dye transfer, or other like methods is dependent upon the smoothness of the base stock forming the base material for such printing papers. The base stock is typically comprised of cellulose fibers, upon the top and/or bottom side of which polyolefin or polyester films may be extruded or laminated. An imaging coating is applied on top of the poly film on one or both sides. Examples of imaging coatings include photosensitive emulsions, water or pigment-based ink receptive layers, thermal dye-recording layers, or other specialty coatings appropriate for a given imaging method. The smoothness of the base stock determines the appearance and surface uniformity of the final image.
  • It is known that the addition of mineral pigments to a raw stock in place of fiber can improve surface smoothness. Doing so however, can create problems when the basis weight, caliper, and stiffness properties of the base stock are specified. Too much filler pigment can result in a decrease in caliper and stiffness for a desired basis weight and smoothness.
  • Being able to achieve high levels of smoothness in a paper base stock is primarily influenced by the cellulose fiber properties, the uniformity of fiber distribution comprising the base stock (formation), and the calendering or densification processes of the base stock. Fibers can be thought of as hollow tubes with a characteristic length and cell wall thickness.
  • It is well known that formation (uniformity of fiber distribution within a paper base stock), fiber length and fiber wall thickness contribute to smoothness. The more uniform the fiber distribution, the better formation, and the less chance of high and low areas occurring on the surface of paper causing a rough surface. Softwood fibers are significantly longer than hardwood fibers; therefore, hardwood fibers are preferred when smoothness is a desired property. Shorter fibers also contribute to better formation due to a lower tendency to flocculate and by their ability to pack together more tightly. Fiber cell wall thickness will influence the compressibility or ability of fibers to flatten during drying and when compressed during densification. Fibers with thick cell walls are stiffer and resist collapse whereas fibers with thin cell walls are easily compressed and produce a dense, well-formed base stock. Hardwood fibers with a thin cell wall also provide more fibers per gram, further contributing to formation and smoothness. To optimize the benefits that fiber characteristics contribute to a smooth base stock, base stocks used for photographic quality papers typically are comprised of fibers that are short and/or have thin fiber cell walls.
  • Accordingly, conventional techniques for providing a uniform base sheet having the desired smoothness utilize short fibers. In accordance with these conventional methods, the desired fiber length-weighted average, as measured by a Kajaani fiber analyzer, has been described to be between 0.4 to 0.58 mm (U.S. Pat. Nos. 6,391,532, 6,364,997, and 6,107,014), equal to or less than 0.5 mm (U.S. Pat. Nos. 5,250,496 and 5,288,690) or a length between 0.4 to 0.9 mm (JP-A-61-69649).
  • SUMMARY OF THE INVENTION
  • The present invention provides a smooth base stock for high quality imaging. The base stock is characterized in that it utilizes nonstandard fibers yet provides the smoothness and other physical properties required for high quality imaging. In accordance with certain embodiments, the base stock of the present invention comprises fibers having a length weighted average of greater than 0.9 mm and the base stock has a roughness of from about 1.2 micron Ra to about 1.5 micron Ra.
  • In accordance with another embodiment of the present invention, the base stock is composed of fibers having a population below about 10×106 fibers per gram. According to certain aspects of the invention, the base stock in accordance with the present invention exhibits the desired smoothness and yet is substantially free of filler pigments.
  • In accordance with another aspect of the invention, a method for producing a base stock for use in forming a recording material is disclosed. The method includes the steps of providing a fiber slurry composed of fibers having a length weighted average fiber length above about 1 mm, forming a web of the fibers and subjecting the web to a smoothing operation to provide a base stock having a roughness of from about 1.2 micron Ra to about 1.5 micron Ra. The method may also include a refining step wherein the fibers, after the refinement treatment, have a length-weighted average fiber length of above about 0.9 mm.
  • In accordance with another aspect of the invention, a support material for an image forming system is provided. The support material includes a base stock composed of fibers having a length weighted average of greater than about 0.9 mm and a roughness of from about 1.2 micron Ra to about 1.5 micron Ra and an image forming or image receptive coating layer on at least one side of the base stock wherein the image forming or image receptive coating is selected from the group consisting of a photosensitive emulsion, an ink jet receptive coating, a thermal dye recording layer and a pigment based ink receptive layer.
  • In accordance with specific embodiments of the invention, the support material further comprises a polyolefin or polyester coating layer disposed between the base stock and the image forming or image receptive coating layer on one or both sides of the support material.
  • DETAILED DESCRIPTION
  • In describing the preferred embodiment, certain terminology will be utilized for the sake of clarity. It is intended that such terminology include not only the recited embodiments but all technical equivalents which operate in a similar manner, for a similar purpose, to achieve a similar result. All documents cited are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.
  • The term “nonstandard fibers” refers to fibers that are not typically used for producing smooth, photo-quality papers. More specifically, nonstandard fibers are those having an unrefined average fiber length of greater than about 1.0 mm.
  • The term “average fiber length,” refers to the length weighted average fiber length as determined with a suitable fiber length analysis instrument such as a Kajaani Model FS-200 fiber analyzer.
  • The term “population” refers to the number of fibers per gram.
  • The base stock of the present invention may be used in any image forming system in which a smooth base sheet is required to provide a high quality image. By way of example, it may be used in conjunction with photosensitive emulsions, water or pigment-based ink receptive layers, thermal dye-recording layers, or other specialty coatings appropriate for a given imaging method.
  • Base stock for papers that produce high quality images require exceptionally smooth surfaces. Fiber used in the manufacture of these papers is generally natural cellulose fiber, but synthetic fiber may also be used. The base stock can be produced on a Fourdrinier or cylinder paper machine. Achieving the desired level of smoothness is dependent on fiber characteristics, fiber treatment, and method of base stock densification.
  • The base stock of the present invention can include various additives as typically used in producing base stocks. During manufacture of the base stock, chemicals may be added to impart water resistance, wet or dry strength, and to achieve color and brightness targets, depending upon the final product application. For example, sizing agents, dry and wet strengthening agents, fillers, pH adjusters, pigments, dyes and fluorescent brighteners may be added. The additives and amounts needed to obtain a base stock having the desired properties are known to those skilled in the art.
  • Fiber content analysis of a conventional photographic base stock gave the following wood species results: 34% eucalyptus, 24% maple, 23% aspen, 12% birch, 5% beech, and 2% ash. Unrefined fiber lengths of these species are presented. The Eucalyptus family provides the shortest hardwood fiber available with an average fiber length as low as 0.65 mm. Maple is about 0.9 mm and aspen is about 1.0 mm. Other hardwood fiber species are greater than 1.0 mm in length. Cell wall thickness of eucalyptus, maple, aspen, and birch is in the range of 3 to 4 micrometers.
  • Fiber content analysis for a base stock sample in accordance with a specific embodiment of the present invention gave the following wood species: 72% oak, 10% yellow poplar, 9% gum, 4% maple, the remainder being small amounts of other various hardwood species. Analysis of other samples of base stock in accordance with this aspect of the invention gave results that varied somewhat for percentages of species fibers present, but the predominant specie in all samples was oak, and the four species listed above comprised no less than 83% and generally more than 90% of the fiber in accordance with these embodiments of the invention. Unrefined fiber lengths are: oak is 1.25 mm, yellow poplar is 1.9 mm, and gum is 1.85 mm. Averaged fiber cell wall thickness for oak, yellow poplar, and gum is approximately 6.0 microns. Accordingly, the fiber composition of the invention base stock is significantly different from the fiber composition described in the prior art as being essential for producing a smooth base stock necessary for photo quality images. Based on the teachings in the prior art, one of skill in the art looking to produce a base stock for photo-quality images would use short fibers and expect better results with shorter fibers. By contrast, the present invention is directed to a base stock exhibiting the desired smoothness even though the fibers used are relatively long and typically considered as unsuitable for photo-quality paper. The ability to use longer fibers is advantageous from a cost perspective as the longer fibers typically are less expensive than the short fibers used with conventional photo-quality papers.
  • Base stock in accordance with certain aspects of the present invention includes at least 50% nonstandard fibers, more particularly at least 80% nonstandard fibers and in certain embodiments at least 90% nonstandard fibers based on the total fiber content.
  • Fiber population, or fibers per gram, is another measure of fiber properties indicative of the differences between fibers used in conventional base stocks for high image quality imaging and the fibers used in the present invention. The population of conventional fibers typically is greater than about 10×106 fibers per gram. By contrast, the population for the majority of fibers used in the base stock of the present invention is less than about 10×106 fibers per gram, typically less than about 7×106 fibers per gram. Base stock in accordance with certain aspects of the present invention includes at least 50% fibers having a population less than about 10×106 fibers per gram and more particularly at least 80% fibers having a population less than about 10×106 fibers per gram based on the total fiber content.
  • In a conventional paper making process, a number of steps are required to make a base stock. For the purposes of certain embodiments of this invention, one important step relates to the refining process. The fibers are refined prior to being pumped to the paper machine head box and formed into a paper web. During the refining step, fibers that have been previously treated in the pulping and bleaching stages are passed through refiners where the fibers experience a high degree of shear to further change the characteristics of the fiber. Refining can alter the characteristics of the fiber by increasing fiber surface area by fillibrating and by reducing fiber length. In some cases, specially designed refiners are used to reduce fiber length by employing a cutting action. In accordance with conventional paper making processes for producing base stock for high quality images, the refining treatment typically includes a combination of two refining methods. The first step is disc refining which will fillibrate the fiber and cause some reduction in fiber length. The second refining step utilizes a conical refiner or mixer to shorten or cut fibers as described in U.S. Pat. No. 6,107,014. Using a fiber mixture described previously, the resulting conventional fiber mix has a preferred fiber length-weighted average between 0.4 and 0.58 mm. References in the prior art for the manufacture of base stock for high quality images refer to a fiber length-weighted average equal to or less than 0.5 mm (U.S. Pat. Nos. 5,250,496 and 5,288,690). With the base stock of the present invention, the cutting refining step may be eliminated. The refining treatment in accordance with certain aspects of the present invention results in base stock composed of a fiber mixture having a length-weighted average greater than about 0.9 mm. The ability to provide a base stock having the desired smoothness while eliminating a refining step typically utilized in the prior art is another advantage obtained in accordance with certain aspects of the present invention.
  • The basis weight of the raw base paper will typically be from about 50 to about 250 g/m2, more particularly from about 100 to about 200 g/m2. The present invention is not limited to these basis weights and could be applicable to lighter or heavier basis weight papers.
  • The base stock of the present invention can also be provided with a pigment coating to improve smoothness of the base stock, particularly for base stock used for imaging. The pigment coating may include a binder present in the pigment coating composition at from about 8 to about 30% by weight of the dry coating. The pigment to binder ratio may range from about 100:15 to about 100:40, more particularly from about 100:20 to about 100:30.
  • The pigment coating composition of the present invention may include binders and pigments typically used in pigment coatings as would be known to those skilled in the art. Examples of pigments that may be included in the pigment composition include, but are not limited to, calcium carbonate pigments, clay, titanium dioxide, aluminum silicate, magnesium silicate, magnesium carbonate, zinc oxide, talc, satin white, barium sulfate, calcium silicate, zinc hydroxide, etc.
  • Examples of binders that may be included in the pigment composition include, but are not limited to, styrene-butadiene polymers, acrylic polymers, styrene-acrylic polymers, vinyl acetate and ethylenevinyl acetate polymers.
  • In accordance with one aspect of the present invention, the binder used in the coating is an acrylic latex. Examples of acrylic latexes, include but are not limited to, acrylic esters, modified acrylic esters, acrylic ester co-polymers, and modified acrylic ester co-polymers. Examples of useful binders include Rhoplex B-15P, Rhoplex P-554, and Rhoplex 60-A. A particularly preferred acrylic latex is Rhoplex B15-P available from the Rohm and Haas Company. The binder is usually used in an amount of about 8% to 30% by weight, more particularly from about 15% to about 25% by weight, based on the total solids content of the coating. For some applications, the binder may be used in amounts ranging from about 20% to about 30% binder by weight. In accordance with particular embodiments of the invention, the coating composition includes binders described in copending application Ser. No. ______ entitled “BIDER SELECTION FOR COATED PHOTOGRAPHIC BASE STOCK.”
  • The pigments useful in accordance with the present invention are not particularly limited and any pigments can be used which are suitable for the end use application of the coated paper. In accordance with certain embodiments of the invention, the pigment coating contains pigments which are particularly useful in improving smoothness of the base stock as described in commonly assigned and contemporaneously filed U.S. application Ser. No. ______, entitled “PIGMENT SELECTION FOR COATED PHOTOGRAPHIC BASE STOCK.” Examples of the pigments useful in accordance with this aspect of the present invention include, but are not limited to, anisotropic particles in the form of needle-shaped aragonite precipitated calcium carbonate, high-aspect-ratio clay, low bulk density pigment in the form of hollow sphere polystyrene pigment and combinations thereof. In accordance with a more specific aspect of the present invention, a specific pigment formulation comprising a combination of these pigments is provided. By providing a particular range of concentrations of needle-shaped precipitated calcium carbonate, hollow sphere polystyrene pigment and high-aspect-ratio clay, the roughness of a coated photographic base paper can be minimized. In accordance with a particular embodiment of the invention a pigment coating containing from about 10 to about 14% high aspect ratio clay, from about 18 to about 22% hollow sphere polystyrene pigment and from about 65 to about 75% aragonite precipitated calcium carbonate based on total pigment weight can be used to minimize surface roughness. The present invention provides levels of smoothness that are not typically attained using prior art techniques.
  • In accordance with another particularly useful embodiment of the invention, a coated paper is provided having a pigment coating containing from about 20 to about 30% of an acrylic binder, from about 40 to about 80% of aragonite precipitated calcium carbonate and from about 15 to about 25% hollow sphere polystyrene pigment by weight based on the dry pigment coating.
  • The base stock of the present invention may be used in any image forming system in which a smooth base sheet is required to provide a high quality image. By way of example, it may be used in conjunction with photosensitive emulsions, water or pigment-based ink receptive layers, thermal dye-recording layers, or other specialty coatings appropriate for a given imaging method. More particularly, a base stock produced in accordance with the present invention can be converted into photographic products or used to produce photographic ink jet products.
  • The pigment coating as described herein may be applied to the uncoated base stock using any conventional coating devices, such as a gate roll coater, a bill blade coater, an air knife coater, and the like. The pigment coating will typically be applied to provide a coat weight of from about 4 to about 15 lb/3300 ft2, more particularly from about 8 to 10 lb/3300 ft2.
  • After being formed and dried on the paper machine to form a web, final smoothness of the base paper (or coated paper) is generally achieved by subjecting the web (or coated paper) to various smoothing operations. One particularly useful method involves a densification process known as calendering, during which a paper web is passed between nips formed by multiple rolls stacked upon one another, creating pressure to compress the paper and make it smoother. Generally, the compression step is accomplished with a stack of four or more metallic rolls (U.S. Pat. No. 5,060,565). In such a stack, the nip load and compression force increase in each successive nip from the top down due to the weight of the rolls and whatever additional load force is applied. In U.S. Pat. No. 5,200,258, a process is described using a nip formed by two rolls of dissimilar material (i.e. metallic and a polymeric resin covered roll) followed by a nip formed by two metallic rolls. This is a process used for production of standard base stocks as well. In accordance with certain aspects of the present invention, the paper may be compressed by a succession of nips formed by either a polymeric resin covered roll and a metallic roll or by two metallic rolls. It is known in the art of calendering that a nip formed by a polymeric covered roll and a metallic roll will give improved fine scale smoothness to the web contacting the polymeric covered roll. A nip formed by two metallic rolls will improve large to medium scale roughness resulting from paper formation-related roughness. In accordance with a particular embodiment of the present invention, the smoothing operation involves passing the paper web through a plurality of nips in a calender stack wherein the first nips are formed by polymeric covered rolls adjacent to metallic rolls and the last two nips are formed by pairs of adjacent metallic rolls. Therefore, the fine scale smoothness is improved initially with the large and medium scale smoothness improved in the last two nips. A means is employed to control nip pressures so calender roll weight and loading pressure are not the only factors in determining individual nip loads. The described calendering sequence allows a high level of smoothness without a blackening effect that can occur when paper is calendered through multiple metallic nips.
  • Coated paper in accordance with the certain aspects of the present invention is advantageous due to the improvement in smoothness obtained using the described fibers and pigment coating composition. Smoother papers provide images of higher quality in most image forming operations. Smoothness of photobase paper is particularly important for generating high quality images. The surface roughness or Ra of the base stock or coated paper is a measure of relatively finely spaced surface irregularities on the paper. Ra represents the center line roughness of the base stock or finished paper. The surface roughness measurement provides an indication of the maximum variations over the surface of the paper. Lower Ra values indicate smoother base stock or coated paper.
  • In accordance with one aspect of the present invention, the base stock is subjected to a smoothing operation to provide a base stock having a roughness of from about 1.2 micron Ra to about 1.5 micron Ra. Calender loads typically range from about 1000 pli to about 1500 pli to produce base stock having the desired smoothness. Ra represents the center line roughness of the base stock or finished paper. Ra is preferably 3.0 microns or less, more preferably 2.0 micron or less and most preferably 1.5 micron or less.
  • In accordance with certain embodiments of the present invention, the base stock (or coated paper) is further coated with a polymeric resin layer on one or both sides of the base stock (or coated paper). The polymer film is typically applied to the base stock by an extruding or laminating process although any method of coating the polymeric film to the base stock to provide a smooth surface can be used. One or more coating layers of polymer can be applied to the base stock (or coated paper). The polymers useful in accordance with this aspect of the invention are not particularly limited provided the polymer is capable of being extruded, laminated or coated onto the paper base stock.
  • Polyolefin resins typically are used in producing a photographic support to which a photosensitive emulsion is applied. Polyolefin resins useful in forming the polyolefin resin layer include homopolymers of olefins such as low density polyethylene, high density polyethylene, polypropylene, polybutene, polypentene, copolymers of two or more olefins and mixtures thereof. Polymers of various densities and melt indices can be used. Polyester resins or films may also be used in producing a photographic support. The polymer resin layer may also include other additives such as pigments, amides, metal salts of aliphatic acids, antioxidants, brighteners, ultraviolet absorbers, etc. Titanium dioxide is frequently added to the polymer resin layer to improve sharpness and image resolution. U.S. Pat. No. 4,994,357 to Uno et al. describes various polyolefin coating compositions and the use of the compositions in producing photographic supports.
  • The polymer layer may be applied to provide a dry coat weight of from about 5 to about 30 lb/3300 ft2, more particularly from about 15 to about 25 lb/3300 ft2. The polymer layer can be extruded as a single layer or co-extruded as a multi-layer.
  • The present invention is illustrated in more detail by the following non-limiting examples.
  • EXAMPLE 1
  • Base stock samples in accordance with particular embodiments of the invention were tested using a laser based UBM surface smoothness apparatus. Roughness of typical photographic base stock and the invention base stock samples both measured in a range of 1.3 to 1.4 micron Ra. Another surface measurement method using a stylus probe was also used. The stylus method separates roughness components by size into three categories or length scales: R1, R2, and R3. R1 represents the largest scale roughness and R3 the smallest “fine” scale roughness. For each roughness scale, a smaller R-value represents a smoother base paper. Average data for three reference base stocks were: R1=36, R2=37, and R3=48. By comparison, three invention base stocks averaged R1=29, R2=36, and R3=46.
  • Comparison of Fiber Properties
  • TABLE 1
    Example 1 (Standard Photo Base Stock - Comparative)
    Fiber length,
    mm Cell Wall Population,
    Species Percent (unrefined) Thickness, μm Fibers per gram
    Eucalyptus 34 0.65 ≈4   20 × 106
    Maple 24 0.85 4.05 12.8 × 106
    Aspen 23 1.05 3.20 11.9 × 106
    Birch 12 1.51 3.75  7.6 × 106
    Beech 5 1.16 5.60  7.6 × 106
  • TABLE 2
    Example 2 (Invention Base Stock)
    Fiber length,
    mm Cell Wall Population,
    Species Percent (unrefined) Thickness, μm Fibers per gram
    Oak 70 1.25 5.8 6.9 × 106
    Yellow Poplar 10 1.95 ≈6 1.9 × 106
    Gum 8 1.85 6.32 2.2 × 106
    Maple 3 0.85 4.05 12.8 × 106
    Misc. Species 9 >1.0
  • Comparison of Base Stock Roughness Values
  • TABLE 3
    Base Stock UBM Data
    Base Stock UBM Ra, μm
    Example 4 (Reference) 1.32
    Example 5 (Reference) 1.35
    Example 6 (Invention) 1.33
    Example 7 (Invention) 1.38
  • TABLE 4
    Base Stock Stylus Data
    Side 1 Side 2 Side 1 + side 2 avg
    Sample R1 R2 R3 R1 R2 R3 R1 R2 R3
    Example 8 38 40 40 35 39 41 36 37 48
    (Reference)
    Example 9 41 36 47 40 36 49
    Reference
    Example 10 28 33 49 34 40 61
    Reference
    Example 11 26 32 41 25 33 44 29 36 46
    (Invention)
    Example 12 26 36 46 26 35 45
    (Invention)
    Example 13 34 36 48 36 39 49
    (Invention)
  • TABLE 5
    Fiber Length Analysis Results (Invention Base Stock)
    Sample Length-weighted Average
    Example 14 (Invention) 0.93 mm
    Example 15 (Invention) 0.98 mm
    Example 16 (Invention) 0.93 mm
    Example 17 (Invention) 0.90 mm
  • TABLE 6
    Fiber Coarseness Data
    Coarseness
    Length-weighted (Length/
    Sample Average Mean Width Width)
    Example 18 (Reference) 0.73 mm 0.0350 mm 21
    Example 19 (Invention) 0.98 mm 0.0190 mm 51
    Example 20 (Invention) 0.93 mm 0.0193 mm 48
  • Having described various aspects and embodiments of the invention and several advantages thereof, it will be recognized by those of ordinary skills that the invention is susceptible to various modifications, substitutions and revisions within the spirit and scope of the appended claims.

Claims (28)

1. A base stock comprising fibers wherein the fibers have a fiber length weighted average of greater than about 0.9 mm and wherein the base stock has a roughness of less than about 2.0 micron Ra.
2. The base stock in accordance with claim 1 wherein the base stock has a roughness of less than about 1.5 micron Ra.
3. The base stock in accordance with claim 2 wherein the base stock has a roughness of from about 1.2 micron Ra to about 1.5 micron Ra.
4. The base stock in accordance with claim 1 wherein the base stock comprises at least 50% non-standard fibers based on the total fiber content.
5. The base stock in accordance with claim 1 wherein the base stock comprises at least 50% fibers having a population of less than about 10×106 fibers/gram.
6. The base stock in accordance with claim 1 wherein the base stock is substantially free of filler pigments.
7. A method for producing a base stock for use in forming a recording material comprising the steps of:
providing a fiber slurry comprising fibers having a length weighted average fiber length above about 1 mm,
forming a web of the fibers; and
subjecting the web to a smoothing operation to provide a base stock having a roughness of less than about 2.0 micron Ra.
8. The method of claim 7 wherein the base stock has a roughness of less than about 1.5 micron Ra.
9. The method of claim 8 wherein the base stock has a roughness of from about 1.2 micron Ra to about 1.5 micron Ra.
10. The method of claim 7 further comprising:
refining the fibers in the fiber slurry, wherein after the refinement treatment, the fibers have a length-weighted average fiber length of above about 0.9 mm.
11. The method of claim 10 wherein the fiber slurry is substantially free of filler pigments and the resulting base stock is substantially free of filler pigments.
12. The method of claim 7 further comprising:
coating the base stock on at least one side thereof with a pigment coating composition.
13. The method of claim 12 wherein said pigment coating composition comprises aragonite precipitated calcium carbonate, hollow sphere pigment and a binder.
14. The method of claim 13 wherein the binder comprises an acrylic binder selected from the group consisting of acrylic esters, modified acrylic esters, acrylic ester co-polymers, modified acrylic ester co-polymers and mixtures thereof.
15. The method of claim 14 wherein said pigment coating composition comprises from about 20 to about 30% acrylic binder, from about 15 to about 25% hollow sphere pigment and from about 40 to about 80% aragonite precipitated calcium carbonate based on dry weight of the pigment coating composition.
16. A support material for an image forming system comprising:
a base paper comprising fibers wherein the fibers have a fiber length weighted average of greater than about 0.9 mm and wherein the base stock has a roughness of less than about 2.0 micron Ra.; and
an image forming or image receptive coating layer on at least one side of the paper wherein the image forming or image receptive coating is selected from the group consisting of a photosensitive emulsion, an ink jet receptive coating, a thermal dye recording layer and a pigment based ink receptive layer.
17. The support material in accordance with claim 16 wherein the support material further comprises a pigment coating comprising a pigment and a binder on at least one side of the paper thereby forming a pigment coated paper.
18. The support material in accordance with claim 17 wherein the support material further comprises a polymeric coating layer disposed between the pigment coating on the coated paper and the image forming or image receptive coating layer on one or both sides of the support material.
19. The support material in accordance with claim 18 wherein the polymeric coating layer comprises a polyolefin or polyester coating layer.
20. The support material in accordance with claim 18 wherein the pigment coating coat weight is from about 4 to about 15 lb/3300 ft2.
21. The support material in accordance with claim 20 wherein the pigment coating comprises from about 40 to about 80% aragonite precipitated calcium carbonate and from about 15 to 25% hollow sphere pigment by dry weight based on total pigment coating.
22. The support material in accordance with claim 21 wherein the pigment coating further comprises from about 20 to about 30% of an acrylic binder based on total pigment coating.
23. The support material in accordance with claim 20 wherein the pigment coating further comprises a binder present in the pigment coating composition at from about 8 to about 30% by weight of the dry pigment coating.
24. The support material in accordance with claim 21 wherein the pigment coating is substantially free of clay.
25. The support material in accordance with claim 18 wherein the base stock has a roughness of less than about 1.5 micron Ra.
26. The support material in accordance with claim 25 wherein the base stock has a roughness of from about 1.2 micron Ra to about 1.5 micron Ra.
27. The support material in accordance with claim 18 wherein the base stock comprises at least 50% non-standard fibers based on the total fiber content.
28. The support material in accordance with claim 18 wherein the base stock comprises at least 50% fibers having a population of less than about 10×106 fibers/gram.
US10/870,693 2003-06-17 2004-06-17 Smooth base stock composed of nonstandard fibers Abandoned US20050028951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/870,693 US20050028951A1 (en) 2003-06-17 2004-06-17 Smooth base stock composed of nonstandard fibers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US47911803P 2003-06-17 2003-06-17
US47911903P 2003-06-17 2003-06-17
US47899103P 2003-06-17 2003-06-17
US10/870,693 US20050028951A1 (en) 2003-06-17 2004-06-17 Smooth base stock composed of nonstandard fibers

Publications (1)

Publication Number Publication Date
US20050028951A1 true US20050028951A1 (en) 2005-02-10

Family

ID=34120033

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/870,693 Abandoned US20050028951A1 (en) 2003-06-17 2004-06-17 Smooth base stock composed of nonstandard fibers

Country Status (1)

Country Link
US (1) US20050028951A1 (en)

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664952A (en) * 1984-10-23 1987-05-12 Canon Kabushiki Kaisha Recording medium and recording method utilizing the same
US4778711A (en) * 1986-02-26 1988-10-18 Fuji Xerox Co., Ltd. Paper for receiving toner images in electrophotography
US4994357A (en) * 1988-06-01 1991-02-19 Mitsubishi Paper Mills Limited Process for producing photographic support
US5060565A (en) * 1988-12-22 1991-10-29 Felex Schoeller Jr. Gmbh & Co. Smoothing and calibrating of paper
US5082724A (en) * 1989-02-06 1992-01-21 Mitsubishi Paper Mills Limited Photograhic paper support
US5228954A (en) * 1991-05-28 1993-07-20 The Procter & Gamble Cellulose Company Cellulose pulps of selected morphology for improved paper strength potential
US5250496A (en) * 1992-01-17 1993-10-05 Eastman Kodak Company Receiving element with cellulose paper support for use in thermal dye transfer
US5290672A (en) * 1984-11-24 1994-03-01 The Wiggins Teape Group Limited Base paper for photographic prints
US5378497A (en) * 1993-02-10 1995-01-03 Westvaco Corporation Method for providing irreversible smoothness in a paper rawstock
US5478388A (en) * 1993-05-04 1995-12-26 Ecc International Limited Pigment for a coating composition for printing paper
US5582685A (en) * 1993-06-24 1996-12-10 The Procter & Gamble Company Method for producing a cellulose pulp of selected fiber length and coarseness by a two-stage fractionation
US5667900A (en) * 1993-01-04 1997-09-16 E. I. Du Pont De Nemours And Company Aramid paper with high surface smoothness
US5763009A (en) * 1995-09-05 1998-06-09 Fuji Photo Film Co., Ltd. Process for producing support for recording material
US5849447A (en) * 1995-12-18 1998-12-15 Fuji Xerox Co., Ltd. Recording paper and recording method using the same
US5853870A (en) * 1996-06-27 1998-12-29 Oji Paper Co., Ltd. Both-side coated paper comprising kaolin for usE of printing
US5861209A (en) * 1997-05-16 1999-01-19 Minerals Technologies Inc. Aragonitic precipitated calcium carbonate pigment for coating rotogravure printing papers
US5916417A (en) * 1997-08-22 1999-06-29 International Paper Company Method of making multi-ply paperboard sheet having layers of different fiber properties
US5994045A (en) * 1997-12-24 1999-11-30 Eastman Kodak Company Composite photographic material with laminated biaxially oriented polyolefin sheets with controlled water vapor transmission rate
US6030742A (en) * 1998-11-23 2000-02-29 Eastman Kodak Company Superior photographic elements including biaxially oriented polyolefin sheets
US6107014A (en) * 1998-06-09 2000-08-22 Eastman Kodak Company Raw stock for photographic paper
US6190781B1 (en) * 1998-01-20 2001-02-20 Mitsubishi Paper Mills Limited Support for imaging material
US6207362B1 (en) * 1999-09-09 2001-03-27 Eastman Kodak Company Tough durable imaging cellulose base material
US6287743B1 (en) * 1999-09-09 2001-09-11 Eastman Kodak Company Imaging material with smooth cellulose base
US20010026869A1 (en) * 2000-02-18 2001-10-04 Martina Wicher Support material for recording layers
US6335102B1 (en) * 1997-02-20 2002-01-01 Mitsubishi Paper Mills Ltd. Support for imaging material
US20020025413A1 (en) * 2000-06-09 2002-02-28 Konica Corporation Ink jet recording sheet
US20020040772A1 (en) * 1999-04-12 2002-04-11 Johnson Dean R. High gloss coated paper
US6391532B1 (en) * 2000-04-07 2002-05-21 Eastman Kodak Company Photographic paper containing calcium carbonate
US6482581B1 (en) * 1998-04-23 2002-11-19 Fuji Photo Film B.V. Coated base paper for photographic printing paper
US6517674B1 (en) * 2000-02-02 2003-02-11 The Mead Corporation Process for manufacturing wear resistant paper
US6531183B1 (en) * 1999-07-28 2003-03-11 Meadwestvaco Corporation Method of producing high gloss paper
US20030059546A1 (en) * 2000-11-13 2003-03-27 Dean Johnson Coated paper
US6547929B2 (en) * 2000-04-12 2003-04-15 Rohm And Haas Company Paper having improved print quality and method of making the same
US20030085012A1 (en) * 2001-09-07 2003-05-08 Jones J Philip E Hyperplaty clays and their use in paper coating and filling, methods for making same, and paper products having improved brightness
US20030106658A1 (en) * 2000-01-28 2003-06-12 Teuvo Ilmonen Process and coating composition for coating a paper web
US6692798B1 (en) * 2000-07-24 2004-02-17 Eastman Kodak Company Kenaf imaging base and method of formation
US20040099391A1 (en) * 2002-11-26 2004-05-27 Bob Ching Process for producing super high bulk, light weight coated papers
US20040154765A1 (en) * 2001-05-23 2004-08-12 Upm-Kymmene Printing paper
US20040180184A1 (en) * 2002-03-18 2004-09-16 Mario Fillion Coated paper and process for producing same
US20040265513A1 (en) * 2003-06-25 2004-12-30 Shigehisa Tamagawa Image recording material, support for the image recording material and process of manufacturing the support
US20050032644A1 (en) * 2003-06-17 2005-02-10 Brelsford Gregg L. Binder selection for coated photographic base stock
US6878236B2 (en) * 1999-12-09 2005-04-12 Upm-Kymmene Corporation Raw material for printing paper, a method for producing said raw material and a printing paper
US20070169902A1 (en) * 2006-01-20 2007-07-26 Brelsford Gregg L Method of producing coated paper with reduced gloss mottle

Patent Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664952A (en) * 1984-10-23 1987-05-12 Canon Kabushiki Kaisha Recording medium and recording method utilizing the same
US5290672A (en) * 1984-11-24 1994-03-01 The Wiggins Teape Group Limited Base paper for photographic prints
US4778711A (en) * 1986-02-26 1988-10-18 Fuji Xerox Co., Ltd. Paper for receiving toner images in electrophotography
US4994357A (en) * 1988-06-01 1991-02-19 Mitsubishi Paper Mills Limited Process for producing photographic support
US5060565A (en) * 1988-12-22 1991-10-29 Felex Schoeller Jr. Gmbh & Co. Smoothing and calibrating of paper
US5082724A (en) * 1989-02-06 1992-01-21 Mitsubishi Paper Mills Limited Photograhic paper support
US5228954A (en) * 1991-05-28 1993-07-20 The Procter & Gamble Cellulose Company Cellulose pulps of selected morphology for improved paper strength potential
US5250496A (en) * 1992-01-17 1993-10-05 Eastman Kodak Company Receiving element with cellulose paper support for use in thermal dye transfer
US5288690A (en) * 1992-01-17 1994-02-22 Eastman Kodak Company Receiving element with cellulose paper support for use in thermal dye transfer
US5667900A (en) * 1993-01-04 1997-09-16 E. I. Du Pont De Nemours And Company Aramid paper with high surface smoothness
US5378497A (en) * 1993-02-10 1995-01-03 Westvaco Corporation Method for providing irreversible smoothness in a paper rawstock
US5478388A (en) * 1993-05-04 1995-12-26 Ecc International Limited Pigment for a coating composition for printing paper
US5582685A (en) * 1993-06-24 1996-12-10 The Procter & Gamble Company Method for producing a cellulose pulp of selected fiber length and coarseness by a two-stage fractionation
US5763009A (en) * 1995-09-05 1998-06-09 Fuji Photo Film Co., Ltd. Process for producing support for recording material
US5849447A (en) * 1995-12-18 1998-12-15 Fuji Xerox Co., Ltd. Recording paper and recording method using the same
US5853870A (en) * 1996-06-27 1998-12-29 Oji Paper Co., Ltd. Both-side coated paper comprising kaolin for usE of printing
US6335102B1 (en) * 1997-02-20 2002-01-01 Mitsubishi Paper Mills Ltd. Support for imaging material
US20020064672A1 (en) * 1997-02-20 2002-05-30 Mitsubishi Paper Mills Ltd. Support for imaging material
US5861209A (en) * 1997-05-16 1999-01-19 Minerals Technologies Inc. Aragonitic precipitated calcium carbonate pigment for coating rotogravure printing papers
US5916417A (en) * 1997-08-22 1999-06-29 International Paper Company Method of making multi-ply paperboard sheet having layers of different fiber properties
US6068732A (en) * 1997-08-22 2000-05-30 International Paper Company Multi-ply paperboard with improved stiffness
US5994045A (en) * 1997-12-24 1999-11-30 Eastman Kodak Company Composite photographic material with laminated biaxially oriented polyolefin sheets with controlled water vapor transmission rate
US6190781B1 (en) * 1998-01-20 2001-02-20 Mitsubishi Paper Mills Limited Support for imaging material
US6482581B1 (en) * 1998-04-23 2002-11-19 Fuji Photo Film B.V. Coated base paper for photographic printing paper
US6107014A (en) * 1998-06-09 2000-08-22 Eastman Kodak Company Raw stock for photographic paper
US6364997B1 (en) * 1998-06-09 2002-04-02 Eastman Kodak Company Raw stock for photographic paper
US6030742A (en) * 1998-11-23 2000-02-29 Eastman Kodak Company Superior photographic elements including biaxially oriented polyolefin sheets
US20020040772A1 (en) * 1999-04-12 2002-04-11 Johnson Dean R. High gloss coated paper
US7070679B2 (en) * 1999-07-28 2006-07-04 Newpage Corporation High gloss and high bulk paper
US6531183B1 (en) * 1999-07-28 2003-03-11 Meadwestvaco Corporation Method of producing high gloss paper
US20030121634A1 (en) * 1999-07-28 2003-07-03 Cason David B. Method of producing high gloss paper
US6287743B1 (en) * 1999-09-09 2001-09-11 Eastman Kodak Company Imaging material with smooth cellulose base
US6207362B1 (en) * 1999-09-09 2001-03-27 Eastman Kodak Company Tough durable imaging cellulose base material
US6878236B2 (en) * 1999-12-09 2005-04-12 Upm-Kymmene Corporation Raw material for printing paper, a method for producing said raw material and a printing paper
US20030106658A1 (en) * 2000-01-28 2003-06-12 Teuvo Ilmonen Process and coating composition for coating a paper web
US6517674B1 (en) * 2000-02-02 2003-02-11 The Mead Corporation Process for manufacturing wear resistant paper
US20010026869A1 (en) * 2000-02-18 2001-10-04 Martina Wicher Support material for recording layers
US6391532B1 (en) * 2000-04-07 2002-05-21 Eastman Kodak Company Photographic paper containing calcium carbonate
US6547929B2 (en) * 2000-04-12 2003-04-15 Rohm And Haas Company Paper having improved print quality and method of making the same
US20020025413A1 (en) * 2000-06-09 2002-02-28 Konica Corporation Ink jet recording sheet
US6692798B1 (en) * 2000-07-24 2004-02-17 Eastman Kodak Company Kenaf imaging base and method of formation
US20030059546A1 (en) * 2000-11-13 2003-03-27 Dean Johnson Coated paper
US20040154765A1 (en) * 2001-05-23 2004-08-12 Upm-Kymmene Printing paper
US6923889B2 (en) * 2001-05-23 2005-08-02 Upm-Kymmene Printing paper
US20030085012A1 (en) * 2001-09-07 2003-05-08 Jones J Philip E Hyperplaty clays and their use in paper coating and filling, methods for making same, and paper products having improved brightness
US20040180184A1 (en) * 2002-03-18 2004-09-16 Mario Fillion Coated paper and process for producing same
US20040099391A1 (en) * 2002-11-26 2004-05-27 Bob Ching Process for producing super high bulk, light weight coated papers
US20050032644A1 (en) * 2003-06-17 2005-02-10 Brelsford Gregg L. Binder selection for coated photographic base stock
US20040265513A1 (en) * 2003-06-25 2004-12-30 Shigehisa Tamagawa Image recording material, support for the image recording material and process of manufacturing the support
US20070169902A1 (en) * 2006-01-20 2007-07-26 Brelsford Gregg L Method of producing coated paper with reduced gloss mottle

Similar Documents

Publication Publication Date Title
US7255918B2 (en) Coated paper sheet
US7014893B2 (en) Support material for recording layers
US20090017234A1 (en) Gloss coated multifunctional printing paper
US7160675B2 (en) Coated base paper for photographic printing paper
CA2642924C (en) Support material for recording layer
US11549216B2 (en) Oil/grease resistant paper products
US20050031805A1 (en) Pigment selection for photographic base stock
US20070154719A1 (en) Coated base paper
WO2004114014A1 (en) Pigment selection for photographic base stock
EP1633928B1 (en) Smooth base stock composed of nonstandard fibers
US20100003427A1 (en) Inkjet Recording Material with Perforated Backside Resin Layer
US20050032644A1 (en) Binder selection for coated photographic base stock
US20050028951A1 (en) Smooth base stock composed of nonstandard fibers
US5843572A (en) Ink jet recording paper
US20070009685A1 (en) Support for image recording material
JPH03180599A (en) Recording paper composed of plural layers
US20030059546A1 (en) Coated paper
RU2375199C1 (en) Printing carrier for water-based ink and method for definition of its ink absorption parametres
WO2004114015A1 (en) Binder selection for coated photographic base stock
JP6513537B2 (en) Coated paper for printing
JPH06158579A (en) Production of paper
JPH03162993A (en) Thermal transfer image receiving sheet
JPS63210841A (en) Supporting body for photographic printing paper
JPH04289300A (en) Multi-layered paper
JPS63173045A (en) Supporting body for photographic printing paper

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEADWESTVACO CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRELSFORD, GREGG L.;CASON, DAVID B.;JOHNSON, DEAN R.;AND OTHERS;REEL/FRAME:015269/0835;SIGNING DATES FROM 20040902 TO 20041012

AS Assignment

Owner name: CHILLICOTHE PAPER INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEADWESTVACO CORPORATION;REEL/FRAME:015991/0288

Effective date: 20050430

AS Assignment

Owner name: THE BANK OF NEW YORK, AS PRIORITY LIEN COLLATERAL

Free format text: SECURITY AGREEMENT;ASSIGNOR:CHILLICOTHE PAPER INC.;REEL/FRAME:016059/0917

Effective date: 20050502

AS Assignment

Owner name: THE BANK OF NEW YORK, AS PARITY LIEN COLLATERAL TR

Free format text: SECURITY AGREEMENT;ASSIGNOR:CHILLICOTHE PAPER INC.;REEL/FRAME:016069/0240

Effective date: 20050502

AS Assignment

Owner name: MEADWESTVACO MARYLAND, INC. (TO BE NAMED LUKE PAPE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0305

Effective date: 20060331

Owner name: MEADWESTVACO OXFORD CORPORATION (TO BE NAMED RUMFO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0305

Effective date: 20060331

Owner name: WICKLIFFE PAPER COMPANY, OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0305

Effective date: 20060331

Owner name: RUMFORD COGENERATION, INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0305

Effective date: 20060331

Owner name: ESCANABA PAPER COMPANY, OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0305

Effective date: 20060331

Owner name: MEADWESTVACO ENERGY SERVICES LLC (TO BE NAMED NEWP

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0305

Effective date: 20060331

Owner name: NEWPAGE CORPORATION, OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0305

Effective date: 20060331

Owner name: UPLAND RESOURCES, INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0305

Effective date: 20060331

Owner name: CHILLICOTHE PAPER INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0305

Effective date: 20060331

Owner name: RUMFORD FALLS POWER COMPANY, OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0305

Effective date: 20060331

AS Assignment

Owner name: CHILLICOTHE PAPER INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

Owner name: MEADWESTVACO MARYLAND, INC. (TO BE NAMED LUKE PAPE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

Owner name: WICKLIFFE PAPER COMPANY, OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

Owner name: UPLAND RESOURCES, INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

Owner name: RUMFORD COGENERATION, INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

Owner name: MEADWESTVACO OXFORD CORPORATION (TO BE NAMED RUMFO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

Owner name: NEWPAGE CORPORATION, OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

Owner name: MEADWESTVACO ENERGY SERVICES LLC (TO BE NAMED NEWP

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

Owner name: RUMFORD FALLS POWER COMPANY, OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

Owner name: NEWPAGE HOLDING CORPORATION, OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

Owner name: ESCANABA PAPER COMPANY, OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS COLLATERAL TRUSTEE;REEL/FRAME:017492/0748

Effective date: 20060331

AS Assignment

Owner name: THE BANK OF NEW YORK, AS AGENT, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO VOID IN PART THE RELEASE RECORDED AT REEL 17492 FRAME 305;ASSIGNORS:NEWPAGE CORPORATION;CHILLICOTHE PAPER INC.;REEL/FRAME:017957/0683

Effective date: 20060719

Owner name: THE BANK OF NEW YORK, AS AGENT, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO VOID IN PART THE RELEASE RECORDED AT REEL 17492 FRAME 745;ASSIGNORS:NEWPAGE CORPORATION;CHILLICOTHE PAPER INC.;REEL/FRAME:017957/0672

Effective date: 20060719

AS Assignment

Owner name: CHILLICOTHE PAPER INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK, AS PRIORITY LIEN COLLATERAL TRUSTEE;REEL/FRAME:020288/0733

Effective date: 20071221

AS Assignment

Owner name: THE BANK OF NEW YORK, AS PRIORITY LIEN COLLATERAL

Free format text: SECURITY AGREEMENT;ASSIGNOR:NEWPAGE CORPORATION;REEL/FRAME:020299/0789

Effective date: 20071221

AS Assignment

Owner name: THE BANK OF NEW YORK, AS PARITY LIEN COLLATERAL TR

Free format text: SECURITY AGREEMENT;ASSIGNOR:NEWPAGE CORPORATION;REEL/FRAME:020317/0430

Effective date: 20071221

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON, AS PRIORITY LIEN COLL

Free format text: AMENDMENT TO PATENT SECURITY AGREEMENT (TO REFLECT NAME CHANGE OF RECEIVING PARTY);ASSIGNOR:NEWPAGE CORPORATION;REEL/FRAME:023234/0563

Effective date: 20090911

Owner name: THE BANK OF NEW YORK MELLON, AS PARITY LIEN COLLAT

Free format text: AMENDMENT TO PATENT SECURITY AGREEMENT (TO REFLECT NAME CHANGE OF RECEIVING PARTY);ASSIGNOR:NEWPAGE CORPORATION;REEL/FRAME:023234/0586

Effective date: 20090911

AS Assignment

Owner name: NEWPAGE CORPORATION, NEWPAGE WISCONSIN SYSTEM INC.

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON;REEL/FRAME:029529/0873

Effective date: 20121221